杨儒贵版高等电磁理论课后习题解答
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)第3章
可见,空间某点r对于任一参考点r0的电位为
对于本题,若取坐标原点作为电位参考点,因为原线电荷 离坐标原点的距离为2h,离场点P的距离为r0,那么该线电荷在P点产生的电位为
因为全部镜像电荷离坐标原点的距离均为2h,那么,劈间任一点P以坐标原点作为电位参考点的电位为
即
要使点电荷受力为零,则 应满足下列方程
求解此高次方程可用作图法。为此,先将上式化简为
再化为关于 的方程即
若 ,则上面的方程又可写为
令 , ,分别作图求得y1和y2的交点,即是所要求的解。根据题意可知 ,由下图可见 的解位于 =1.5~2之间。其值近似为 ,即 时,点电荷q受力为零。
3-14试证位于内半径为a的导体球形空腔中的点电荷q受到的电场力大小为
答根据镜像法,如果劈形导体的夹角不为 的整数分之一时,则镜像电荷不能最终和原电荷重合,这样将会产生无限多个镜像电荷,每个镜像电荷都会产生一定的电位,导致合成电位无限大,因而无解。
当点电荷位于两块无限大导体板之间时,可采用镜像法求解。此时虽然也会产生无限多个镜像电荷,但是远处的镜像电荷对于两板之间的场点贡献越来越小,因
当球壳的电位为时,由上题获知位于球心的镜像电荷q应为
壳外的场强将由点电荷 及其镜像电荷 和q共同产生,壳外的合成电位为
式中镜像电荷 ,离球心的距离为 ,则壳外的电场强度为
2球壳表面的电荷密度为
其最大值为
③系统能量的改变来自外力作的功。已知点电荷 受到的电场力为
由此可见,若q>0q<0,又因<0,故电场力的实际方向为(-er)。在外力作用下,当点电荷q离开球心的距离增加一倍时,外力F作的功为
因为 ,即 ,代入上式,考虑到 ,即当 时,取上式极限,求得
电磁场与电磁波习题答案3杨儒贵
已知导体球的电位为,而镜像电荷及球外点电荷对于球面边界的电位没有贡献,因此,球心镜像电荷q的电量应满足
即
②当导体球携带的电荷为Q时,在离球心 处的镜像电荷仍然为 ,而球心处的镜像电荷 ,以保持电荷守恒,即 。
;
计算腔外场强也可应用镜像法,此时导体球的半径为a,如习题图3-15(b)所示。但是腔中必须引入两个镜像电荷q0和q,其中q0位于球心,q的位置和电量,以及q0的电量分别为
; ;
综上所述,腔内场强由两个点电荷q和q共同产生,腔外场强由三个点电荷q,q和q共同产生,而导体内的场强为零。
3-16已知点电荷q位于半径为a的导体球附近,离球心的距离为f,试求:①当导体球的电位为时的镜像电荷;②当导体球的电荷为Q时的镜像电荷。
由图可知
因此, ,即镜像电荷分布函数为
3-13已知一个不接地的半径为a的导体球携带的电荷为Q,若电荷为Q的点电荷移向该带电球,试问当点电荷受力为零时离球心的距离。(当点电荷所带电荷与导体球所带电荷相反时,点电荷肯定受到引力,即其受力不可能为零)。
解如习题题3-10所示,如前所述,根据镜像法,若导体球原先不带电,对于点电荷Q,必须在球内距离球心 处引入一个镜像电荷 ,而在球心处再放置另一个电量为 的点电荷,以保持电荷守恒及导体球为等位体。本题中导体球已带有电量为Q的电荷,因此在球心处放置的另一个镜像电荷的电量应为(Q )。那么,点电荷 将受到的镜像电荷的作用力为
若高度h>>a,上式还可进一步简化为
3-6一根无限长线电荷平行放置
在夹角60的电劈的中央部位,
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)第8章
第八章 平面电磁波8-1 导出非均匀的各向同性线性媒质中,正弦电磁场应该满足的波动方程及亥姆霍兹方程。
