楞次定律解题技巧
楞次定律的理解与运用
楞次定律的理解与运用楞次定律是电磁感应一章的重点和难点,要做到透彻理解、灵活应用、融会贯通、举一反三,首先必须做到:1.正确理解楞次定律中的“阻碍”——四层意思正确、深入理解楞次定律中的“阻碍”是应用该定律的关键.理解时,要搞清四层意思:(1)谁阻碍谁?是感应电流的磁场阻碍原磁通量的变化.(2)阻碍什么?阻碍的是磁通量的变化,而不是阻碍磁通量本身.(3)如何阻碍?当磁通量增加时,感应电流的磁场方向与原磁场方向相反;当磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.(4)结果如何?阻碍并不是阻止,只是延缓了磁通量变化的快慢,原来是增加的还是增加,减少的还是减少.2.运用楞次定律判定电流方向——四个步骤(1)明确穿过闭合回路的原磁场方向;(2)判断穿过闭合回路的磁通量是增加还是减少;(3)利用楞次定律确定感应电流的磁场方向;(4)利用安培定则判定感应电流的方向.应用楞次定律的步骤可概括为:一原二变三感四螺旋.3.楞次定律的推广——四个拓展对楞次定律中“阻碍”的含义可以推广为感应电流的效果总是阻碍产生感应电流的原因:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”;(4)阻碍原电流的变化(自感现象)——“增反减同”.对点例题(双选)如图1所示,光滑固定导轨M、N水平放置,两根导体棒P、Q平行放于导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时()图1A.P、Q将互相靠拢B.P、Q将互相远离C.磁铁的加速度仍为g D.磁铁的加速度小于g解题指导从阻碍回路面积变化的角度看:当磁铁靠近闭合回路时,磁通量增加,两导体棒由于受到磁场对其中感应电流的力的作用而互相靠拢以阻碍磁通量的增加,故A项正确;从阻碍相对运动角度看:磁铁靠近回路时必受到阻碍靠近的向上的力的作用,因此磁铁的加速度小于g,故D项正确.答案AD思维规范由于穿过闭合回路的磁通量发生变化而产生感应电流,感应电流处在原磁场中必然受力,闭合导体受力的结果:(1)阻碍原磁通量的变化——增反减同.(2)阻碍导体与磁体间的相对运动——来拒去留.(3)当回路发生形变时,感应电流的效果是阻碍回路发生形变.(4)当由于线圈自身的电流发生变化而产生感应电流时,感应电流的效果是阻碍原电流的变化.总之,如果问题不涉及感应电流的方向,则从楞次定律的另一种表述出发分析问题更简便.1.(双选)如图2所示,在水平面上有一个固定的U形金属框架,其上置一个金属杆ab.在垂直于框架方向有一匀强磁场.则()图2A.磁感应强度垂直纸面向外并增大时,ab杆将向右移动B.磁感应强度垂直纸面向外并减小时,ab杆将向右移动C.磁感应强度垂直纸面向里并增大时,ab杆将向右移动D.磁感应强度垂直纸面向里并减小时,ab杆将向右移动答案BD解析据楞次定律,当磁感应强度垂直纸面向外增大时,金属框内产生顺时针电流,再据左手定则,可知金属杆受到向左的安培力,则金属杆将向左运动,所以A选项错误;当磁感应强度垂直纸面向外减小时,金属框内中产生逆时针电流,据左手定则,可知金属杆受到向右的安培力,金属杆将向右运动,B选项正确;当磁感应强度垂直纸面向里增大时,金属框内产生逆时针电流,金属杆受到向左的安培力,金属杆将向左运动,C选项错误;当磁感应强度垂直纸面向里减小时,金属框内产生顺时针电流,金属杆受到向右的安培力,金属杆将向右运动,D选项正确.2.(单选)甲、乙两个完全相同的铜环可绕固定的轴OO′无摩擦旋转,若分别加上如图3甲、乙所示的匀强磁场,当同时给甲、乙相同的初速度旋转时()图3A.甲环先停B.乙环先停C.两环同时停下D.无法判断两环停止的先后答案 B解析甲环旋转时没有切割磁感线,没有感应电流产生,而乙环旋转时切割磁感线,有感应电流产生,根据楞次定律,运动导体上的感应电流受的磁场力(安培力)总是反抗(或阻碍)导体的运动,因此乙环先停下.3.(双选)如图4甲所示,A、B为两个相同的环形线圈,共轴并靠近放置,A线圈中通过如图乙所示的电流I,则()图4A.在t1到t2时间内A、B两线圈相吸引B.在t2到t3时间内A、B两线圈相排斥C.t1时刻两线圈作用力最大D.t2时刻两线圈作用力最大答案AB解析在t1到t2时间内,A中电流减小,穿过B的磁通量减少,根据楞次定律,则A、B 两线圈相吸引;在t2到t3时间内,A中电流增大,A、B两线圈相排斥;t1时刻,A中电流最大,此时A中的电流的变化率为零,所以B中无感应电流产生,所以A、B之间作用力为零;t2时刻,A中电流为零,此时A中的电流的变化率最大,在B中感应电流最大,A、B 之间作用力为零.选项A、B正确.。
电磁感应现象 楞次定律(核心考点精讲精练)(解析版)—备战2025年高考物理一轮复习(新高考通用)
电磁感应现象楞次定律1. 高考真题考点分布题型考点考查考题统计选择题楞次定律2024年江苏卷、广东卷实验题探究影响感应电流方向的因素2024年北京卷2. 命题规律及备考策略【命题规律】高考对楞次定律和右手定则的考查形式多以选择题的形式,题目较为简单,同时,这两部分内容会在某些有关电磁感应的综合性的计算题中会有应用。
【备考策略】1.理解和掌握楞次定律、右手定则。
2.能够利用楞次定律和右手定则判断感应电流的方向。
【命题预测】重点关注楞次定律和右手定则的应用。
一、磁通量1.概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的平面,其面积S与B的乘积叫作穿过这个面积的磁通量。
2.公式:Φ=BS,单位是韦伯,符号是Wb。
3.适用条件(1)匀强磁场。
(2)S为垂直于磁场的有效面积。
4.物理意义:相当于穿过某一面积的磁感线的条数。
5.磁通量的变化量:ΔΦ=Φ2-Φ1=B2S2-B1S1。
二、电磁感应现象1.定义:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫作电磁感应。
2.感应电流的产生条件(1)表述一:闭合电路的一部分导体在磁场内做切割磁感线的运动。
(2)表述二:穿过闭合电路的磁通量发生变化。
3.实质电磁感应现象的实质是产生感应电动势,如果电路闭合,则有感应电流。
如果电路不闭合,则只有感应电动势而无感应电流。
三、感应电流方向的判定1.楞次定律(1)内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:一切电磁感应现象。
2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
(2)适用情况:导线切割磁感线产生感应电流。
考点一电磁感应现象1.磁通量的计算(1)公式:Φ=BS。
适用条件:①匀强磁场;②磁场与平面垂直。
2023年高考物理热点复习:电磁感应现象 楞次定律(附答案解析)
第1页(共19页)2023年高考物理热点复习:电磁感应现象
楞次定律
【2023高考课标解读】
1.知道电磁感应现象以及产生感应电流的条件。
2.理解磁通量的定义,理解磁通量的变化、变化率以及净磁通量的概念。
3.理解棱次定律的实质,能熟练运用棱次定律来分析电磁感应现象中感应电流的方向。
4.理解右手定则并能熟练运用该定则判断感应电流的的方向。
【2023高考热点解读】
一、磁通量
1.概念:在磁感应强度为B 的匀强磁场中,与磁场方向垂直的面积S 与B 的乘积.2.公式:Φ=BS .
