2020-2021学年邢台市宁晋县新人教版七年级(下)期末数学试卷含答案(A卷全套)
2020-2021学年人教版七年级下学期期末考试数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学记数法可表示为()A.152×105米B.1.52×10﹣5米C.﹣1.52×105米D.1.52×10﹣4米解:0.0000152=1.52×10﹣5.故选:B.2.(3分)下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+1 x )C.(x+2)(x﹣2)=x2﹣4D.x2﹣6x+9=(x﹣3)2解:A、没把一个多项式转化成几个整式乘积的形式,故A错误;B、没把一个多项式转化成几个整式乘积的形式,故B错误;C、整式的乘法,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.3.(3分)如图,∠B的内错角是()A.∠1B.∠2C.∠3D.∠4解:A、∠B的内错角是∠1,故此选项符合题意;B、∠B与∠2是同旁内角,故此选项不合题意;C、∠B与∠3是同位角,故此选项不合题意;D、∠B与∠4是不是内错角,故此选项不合题意;故选:A.4.(3分)不等式﹣2x+6<0的解集在数轴上表示,正确的是()A .B .C .D .解:﹣2x <﹣6, x >3, 故选:A .5.(3分)下列运算正确的是( ) A .(a 2)5=a 7 B .(x ﹣1)2=x 2﹣1 C .3a 2b ﹣3ab 2=3D .a 2•a 4=a 6解:A 、(a 2)5=a 10,故原题计算错误; B 、(x ﹣1)2=x 2﹣2x +1,故原题计算错误;C 、3a 2b 和3ab 2不是同类项,不能合并,故原题计算错误;D 、a 2•a 4=a 6,故原题计算正确; 故选:D .6.(3分)若a >b ,则下列结论正确的是( ) A .a ﹣5<b ﹣5 B .3a >3bC .2+a <2+bD .a3<b3解:∵a >b , ∴a ﹣5>b ﹣5, ∴选项A 不正确; ∵a >b , ∴3a >3b , ∴选项B 正确; ∵a >b , ∴2+a >2+b , ∴选项C 不正确; ∵a >b ,∴a 3>b3,∴选项D 不正确. 故选:B .7.(3分)下列命题中,假命题的是( ) A .三角形中至少有两个锐角B .如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形C .直角三角形一定是轴对称图形D .三角形的一个外角一定大于和它不相邻的任何一个内角 解:A 、三角形中至少有两个锐角,正确,是真命题;B 、如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形,正确,是真命题;C 、等腰直角三角形一定是轴对称图形,错误,是假命题;D 、三角形的一个外角大于和它不相邻的任何一个内角,故正确,是真命题, 故选:C .8.(3分)如图,五架轰炸机组成了一个三角形飞行编队,且每架飞机都在边长等于1正方形网格格点上,其中A 、B 两架轰炸机对应点的坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么轰炸机C 对应点的坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1),故选:A.9.(3分)已知点M(a,3)在第二象限,则a的取值范围是()A.a>0B.a<0C.a<3D.a>3解:∵点M(a,3)在第二象限,∴a<0,故选:B.10.(3分)在平面直角坐标系中,对于任意三点A、B、C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20,若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为15,则t的值为()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或6解:∵D(1,2)、E(﹣2,1)、F(0,t),∴“水平底”a=1﹣(﹣2)=3.“铅垂高“h=1或|2﹣t|或|1﹣t|①当h=1时,三点的“矩面积”S=1×3=3≠15,不合题意;②当h=|2﹣t|时,三点的“矩面积”S=3×|2﹣t|=15,解得:t=﹣3或t=7(舍去);③当h=|1﹣t|时,三点的“矩面积”S=3×|1﹣t|=15,解得:t=﹣4(舍去)或t=6;综上:t=﹣3或6.故选:D.二.填空题(共8小题,满分16分,每小题2分)11.(2分)一个长方形的面积为a 3﹣4a ,宽为a ﹣2,则长为 a (a +2) .解:根据题意得:(a 3﹣4a )÷(a ﹣2)=a (a +2)(a ﹣2)÷(a ﹣2)=a (a +2), 故答案为:a (a +2)12.(2分)√−273+(−12)﹣1+(3.14﹣π)0= ﹣4 .解:原式=﹣3﹣2+1 =﹣4. 故答案为:﹣4.13.(2分)如图所示,∠BAC =90°,AD ⊥BC ,则下列结论中,正确的为 ①② (填序号).①点A 到BC 的距离是线段AD 的长度; ②线段AB 的长度是点B 到AC 的距离; ③点C 到AB 的垂线段是线段AB .