解 非均匀的各向同性线性媒质中,正弦电磁场应该满足的麦克斯韦方程如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇)(),()(0),()(),()(),(),()(),(),(r r E r r H r r H r r E r E r r J r H ρεμμεt t t t t t t t t , 分别对上面两式的两边再取旋度,利用矢量公式A A A 2)(∇-⋅∇∇=⨯∇⨯∇,得⎪⎪⎭⎫ ⎝⎛∇⋅-∇+∂∂+∂∂⨯∇=∂∂-∇)()(),(),(),()(),()(),()()(),(222r r r E r r J r r H r r E r r r E εερμμμεt t t t t t t t t ⎪⎪⎭⎫ ⎝⎛∇⋅∇-∂∂⨯∇-⨯-∇=∂∂-∇μμεμε)(),(),()(),(),()()(),(222r r H r E r r J r H r r r H t t t t t t t 则相应的亥姆霍兹方程为⎪⎪⎭⎫ ⎝⎛∇⋅-∇++⨯∇=+∇)()()()()()(j )()(j )()()()(22r r r E r r J r r H r r E r r r E εερωμμωμεω⎪⎪⎭⎫ ⎝⎛∇⋅∇-⨯∇-⨯-∇=+∇μμεωμεω)()()()(j )()()()()(22r r H r E r r J r H r r r H 8-2 设真空中0=z 平面上分布的表面电流t J s x s sin 0ωe J =,试求空间电场强度、磁场强度及能流密度。
解 0=z 平面上分布的表面电流将产生向z +和z -方向传播的两个平面波,设z > 0区域中的电场和磁场分别为)(1z,t E ,)(1z,t H ,传播方向为z +;而z < 0区域中的场强为)(2z,t E 和)(2z,t H ,传播方向为z -。
电磁场与电磁波课后习题答案第3章(杨儒贵编着)
第三章 静电场3-1 已知在直角坐标系中四个点电荷分布如习题图3-1所示,试求电位为零的平面。
解 已知点电荷q 的电位为rq 4πεϕ=,令)0,1,0(1q q -=,)0,1,3(2q q +=,)0,0,1(3q q -=,)0,0,0(4q q +=,那么,图中4个点电荷共同产生的电位应为∑=414ii r q πεϕ令0=ϕ,得 0 4 4 4 44321=+-+-r qr q r q r q πεπεπεπε 由4个点电荷的分布位置可见,对于x =1.5cm 的平面上任一点,4321 ,r r r r ==,因此合成电位为零。
同理,对于x =0.5cm 的平面上任一点,3241 ,r r r r ==,因此合成电位也为零。
所以,x =1.5cm 及x =0.5cm 两个平面的电位为零。
3-2 试证当点电荷q 位于无限大的导体平面附近时,导体表面上总感应电荷等于)(q -。
证明 建立圆柱坐标,令导体表面位于xy 平面,点电荷距离导体表面的高度为h ,如图3-2所示。
那么,根据镜像法,上半空间的电场强度为32023101 4 4r q r q πεπεr r E -=X 习题图3-1(r , z )习题图3-2电通密度为)(43223110r r q r r E D -==πε 式中 232231])([h z r r -+=; 232232])([h z r r ++=那么,⎥⎥⎥⎦⎤⎪⎪⎪⎭⎫ ⎝⎛+++-++-+⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛++--+=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++--+-+=z z zh z r hz h z r h z h z r r h z r r q h z r h z r h z r h z r q e e e e e e D r r r 232223222322232223222322])([])([ ])([])([4 ])([)(])([)(4ππ 已知导体表面上电荷的面密度n s D =ρ,所以导体表面的感应电荷为2322232223220)(2][][4h r qh h r h h r h q D z zs +-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+-===ππρ 则总的感应电荷为q h r r r qh r r S q s ss -=+-===⎰⎰⎰∞∞2322)(d d 2d 'πρρ3-3 根据镜像法,说明为什么只有当劈形导体的夹角为π的整数分之一时,镜像法才是有效的?当点电荷位于两块无限大平行导体板之间时,是否也可采用镜像法求解。
(完整版)电磁场与电磁波(杨儒贵_版)课后思考题答案.docx