3.适用条件:
(1)匀强磁场.
(2)S 为垂直磁场的有效面积.
4.磁通量是标量(填“标量”或“矢量”).
5.物理意义:
相当于穿过某一面积的磁感线的条数.如图所示,矩形abcd 、abb ′a ′、a ′b ′cd 的面积分别为S 1、S 2、S 3,匀强磁场的磁感应强度B 与平面a ′b ′cd
垂直,则:
(1)通过矩形abcd 的磁通量为BS 1cos θ或BS 3.
(2)通过矩形a ′b ′cd 的磁通量为BS 3.
(3)通过矩形abb ′a ′的磁通量为0.
6.磁通量变化:ΔΦ=Φ2-Φ1.
二、电磁感应现象
1.定义:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.
2.条件
(1)条件:穿过闭合电路的磁通量发生变化.。
楞次定律难点解析
“楞次定律”教学难点的突破方法高中物理教学中楞次定律是高考的热点、重点、难点之一,其内容是:感应电流的磁场,总是要阻碍引起感应电流的磁通量的变化。
该定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况。
要让学生学好这个定律,突破这一定律难点,除做好演示实验外,教学中还应注意让学生从以下几点着手学习。
一、分四步理解楞次定律1.明白谁阻碍谁──感应电流的磁通量阻碍产生产感应电流的磁通量。
2.弄清阻碍什么──阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。
3.熟悉如何阻碍──原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。
4.知道阻碍的结果──阻碍并不是阻止,结果是增加的还增加,减少的还减少。
二、学会楞次定律的另一种表述有人把它称为对楞次定律的深层次理解。
1.表述内容:感应电流总是反抗产生它的那个原因。
2.表现形式有三种:a.阻碍原磁通量的变化;b.阻碍物体间的相对运动,有的人把它称为“来拒去留”;c.阻碍原电流的变化(自感)。
注意:分析磁通量变化时关键在于对有关磁场、磁感线的空间分布要有足够清楚的了解,有些问题应交替利用楞次定律和右手定则分析。
三、能正确区分楞次定律与右手定则的关系导体运动切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。
用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定来得方便简单。
反过来,用楞次定律能判定的,并不是用右手定则都能判断出来。
如闭合圆形导线中的磁场逐渐增强,用右手定则就难以判定感应电流的方向;相反,用楞次定律就很容易判定出来。
四、理解楞次定律与能量守恒定律楞次定律在本质上就是能量守恒定律。
在电磁感应现象中,感应电流在闭合电路中流动时将电能转化为内能,根据能量守恒定律,能量不能无中生有,这部分能量只能从其他形式的能量转化而来。
楞次定律
S
4.如图所示,匀强磁场B中,放置一水平光滑金属框架, 有一根金属棒ab与导轨接触良好,在外力F的作用下 匀速向右运动,分析此过程中能量转化的情况。
a
F
1、由楞次定律(或右手定则)判定 ab棒上感应电流的方向应由b→a
b
2、由左手定则判断ab在磁场 中受到的安培力的方向是水平 向左的。 外力做正功,消耗外界能量,完全用来克服安培 力做功,转化成闭合回路中的电能,最后转化 成内能。
B原 B感 I感
滑动变阻器R的滑片向右 滑动时,A中电流减小 A的磁场减弱
R’中感应电流方向从b 到a
B中磁通量减小
B中感应磁场方向与原 磁场方向相同
二、楞次定律的应用 【例1-1】如图所示,当线框向右移动, 请判断线框中感应电流的方向
解题思路: 原磁场B0的方向:向外
I
原磁场B0的变化情况:变小
楞次定律的两种理解:
(1)、从磁通量变化的角度来看, 感应电流的磁场总要阻碍原磁通 量的变化; ---增反减同 (2)、从导体和磁体的相对运动来 看,感应电流的磁场总要阻碍相 对运动。-----来拒去留
当N极远离线圈时,线圈上感应电流 在线圈的右侧表现为S极,线圈和条 形磁铁的相互作用表现为引力。
【例题1】 如图所示,当条形磁铁做下列运动时,线圈 中的感应电流方向应是(从左向右看): A.磁铁靠近线圈时,电流方向是逆时针的 B.磁铁靠近线圈时,电流方向是顺时针的 C.磁铁向上平动时,电流方向是逆时针的 D.磁铁向上平动时,电流方向是顺时针的
【例题2】
如图所示,当滑动变阻器 R 的滑片向右 滑动时,则流过 R′ 的电流方向是 _____ 。
3
N
如图所示四根光滑的金属铝杆叠放在绝缘水平面上, 组成一个闭合回路,一条形磁铁的S极正对着回路靠 近, 试分析: (1)导体杆对水平面的压力怎样变化? (2)导体杆将怎样运动? 分析解答:磁铁接近线圈时,穿过回路的磁通量增大, 在闭合回路中出现的感应电流阻碍磁通量的增加, 闭合回路有两种作用可阻碍磁通量增加, 第一是回路向下退缩,但水平面限制了它不能向下退, 因而出现导体杆与水平面间的正压力增大, 第二是回路的收缩,由于四根导体杆可以在水平面内运 动, 所以它们都得相向运动,互相靠近.
