Java虚拟机的内存结构
java内存结构
java内存结构Java的内存结构JVM的内存结构主要有三⼤块:堆、⽅法区和栈。
堆内存是JVM中最⼤的⼀块,由年轻代和⽼年代组成,⽽年轻代内存⼜被分为三部分,Eden空间、FromSurvivor空间和ToSurvivor空间,默认情况下年轻代是按照8:1:1的⽐例来分配。
⽅法区存储类信息、常量、静态变量等数据,是线程共享的区域,为与Java堆区分,⽅法区还有⼀个别名Non-Heap(⾮堆);栈⼜分为Java虚拟机栈和本地⽅法栈主要⽤于⽅法的执⾏。
JVM和系统调⽤之间的关系⽅法区和堆是所有线程共享的内存区域;⽽java虚拟机栈、本地⽅法栈和程序员计数器是线程私有的内存区域。
1. Java堆(Heap)对于⼤多数应⽤来说,Java堆(Java Heap)是Java虚拟机所管理的内存中最⼤的⼀块,Java堆是被所有线程共享的⼀块内存区域,在虚拟机启动时创建。
此内存区域的唯⼀⽬的就是存放对象实例,⼏乎所有的对象实例都在这⾥分配内存。
Java堆是垃圾收集器管理的主要区域,因此很多时候也被成为“GC堆”。
如果从内存回收的⾓度看,由于现在收集器基本都是采⽤的分代收集算法,所以Java堆中还可以细分为:新⽣代和⽼年代,再细致⼀点的有Eden空间、From Survivor空间、ToSurvivor空间等。
根据Java虚拟机规范的规定,Java堆可以处于物理上不连续的空间内存中,只要逻辑上是连续的即可,就像我们的磁盘空间⼀样。
在实现时,既可以实现成固定⼤⼩的,也可以是可扩展的,不过当前主流的虚拟机都是按照可扩展来实现的(通过-Xmx和-Xms控制)。
如果在堆中没有内存完成实例分配,并且堆也⽆法再扩展时,将会抛出OOM(OutOfMemoryError)异常。
2. ⽅法区(Method Area)⽅法区与Java堆⼀样,是各个线程共享的内存区域,它⽤于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据,虽然Java虚拟机规范把⽅法区描述为堆的⼀个逻辑部分,但是它有⼀个别名Non-Heap(⾮堆),⽬的应该是与Java堆区分开。
java 虚拟机规范
java 虚拟机规范Java虚拟机规范(Java Virtual Machine Specification)是由Java语言设计者为了保证Java程序在任何平台上都能够运行,而定义的虚拟机的行为规范。
本文将详细介绍Java虚拟机规范,内容约1000字。
Java虚拟机规范定义了Java虚拟机(JVM)的结构、指令集、运行时数据区域、内存管理、异常处理、线程和同步等方面的规范。
通过遵循这些规范,开发者可以编写出具有良好可移植性和跨平台性的Java程序。
首先,Java虚拟机规范定义了JVM的结构。
JVM由类加载器、运行时数据区域、执行引擎和本地方法接口等组成。
类加载器负责加载类文件,并进行验证、解析和初始化。
运行时数据区域则包括了方法区、堆、虚拟机栈、本地方法栈和程序计数器等。
执行引擎根据操作码执行相应的指令,并对操作数栈和局部变量表进行操作。
本地方法接口则是Java虚拟机与本地操作系统的接口。
其次,Java虚拟机规范定义了JVM的指令集。
指令集包括了加载、存储、算术运算、类型转换、比较和控制流等各种指令。
每个指令都对应了Java虚拟机的一种行为,可以通过指定操作数来执行相应的操作。
Java虚拟机规范还定义了JVM的运行时数据区域。
运行时数据区域包括了方法区、堆、虚拟机栈、本地方法栈和程序计数器。
方法区用于存储类的结构信息、常量池、静态变量和方法等。
堆用于存储对象实例和数组。
虚拟机栈用于存储方法调用的局部变量表、操作数栈、动态链接和方法返回值等。
本地方法栈用于支持本地方法的调用。
程序计数器则用于记录当前线程执行的字节码指令地址。
此外,Java虚拟机规范还定义了JVM的内存管理、异常处理、线程和同步等方面的规范。
内存管理包括了垃圾收集和内存分配等。
异常处理定义了异常的分类、异常的处理流程和异常的处理方式。
线程规范包括了线程的创建、启动、执行和销毁等。
同步规范则定义了同步的机制和语义。
总结起来,Java虚拟机规范定义了Java虚拟机的行为规范,包括了JVM的结构、指令集、运行时数据区域、内存管理、异常处理、线程和同步等方面的规范。
面试谈jvm原理
面试谈jvm原理Java虚拟机(JVM)是Java语言运行的基础。
JVM具有封装性、跨平台性、高度优化和可扩展性等特点,是Java应用程序的核心。
在Java的诞生初期,由于硬件环境和操作系统制约,JVM起到了垫底的作用。
而今天,JVM已经成为Java 运行效率和安全性的保障。
下面是一些我认为JVM原理面试时可能会涉及的重点:1. JVM的内存模型:JVM将内存分为堆内存和栈内存,堆内存用于存储对象实例和数组,而栈内存则用于存储方法的执行状态。
同时,JVM还有方法区和永久代的概念。
这些内存区域的大小和分配情况会影响JVM的性能和稳定性。
2. 垃圾回收机制:JVM的内存管理包括垃圾回收机制和内存分配机制。
垃圾回收机制是JVM实现自动内存管理的核心,JVM会周期性地扫描堆内存中没有被引用的对象,并自动回收它们所占用的内存。
垃圾回收机制常用的算法包括标记清除、复制和标记整理等。
3. 类加载机制:Java程序在运行时,需要将类文件中的二进制数据加载到JVM 中,才能执行相应的操作。
类加载机制将类文件加载到JVM中,并将它们解析为Java类。
类加载机制包括三个阶段:加载、链接和初始化。
4. JIT编译器:JIT(Just In Time)编译器是JVM在运行时动态优化的关键组件。
JIT编译器可以在程序运行时,根据代码的执行情况,生成本地机器代码,以提高程序的效率。
5. JVM调优:JVM的性能和稳定性很大程度上取决于JVM参数的设置和调整。
面试时,可能会涉及到如何根据系统的特点和需求,设置JVM参数以达到最佳性能和稳定性的问题。
总之,有关JVM原理的面试问题,往往涉及到JVM的内存模型、垃圾回收机制、类加载机制、JIT编译器和JVM调优等方面。
需要候选人对这些方面有比较深入的了解。