电磁场与波课后思考题1-1 什么是标量与矢量?举例说明 .仅具有大小特征的量称为标量.如:长度 ,面积 ,体积 ,温度 ,气压 ,密度 ,质量 ,能量及电位移等.不仅具有大小而且具有方向特征的量称为矢量 .如:力 ,位移 ,速度 ,加速度 ,电场强度及磁场强度 .1-2 矢量加减运算及矢量与标量的乘法运算的几何意义是什么矢量加减运算表示空间位移.矢量与标量的乘法运算表示矢量的伸缩.1-3矢量的标积与矢积的代数定义及几何意义是什么?矢量的标积 : A B A x B x A y B y A z B z A B cos ,A 矢量的模与矢量 B 在矢量 A方向上的投影大小的乘积 .矢积 :e x e y e z矢积的方向与矢量A,B 都垂直 ,且A B A x A y A z e z A B sin由矢量 A 旋转到 B,并与矢积构成右B x B y B z旋关系 ,大小为 A B sin1-4什么是单位矢量 ?写出单位矢量在直角坐标中的表达式.模为 1的矢量称为单位矢量. e a cos e x cos e y cos e z1-5梯度与方向导数的关系是什么?试述梯度的几何意义,写出梯度在直角坐标中的表示式 .标量场在某点梯度的大小等于该点的最大方向导数, 方向为该点具有最大方向导数的方向.梯度方向垂直于等值面,指向标量场数值增大的方向在直角坐标中的表示式:x e x y e y z e z1-6什么是矢量场的通量 ?通量值为正 ,负或零时分别代表什么意义?矢量 A 沿某一有向曲面S 的面积分称为矢量 A 通过该有向曲面S 的通量 ,以标量表示,即Ψ A dS通量为零时表示该闭合面中没有矢量穿过.S; 通量为负时表示闭合面中有洞 .通量为正时表示闭合面中有源1-7给出散度的定义及其在直角坐标中的表示式.d 散度:当闭合面S向某点无限收缩时,矢量 A 通过该闭合面S的通量div Alim S 与该闭合面包围的体积之比的极限称为矢量场 A 在该点的散度。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套完整版
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。
试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。
解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。
那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即习题图2-4习题图2-6φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-12 若带电球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r q, ,2r e E试求球内外各点的电位。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套完整版
r1 r2 r1r2 因此,
cos sin1 sin2 (cos1 cos2 sin1 sin2 ) cos1 cos2 sin1 sin2 cos(1 2 ) cos1 cos 2
cos( ) cos cos sin sin 证明 由于两矢量位于 z 0平面内,因此均为二维矢量, 它们可以分别表示为
A ex A cos ey A sin B ex B cos ey B sin
已 知 A B A B c o s , 求 得
cos A B cos cos A B sin sin
AB
即
cos( ) cos cos sin sin
1-3 已 知 空 间 三 角 形 的 顶 点 坐 标 为 P1(0, 1, 2) , P2 (4, 1, 3) 及 P3 (6, 2, 5) 。试 问 :① 该 三 角 形 是 否 是 直 角 三 角形;②该三角形的面积是多少? 解 由题意知,三角形三个顶点的位置矢量分别为
解 ① A Ax2 Ay2 Az2 12 22 32 14
B
Bx2
B
2 y
Bz2
32 12 22 14
C Cx2 Cy2 Cz2 22 02 12 5
②
ea