高中物理选修32楞次定律知识点归纳
高中物理选修32楞次定律知识点归纳楞次定律是高中物理学中的一个重要定律,下面是店铺给大家带来的高中物理选修32楞次定律知识点归纳,希望对你有帮助。
高中物理楞次定律知识点1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化.在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。
A、从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。
B、从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。
又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。
磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。
C、从“阻碍自身电流变化”的角度来看,就是自感现象。
自感现象中产生的自感电动势总是阻碍自身电流的变化。
2、实质:能量的转化与守恒。
3、应用:对阻碍的理解:(1)顺口溜“你增我反,你减我同”(2)顺口溜“你退我进,你进我退”即阻碍相对运动的意思。
“你增我反”的意思是如果磁通量增加,则感应电流的磁场方向与原来的磁场方向相反。
“你减我同”的意思是如果磁通量减小,则感应电流的磁场方向与原来的磁场方向相同。
用以判断感应电流的方向,其步骤如下:1)确定穿过闭合电路的原磁场方向;2)确定穿过闭合电路的磁通量是如何变化的(增大还是减小);3)根据楞次定律,确定闭合回路中感应电流的磁场方向; 4)应用安培定则,确定感应电流的方向。
高中物理学习技巧一、联系实际,帮助理解从初中物理到高中物理最大的变化就是知识要求的变化。
初中物理是通过现象认识规律,因此,初中物理主要的学习方法是“记忆”;高中物理则是通过对规律的认识理解来解决一些实际问题、解释一些自然现象,所以高中物理主要的学习方法是“理解”。
做到理解的基本步骤是:一练、二讲、三应用。
“一练”即要在老师的指导下进行适当的练习,通过对不同类型习题的练习,多方面、多角度地认识概念、认识规律、认识知识点、认识考点。
谈多角度解决楞次定律问题
谈多角度解决楞次定律问题楞次定律是电磁感应现象中的一个重要定律,理解楞次定律最重要的是理解定律的内容和掌握应用定律的方法这两个方面,特别是注意在实际应用中总结出分析解决问题的简捷明快的思路和切合实际的方法步骤.一、对于楞次定律可以从以下几方面去理解:1、楞次定律的内容:感应电流具有这样的方向,即感应电流产生的磁场总是要阻碍引起感应电流的磁通量的变化。
2、楞次定律的理解(1)谁阻碍谁:感应电流的磁通量阻碍引起感应电流的磁场的磁通量的变化。
(2)阻碍什么:阻碍的是磁通量的变化,而不是阻碍磁通量本身。
(3)如何阻碍:当磁通量增加时,感应电流的磁场议程与原磁场方向相反;当磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。
(4)结果如何:阻碍并不是阻止,只是延缓了磁通量的变化快慢,这种变化将纠结进行,最终结果不受影响。
(5)“阻碍”不等于“阻止”,它只延滞原磁通量的变化而不是使磁通量停止变化,“阻碍”不仅有“反抗”的含义,还有“补偿”的含义,即反抗磁通量的增加,补偿磁通量的减少。
3、楞次定律的两层意义(1)因果关系:闭合导体回路中磁通量的变化是因,产生感应电流是果;原因产生结果,结果又反过来影响原因。
(2)从磁通量变化的角度来看,感应电流总要阻碍磁通量的变化;从导体和磁体的相对运动的角度来看,感应电流总是阻碍它们的相对运动。
二、楞次定律的就用基本解题步骤1、基本步骤(1)明确研究的是哪一个闭合电路(2)明确原磁场的方向(3)判断闭合回路内的感应电流的磁场方向(4)由楞次定律判断感应电流的方向(5)由安培定律判断感应电流的方向【例题1】某磁场的磁感应线如图所示,有一铜线圈从图中的上方A处落到B处,则在下落的过程中,从上向下看,线圈中的感应电流的方向是:()A、顺时针;B、逆时针;C、先顺时针后逆时针;D、先逆时针后顺时针。
【解析】线圈内的原磁场方向是向上的,从A到B磁感应强度先增后减,所以磁通量也是先增后减,由楞次定律可知,电流的磁场先向下后向上,由安培定则知,感应电流方向先顺时针后逆时针,所以C正确2、右手定则——用于判断导体切割磁感线时所产生的感应电流方向内容:伸开右手,使大拇指与其余同一平面内并跟四指垂直,让磁感线穿过手心,使大拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向。
学习技巧:“楞次定律”应用的“四步曲”
“楞次定律”的应用的“四步曲”“楞次定律”是判断感生电流的方向的规律,是“电磁感应”一章的重点,也是高考的热点。
一、愣次定律的内容感生电流的方向,总是使自己的磁场阻碍引起感生电流的磁通量的变化。
关键词:感生电流,磁场,阻碍,磁通量,变化。
它的意思是:如果引起感生电流的磁通量在增加,则感生电流的磁场与引起感生电流的磁场方向相反;如果引起感生电流的磁通量在减少,则感生电流的磁场与引起感生电流的磁场方向相同。
二、“楞次定律”的应用的“四步曲”在应用楞次定律判断感生电流的方向时,通常采取以下四步:1.确定引起感生电流的磁场(称为原磁场)的方向。
2.确定引起感生电流的磁通量在怎样变化,即是在增加,还是在减少?3.用楞次定律判断感生电流的方向,即如果原磁场的磁通量在增加,则感生电流的磁场与原磁场方向相反;如果原磁场的磁通量在减少,则感生电流的磁场与原磁场方向相同。
4.根据感生电流的磁场的方向,用安培定则判定感生电流的方向。
三、“楞次定律”的应用的“四步曲”的程序在应用楞次定律解题时,上述四步的先后不是固定不变的,其程序通常有以下几种:1.已知原磁场的方向,求感生电流的方向。
例1.如图1-1所示,一矩形线圈位于一随时间t变化的匀强磁场中,磁场的方向垂直于线圈所在的平面(纸面)向里,磁感应强度B随时间t变化的规律如图1-2所示,以I 表示线圈中的感生电流,以图1-1中线圈上箭头所示的方向的电流为正方向,则以下的I-t图中正确的是图1-3中的()图1-1图1-2A BC D图1-3解:0-1s,原磁场向里,原磁场的磁通量增加,据楞次定律,感生电流的磁场向外,据安培定则,感生电流方向为负。
1-2s,原磁场向里,原磁场的磁通量减少,据楞次定律,感生电流的磁场向里,据安培定则,感生电流方向为正。
2-3s,原磁场为0,感生电流为0。