Java虚拟机内存分配探析
量分 配 内存空 间 ,当超 过变 量 的作用 域后 , v 会 自动 释放 掉 J a a
为 该 变 量 所 分 配 的 内 存 空 间 ,该 内 存 空 间 可 以 立 即被 另 作 他
用。
享 与 两个 对象 的 引用 同时指 向一 个对 象 的这种 共 享是 不 同的 ,
因 为 这 种 情 况 a的 修 改 并 不 会 影 响 到 b .它 是 由 编 译 器 完 成 的 , 有 利 于 节 省 空 间 。 而 一 个 对 象 引 用 变 量 修 改 了 这 个 对 象 它 的 内部状 态 , 影 响 到另 一个 对象 引用 变量 。 会
间 。对象 通过 nw、e ary等 方式 建立 , 需要 程 序代 码来 显 e nw r a 不
第9 第7 卷 期
2 1 年 7月 00
软 件 导 刊
So t r i e fwa e Gu d
VO . 1 NHale Waihona Puke . 9 7 J . 01 u12 O
Jv a a虚 拟 机 内存 分 配 探 析
胡 雯
( 汉科 技 大 学 中南分校 , 北 武 汉 4 02 ) 武 湖 3 2 3
2 S r g 对 象 举 例 说 明 ti 类 n
Sr g是一 个特 殊 的包装 类 数据 。可 以用 : tn i
Sr gs = e t n (a c ) tn t nw Sr g ”b ” ; i r - i
S r g sr a c ; t n t i =” b ”
是 为 数 组 或 对 象 起 的 一 个 名 称 , 后 就 可 以 在 程 序 中 使 用 栈 中 以 的引用变 量来 访 问堆 中的数 组 或对 象 。 Jv aa是 自动 管 理 栈 和 堆 , 序 员 不 能 直 接 地 设 置 栈 或 堆 。 程 Jv aa的堆 是 一 个 运 行 时 数 据 存 储 区 , 的 对 象 从 中 分 配 空 类
jvm规范
jvm规范JVM(Java虚拟机)是Java语言的核心和关键部分,它是在Java程序运行过程中执行字节码的虚拟计算机。
JVM规范(Java Virtual Machine Specification)定义了JVM的结构、行为和规范。
JVM规范的第一部分是关于虚拟机结构的描述。
JVM由如下几个组成部分:类加载器、执行引擎、运行时数据区和本地方法接口。
类加载器负责将字节码文件加载到JVM中,执行引擎则负责执行字节码指令。
运行时数据区包括堆、栈、方法区等,用来存储程序的数据和执行过程中的临时数据。
本地方法接口允许JVM调用本地方法(非Java语言实现的方法)。
JVM规范的第二部分是关于虚拟机指令集的描述。
Java源代码经过编译后生成字节码文件,字节码中包含了一系列指令。
JVM规范定义了这些指令的编码和执行方式。
一些常见的指令包括加载和存储指令、算术和逻辑指令、跳转指令等。
通过这些指令,JVM可以实现各种操作,比如对变量的赋值、条件判断和循环等。
JVM规范的第三部分是关于类文件格式的描述。
Java源代码经过编译后生成的字节码文件就是类文件,它包含了类的结构、字段、方法等信息。
JVM规范定义了类文件的格式,包括魔数、版本号、常量池、访问标志、字段表、方法表等部分。
通过解析类文件,JVM可以加载和验证类的结构,以及执行其中的方法。
JVM规范的第四部分是关于运行时数据区的描述。
运行时数据区包括堆、栈、方法区等部分,它们分别用来存储对象、方法参数和局部变量、类的结构信息等。
JVM规范定义了这些数据区的组织方式和内存分配策略。
比如,堆用于存储对象实例,栈用于存储方法的局部变量和方法参数,方法区用于存储类的结构信息和常量池。
最后,JVM规范还包括一些附录,包括与Java语言关键字的映射、可选的特性和扩展等内容。
这些附录不是必需的,但对于理解和使用JVM是有帮助的。
总结来说,JVM规范是Java程序运行的基础,它定义了JVM 的结构、行为和规范。
java内存使用情况的命令
java内存使用情况的命令Java是一种面向对象的编程语言,它在开发应用程序时需要使用内存来存储数据和执行代码。
因此,了解Java的内存使用情况对于开发人员来说是非常重要的。
Java虚拟机(JVM)负责管理Java应用程序的内存,它使用垃圾回收机制来自动管理内存的分配和释放。
JVM的内存可以分为以下几个部分:1. 堆(Heap):堆是Java程序运行时动态分配的内存区域,用于存储对象实例。
堆的大小可以通过命令行参数-Xmx和-Xms来设置。
-Xms表示JVM启动时初始分配的堆内存大小,-Xmx表示堆能够达到的最大内存大小。
2. 方法区(Method Area):方法区用于存储已加载的类信息、常量、静态变量等数据。
方法区的大小可以通过命令行参数-XX:PermSize和-XX:MaxPermSize来设置。
-XX:PermSize表示JVM启动时初始分配的方法区大小,-XX:MaxPermSize表示方法区能够达到的最大大小。
3. 栈(Stack):栈用于存储Java方法中的局部变量以及方法调用时的状态信息。
每个Java线程都有一个独立的栈,栈的大小是固定的,并且在线程创建时被分配。
栈的大小可以通过命令行参数-Xss来设置。
除了上述部分,JVM还会使用一些额外的内存空间,如直接内存(DirectMemory)和本地方法栈(Native Method Stack),用于存储一些特殊的数据和执行本地方法。
了解Java的内存使用情况对于定位内存泄漏和优化程序性能非常有帮助。
下面是几个常用的命令,可以用于监控和调整Java程序的内存使用情况:1. jps:该命令用于列出当前运行的Java进程,以及对应的进程ID。
2. jstat:该命令用于监控Java虚拟机的各种运行状态,包括堆的使用情况、类加载数量、垃圾回收情况等。
常用的参数包括-jstat -gcutil <pid>和-jstat-gccapacity <pid>。
jvm stackmaptable原理