A A
A 14
1 14
ex 2ey 3ez
4
将点 P(1,2,3)
的
坐
标
代
入
,
得
P
e y
6
e3
ez
3 e3 。 2
那么,在 P 点的最大变化率为
电磁场与波(杨儒贵_第一版)课后作业答案
1-1 已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。
试求①|| |,| |,|C B A ;②单位矢量c b a e e e , ,;③B A ⋅;④B A ⨯;⑤C B A ⨯⨯)(及B C A ⨯⨯)(;⑥B C A ⋅⨯)(及C B A ⋅⨯)(。
解 ① ()14321222222=-++=++=z y x A A A A14213222222=++=++=z y x B B B B ()5102222222=-++=++=z y x C C C C② ()z y e e e A A A e x a 3214114-+===()z y e e e B B B e x b 2314114++===()z e e C C C e x c -===2515 ③ 1623-=-+=++=⋅z z y y x x B A B A B A B A④ z y zy zyxz y xz y B B B A A A e e e e e e e e e B A x x x5117213321--=-==⨯ ⑤ ()z y zy e e e e e e C B A x x 223111025117+-=---=⨯⨯ 因z y zy zyxz y xC C C A A A e e e e e e e e e C A x x x x x45212321---=--==⨯ 则()z y zy e e e e e e B C A x x 1386213452+--=---=⨯⨯⑥ ()()()152131532=⨯+⨯-+⨯-=⋅⨯B C A()()()1915027=-⨯-++⨯=⋅⨯C B A 。
1-5 设标量32yz xy +=Φ,矢量z y e e e A x -+=22,试求标量函数Φ在点)1 ,1 ,2(-处沿矢量A 的方向上的方向导数。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)
第五章 恒定磁场重点和难点该章重点及处理方法与静电场类似。
但是磁感应强度的定义需要详细介绍,尤其要强调磁场与运动电荷之间没有能量交换,电流元受到的磁场力垂直于电流的流动方向。
说明磁导率与介电常数不同,磁导率可以小于1,而且大多数媒质的磁导率接近1。
讲解恒定磁场时,应与静电场进行对比。
例如,静电场是无散场,而恒定磁场是无旋场。
在任何边界上电场强度的切向分量是连续的,而磁感应强度的法向分量是连续的。
重要公式磁感应强度定义:根据运动电荷受力: B v F ⨯=q 根据电流元受力: B l F ⨯=d I 根据电流环受力: B m T ⨯=真空中恒定磁场方程: 积分形式: I ⎰=⋅ll B 0d μ⎰=⋅SS B 0d微分形式:J B 0 μ=⨯∇0=⋅∇B已知电流分布求解电场强度:1,A B ⨯∇=V V ''-'=⎰'d )(4)( 0 r r r J r A πμ2,V V ''-'-⨯'=⎰'d )()( 4)(3 0 r r r r r J r B πμ 毕奥─萨伐定律。
3,I ⎰=⋅ll B 0d μ安培环路定律。
面电流产生的矢量磁位及磁感应强度分别为S ''-'=⎰'d )(4)(0r r r J r A S S πμS ''-'-⨯'=⎰'d )()(4)( 30 r r r r r J r B S S πμ 线电流产生的矢量磁位及磁感应强度分别为⎰''-'=l r r l r A d 4)(0I πμ ⎰''-'-⨯'=l r r r r l r B 30 )(d 4)(I πμ矢量磁位满足的微分方程:J A 0 2μ-=∇无源区中标量磁位满足的微分方程: 0 2=∇m ϕ 媒质中恒定磁场方程: 积分形式: I l =⋅⎰l H d⎰=⋅SS B 0d微分形式:J H =⨯∇ 0=⋅∇B磁性能均匀线性各向同性的媒质:场方程积分形式:⎰=⋅lI d μl B⎰=⋅BS H 0d场方程微分形式: J B μ=⨯∇ 0=⋅∇H矢量磁位微分方程:J A 2μ-=∇ 矢量磁位微分方程的解:V V ''-'=⎰'d )(4)(r r r J r A πμ 恒定磁场边界条件:1,t t H H 21=。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)第6章