3-4s,原磁场向里,原磁场的磁通量增加,据楞次定律,感生电流的磁场向外,据安培定则,感生电流方向为负。
高三第一轮复习-电磁感应现象 楞次定律
电磁感应现象楞次定律1.知道电磁感应现象产生的条件2.理解磁通量及磁通量变化的含义,并能计算.3.掌握楞次定律和右手定则的应用,并能判断感应电流的方向及相关导体的运动方向.考点一电磁感应现象的判断1.磁通量(1)定义:在匀强磁场中,磁感应强度B与垂直于磁场方向的面积的乘积.(2)公式:Φ=BS.适用条件:①匀强磁场.②S为垂直磁场的有效面积.(3)磁通量是标量(填“标量”或“矢量”).(4)磁通量的意义:①磁通量可以理解为穿过某一面积的磁感线的条数.②同一线圈平面,当它跟磁场方向垂直时,磁通量最大;当它跟磁场方向平行时,磁通量为零;当正向穿过线圈平面的磁感线条数和反向穿过的一样多时,磁通量为零.2.电磁感应现象(1)电磁感应现象:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.(2)产生感应电流的条件:穿过闭合回路的磁通量发生变化.产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.(3)电磁感应现象中的能量转化:发生电磁感应现象时,机械能或其他形式的能转化为电能,该过程遵循能量守恒定律.[例题1](2024•房山区一模)某同学用如图所示装置探究影响感应电流方向的因素。
将磁体从线圈中向上匀速抽出时,观察到灵敏电流计指针向右偏转。
关于该实验,下列说法正确的是()A.图中线圈中感应电流的磁场方向向下B.若将磁体向上加速抽出,灵敏电流计指针将向左偏转C.磁体放置在线圈中静止不动,灵敏电流计指针仍向右偏转D.若将磁体的N、S极对调,并将其向下插入线圈,灵敏电流计指针仍向右偏转[例题2](多选)(2024•丰台区二模)“探究影响感应电流方向的因素”的实验示意图如图所示:灵敏电流计和线圈组成闭合回路,通过“插入”、“拔出”条形磁铁,使线圈中产生感应电流。
记录实验过程中的相关信息,分析得出楞次定律。
下列说法正确的是()A.实验时必须保持磁铁运动的速率不变B.该实验需要知道线圈的绕向C.该实验需要记录磁铁的运动方向D.该实验需要判断电流计指针偏转方向与通入电流方向的关系[例题3](2023秋•通州区期末)如图甲所示,某同学在研究电磁感应现象时,将一线圈两端与电流传感器相连,强磁铁从长玻璃管上端由静止下落,电流传感器记录了强磁铁穿过线圈过程中电流随时间变化的图像,t2时刻电流为0,如图乙所示。
准确理解 灵活运用 快速解题--析楞次定律的理解与运用
准确理解灵活运用快速解题--析楞次定律
的理解与运用
1 什么是楞次定律
楞次定律是难易程度比较语文《论语》中的最后一次考试题目的推断方法,这其实是一种思维模型,用来分析论语的题目的层次和难度的次序。
它可以帮助我们快速理解论语的一些高深练习,也能够解决许多练习中最深层次的层次跳跃。
2 楞次定律的构成
楞次定律由两部分构成:第一部分是“难易勾对”,第二部分是“辩证把握”。
难易勾对是指论语题目样式的渐进练习,仆从着勾勒出一个难易次序,并用此作为文章中难度的指标,可以快速突出文章重要内容。
辩证把握则指用正反两个面的效果把握论语的观点,从经典语句的反义两面来把握,从而多角度、精确深入理解论语的精神内容和重点要点。
3 灵活运用楞次定律
1. 在理解论语中,楞次定律可以帮助我们快速把握题目的层次,使我们更容易理解。
楞次定律在论语题作文中,往往可以辅助我们快速建立一切因果联系,从而了解文章中内容的内在联系。
2. 楞次定律也可以促使我们更深入地思考,把握文章的层次和内容,从而更深入地理解主题的精神。
3. 楞次定律也能够辅助我们更快速有效地解决题目,使我们更快速把握题目的关联,从而快速地提出准确的回答。
4 总结
楞次定律是一种十分有效的分析论语题目的技巧,它也能够帮助我们更快速更准确地理解论语中的要点,以及快速准确解决题目。
如果我们能够灵活运用这一方法,那么,我们在论语练习中获得的提高将会是巨大的。
楞次定律
楞次定律
解题规律:一、楞次定律:感应电流的磁场总是阻碍引起产生感应电流的磁通量的变化。
二、应用楞次定律的步骤:1、明确穿过闭合回路的原磁场方向
2、明确穿过闭合回路的磁通量是增加还是减少
3、根据楞次定律确定感应电流磁场的方向
4、利用安培定则判定感应电流的方向
例1、一平面线圈用细杆悬于P点,开始时细杆处于水平位置,释放后让它在如图所示的匀强磁场中运动,已知线圈平面始终与纸面垂直,当线圈第一次通过位置Ⅰ和位置Ⅱ时,顺着磁场的方向看去,线圈中的感应电流的方向分别为()
位置Ⅰ位置Ⅱ
(A)逆时针方向逆时针方向
(B)逆时针方向顺时针方向
(C)顺时针方向顺时针方向
(D)顺时针方向逆时针方向
答案:B
例2、如图线圈P通入强电流,线圈Q水平放置,从靠近线圈P的附近竖直向下落,经过位置Ⅰ、Ⅱ、Ⅲ,下落过程中感应电流的方向自上向下看()
A、始终是顺时针方向
B、始终是逆时针方向
C、先顺时针后逆时针方向
D、先逆时针后顺时针方向
答案:A。
感应电流方向的判断-楞次定律(含答案)
感应电流方向的判断楞次定律一、基础知识(一)感应电流方向的判断1、楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用情况:所有的电磁感应现象.2、右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体棒切割磁感线产生感应电流.3、利用电磁感应的效果进行判断的方法:方法1:阻碍原磁通量的变化——“增反减同”.方法2:阻碍相对运动——“来拒去留”.方法3:使线圈面积有扩大或缩小的趋势——“增缩减扩”方法4:阻碍原电流的变化(自感现象)——“增反减同”.(二)利用楞次定律判断感应电流的方向1、楞次定律中“阻碍”的含义2、楞次定律的使用步骤(三)“一定律三定则”的应用技巧1、应用现象及规律比较2无论是“安培力”还是“洛伦兹力”,只要是“力”都用左手判断.“电生磁”或“磁生电”均用右手判断.二、练习1、下列各图是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中正确的是 ( )2、如图所示,一根条形磁铁从左向右靠近闭合金属环的过程中,环中的感应电流(自左向右看) ( )A .沿顺时针方向B .先沿顺时针方向后沿逆时针方向C .沿逆时针方向D .先沿逆时针方向后沿顺时针方向3、如图所示,当磁场的磁感应强度B 增强时,内、外金属环上的感应电流的方向应为( )A .内环顺时针,外环逆时针B .内环逆时针,外环顺时针C .内、外环均为顺时针D .