解:∵AD ⊥BC ,∴点A 到BC 的距离是线段AD 的长度,①正确; ∵∠BAC =90°, ∴AB ⊥AC ,∴线段AB 的长度是点B 到AC 的距离,②正确 ∵AB ⊥AC ,∴C 到AB 的垂线段是线段AC ,③不正确. 其中正确的为①②, 故答案是:①②.14.(2分)如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 同位角相等,两直线平行 .解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.15.(2分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF =34°,则∠BOD的大小为22°.解:∵∠COE是直角,∴∠COE=90°,∴∠EOF=∠COE﹣∠COF=90°﹣34°=56°,∵OF平分∠AOE,∴∠AOF=∠COE=56°,∴∠AOC=∠AOF﹣∠COF=56°﹣34°=22°,∴∠BOD=∠AOC=22°.故答案为:22°.16.(2分)当前,“低头族”已成为热门话题之一,为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是D;A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在图书馆里看书的人发放问卷进行调查D.对在路边行走的路人随机发放问卷进行调查并说出你的理由样本具有代表性.解:为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是对在路边行走的路人随机发放问卷进行调查, 理由是抽取的样本具有代表性, 故答案为:D ;样本具有代表性.17.(2分)在实数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =2a ﹣3b .如:1⊕5=2×1﹣3×5=﹣13,则不等式x ⊕4<2的解集为 x <7 . 解:根据题中的新定义化简得:2x ﹣12<2, 移项合并得:2x <14, 解得:x <7. 故答案为:x <7.18.(2分)已知△ABC 中,AB =AC ,求证:∠B <90°,若用反证法证这个结论,应首先假设 ∠B ≥90° .解:用反证法证明:第一步是:假设∠B ≥90°. 故答案是:∠B ≥90°.三.解答题(共9小题,满分54分,每小题6分) 19.(6分)解不等式组,并写出该不等式组的所有整数解. {5x +2≥3(x −1)1−x−26>12x解:解不等式5x +2≥3(x ﹣1),得:x ≥−52, 解不等式1−x−26>12x ,得:x <2, ∴不等式组的解集为−52≤x <2, 则不等式组的整数解为﹣2,﹣1,0,1. 20.(6分)化简求值.(1)[(x +y )(x ﹣y )﹣(x ﹣y )2+2y (x ﹣y )]÷(﹣2y ),其中x =−12,y =2. (2)已知x 2﹣2x ﹣2=0,求(x ﹣1)2+(x +3)(x ﹣3)+(x ﹣3)(x ﹣1)的值. 解:(1)原式=(x ﹣y )[(x +y )﹣(x ﹣y )+2y ]÷(﹣2y ) =2y ﹣2x ,当 x =−12,y =2时,原式=2×2﹣2×(−12)=5;(2)原式=x2﹣2x+1+x2﹣9+x2﹣4x+3=3x2﹣6x﹣5,原式=3(x2﹣2x)﹣5=3×2﹣5=1.21.(6分)因式分解.(1)x3﹣2x2y+xy2(2)m2(a﹣b)+n2(b﹣a)解:(1)x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2;(2)m2(a﹣b)+n2(b﹣a),=m2(a﹣b)﹣n2(a﹣b),=(a﹣b)(m2﹣n2),=(a﹣b)(m+n)(m﹣n).22.(5分)如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.解:(1)EF和AB的关系为平行关系.理由如下:∵CD∥AB,∠DCB=70°,∴∠DCB=∠ABC=70°,∵∠CBF=20°,∴∠ABF=∠ABC﹣∠CBF=50°,∵∠EFB=130°,∴∠ABF+∠EFB=50°+130°=180°,∴EF ∥AB ;(2)∵EF ∥AB ,CD ∥AB , ∴EF ∥CD , ∵∠CEF =70°, ∴∠ECD =110°, ∵∠DCB =70°,∴∠ACB =∠ECD ﹣∠DCB , ∴∠ACB =40°.23.(6分)如图,在平面直角坐标系中:A (0,1),B (2,0),将点B 向上平移1.5个单位得到点C .(1)求△ABC 的面积.(2)如果在第二象限内有一点P (a ,1),使得四边形ABOP 的面积与△ABC 的面积相等?求出P 点的坐标.解:(1)∵将点B 向上平移1.5个单位得到点C , ∴点C 的坐标为(2,1.5), ∴△ABC 的面积=12×1.5×2=1.5; (2)∵四边形ABOP 的面积与△ABC 的面积相等, ∴12×2×1+12×1×|a|=12×2×1.5,解得:a =±1,∵在第二象限内有一点P (a ,1), ∴a =﹣1,所以点P 的坐标(﹣1,1).24.