第六章 电磁感应6-1 一个半径为a 的导体圆盘位于均匀恒定磁场0B 中,恒定磁场0B 的方向垂直于圆盘平面,若该圆盘以角速度ω绕其轴线旋转,求圆盘中心与边缘之间的电压。
解 将导体圆盘分割为很多扇形条,其半径为a ,弧长为φd a 。
当导体圆盘旋转时,扇形条切割磁力线产生的电动势等于圆盘中心与边缘之间的电压。
根据书中式(6-1-11),在离圆盘中心为r ,长度为r d 的线元中产生的电动势为0d d B v l ⋅⨯=e r r B d 0ω=因此,圆盘中心与边缘之间的电压为2000 21d a B r r Be aωω==⎰ 6-2 一个面积为b a ⨯的矩形 线圈位于双导线之间,位置 如习题图6-2所示。
两导线 中电流方向始终相反,其变 化规律为A )102sin(10921t I I ⨯==π, 试求线圈中感应电动势。
习题图6-2解 建立的坐标如图6-2所示。
在c b x c +<<内,两导线产生的磁感应强度为()x d c b I x I zz-+++=πμπμ222010e e Β 则穿过回路的磁通量为s Β⎰⋅=sm d Φx a x d c b x I z cb czd 11210e e ⋅⎪⎭⎫⎝⎛-+++=⎰+πμ ()()cdd b c b a I ++=ln 210πμ 则线圈中的感应电动势为te md d Φ-=()()t I cd d b c b a d d ln 210++-=πμ()()()V 10ln 102cos 1090⨯⎥⎦⎤⎢⎣⎡++⨯-=cd d b c b t a πμ 6-3 设带有滑条AB 的两根平行导线的终端并联电阻Ω2.0=R ,导线间距为0.2m ,如习题图6-3所示。
若正弦电磁场t B z sin 5ωe =垂直穿过该回路,当滑条AB 的位置以m ) cos 1(35.0t x ω-=规律变化时,试求回路中的感应电流。
解 建立的坐标如图6-3所示。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)第7章
第七章 时变电磁场7-1 设真空中电荷量为q 的点电荷以速度)(c v v <<向正z 方向匀速运动,在t = 0时刻经过坐标原点,计算任一点位移电流。
(不考虑滞后效应)解 选取圆柱坐标系,由题意知点电荷在任意时刻的位 置为),0 ,0(vt ,且产生的场强与角度φ无关,如习题图7-1 所示。
设) , ,(z r P φ为空间任一点,则点电荷在P 点产生的电场强度为304R q πεRE =,其中R 为点电荷到P 点的位置矢量,即)(vt z r z r -+=e e R 。
那么,由tt d ∂∂=∂∂=ED J 0ε,得 ()()()()()()()25222225224243vt z rr vt z qv vt z r vt z qrv zr d -+--+-+-=ππe e J 。
7-2 已知真空平板电容器的极板面积为S ,间距为d ,当外加电压t V V sin 0ω=时,计算电容器中的位移电流,且证明它等于引线中的传导电流。
习题图7-1 P (r ,φ,z )x解 在电容器中电场为t dV E sin 0ω=,则 t dV t D J d cos 00ωωε=∂∂=, 所以产生的位移电流为t dSV S J I d d cos 00ωωε==;已知真空平板电容器的电容为dSC 0ε=,所带电量为t CV CV Q ωsin 0==,则传导电流为t dSV t CV t QI cos cos d d 000ωωεωω===; 可见,位移电流与传导电流相等。
7-3 已知正弦电磁场的频率为100GHz ,试求铜及淡水中位移电流密度与传导电流密度之比。