内、外环均为逆时针4、如图所示,在直线电流附近有一根金属棒ab,当金属棒以b端为圆心,以ab为半径,在过导线的平面内匀速旋转到达图中的位置时()A.a端聚积电子B.b端聚积电子C.金属棒内电场强度等于零D.U a>U b5、金属环水平固定放置,现将一竖直的条形磁铁,在圆环上方沿圆环轴线从静止开始释放,在条形磁铁穿过圆环的过程中,条形磁铁与圆环()A.始终相互吸引B.始终相互排斥C.先相互吸引,后相互排斥D.先相互排斥,后相互吸引6、如图所示,ab是一个可以绕垂直于纸面的轴O转动的闭合矩形导体线圈,当滑动变阻器R的滑片P自左向右滑动过程中,线圈ab将()A.静止不动B.逆时针转动C.顺时针转动D.发生转动,但因电源的极性不明,无法确定转动的方向答案 C解析当P向右滑动时,电路中电阻减小,电流增大,穿过线圈ab的磁通量增大,根据楞次定律判断,线圈ab将顺时针转动.7、如图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H处同时释放(各线框下落过程中不翻转),则以下说法正确的是()A.三者同时落地B.甲、乙同时落地,丙后落地C.甲、丙同时落地,乙后落地D.乙、丙同时落地,甲后落地答案 D解析甲是闭合铜线框,在下落过程中产生感应电流,所受的安培力阻碍它的下落,故所需的时间长;乙不是闭合回路,丙是塑料线框,故都不会产生感应电流,它们做自由落体运动,所需时间相同,故D正确.8、如图,铜质金属环从条形磁铁的正上方由静止开始下落,在下落过程中,下列判断中正确的是()A.金属环在下落过程中机械能守恒B.金属环在下落过程中动能的增加量小于其重力势能的减少量C.金属环的机械能先减小后增大D.磁铁对桌面的压力始终大于其自身的重力答案 B解析金属环在下落过程中,磁通量发生变化,闭合金属环中产生感应电流,金属环受到磁场力的作用,机械能不守恒,A错误.由能量守恒知,金属环重力势能的减少量等于其动能的增加量和在金属环中产生的电能之和,B正确.金属环下落的过程中,机械能转变为电能,机械能减少,C错误.当金属环下落到磁铁中央位置时,金属环中的磁通量不变,其中无感应电流,和磁铁间无作用力,磁铁所受重力等于桌面对它的支持力,由牛顿第三定律,磁铁对桌面的压力等于桌面对磁铁的支持力,等于磁铁的重力,D错误.9、如图所示,绝缘水平面上有两个离得很近的导体环a、b.将条形磁铁沿它们的正中向下移动(不到达该平面),a、b将如何移动()A.a、b将相互远离B.a、b将相互靠近C.a、b将不动D.无法判断答案 A解析根据Φ=BS,条形磁铁向下移动过程中B增大,所以穿过每个环中的磁通量都有增大的趋势.由于S不可改变,为阻碍磁通量增大,导体环会尽量远离条形磁铁,所以a、b将相互远离.10、如图所示,质量为m的铜质小闭合线圈静置于粗糙水平桌面上.当一个竖直放置的条形磁铁贴近线圈,沿线圈中线由左至右从线圈正上方等高、快速经过时,线圈始终保持不动.则关于线圈在此过程中受到的支持力F N和摩擦力F f的情况,以下判断正确的是() A.F N先大于mg,后小于mgB.F N一直大于mgC.F f先向左,后向右D.F f一直向左答案AD解析条形磁铁贴近线圈,沿线圈中线由左至右从线圈正上方等高、快速经过时,线圈中磁通量先增大后减小,由楞次定律中“来拒去留”关系可知A、D正确,B、C错误.11、如图所示,线圈M和线圈N绕在同一铁芯上.M与电源、开关、滑动变阻器相连,P为滑动变阻器的滑动触头,开关S处于闭合状态,N与电阻R相连.下列说法正确的是( ) A.当P向右移动时,通过R的电流为b到aB.当P向右移动时,通过R的电流为a到bC.断开S的瞬间,通过R的电流为b到aD.断开S的瞬间,通过R的电流为a到b答案AD解析本题考查楞次定律.根据右手螺旋定则可知M线圈内磁场方向向左,当滑动变阻器的滑动触头P向右移动时,电阻减小,M线圈中电流增大,磁场增大,穿过N线圈内的磁通量增大,根据楞次定律可知N线圈中产生的感应电流通过R的方向为b到a,A 正确,B错误;断开S的瞬间,M线圈中的电流突然减小,穿过N线圈中的磁通量减小,根据楞次定律可知N线圈中产生的感应电流方向为a到b,C错误,D正确.12、如图所示,圆环形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P向上滑动,下面说法中正确的是()A.穿过线圈a的磁通量变大B.线圈a有收缩的趋势C.线圈a中将产生俯视顺时针方向的感应电流D.线圈a对水平桌面的压力F N将增大答案 C解析P向上滑动,回路电阻增大,电流减小,磁场减弱,穿过线圈a的磁通量变小,根据楞次定律,a环面积应增大,A、B错;由于a环中磁通量减小,根据楞次定律知a 环中感应电流应为俯视顺时针方向,C对;由于a环中磁通量减小,根据楞次定律,a 环有阻碍磁通量减小的趋势,可知a环对水平桌面的压力F N减小,D错.13、两根相互平行的金属导轨水平放置于图10所示的匀强磁场中,在导轨上接触良好的导体棒AB和CD可以自由滑动.当AB在外力F作用下向右运动时,下说法中正确的是() A.导体棒CD内有电流通过,方向是D→CB.导体棒CD内有电流通过,方向是C→DC.磁场对导体棒CD的作用力向左D.磁场对导体棒AB的作用力向左答案BD解析利用楞次定律.两个导体棒与两根金属导轨构成闭合回路,分析出磁通量增加,结合安培定则判断回路中感应电流的方向是B→A→C→D→B.以此为基础,再根据左手定则进一步判定CD、AB的受力方向,经过比较可得正确答案.14、如图所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c 中将有感应电流产生且被螺线管吸引()A.向右做匀速运动B.向左做减速运动C.向右做减速运动D.向右做加速运动答案BC解析当导体棒向右匀速运动时产生恒定的电流,线圈中的磁通量恒定不变,无感应电流出现,A错;当导体棒向左减速运动时,由右手定则可判定回路中出现从b→a的感应电流且减小,由安培定则知螺线管中感应电流的磁场向左在减弱,由楞次定律知c中出现顺时针感应电流(从右向左看)且被螺线管吸引,B对;同理可判定C对,D错.15、如图所示装置中,cd杆原来静止.当ab杆做如下哪些运动时,cd杆将向右移动()A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动答案BD解析ab匀速运动时,ab中感应电流恒定,L1中磁通量不变,穿过L2的磁通量不变,L2中无感应电流产生,cd杆保持静止,A不正确;ab向右加速运动时,L2中的磁通量向下增大,由楞次定律知L2中感应电流产生的磁场方向向上,故通过cd的电流方向向下,cd向右移动,B正确;同理可得C不正确,D正确.16、如图甲所示,等离子气流由左边连续以v0射入P1和P2两板间的匀强磁场中,ab直导线与P1、P2相连接,线圈A与直导线cd连接.