(7分)在一次社会调查活动中,小李收集到某“健步走运动”团队20名成员一天行走的步数,记录如下:56406430652067987325843082157453744667547638683473266830864887539450986572907850对这20个数据按组距1000进行分组,并统计整理.(1)请完成下面频数分布统计表;组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<85004D8500≤x<95003E9500≤x<105001(2)在上图中请画出频数分布直方图;(3)若该团队共有200人,请估计其中一天行走步数少于8500步的人数.解:(1)补全频数分布表如下:组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<85004D8500≤x<95003E9500≤x<105001(2)频数分布直方图如下:(3)根据题意得:200×2+4+1020=160(人),则估计一天行走的步数少于8500步的人数约为160人.25.(5分)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套280元,430元,且每种型号健身器材必须整套购买.若购买A,B两种型号的健身器材共50套,且支出不超过16000元,求A 种型号健身器材至少要购买多少套?解:设购进x套A种型号健身器材,则购进(50﹣x)套B种型号健身器材,依题意,得:280x+430(50﹣x)≤16000,解得:x≥110 3.又∵x为正整数,∴x的最小值为37.答:A种型号健身器材至少要购买37套.26.(7分)根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=70°,则∠1+∠2+∠4+∠6+∠8=160度.解:(1)∵CD平分∠ECB,FG∥CD,∵∠ECD=∠DCF=∠GFB=12(180°﹣∠ECA),∵∠ECA=α,∴∠GFB=12(180°﹣a)=90°−12a,答:∠GFB的度数为90°−12α.(2)如图,过点B作BM∥AE,则BM∥AE∥CD,∴∠1+∠CBM=180°,∠MBA+∠BAE=180°,∵AB⊥AE,∴∠BAE=MBA=90°,∴∠1+∠2+∠BAE=180°×2,∴∠1+∠2=360°﹣∠BAE=360°﹣90°=270°,答:∠1+∠2的度数为270°.(3)分别以各个角的顶点,作∠2的长边的平行线,根据平行线的性质,两直线平行,内错角相等,可得,∠3+∠5+∠7=∠2+∠4+∠6+∠1+∠8=40°+50°+70°=160°.故答案为:160.27.(6分)如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的“关联方程”.如:方程x ﹣1=0就是不等式组{x +1>0x −2<0的“关联方程”. (1)试判断方程①3x +2=0,②x ﹣(3x ﹣1)=﹣4是否是不等式组{2x −7<04x −3>0的关联方程,并说明理由;(2)若关于x 的方程2x +k =1(k 为整数)是不等式组{x −1<12x −2≥−3x −1的一个关联方程,求整数k 的值;(3)若方程9﹣x =2x ,9+x =2(x +52)都是关于x 的不等式组{x +m <2x x −m ≤2的关联方程,求m 的取值范围.解:(1)解方程3x +2=0得:x =−23,解方程x ﹣(3x ﹣1)=﹣4得:x =52,解不等式组{2x −7<04x −3>0得:34<x <72, 所以不等式组{2x −7<04x −3>0的关联方程是②; (2)解方程2x +k =1(k 为整数)得:x =1−k 2解不等式组{x −1<12x −2≥−3x −1得:14≤x <32,∵关于x 的方程2x +k =1(k 为整数)是不等式组{x −1<12x −2≥−3x −1的一个关联方程, ∴14≤1−k 2<32, 解得﹣2<k <12∴整数k =﹣1,0;(3)解方程9﹣x =2x 得:x =3,解方程9+x =2(x +52)得:x =4,解不等式组{x +m <2x x −m ≤2得:m <x ≤2+m , ∵方程9﹣x =2x ,9+x =2(x +52)都是关于x 的不等式组{x +m <2x x −m ≤2的关联方程, ∴2≤m <3,即m 的取值范围是2≤m <3.。
2020-2021学年度第二学期七年级期末数学试卷附答案共三套