jvm stackmaptable原理目录1.JVM 内存结构概述2.StackMapTable 的作用和定义3.StackMapTable 的结构和内容4.StackMapTable 的生成与使用5.StackMapTable 在 JVM 中的重要性正文一、JVM 内存结构概述在 Java 虚拟机(JVM)中,内存结构主要分为堆内存(Heap Memory)和栈内存(Stack Memory)。
堆内存主要用于存储对象实例,而栈内存用于存储局部变量和方法调用。
在 JVM 的栈内存中,有一个重要的数据结构——StackMapTable,它对 Java 程序的运行具有重要意义。
二、StackMapTable 的作用和定义StackMapTable,又称为栈映射表,是一个描述 Java 方法调用过程的数据结构。
它记录了 Java 字节码中每一条指令在栈内存中的位置,以及该指令所操作的栈帧(Stack Frame)的类型。
StackMapTable 在编译阶段由编译器生成,并在程序运行时由 JVM 使用。
三、StackMapTable 的结构和内容StackMapTable 是一个数组,它的每一个元素称为一个栈映射项(Stack Mapping Entry)。
每个栈映射项包含以下三个信息:1.偏移量(Offset):表示该栈映射项在内存中的位置。
2.栈帧类型(Frame Type):表示该栈映射项所对应的栈帧的类型,例如:局部变量、操作数栈、方法调用等。
3.指令索引(Instruction Index):表示该栈映射项对应的 Java 字节码指令在字节码文件中的位置。
四、StackMapTable 的生成与使用1.生成:在编译阶段,编译器会根据 Java 字节码文件生成StackMapTable。
编译器会将每一条字节码指令以及与之相关的栈操作信息(如:入栈、出栈、使用栈顶元素等)记录到 StackMapTable 中。
jvm原理
JVM 原理解释JVM 全称是 Java Virtual Machine ,Java 虚拟机,这个 JVM 你是看不到的,它存在内存中。
我们知道计算机的基本构成是:运算器、控制器、存储器、输入和输出设备,那这个 JVM 也是有这成套的元素,运算器是当然是交给硬件 CPU 还处理了,只是为了适应“一次编译,随处运行”的情况,需要做一个翻译动作,于是就用了JVM 自己的命令集,JVM 的命令集则是可以到处运行的,因为 JVM 做了翻译,根据不同的CPU ,翻译成不同的机器语言。
JVM 是一个内存中的虚拟机,那它的存储就是内存了,我们写的所有类、常量、变量、方法都在内存中。
JVM 的组成部分Class Loader 类加载器类加载器的作用是加载类文件(.class)到内存,Class Loader 加载的 class 文件是有格式要求的。
类加载的最终产品是位于运行时数据区的堆区的Class对象。
Class对象封装了类在方法区内部的数据结构。
并且向JAVA程序提供了访问类在方法区内的数据结构。
JVM加载class文件的原理机制1. Java 中的所有类,必须被装载到 JMV 中才能运行,这个装载工作是由 JVM 中的类装载器完成的,类装载器所做的工作实质是把类文件从硬盘读取到内存中。
2. Java中的类大致分为三种:a) 系统类b) 扩展类c) 由程序员自定义的类3. 类装载方式,有两种:a) 隐式装载,程序在运行过程中当碰到通过 new 等方式生成对象时,隐式调用类装载器加载对应的类到jvm中。
b) 显式装载,通过 class.forname() 等方法,显式加载需要的类。
4. 类加载的动态性体现一个应用程序总是由n多个类组成,Java 程序启动时,并不是一次把所有的类全部加载后再运行,它总是先把保证程序运行的基础类一次性加载到 JVM 中,其它类等到 JVM 用到的时候再加载,这样的好处是节省了内存的开销。
深入理解java虚拟机
深入理解java虚拟机(一)虚拟机内存划分Java虚拟机在执行Java程序时,会把它管理的内存划分为若干个不同的数据区。
这些区域有不同的特性,起不同的作用。
它们有各自的创建时间,销毁时间。
有的区域随着进程的启动而创建,随着进程结束而销毁,有的则始终贯穿虚拟机整个生命周期。
Java虚拟机运行时内存区域主要分为七部分,分别是:程序计数器,Java虚拟机栈,本地方法栈,方法区,Java堆,运行时常量池,直接内存。
如上图所示(图片来源于网络):蓝色区域包裹的部分为运行时几个数据区域:白色的部分为线程私有的,既随着线程的启动而创建。
每个线程都拥有各自的一份内存区域。
它们是:JAVA栈(JAVA STACK),本地方法栈(NATIVE METHOD STACK),和程序计数器(PROGRAM COUNTER REGISTER)。
黄色部分是线程共享的,所有的线程共享该区域的内容。
他们是:方法区(METHOD AREA),堆(HEAP)。
我们分别来介绍这些区域。
(1)程序计数器(program counter register)学过计算机组成原理的都知道计算机处理器中的程序计数器。
当处理器执行一条指令时,首先需要根据PC中存放的指令地址,将指令由内存取到指令寄存器中,此过程称为“取指令”。
与此同时,PC中的地址或自动加1或由转移指针给出下一条指令的地址。
此后经过分析指令,执行指令。
完成第一条指令的执行,而后根据PC取出第二条指令的地址,如此循环,执行每一条指令。
处理器的程序计数器是指寄存器,而java程序计数器是指一小块内存空间。
java代码编译字节码之后,虚拟机会一行一行的解释字节码,并翻印成本地代码。
这个程序计数器盛放的就是当前线程所执行字节码的行号的指示器。
在虚拟机概念模型中,字节码解释器工作室就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支,循环,跳转,异常处理等都依赖于它。
Java虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式实现的,因此为了线程切换后还能恢复执行位置,每条线程都需要一个独立的程序计数器。
jvm堆的基本结构
jvm堆的基本结构