线圈A内有随图乙所示的变化磁场,且磁场B的正方向规定为向左,如图甲所示.则下列说法正确的是()A.0~1 s内ab、cd导线互相排斥B .1 s ~2 s 内ab 、cd 导线互相排斥C .2 s ~3 s 内ab 、cd 导线互相排斥D .3 s ~4 s 内ab 、cd 导线互相排斥答案 CD解析 由图甲左侧电路可以判断ab 中电流方向由a 到b ;由右侧电路及图乙可以判断,0~2 s 内cd 中电流为由c 到d ,跟ab 中的电流同向,因此ab 、cd 相互吸引,选项A 、B 错误;2 s ~4 s 内cd 中电流为由d 到c ,跟ab 中电流反向,因此ab 、cd 相互排斥,选项C 、D 正确.17、如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ 、MN ,MN 的左边有一闭合电路,当PQ 在外力的作用下运动时,MN 向右运动,则PQ 所做的运动可能是( )A .向右加速运动B .向左加速运动C .向右减速运动D .向左减速运动解析 MN 向右运动,说明MN 受到向右的安培力,因为ab 在MN 处的磁场垂直纸面向里MN 中的感应电流由M →N L 1中感应电流的磁场方向向上⎩⎪⎨⎪⎧L 2中磁场方向向上减弱L 2中磁场方向向下增强;若L 2中磁场方向向上减弱PQ 中电流为Q →P 且减小向右减速运动;若L 2中磁场方向向下增强PQ 中电流为P →Q 且增大,向左加速运动. 答案 BC 18、如图所示,通电导线cd 右侧有一个金属框与导线cd 在同一平面内,金属棒ab 放在框架上,若ab 受到向左的磁场力,则cd 中电流的变化情况是 ( )A .cd 中通有由d →c 方向逐渐减小的电流B .cd 中通有由d →c 方向逐渐增大的电流C .cd 中通有由c →d 方向逐渐减小的电流D .cd 中通有由c →d 方向逐渐增大的电流答案 BD19、如图所示,线圈由A 位置开始下落,在磁场中受到的安培力如果总小于它的重力,则它在A 、B 、C 、D 四个位置(B 、D 位置恰好线圈有一半在磁场中)时,加速度关系为 ( )A .aA >aB >aC >a DB.a A=a C>a B>a DC.a A=a C>a D>a B D.a A=a C>a B =a D答案 B解析线圈在A、C位置时只受重力作用,加速度a A=a C=g.线圈在B、D位置时均受两个力的作用,其中安培力向上,重力向下.由于重力大于安培力,所以加速度向下,大小a=g-Fm<g.又线圈在D点时速度大于B点速度,即F D>F B,所以a D<a B,因此加速度的关系为a A=a C>a B>a D,选项B正确.20、(2011·上海单科·13)如图,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方的感应电流,且具有收缩趋势,由此可知,圆环a()A.顺时针加速旋转B.顺时针减速旋转C.逆时针加速旋转D.逆时针减速旋转解析由楞次定律知,欲使b中产生顺时针电流,则a环内磁场应向里减弱或向外增强,a环的旋转情况应该是顺时针减速或逆时针加速,由于b环又有收缩趋势,说明a环外部磁场向外,内部向里,故选B.答案 B21、如图(a)所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈A中通以如图(b)所示的交变电流,t=0时电流方向为顺时针(如图中箭头所示),在t1~t2时间段内,对于线圈B,下列说法中正确的是()A.线圈B内有顺时针方向的电流,线圈有扩张的趋势B.线圈B内有顺时针方向的电流,线圈有收缩的趋势C.线圈B内有逆时针方向的电流,线圈有扩张的趋势D.线圈B内有逆时针方向的电流,线圈有收缩的趋势答案 A解析在t1~t2时间段内,A线圈的电流为逆时针方向,产生的磁场垂直纸面向外且是增加的,由此可判定B线圈中的电流为顺时针方向.线圈的扩张与收缩可用阻碍Φ变化的观点去判定.在t1~t2时间段内B线圈内的Φ增强,根据楞次定律,只有B线圈增大面积,才能阻碍Φ的增加,故选A.22、(2011·海南单科·20)如图,磁场垂直于纸面,磁感应强度在竖直方向均匀分布,水平方向非均匀分布.一铜制圆环用丝线悬挂于O点,将圆环拉至位置a后无初速度释放,在圆环从a摆向b的过程中()A.感应电流方向先逆时针后顺时针再逆时针B.感应电流方向一直是逆时针C.安培力方向始终与速度方向相反D.安培力方向始终沿水平方向答案AD解析圆环从位置a运动到磁场分界线前,磁通量向里增大,感应电流方向为逆时针;跨越分界线过程中,磁通量由向里最大变为向外最大,感应电流方向为顺时针;再摆到b的过程中,磁通量向外减小,感应电流方向为逆时针,A正确,B错误;由于圆环所在处的磁场,上下对称,所受安培力在竖直方向平衡,因此总的安培力方向沿水平方向,故C错误,D正确.1答案CD解析根据楞次定律可确定感应电流的方向:以C选项为例,当磁铁向下运动时:(1)闭合线圈原磁场的方向——向上;(2)穿过闭合线圈的磁通量的变化——增加;(3)感应电流产生的磁场方向——向下;(4)利用安培定则判断感应电流的方向——与图中箭头方向相同.线圈的上端为S极,磁铁与线圈相互排斥.运用以上分析方法可知,C、D正确.2答案 C解析条形磁铁从左向右靠近闭合金属环的过程中,向右的磁通量一直增加,根据楞次定律,环中的感应电流(自左向右看)为逆时针方向,C对.3答案 A解析磁场增强,则穿过回路的磁通量增大,故感应电流的磁场向外,由安培定则知感应电流对整个电路而言应沿逆时针方向;若分开讨论,则外环逆时针,内环顺时针,A 正确.4答案BD解析因金属棒所在区域的磁场的方向垂直于纸面向外,当金属棒转动时,由右手定则可知,a端的电势高于b端的电势,b端聚积电子,B、D正确.5答案 D解析磁铁靠近圆环的过程中,穿过圆环的磁通量增加,根据楞次定律可知,感应电流的磁场阻碍穿过圆环的原磁通量的增加,与原磁场方向相反,如图甲所示,二者之间是斥力;当磁铁穿过圆环下降离开圆环时,穿过圆环的磁通量减少,根据楞次定律可知,感应电流的磁场阻碍穿过圆环的磁通量的减少,二者方向相同,如图乙所示,磁铁与圆环之间是引力.因此选项D正确.也可直接根据楞次定律中“阻碍”的含义推论:来则拒之,去则留之分析.磁铁在圆环上方下落过程是靠近圆环.根据来则拒之,二者之间是斥力;当磁铁穿过圆环后继续下落过程是远离圆环.根据去则留之,二者之间是引力.因此选项D正确.。
楞次定律的应用(12个经典例题).