解 设电场随时间正弦变化,且t E m x sin ωe E =,则位移电流t E tm r x d cos 0ωωεεe DJ =∂∂=, 其振幅值为m r d E J ωεε0=传导电流t E m x ωσσsin e E J ==,振幅为m E J σ=,可见σωεε0r d J J =; 在海水中,81=r ε,m S /4=σ,则5.11241021036181119=⨯⨯⨯⨯=-ππJJ d;在铜中,1=r ε,m S /108.57⨯=σ,则871191058.9108.5102103611--⨯=⨯⨯⨯⨯⨯=ππJ J d。
(完整版)电磁场与电磁波(杨儒贵_版)课后思考题答案.docx
电磁场与波课后思考题1-1 什么是标量与矢量?举例说明 .仅具有大小特征的量称为标量.如:长度 ,面积 ,体积 ,温度 ,气压 ,密度 ,质量 ,能量及电位移等.不仅具有大小而且具有方向特征的量称为矢量 .如:力 ,位移 ,速度 ,加速度 ,电场强度及磁场强度 .1-2 矢量加减运算及矢量与标量的乘法运算的几何意义是什么矢量加减运算表示空间位移.矢量与标量的乘法运算表示矢量的伸缩.1-3矢量的标积与矢积的代数定义及几何意义是什么?矢量的标积 : A B A x B x A y B y A z B z A B cos ,A 矢量的模与矢量 B 在矢量 A方向上的投影大小的乘积 .矢积 :e x e y e z矢积的方向与矢量A,B 都垂直 ,且A B A x A y A z e z A B sin由矢量 A 旋转到 B,并与矢积构成右B x B y B z旋关系 ,大小为 A B sin1-4什么是单位矢量 ?写出单位矢量在直角坐标中的表达式.模为 1的矢量称为单位矢量. e a cos e x cos e y cos e z1-5梯度与方向导数的关系是什么?试述梯度的几何意义,写出梯度在直角坐标中的表示式 .标量场在某点梯度的大小等于该点的最大方向导数, 方向为该点具有最大方向导数的方向.梯度方向垂直于等值面,指向标量场数值增大的方向在直角坐标中的表示式:x e x y e y z e z1-6什么是矢量场的通量 ?通量值为正 ,负或零时分别代表什么意义?矢量 A 沿某一有向曲面S 的面积分称为矢量 A 通过该有向曲面S 的通量 ,以标量表示,即Ψ A dS通量为零时表示该闭合面中没有矢量穿过.S; 通量为负时表示闭合面中有洞 .通量为正时表示闭合面中有源1-7给出散度的定义及其在直角坐标中的表示式.d 散度:当闭合面S向某点无限收缩时,矢量 A 通过该闭合面S的通量div Alim S 与该闭合面包围的体积之比的极限称为矢量场 A 在该点的散度。
高等电磁理论-杨儒贵-课后习题详解
1-1利用fourier 变换,由时域形式的Maxwell方程导出其频域形式解:时域形式的Maxwell方程为:∇×H(r,t)=J(r,t)+ðD(r,t)ðt∇×E(r,t)=−ðB(r,t)ðt∇∙B(r,t)=0∇∙D(r,t)=ρ(r,t) Fourier变换的定义为F(ω)=∫f(t)+∞−∞e−iωt dt 将第一个方程两边同时进行Fourier变换得:∫∇×H(r,t) +∞−∞e−iωt dt=∫[J(r,t)+∞−∞+ðD(r,t)ðt]e−iωt dt对矢量场某点先取旋度再积分等于先积分再取旋度,整理得:∇×∫H(r,t)+∞−∞e−iωt dt=∫J(r,t)+∞−∞e−iωt dt+∫ðD(r,t)ðt+∞−∞e−iωt dt由于∫ðD(r,t)ðt+∞−∞e−iωt dt=∫e−iωt+∞−∞dD(r,t)=e−iωt D(r,t)|−∞+∞+iω∫D(r,t)+∞−∞e−iωt dt由Fourier 变换的绝对可积的条件可得:e−iωt D(r,t)|−∞+∞=0故∫ðD(r,t)ðt+∞−∞e−iωt dt=iω∫D(r,t)+∞−∞e−iωt dt∇×∫H(r,t)+∞−∞e−iωt dt=∫J(r,t)+∞−∞e−iωt dt+iω∫D(r,t)+∞−∞e−iωt dt因此:∇×H(r,ω)=J(r,ω)+iωD(r,ω)同理可得∇×E(r,ω)=−iωB(r,ω)∇∙B(r,ω)=0∇∙D(r,ω)=ρ1-2:各向异性的介电常数为ε̅=ε0[720240003]当外加电场强度为 (1) E 1=e x E 0 (2) E 2=e y E 0 (3) E 3=e z E 0(4) E 4=E 0(e x +2e y ) (5) E 4=E 0(2e x +e y ) 产生的电通密度。