Java虚拟机(JVM)堆是一种重要的内存分配结构,被用来存储Java 类实例和数组,是Java内存管理的重要组成部分。
JVM堆由以下三部分组成:
1.堆栈:堆栈是一种先进后出(LIFO)的内存结构,用于存储Java对象的本地变量。
堆栈空间占用资源比较小,但容量有限,一般比较小(只支持少计数的变量)。
2.程序计数器:程序计数器是一个小巧且独立的内存结构,用于保存执行过程中当前活动线程正在执行的字节码行号。
jvm通过程序计数器控制程序运行,它不会存储任何对象。
3.垃圾回收堆:垃圾回收堆是一种用于存储对象的内存结构,一般由堆顶(Young generation),年老代(Old Generation )和永久代(Permanent Generation)组成。
堆顶是一个存储新生成的对象的内存区域,当堆顶达到容量上限时,部分对象会被转移至年老代;而永久代则用于存放永久数据,如Java类,字段和方法。
总的来说,JVM堆是一个内存结构,用于管理Java对象。
它主要由堆栈、程序计数器和垃圾回收堆组成,通过这三个基本构建块构成JVM
堆,兼顾性能和可维护性。
JVM堆是Java内存管理的重要组成部分,其利用了可伸缩性和性能可控性,是运行Java程序的重要基础。
java jvm 空间担保机制
文章标题:深度探讨Java JVM空间担保机制在进行Java编程和开发过程中,我们经常会听到关于Java虚拟机(JVM)的空间担保机制的概念。
这个机制是如何工作的?为什么它如此重要?本篇文章将从深度和广度两个方面对Java JVM空间担保机制进行全面评估,并在此基础上撰写一篇有价值的文章。
让我们回顾一下Java虚拟机的内存结构。
Java虚拟机的内存分为堆内存和栈内存两部分。
堆内存用于存储对象实例,而栈内存则用于存储基本数据类型和对象的引用。
在堆内存的使用过程中,会涉及到内存的分配和回收,而这恰好是空间担保机制所要解决的核心问题。
空间担保机制是Java虚拟机为了保证内存分配的安全而设计的一种机制。
当程序在进行内存分配时,如果发现无法满足当前对象的内存需求,空间担保机制就会进行一次垃圾回收,尝试为新对象腾出空间。
这就意味着,即使堆内存已经快要耗尽,空间担保机制也能够及时地进行垃圾回收,从而保证程序的正常运行。
在实际编程中,我们经常会遇到内存泄漏和内存溢出的问题。
而空间担保机制正是为了解决这些问题而设计的。
通过空间担保机制,程序可以更加灵活地进行内存分配和回收,从而避免了因为内存不足而导致程序崩溃的情况。
从个人的观点来看,Java JVM空间担保机制是Java编程中非常重要的一部分。
它不仅保证了程序的稳定性和健壮性,还使得程序员能够更加专注于程序的逻辑和功能实现,而不用过多地关注内存管理的细节问题。
正因如此,我们需要深入地理解和掌握空间担保机制的工作原理和技术细节,从而更好地进行Java编程和开发工作。
总结而言,Java JVM空间担保机制是Java编程中至关重要的一环。
通过本文的深度探讨,我们可以更加全面、深刻和灵活地理解这一机制。
在日后的编程实践中,我们应该充分利用空间担保机制的优势,避免内存管理的烦恼,从而更好地完成编程任务和项目开发。
希望我的文章能够帮助你更好地理解Java JVM空间担保机制,期待与你共享更多有价值的内容!Java虚拟机(JVM)是一种能够执行Java字节码的虚拟机,它是Java语言的核心和关键部分。
数据结构之Heap(Java)
数据结构之Heap(Java)Heap简介 Heap译为“堆”,是⼀种特殊的树形数据结构,它满⾜所有堆的特性:⽗节点的值⼤于等于⼦节点的值(max heap),或者⼩于等于⼦节点的值(min heap)。
对于max heap 根节点的值为整个树最⼤值,反之亦然,min heap 根节点的值为整个树最⼩值。
本⽂采⽤Java编程语⾔简单实现min heap。
Java Heap 对于⼤多数应⽤来说,Java堆 (Java Heap) 是Java虚拟机所管理的内存中最⼤的⼀块。
Java堆是被所有线程共享的⼀块内存区域,在虚拟机启动时创建。
此内存区域的唯⼀⽬的就是存放对象实例,⼏乎所有的对象实例都在这⾥分配内存。
根据Java虚拟机规范的规定,Java堆可以处于物理上不连续的内存空间中,只要逻辑上是连续的即可,就像我们的磁盘空间⼀样。
如果在堆中没有内存完成实例分配,并且堆也⽆法再扩展时,将会抛出OutOfMemoryError异常。
结构⽰意图min heapmax heap结构转换 不像其他的树形结构,例如,采⽤链表的形式实现,Heap⼀般⽤数组实现。
这种数组采⽤⾃上⾄下,⾃左⾄右的形式从树中添加元素。
图2-2展⽰了如何把图2-1树形结构(不是Heap数据结构)存储到数组中。
箭头指向数组中每个元素的直接左孩⼦和右孩⼦。
图2-1 图2-2 仅⽤⼀个数组是不⾜以表⽰⼀个堆,程序在运⾏时的操作可能会超过数组的⼤⼩。
因此我们需要⼀个更加动态的数据结构,满⾜以下特性: 1.我们可以指定数组的初始化⼤⼩。
2.这种数据结构封装了⾃增算法,当程序需要时,能够增加数组的⼤⼩以满⾜需求。
这会使我们联想起ArrayList的实现,正是采⽤这种数据结构。
本⽂就采⽤了ArrayList的⾃增算法。
因为我们使⽤数组,我们需要知道如何计算指定节点(index)的⽗节点、左孩⼦和右孩⼦的索引。
parent index : (index - 1) / 2 left child : 2 * index + 1 right child : 2 * index + 2实现Insertion 为堆设计⼀个插⼊算法很简单,但是我们需要保证每次插⼊过后,依旧满⾜堆的顺序。
java jvm堆内存扩容机制以及缩容机制
一、介绍Java虚拟机(JVM)是一种能够在计算机上运行Java程序的虚拟机。
在Java应用程序运行的过程中,JVM会使用堆内存来存储对象实例。
堆内存的大小会直接影响程序的性能和稳定性。
了解JVM堆内存的扩容机制以及缩容机制对于Java开发人员来说是非常重要的。
二、堆内存的扩容机制1. 初始内存和最大内存在启动Java程序时,可以通过设置参数-Xms和-Xmx来指定JVM堆内存的初始大小和最大大小。