v
当dc边进入直导线右侧,直到 线框在正中间位置B时,向外的磁通 b 量减少到0,I 的方向为逆时针;
c
A BC
接着运动到C,向里的磁通量增加,I 的方向为逆时针; 所以,感应电流的方向先是顺时针,接着为逆时针, 然后又为顺时针。
ab边离开直导线后,向里的磁通量减少,I 的方向为顺时针。
N
S
例5. 如图所示,两个相同的铝环套在一根无限长的光 滑杆上,将一条形磁铁向左插入铝环 ( 未穿出 ) 的过程 中,两环的运动情况是:( ) C (A)同时向左运动,距离增大; (B)同时向左运动,距离不变; (C)同时向左运动,距离变小; (D)同时向右运动,距离增大。
N
v
S
例6. 金属圆环的圆心为O,金属棒Oa、Ob可 绕O在环上转动,如图示,当外力使Oa逆时 针方向转动时,Ob将: ( B ) A. 不动
对楞次定律的理解:
1、从磁通量变化的角度看: 总要阻碍磁通量的变化 从导体和磁体的相对运动的角度来看: 总要阻碍相对运动
2、楞次定律中“阻碍”的含意:
阻碍不是阻止;也不是相反:可理解为“增反、减同”
3. 应用楞次定律解题的步骤:
(1)明确原磁场方向 (2)明确穿过闭合回路的磁通量如何变化 (3)由楞次定律确定感应电流的磁场方向 (4)利用安培定则确定感应电流的方向
例3.如图所示,一水平放置的圆形通电线圈I固定, 有另一个较小的线圈 II从正上方下落,在下落过程中 线圈II的平面保持与线圈I的平面平行且两圆心同在一 竖直线上,则线圈II从正上方下落到穿过线圈I直至在 下方运动的过程中,从上往下看线圈II:( C ) (A)无感应电流; (B)有顺时针方向的感应电流; (C)有先顺时针后逆时针的感应电流; I (D)有先逆时针后顺时针的感应电流。
电学考点与难点:楞次定律的理解和应用,高考必考知识!
电学考点与难点:楞次定律的理解和应用,高考必考知识!楞次定律磁通量1.概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B的乘积。
2.公式:Φ=BS。
3.适用条件(1)匀强磁场。
(2)S为垂直磁场的有效面积。
4.磁通量是标量。
5.物理意义:相当于穿过某一面积的磁感线的条数.如图所示,矩形abcd、abb′a′、a′b′cd的面积分别为S1、S2、S3,匀强磁场的磁感应强度B 与平面a′b′cd垂直,则:(1)通过矩形abcd的磁通量为BS1cosθ或BS3。
(2)通过矩形a′b′cd的磁通量为BS3。
(3)通过矩形abb′a′的磁通量为0。
6.磁通量变化:ΔΦ=Φ2-Φ1。
电磁感应现象1.定义当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应。
2.条件(1)条件:穿过闭合电路的磁通量发生变化。
(2)例如:闭合电路的一部分导体在磁场内做切割磁感线的运动。
3.实质产生感应电动势,如果电路闭合,则有感应电流.如果电路不闭合,则只有感应电动势而无感应电流。
3感应电流方向的判定1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:一切电磁感应现象。
2.右手定则(1)内容:如图,伸开右手,使拇指与其余四个手指垂直并且都与手掌在同一平面内,让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
(2)适用情况:导线切割磁感线产生感应电流。
用右手定则时应注意①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定。
②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直。
③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向。
④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势。
⑤“因电而动”用左手定则;“因动而电”用右手定则。
高中物理选择性必修第二册楞次定律的三个解题思路
高中物理选择性必修第二册楞次定律的三个解题思路楞次定律在高中物理判断感应电流这一块是最主要的应用。
因为楞次定律它的主要内容是“感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化”,所以我们在应用楞次定律判断感应电流的时候,主要要着眼于磁通量的变化,伴随着磁通量Φ=BS,我们就有了下面三个解题思路。
思路一:磁场B没有变,面积S发生了改变。
例一:如上图,MN在向右滑动的过程中,面积ABNM是发生变大的,相当于增加了“×”,这时我们用右手定则,应该感应出“·”来,就可以判断出感应电流应该是逆时针方向。
例二:如上图,如果金属框上下移动,则进入磁场的面积不变,所以无感应电流,如果左右移动,则面积改变,就可以用右手判定感应电流方向了。
例三:如图示,如果把上图圆形线圈变为三角形,是否有感应电流产生呢?我们知道,线圈长度不变,圆面积最大,改为三角形后面积是减小的,所以有感应电流产生。
例四:如图示,将一个矩形线框在磁场中翻转,那么他的有效面积在变化,同样是有感应电流产生的。
思路二:磁场B变,面积S不改变。
例题一:将一个矩形线框上下平移靠近通电导线,是否有感应电流?我们知道,通电导线周围的磁场是近强远弱,所以磁场B是变化的,虽然线圈面积不变,但是由于B的变化,导致磁通量的变化从而有感应电流的产生。
例题二:如图示,圆环向下落入磁场,圆环面积不变,但是磁场B变强,所以也有感应电流的产生。
思路三:磁场B变,面积S同时也变。
如图示,在线框旋转的过程中让磁场按照右图时间进行变化,这时就应该判断磁通量Φ=BS两者的乘积是变大变小了,判断出结果后我们就可以用楞次定律判断它的感应电流方向了。
以上是应用楞次定律解题的三个基本思路,其实也是好多物理公式应用的一个基本思路,希望对大家有抛砖引玉的作用,今后在学习物理知识的过程中一定要多思考,才可以有更多的收获。
高中物理(4.3楞次定律)理解要点与例题解答
[自主学习]注意:感应电流的磁场总是阻碍引起感应电流的磁通量的变化,是“阻碍”“变化”,不是阻止变化,阻碍的结果是使磁通量逐渐的变化。
如果引起感应电流的磁通量增加,感应电流的磁场就跟引起感应电流的磁场方向相反,如果引起感应电流的磁通量减少,感应电流的磁场方向就跟引起感应电流的磁场方向相同。
楞次定律也可理解为“感应电流的磁场方向总是阻碍相对运动”。
1.磁感应强度随时间的变化如图1所示,磁场方向垂直闭合线圈所在的平面,以垂直纸面向里为正方向。
t1时刻感应电流沿方向,t2时刻感应电流,t3时刻感应电流;t4时刻感应电流的方向沿。
2.如图2所示,导体棒在磁场中垂直磁场方做切割磁感线运动,则a、b两端的电势关系是。
[典型例题]例1 如图3所示,通电螺线管置于闭合金属环A的轴线上,A环在螺线管的正中间;当螺线管中电流减小时,A环将:(A)有收缩的趋势 (B)有扩张的趋势(C)向左运动(D)向右运动分析:螺线管中的电流减小,穿过A环的磁通量减少,由楞次定律感应电流的磁场阻碍磁通量的减少,以后有两种分析:(1)感应电流的磁场与引起感应电流的磁场方向相同,感应电流的磁感线也向左,由安培定则,感应电流沿逆时针方向(从左向右看);但A环导线所在处的磁场方向向右(因为A环在线圈的中央),由左手定则,安培力沿半径向里,A环有收缩的趋势。