电磁场与电磁波课后习题答案全-杨儒贵
第一章矢量分析第一章 题 解1-1已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。
试求①|| |,| |,|C B A ;②单位矢量c b a e e e , ,;③B A ⋅;④B A ⨯;⑤C B A ⨯⨯)(及B C A ⨯⨯)(;⑥B C A ⋅⨯)(及C B A ⋅⨯)(。
解 ① ()14321222222=-++=++=z y x A A A A14213222222=++=++=z y x B B B B()5102222222=-++=++=z y x C C C C② ()z y e e e A A A e x a 3214114-+===()z y e e e B B B e x b 2314114++===()z e e C C C e x c -===2515 ③ 1623-=-+=++=⋅z z y y x x B A B A B A B A④ z y zy z y xz y xz y B B B A A A e e e e e e e e e B A x x x5117213321--=-==⨯ ⑤ ()z y z y e e e e e e C B A x x22311125117+-=---=⨯⨯因z y zy zyxz y xC C C A A A e e e e e e e e e C A x x x x x45212321---=--==⨯则()z y z y e e e e e e B C A x x 1386213452+--=---=⨯⨯⑥ ()()()152131532=⨯+⨯-+⨯-=⋅⨯B C A()()()1915027=-⨯-++⨯=⋅⨯C B A 。
1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为α,位置矢量B 与X 轴的夹角为β,试证βαβαβαsin sin cos cos )cos(+=-证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为ααsin cos A A y e e A x += ββsin cos B B y e e B x +=已知()βα-=⋅c o s B A B A ,求得()BA B A B A βαβαβαsin sin cos cos cos +=-即 βαβαβαsin sin cos cos )cos(+=-1-3 已知空间三角形的顶点坐标为)2 ,1,0(1-P ,)3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。
电磁场与电磁波第二版答案-杨儒贵
(r1 ,1 ,1 ) 及 (r2 , 2 ,2 ) , 试 证 r1 与 r2 之 间 的 夹 角 为 cos sin1 sin 2 cos(1 2 ) cos1 cos 2
r1 r2
r2 cos2 r1 cos1 2 r2 sin 2 r1 sin 1 2 z2 z1 2
r22 r12 2r2r1 cos2 1 z2 z1 2
在球坐标系中, 已 知 x r sin cos , y r sin sin , z r cos , 因此
e x
ey ez e x y 2 e y (2xy z 2 ) e z 3yz 2 x y z
那 么 , 在 点 (2, 1, 1) 处 的 梯 度 为
ex 3e y 3e z
3
因 此 ,标 量 函 数 在 点 (2, 1, 1) 处 沿 矢 量 A 的 方 向 上 的 方 向导数为
cos( ) cos cos sin sin
证 明 由 于 两 矢 量 位 于 z 0平 面 内 , 因 此 均 为 二 维 矢 量 , 它们可以分别表示为
A ex A cos e y A sin B e x B cos e y B sin
ex ④ A B Ax Bx
ey Ay By
ez e x e y ez Az 1 2 3 7e x 11e y 5ez Bz 3 1 2
e x e y ez ⑤ A B C 7 11 5 11e x 3e y 22ez 2 0 1