初始内存指定JVM堆内存的初始大小,最大内存指定JVM堆内存的最大大小。
当JVM启动时,会先分配初始内存,并且在应用程序运行中达到初始内存的上限时,堆内存会自动扩容。
当堆内存扩容达到最大内存时,程序会抛出内存溢出错误。
2. 自动扩容JVM堆内存的自动扩容是由垃圾回收器(GC)来完成的。
当堆内存中的对象实例占用的空间超过了当前内存的剩余空间时,GC会触发一次垃圾回收操作,释放部分无用对象实例的内存空间,从而使堆内存得以扩容。
这种自动扩容机制可以有效地避免了由于堆内存空间不足而导致的程序性能下降或者程序崩溃的情况。
三、堆内存的缩容机制1. 内存回收JVM堆内存的缩容机制是由GC和虚拟机内部的内存管理器来完成的。
当堆内存中的对象实例占用的空间下降到一定程度时,内存管理器会自动触发一次内存回收操作,将不再使用的内存空间释放出来,从而使堆内存得以缩容。
这种自动缩容机制可以帮助程序及时释放不再使用的内存空间,提高堆内存的利用率,从而提升程序的性能和稳定性。
2. 手动内存回收除了自动内存回收之外,开发人员也可以通过调用System.gc()方法手动触发一次垃圾回收操作,来释放不再使用的内存空间。
这种手动的内存回收操作也可以帮助程序及时释放内存空间,提高程序的性能和稳定性。
四、总结JVM堆内存的扩容机制和缩容机制是保障Java程序高性能和稳定运行的重要环节。
通过合理设置初始内存和最大内存参数,以及合理使用垃圾回收器和内存管理器,可以有效地管理JVM堆内存的扩容和缩容,从而提高程序的性能和稳定性。
jvm 向os申请内存的机制
JVM(Java虚拟机)是Java程序的运行评台,它负责将Java字节码转换为机器码并在操作系统上运行。
在JVM的运行过程中,内存管理是一个非常重要的环节,其中向操作系统申请内存是一个核心机制。
本文将从JVM向操作系统申请内存的机制展开探讨,希望为读者提供深入了解JVM内存管理的知识。
一、JVM内存结构在探讨JVM向操作系统申请内存的机制之前,首先需要了解JVM的内存结构。
JVM的内存可以分为三部分:堆(Heap)、栈(Stack)和方法区(Method Area)。
其中堆用于存储对象实例和数组,栈用于存储局部变量和方法调用,方法区用于存储类信息、常量、静态变量等。
二、内存申请过程1. 程序启动当一个Java程序启动时,JVM会为该程序分配一定的内存。
这部分内存一般是由操作系统分配给JVM的,称为虚拟机初始化内存(Initial Heap)和虚拟机最大内存(Maximum Heap)。
虚拟机初始化内存用于存放JVM运行所需的数据结构,虚拟机最大内存表示JVM最大可用的堆内存。
2. 堆内存分配JVM对堆内存的管理是一种延迟分配的策略。
也就是说,JVM并不是在程序启动时一次性向操作系统申请所需的堆内存,而是根据程序运行的需要在必要时向操作系统动态申请内存。
在堆内存分配时,有两种情况需要考虑:- 新对象分配内存:当程序中创建新的对象实例或数组时,JVM会根据对象的大小向操作系统申请内存。
如果堆内存中有足够的空间,JVM会直接在堆中为对象分配内存,并记录对象的位置区域。
如果堆内存中没有足够的连续空间,JVM会触发一次垃圾回收操作,释放一些无用的对象,从而腾出足够的内存空间。
- 大对象分配内存:当程序中需要创建一个较大的对象时,堆内存中可能没有足够的连续空间来满足对象的分配需求。
这时,JVM会将对象存放到“老年代”(Old Generation),并触发一次“Full GC”(full garbage collection)操作来释放老年代中无用的对象,从而为大对象的分配腾出空间。
Java虚拟机内存模型及垃圾回收算法解析
Java虚拟机内存模型及垃圾回收算法解析Java虚拟机是一种用于执行Java字节码的虚拟机器。
它有自己的内存模型和垃圾回收算法,用于有效地管理内存并自动处理不再使用的对象。
Java虚拟机内存模型可以分为线程私有的程序计数器、虚拟机栈和本地方法栈;线程共享的堆;以及方法区。
每个线程在执行时都包含一个程序计数器,用于指示执行的字节码指令。
虚拟机栈用于存储局部变量、方法参数和方法调用的状态信息。
而本地方法栈用于支持本地方法的调用和执行。
堆是Java虚拟机管理的最大的内存区域,用于存储对象实例。
它是内存分配和垃圾回收的主要区域。
在堆中分配的对象由垃圾回收器自动回收,以释放不再使用的内存。
方法区用于存储已加载的类信息、常量和静态变量。
垃圾回收是Java虚拟机的一项重要功能。
它通过自动检测和清除不再使用的对象来释放内存。
在Java中,垃圾回收是自动进行的,程序员无需手动管理内存。
Java虚拟机中的垃圾回收算法可以分为标记-清除算法、复制算法和标记-整理算法。
标记-清除算法首先标记所有活跃对象,然后清除所有未标记的对象。
这种算法的缺点是会导致内存碎片,影响内存的利用率。
复制算法将堆内存分为两个部分,每次只使用其中一个部分。
当发生垃圾回收时,将存活的对象复制到另一部分,并清除当前部分的所有对象。
这种算法的缺点是只能使用堆内存的一半空间。
标记-整理算法首先标记活跃对象,然后将它们移动到堆的一端,并清除剩余部分。
与标记-清除算法相比,标记-整理算法可以减少内存碎片。
除了以上提到的垃圾回收算法,Java虚拟机还有其他高级垃圾回收算法,如分代收集、并发标记清除和并发标记整理。
这些算法可以进一步提高垃圾回收的效率和性能。
总结而言,Java虚拟机的内存模型和垃圾回收算法是为了提供高效的内存管理和自动回收不再使用的对象。
开发人员只需专注于业务逻辑的编写,而无需手动管理内存。
通过了解和理解Java虚拟机的内存模型和垃圾回收算法,可以更好地编写高效的Java程序。
jvm原理 周志明
jvm原理周志明JVM(Java Virtual Machine),也被称为Java虚拟机,是Java 程序运行的基础。
其核心就是把Java源代码编译成Java字节码,然后在JVM中执行该字节码。
jvm原理周志明一书是一本非常好的Java虚拟机方面的书籍,详细解释了JVM的内部运行机制和原理,使读者对JVM有了更深入的理解。