(2)阻碍磁通量减少,只能缩小A环的面积,因为面积越小,磁通量越大,故A 环有收缩的趋势。
A正确例2 如图4所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断导线环在磁铁插入过程中如何运动?分析:磁铁向导线环运动,穿过环的磁通量增加,由楞次定律感应电流的磁场阻碍磁通量的增加,导线环向右运动阻碍磁通量的增加,导线环的面积减小也阻碍磁通量的增加,所以导线环边收缩边后退。
此题也可由楞次定律判断感应电流的方向,再由左手定则判断导线环受到的安培力,但麻烦一些。
[针对训练]1.下述说法正确的是:(A)感应电流的磁场方向总是跟原来磁场方向相反(B)感应电流的磁场方向总是跟原来的磁场方向相同(C)当原磁场减弱时,感应电流的磁场方向与原磁场的方向相同(D)当原磁场增强时,感应电流的磁场方向与原磁场的方向相同2.关于楞次定律,下列说法中正确的是:(A)感应电流的磁场总是阻碍原磁场的增强(B)感应电流的磁场总是阻碍原磁场的减弱(C)感应电流的磁场总是阻碍原磁场的变化(D)感应电流的磁场总是阻碍原磁通量的变化3.如图5所示的匀强磁场中,有一直导线ab在一个导体框架上向左运动,那么ab导线中感应电流方向(有感应电流)及ab导线所受安培力方向分别是:(A)电流由b向a,安培力向左(B)电流由b向a,安培力向右(C)电流由a向b,安培力向左(D)电流由a向b,安培力向右4.如图6所示,若套在条形磁铁上的弹性金属导线圈Ⅰ突然缩小为线圈Ⅱ,则关于线圈的感应电流及其方向(从上往下看)是:(A)有顺时针方向的感应电流(B)有逆时针方向的感应电流(C)先逆时针后顺时针方向的感应电流(D)无感应电流5.如图7所示,螺线管中放有一根条形磁铁,当磁铁突然向左抽出时,A点的电势比B点的电势;当磁铁突然向右抽出时,A点的电势比B点的电势。
电磁感应现象 楞次定律-高考全攻略之备战年高考物理考点一遍过
一、电磁感应现象1.概念当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应。
2.产生感应电流的条件(1)闭合回路的一部分导体在磁场内做切割磁感线运动;(2)穿过闭合回路的磁通量发生变化;①磁场强弱不变,回路面积改变;②回路面积不变,磁场强弱改变;③回路面积和磁场强弱均不变,但二者的相对位置发生改变。
注意:当回路不闭合时,没有感应电流,但有感应电动势,只产生感应电动势的现象也可以称为电磁感应现象,且产生感应电动势的那部分导体或线圈相当于电源。
3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能。
二、感应电流方向的判定1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从掌心进入,大拇指指向导体运动的方向,其余四指所指的方向,就是感应电流的方向。
适用范围:适用于闭合电路部分导体切割磁感线产生感应电流的情况。
2.楞次定律(1)内容:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
(2)理解楞次定律中“阻碍”的含义:(3)运用楞次定律判定感应电流方向的步骤:a.明确穿过闭合电路的原磁场方向;b.明确穿过闭合电路的原磁通量是如何变化的;c.根据楞次定律确定感应电流的磁场方向;d.利用安培定则判定感应电流的方向。
注意:导体切割磁感线产生感应电流的方向用右手定则较简便;变化的磁场产生感应电流只能用楞次定律判断。
具体流程如图:三、楞次定律应用的推广楞次定律描述的是感应电流与磁通量变化之间的关系,常用于判断感应电流的方向或其所受安培力的方向,一般有以下四种呈现方式:1.阻碍原磁通量的变化——“增反减同”;2.阻碍相对运动——“来拒去留”;3.使线圈面积有扩大或缩小的趋势——“增缩减扩”;4.阻碍原电流的变化(自感现象)——“增反减同”。
四、“三个定则、一个定律”的综合应用技巧1.应用现象及规律比较基本现象应用的定则或定律运动电荷、电流产生的磁场安培定则磁场对运动电荷、电流的作用力左手定则电磁感应部分导体做切割磁感线运动右手定则闭合回路磁通量变化楞次定律2.应用技巧多定则应用的关键是抓住因果关系:无论是“安培力”还是“洛伦兹力”,只要是“力”都用左手判断。
第14天 楞次定律(解析版)
第14天楞次定律(预习篇)目录新知导航:熟悉课程内容、掌握知识脉络基础知识:知识点全面梳理,掌握必备小试牛刀:基础题+中等难度题,合理应用1.理解楞次定律,会用楞次定律分析解决问题2.理解右手定则,会用右手定则分析解决导体棒切割磁感线的问题一、楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化.2.楞次定律中的因果关系楞次定律反映了电磁感应现象中的因果关系,磁通量发生变化是原因,产生感应电流是结果.3.对“阻碍”的理解问题结论谁阻碍谁感应电流的磁场阻碍引起感应电流的磁场(原磁场)的磁通量的变化为何阻碍(原)磁场的磁通量发生了变化阻碍什么阻碍的是磁通量的变化,而不是阻碍磁通量本身如何阻碍当原磁场磁通量增加时,感应电流的磁场方向与原磁场的方向相反;当原磁场磁通量减少时,感应电流的磁场方向与原磁场的方向相同,即“增反减同”结果如何阻碍并不是阻止,只是延缓了磁通量的变化,这种变化将继续进行,最终结果不受影响4.“阻碍”的表现形式从磁通量变化的角度看:感应电流的效果是阻碍磁通量的变化.从相对运动的角度看:感应电流的效果是阻碍相对运动.二、右手定则1.含义:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向.2.右手定则的理解和应用(1).右手定则适用范围:闭合电路的部分导体切割磁感线产生感应电流方向的判断.(2).右手定则反映了磁场方向、导体运动方向和感应电流方向三者之间的关系:两两垂直3.楞次定律与右手定则的比较规律比较内容楞次定律右手定则区别研究对象整个闭合回路闭合回路的一部分,即做切割磁感线运动的导体适用范围各种电磁感应现象只适用于部分导体在磁场中做切割磁感线运动的情况联系右手定则是楞次定律的特例1.(多选)验证楞次定律实验的示意图如选项图所示,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习回顾:
楞次定律:
1、内容: “增反减同”
感应电流的磁场 总要 阻碍 引起感应电流的 磁通量的变化
2、理解“阻碍” :
谁起阻碍作用? 感应电流的磁场 原磁场磁通量的变化 阻碍什么? 引起感应电流的磁通量的变化 如何阻碍? “增反减同” 结果如何?阻碍不是相反、阻碍不是阻止
使磁通量的变化变慢ຫໍສະໝຸດ 楞次定律中“阻碍”的含意:
可理解为“增反减同”, “来拒去留” “增缩减扩” “结果”反抗“原 3.解题步骤:因” 安 楞
明 确 研 究 对 象
原磁场 方向?
原磁通 量变化?
次 定 律
感应电流 磁场方向
培 定 则
感应电 流方向
1、右手定则:伸开右手,使拇 指与其余四指垂直,并且都与 手掌在同一平面内; 让磁感线从掌心进入, 拇指指向导体运动的方向, 四指所指的方向就是感应电流的方向.