2020-2021学年度第二学期七年级期末数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分).在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效)1.(4分)方程x+1=5的解是()A.﹣6B.6C.4D.﹣42.(4分)下面图形分别表示低碳、节水、节能和绿色食品四个标志,其中的轴对称图形是()A.B.C.D.3.(4分)不等式2x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.4.(4分)现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1B.2C.3D.45.(4分)只用下列正多边形地砖中的一种,能够铺满地面的是()A.正十边形B.正八边形C.正六边形D.正五边形6.(4分)下列四组变形中,正确的是()A.由2x+7=0,得2x=﹣7B.由2x﹣3=0,得2x﹣3+3=0C.由=2,得x=D.由5x=4,得x=207.(4分)已知等腰三角形的两边长分别为a、b,且a、b满足|2a﹣b﹣1|+(b﹣a﹣2)2=0,则此等腰三角形的周长是()A.8B.11C.12D.11或138.(4分)已知,都是方程y=kx+b的解,则()A.y=2x+3B.y=2x+1C.y=2x﹣3D.y=﹣2x+1 9.(4分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°10.(4分)已知关于x的方程3k﹣x=6的解是非负数,则k的取值范围是()A.k≤﹣2B.k≤2C.k≥﹣2D.k≥211.(4分)为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费x元,超过5方,每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于x的方程,正确的是()A.5x+6(x﹣2)=56B.5x+6(x+2)=56C.11(x+2)=56D.11(x+2)﹣6×2=5612.(4分)若关于x的不等式的整数解共有3个,则m的取值范围是()A.5<m<6B.5≤m<6C.5≤m≤6D.5<m≤6二、填空题:(本大题共6个小题,每小题4分,共24分).请把答案直接填在答题卡对应题目中的横线上.(注意:在试题卷上作答无效)13.(4分)如果x2m﹣1﹣6=0是关于x的一元一次方程,则m的值是.14.(4分)x的与1的差是非正数,用不等式表示为.15.(4分)已知一个正多边形的内角和为1260°,则这个多边形的每个内角比外角大度.16.(4分)如图,△ABC中,∠ABC=20°,∠ACB=16°,把△ABC沿AB翻折得到△ABD,则∠DAC的度数是.17.(4分)对x、y、z三个数这样规定:min[x,y,z]表示x、y、z这三个数中的最小数,如min[﹣1,2,3]=﹣1,如果min[+1,2,6﹣2x]=2,则x的取值范围是.18.(4分)如图,△ABC中,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,AD∥BC.以下结论:①∠ABC=∠ACB;②∠ADC+∠ABD=90°;③BD 平分∠ADC;④2∠BDC=∠BAC.其中正确的结论有.(填序号)三、解答题:(本大题共7个小题,共78分).解答应写出相应的文字说明、证明过程或演算步骤.(注意:在试题卷上作答无效)19.(12分)解下列方程(组)(1)(2)20.(10分)解不等式组:,并把解集在数轴上表示出来.21.(10分)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得C2P+C1P的值最小.22.(10分)如图,△ABD中,E、F、M分别在边AB、AD、BD上,BF、DE相交于点N,∠A=62°,∠ADE=35°,∠ABF=20°,MN平分∠BND,求∠MND的度数.23.(10分)若关于x、y的二元一次方程组.(1)若方程组的解满足x﹣y=1,求k的值;(2)若x+y≤﹣1,求k的取值范围.24.(12分)为了做好学生返校“复学”的疫情防控工作,育英学校计划购买A、B两种型号的体温枪.已知A、B两种型号体温枪的购买单价分别为每支310元、460元.(1)若购买A、B两种型号的体温枪共50支,恰好支出20000元,求A、B两种型号体温枪各购买多少支?(2)若购买A、B两种型号的体温枪共50支,且支出不超过18000元,求A种型号体温枪至少要购买多少支?25.(14分)如图,在△ABC中,∠ABC=∠ACB,E为BC边上一点,以E为顶点作∠AEF,∠AEF的一边交AC于点F,使∠AEF=∠B.(1)如果∠ABC=40°,则∠BAC=;(2)判断∠BAE与∠CEF的大小关系,并说明理由;(3)当△AEF为直角三角形时,求∠AEF与∠BAE的数量关系.参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分).在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效)1.(4分)方程x+1=5的解是()A.﹣6B.6C.4D.﹣4【分析】方程移项合并,即可求出解.【解答】解:方程x+1=5,移项得:x=5﹣1,合并得:x=4.故选:C.2.(4分)下面图形分别表示低碳、节水、节能和绿色食品四个标志,其中的轴对称图形是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.3.(4分)不等式2x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【解答】解:不等式2x﹣6≥0的解集为:x≥3,∴不等式2x﹣6≥0的解集在数轴上表示正确的是A.故选:A.4.