下面我将详细介绍JVM的工作原理,给JVM的初学者提供一定的帮助:1.类加载机制:当Java程序中需要使用某个类的时候,JVM就会去加载类,类加载器负责将类加载到内存中,然后才能执行原子方法。
类加载器按照不同种类将类分为不同的等级,由上到下依次为:启动类加载器、扩展类加载器和应用程序加载器。
2.内存结构:JVM内存结构可以分为方法区、虚拟机栈、本地方法栈和堆。
方法区存储类的元数据信息等,虚拟机栈存储方法执行时的栈帧信息,本地方法栈存储本地方法执行时的栈帧信息,堆则是Java程序中实际创建对象的地方。
3.执行引擎:JVM的执行引擎主要分为两种:解释器和JIT编译器。
解释器可以逐条解析字节码并将其翻译成相应的机器码执行。
而JIT编译器通常在程序运行过程中,使用计时器等方式监测程序中的热点代码并进行编译成机器码的操作。
4.垃圾回收器:JVM中内存分配是自动管理的,因此需要垃圾回收器来管理内存的回收。
常见的垃圾回收器有Serial、Parallel、CMS 和G1 四种。
总之,“jvm原理周志明”这本书详细讲解了JVM的内部运行机制和原理,读者可以结合书中的内容深入理解JVM的工作原理和功能。
有了更深入的了解,开发者也能够更好地优化自己的Java程序,为更好的Java开发奠定基础。
java虚拟机结构机制
Java 虚拟机介绍Java 体系结构包括四个独立但相关的技术:1.Java 程序设计语言 2.Java class 文件格式 3.Java 应用编程接口(API) 4. Java 虚拟机Java 语言的运行机制首先编写的是.java 格式的源文件,然后由jvm 的编译器编译成.class 二进制字节码文件,接下来由jvm 将class 文件解释为本地系统宿主环境相对应的机器码运行。
Java 虚拟机是一台抽象的计算机,其规范定义了每个java 虚拟机都必须实现的特性。
当然JVM 也是根据不同操作系统及硬件标准划分为相应的版本来解决基于各操作系统差异和硬件环境(cpu 型号)等因素达到跨平台目的。
编译时环境运行时环境Java 虚拟机的主要任务是装载class 文件并且执行其中的字节码,JVM 包含一个类装载器(class loader),它可以从API 中装载class 文件,API 中的那些类只有需要时才会被装载,字节码由执行引擎来执行;JVM 在执行字节码时需要经过以下步骤:1. 由类加载器(class loader),将class 文件加载到JVM 中这时候需要做一次文件规范的校验。
2. 再由字节码校验器(Bytecode Verifier)检查该文件的代码中是否存在非法操作3. 通过字节码校验器的验证后就由解释器负责把该class 文件解释执行当然JVM 在上述操作过程中还使用了一种叫“沙箱”模型的安全机制,所谓“沙箱”就是A .class C.class B.class将java程序代码和数据限制在一定的内存空间里执行,不允许程序访问内存空间以外的内存。
具体详解“沙箱”:步骤一:“双亲委派类加载模型”双亲委派方式,指的是优先从顶层启动类加载器,自定向下的方式加载类模型,这种方式在“沙箱”安全模型里面做了第一道安全保障;而且这样的方式使得底层的类加载器加载的类和顶层的类加载器的类不能相互调用,哪怕两种类加载器加载的是同一个包里面的类,只要加载的时候不属于同一个类加载器,就是相互隔绝的,这样的操作称为JVM的“安全隔离”步骤二:字节码校验可分为四个步骤:1.检查class文件的结构正确与否第一趟扫描的主要目的是保证这个字节序列正确的定义了一个类型,它必须遵从java class文件的固定格式,这样它才能被编译成在方法区中的(基于实现的)内部数据结构2.检查是否符合JVM的编译规则这次检查,class文件检验器不需要查看字节码,也不需要查看和装载任何其他类型。
java虚拟机底层原理
java虚拟机底层原理Java虚拟机(JVM)是一种在Java编程语言中使用的虚拟机,它能够执行Java 字节码并提供了一个运行环境,使得Java程序可以在各种不同的硬件平台上运行。
JVM的底层原理包括以下几个方面:1. 内存管理JVM中的内存管理包括堆、栈、方法区等区域的划分和分配。
其中堆用于存储对象实例,栈用于存储方法调用和局部变量,方法区用于存储类信息、常量等。
JVM通过内存分配器来实现内存的分配和回收,常用的内存分配器有基于指针的分配器和基于垃圾回收的分配器。
2. 类加载JVM中的类加载包括类的装载、验证、准备、解析和初始化等阶段。
在类加载过程中,JVM会根据类的元数据,将字节码文件加载到内存中,并生成一个表示该类的Class对象。
类加载过程中需要进行各种验证和检查,以确保类的安全性和正确性。
3. 垃圾回收JVM中的垃圾回收用于清除不再使用的对象,以释放内存空间。
JVM通过垃圾回收器来管理内存的回收和释放,常用的垃圾回收器有关联式垃圾回收器、标记-清除垃圾回收器、复制垃圾回收器等。
垃圾回收器通过检测不再使用的对象,将其标记为垃圾并进行回收,以释放内存空间。
4. JIT编译JVM中的JIT编译器将Java字节码实时编译为本地机器代码,以提高程序的执行效率。
JIT编译器根据程序的运行情况,对经常执行的热点代码进行优化和编译,使得程序可以更快地执行。
5. 异常处理JVM中的异常处理用于处理程序运行过程中出现的异常情况,以避免程序崩溃。
JVM提供了异常处理机制,当程序发生异常时,JVM会在堆栈中查找合适的异常处理程序,并将控制权转交给该程序进行处理。
6. 多线程JVM中的多线程用于支持多任务并发执行。
JVM提供了线程调度器和线程同步机制,使得程序可以创建多个线程并发执行多个任务。
在多线程编程中,需要注意线程之间的同步和互斥问题,以避免出现死锁等问题。
总之,Java虚拟机的底层原理包括内存管理、类加载、垃圾回收、JIT编译、异常处理和多线程等方面。
jvm的理解
jvm的理解JVM,全称为Java虚拟机(Java Virtual Machine),是Java语言的核心部分,是Java的运行环境。
Java程序在运行时,需要通过JVM来解释执行Java代码。
JVM的主要作用是将Java代码翻译成计算机可以理解的机器语言,同时还负责内存管理和垃圾回收等任务。
本文将从JVM的结构和工作原理、内存管理和垃圾回收、性能优化和调试等方面,对JVM进行深入的讲解。
一、JVM的结构和工作原理JVM的结构可以分为三个部分:类加载器、运行时数据区和执行引擎。
其中,类加载器用于将Java类加载到内存中;运行时数据区用于存储程序运行时所需要的数据;执行引擎则用于执行Java代码。
1. 类加载器类加载器是JVM中的重要组成部分,它负责将Java类从磁盘上的.class文件中加载到JVM的内存中。
类加载器按照类的来源可以分为三种类型:启动类加载器、扩展类加载器和应用程序类加载器。
启动类加载器用于加载JVM自带的核心类库,扩展类加载器用于加载JVM扩展的类库,应用程序类加载器则用于加载应用程序的类库。
2. 运行时数据区运行时数据区用于存储程序运行时所需要的数据,包括方法区、堆、栈、本地方法栈和程序计数器。
其中,方法区用于存储类的元数据信息,堆用于存储对象实例,栈用于存储方法执行时的局部变量和操作数栈,本地方法栈用于存储本地方法的调用栈,程序计数器用于记录正在执行的指令地址。
3. 执行引擎执行引擎是JVM的核心部分,它用于执行Java代码。
执行引擎按照执行方式可以分为两种类型:解释执行和编译执行。
解释执行是将Java代码逐行翻译成机器语言执行,缺点是速度较慢;编译执行是将Java代码预先编译成机器语言,然后再执行,速度较快。
JVM 支持两种编译方式:静态编译和动态编译。
静态编译是在程序运行前将Java代码编译成机器语言,动态编译则是在程序运行时根据代码的执行情况动态进行编译。
二、内存管理和垃圾回收JVM的内存管理和垃圾回收是Java语言的重要特性之一。
Java虚拟机(JVM)的基本原理和优化
Java虚拟机(JVM)的基本原理和优化Java虚拟机(JVM)是Java程序运行的基石,它负责将Java代码编译成机器可以执行的二进制码,并提供内存管理和垃圾回收等方面的支持。
本论文主要介绍JVM的基本原理和优化方法。
一、JVM的基本原理JVM是运行在操作系统上的一个软件,它屏蔽了底层操作系统的硬件差异,使得Java程序可以在不同的操作系统上运行。
JVM主要由三部分组成:类加载器、执行引擎和运行时数据区。
1.类加载器类加载器主要负责将Java源代码编译成字节码(即.class文件)并加载到JVM中。
类加载器分为三种:启动类加载器、扩展类加载器和应用程序类加载器。
启动类加载器加载的是JRE中的核心类库,扩展类加载器加载的是可选的扩展类库,而应用程序类加载器则负责加载应用程序所需的类。
类加载器会将加载的类保存在一块特定的内存区域中,称为方法区(或永久代)。
在类加载器加载一个类时,会首先检查该类是否已经被加载过。
如果已经被加载,则直接返回该类的Class对象;否则,会按照一定的顺序依次执行加载、链接和初始化三个步骤。
2.执行引擎执行引擎负责将Java字节码解释为底层计算机的指令,执行程序。
执行引擎通常采用的两种方式是解释执行和即时编译。
解释执行是指将字节码逐条解释翻译成机器码并执行。
这种方式的优点是可以快速启动,适用于简单的场景;缺点是运行速度慢,占用系统资源多。
即时编译是指将字节码在程序运行的过程中翻译成本地机器码并执行。
这种方式的优点是运行速度快,适用于复杂的场景;缺点是启动时消耗资源多,使用内存较多。
3.运行时数据区运行时数据区是JVM提供的内存管理机制。
它根据Java程序需要使用的内存大小动态地分配和回收内存,包括堆内存、栈内存、方法区(或永久代)以及本地方法栈。
堆内存主要用来存储Java对象,堆内存的大小和JVM的内存上限有关系。
栈内存主要用来存储方法的局部变量和方法调用的相关信息,栈内存的大小通常是固定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们都知道虚拟机的内存划分了多个区域,并不是一张大饼。
那么为什么要划分为多块区域呢,直接搞一块区域,所有用到内存的地方都往这块区域里扔不就行了,岂不痛快。
是的,如果不进行区域划分,扔的时候确实痛快,可用的时候再去找怎么办呢,这就引入了第一个问题,分类管理,类似于衣柜,系统磁盘等等,为了方便查找,我们会进行分区分类。
另外如果不进行分区,内存用尽了怎么办呢?这里就引入了内存划分的第二个原因,就是为了方便内存的回收。
如果不分,回收内存需要全部内存扫描,那就慢死了,内存根据不同的使用功能分成不同的区域,那么内存回收也就可以根据每个区域的特定进行回收,比如像栈内存中的栈帧,随着方法的执行栈帧进栈,方法执行完毕就出栈了,而对于像堆内存的回收就需要使用经典的回收算法来进行回收了,所以看起来分类这么麻烦,其实是大有好处的。
提到虚拟机的内存结构,可能首先想起来的就是堆栈。
对象分配到堆上,栈上用来分配对象的引用以及一些基本数据类型相关的值。
但是·虚拟机的内存结构远比此要复杂的多。
除了我们所认识的(还没有认识完全)的堆栈以外,还有程序计数器,本地方法栈和方法区。
我们平时所说的栈内存,一般是指的栈内存中的局部变量表。
下面是官方所给的虚拟机的内存结构图
从图中可以看到有5大内存区域,按照是否被线程所共享可分为两部分,一部分是线程独占区域,包括Java栈,本地方法栈和程序计数器。
还有一部分是被线程所共享的,包括方法区和堆。
什么是线程共享和线程独占呢,非常好理解,我们知道每一个Java进行都会有多个线程同时运行,那么线程共享区的这片区域就是被所有线程一起使用的,不管有多少个线程,这片空间始终就这一个。
而线程的独占区,是每个线程都有这么一份内存空间,每个线程的这片空间都是独有的,有多少个线程就有多少个这么个空间。
上图的区域的大小并不代表实际内存区域的大小,实际运行过程中,内存区域的大小也是可以动态调整的。
下面来具体说说每一个区域的主要功能。
程序计数器,我们在写代码的过程中,开发工具一般都会给我们标注行号方便查看和阅读代码。
那么在程序在运行过程中也有一个类似的行号方便虚拟机的执行,就是程序计数器,在c语言中,我们知道会有一个goto语句,其实就是跳转到了指定的行,这个行号就是程序计数器。
存储的就是程序下一条所执行的指令。
这部分区域是线程所独享的区域,我们知道线程是一个顺序执行流,每个线程都有自己的执行顺序,如果所有线程共用一个程序计数器,那么程序执行肯定就会出乱子。
为了保证每个线程的执行顺序,所以程序计数器是被单个线程所独显的。
程序计数器这块内存区域是唯一一个在jvm规范中没有规定内存溢出的。
java虚拟机栈,java虚拟机栈是程序运行的动态区域,每个方法的执行都伴随着栈帧的入栈和出栈。
栈帧也叫过程活动记录,是编译器用来实现过程/函数调用的一种数据结构。
栈帧中包括了局部变量表,操作数栈,方法返回地址以及额外的一些附加信息,在编译过程中,局部变量表的大小已经确定,操作数栈深度也已经确定,因此栈帧在运行的过程中需要分配多大的内存是固定的,不受运行时影响。
对于没有逃逸的对象也会在栈上分配内存,对象的大小其实在运行时也是确定的,因此即使出现了栈上内存分配,也不会导致栈帧改变大小。
一个线程中,可能调用链会很长,很多方法都同时处于执行状态。
对于执行引擎来讲,活动线程中,只有栈顶的栈帧是最有效的,称为当前栈帧,这个栈帧所关联的方法称为当前方法。
执行引擎所运行的字节码指令仅对当前栈帧进行操作。
局部变量表:我们平时所说的栈内存一般就是指栈内存中的局部变量表。
这里主要是存储变量所用。
对于基本数据类型直接存储其值,对于引用数据类型则存储其地址。
局部变量表的最小存储单位是Slot,每个Slot都能存放一个boolean、byte、char、short、int、float、reference或returnAddress类型的数据。
既然前面提到了数据类型,在此顺便说一下,一个Slot可以存放一个32位以内的数据类型,Java中占用32位以内的数据类型有boolean、byte、char、short、int、float、reference 和returnAddress八种类型。
前面六种不需要多解释,大家都认识,而后面的reference 是对象的引用。
虚拟机规范既没有说明它的长度,也没有明确指出这个引用应有怎样的结构,但是一般来说,虚拟机实现至少都应当能从此引用中直接或间接地查找到对象在Java堆中的起始地址索引和方法区中的对象类型数据。
而returnAddress是为字节码指令jsr、jsr_w 和ret服务的,它指向了一条字节码指令的地址。
对于64位的数据类型,虚拟机会以高位在前的方式为其分配两个连续的Slot空间。
Java 语言中明确规定的64位的数据类型只有long和double两种(reference类型则可能是32位也可能是64位)。
值得一提的是,这里把long和double数据类型读写分割为两次32读写的做法类似。
不过,由于局部变量表建立在线程的堆栈上,是线程私有的数据,无论读写两个连续的Slot是否是原子操作,都不会引起数据安全问题。
操作数栈是一个后入先出(Last In First Out, LIFO)栈。
同局部变量表一样,操作数栈的最大深度也在编译的时候被写入到字节码文件中,关于字节码文件,后面我会具体的来描述。
操作数栈的每一个元素可以是任意的Java数据类型,包括long和double。
32位数据类型所占的栈容量为1,64位数据类型所占的栈容量为2。
在方法执行的任何时候,操作数栈的深度都不会超过在max_stacks数据项中设定的最大值。
当一个方法刚刚开始执行的时候,这个方法的操作数栈是空的,在方法的执行过程中,会有各种字节码指令向操作数栈中写入和提取内容,也就是入栈出栈操作。
例如,在做算术运算
的时候是通过操作数栈来进行的,又或者在调用其他方法的时候是通过操作数栈来进行参数传递的。
举个例子,整数加法的字节码指令iadd在运行的时候要求操作数栈中最接近栈顶的两个元素已经存入了两个int型的数值,当执行这个指令时,会将这两个int值和并相加,然后将相加的结果入栈。
操作数栈中元素的数据类型必须与字节码指令的序列严格匹配,在编译程序代码的时候,编译器要严格保证这一点,在类校验阶段的数据流分析中还要再次验证这一点。
再以上面的iadd指令为例,这个指令用于整型数加法,它在执行时,最接近栈顶的两个元素的数据类型必须为int型,不能出现一个long和一个float使用iadd命令相加的情况。
本地方法栈与虚拟机栈所发挥的作用是非常相似的,其区别不过是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的Native方法服务。
虚拟机规范中对本地方法栈中的方法使用的语言、使用方式与数据结构并没有强制规定,因此具体的虚拟机可以自由实现它。
甚至有的虚拟机(譬如Sun HotSpot虚拟机)直接就把本地方法栈和虚拟机栈合二为一。
与虚拟机栈一样,本地方法栈区域也会抛出StackOverflowError和OutOfMemoryError异常。
方法区经常会被人称之为永久代,但这俩并不是一个概念。
首先永久代的概念仅仅在HotSpot虚拟机中存在,不幸的是,在jdk8中,Hotspot去掉了永久代这一说法,使用了Native Memory,也就是Metaspace空间。
那么方法区是干嘛的呢?我们可以这么理解,
我们要运行Java代码,首先需要编译,然后才能运行。
在运行的过程中,我们知道首先需要加载字节码文件。
也就是说要把字节码文件加载到内存中。
好了,问题就来了,字节码文件放到内存中的什么地方呢,就是方法区中。
当然除了编译后的字节码之外,方法区中还会存放常量,静态变量以及及时编译器编译后的代码等数据。
堆,一般来讲堆内存是Java虚拟机中最大的一块内存区域,同方法区一样,是被所有线程所共享的区域。
此区域所存在的唯一目的就存放对象的实例(对象实例并不一定全部在堆中创建)。
堆内存是垃圾收集器主要光顾的区域,一般来讲根据使用的垃圾收集器的不同,堆中还会划分为一些区域,比如新生代和老年代。
新生代还可以再划分为Eden,Survivor等区域。
另外为了性能和安全性的角度,在堆中还会为线程划分单独的区域,称之为线程分配缓冲区。
更细致的划分是为了让垃圾收集器能够更高效的工作,提高垃圾收集的效率。
如果想要了解更多的关于虚拟机的内容,欢迎观看录制的<深入理解Java虚拟机>这套视频。