(4分)现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1B.2C.3D.4【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.(4分)只用下列正多边形地砖中的一种,能够铺满地面的是()A.正十边形B.正八边形C.正六边形D.正五边形【分析】本题意在考查学生对平面镶嵌知识的掌握情况.【解答】解:由平面镶嵌的知识可知,只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形,故选:C.6.(4分)下列四组变形中,正确的是()A.由2x+7=0,得2x=﹣7B.由2x﹣3=0,得2x﹣3+3=0C.由=2,得x=D.由5x=4,得x=20【分析】利用等式的性质对每个等式进行变形,即可找出答案.【解答】解:A、根据等式性质1,2x+7=0两边都减7得2x=﹣7,原变形正确,故此选项符合题意;B、根据等式性质1,2x﹣3=0两边都加3得2x﹣3+3=3,原变形错误,故此选项不符合题意;C、根据等式性质2,=2两边都乘6得x=12,原变形错误,故此选项不符合题意;D、根据等式性质2,5x=4两边都除以5得x=,原变形错误,故此选项不符合题意.故选:A.7.(4分)已知等腰三角形的两边长分别为a、b,且a、b满足|2a﹣b﹣1|+(b﹣a﹣2)2=0,则此等腰三角形的周长是()A.8B.11C.12D.11或13【分析】首先根据|2a﹣b﹣1|+(b﹣a﹣2)2=0求得a、b的值,然后求得等腰三角形的周长即可.【解答】解:∵|2a﹣b﹣1|+(b﹣a﹣2)2=0∴解得:,当3为腰时,三边为3,3,5,由三角形三边关系定理可知,周长为:3+3+5=11.当5为腰时,三边为5,5,3,符合三角形三边关系定理,周长为:5+5+3=13.故选:D.8.(4分)已知,都是方程y=kx+b的解,则()A.y=2x+3B.y=2x+1C.y=2x﹣3D.y=﹣2x+1【分析】把方程的解代入方程,得出关于k、b的方程组,求出方程组的解即可.【解答】解:∵,都是方程y=kx+b的解,∴代入得:,解得:k=2,b=﹣3,∴y=2x﹣3,故选:C.9.(4分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°【分析】由旋转前后的对应角相等可知,∠DFC=∠BEC=60°;一个特殊三角形△ECF 为等腰直角三角形,可知∠EFC=45°,把这两个角作差即可.【解答】解:∵△BCE绕点C顺时针方向旋转90°得到△DCF,∴CE=CF,∠DFC=∠BEC=60°,∠EFC=45°,∴∠EFD=60°﹣45°=15°.故选:B.10.(4分)已知关于x的方程3k﹣x=6的解是非负数,则k的取值范围是()A.k≤﹣2B.k≤2C.k≥﹣2D.k≥2【分析】先把k当作已知条件表示出x的值,再由方程的解为非负数求出k的取值范围即可.【解答】解:解方程3k﹣x=6得,x=3k﹣6,∵方程的解是非负数,∴3k﹣6≥0,解得k≥2.故选:D.11.(4分)为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费x元,超过5方,每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于x的方程,正确的是()A.5x+6(x﹣2)=56B.5x+6(x+2)=56C.11(x+2)=56D.11(x+2)﹣6×2=56【分析】根据应交水费=5×不超过5方时的每方水费+超出5方的部分×超过5方时的每方水费,即可得出关于x的一元一次方程,此题得解.【解答】解:依题意,得:5x+(11﹣5)×(x+2)=56,即5x+6(x+2)=56.故选:B.12.(4分)若关于x的不等式的整数解共有3个,则m的取值范围是()A.5<m<6B.5≤m<6C.5≤m≤6D.5<m≤6【分析】先求出不等式组的解集,根据不等式组的整数解得出答案即可.【解答】解:,∵不等式②的解集是x≥3,∴不等式组的解集是3≤<m,又∵关于x的不等式的整数解共有3个,是3,4,5,∴5<m≤6,故选:D.二、填空题:(本大题共6个小题,每小题4分,共24分).请把答案直接填在答题卡对应题目中的横线上.(注意:在试题卷上作答无效)13.(4分)如果x2m﹣1﹣6=0是关于x的一元一次方程,则m的值是1.【分析】直接利用一元一次方程的定义进而得出2m﹣1=1,即可得出答案.【解答】解:∵x2m﹣1﹣6=0是关于x的一元一次方程,∴2m﹣1=1,解得:m=1,故答案为:1.14.(4分)x的与1的差是非正数,用不等式表示为x﹣1≤0.【分析】直接利用非正数的定义进而得出不等式.【解答】解:由题意可得:x﹣1≤0.故答案为:x﹣1≤0.15.(4分)已知一个正多边形的内角和为1260°,则这个多边形的每个内角比外角大100度.【分析】首先根据多边形的内角和定理求得多边形的边数,然后求得内角即可,进而得出其外角度数.【解答】解:设正多边形的边数为n,∵正多边形的内角和为1260°,∴(n﹣2)×180°=1260°,解得:n=9,∴每个内角为:1260°÷9=140°,∴正九边形的每个外角40°,∴这个多边形的每个内角比外角大100°.故答案为:100.16.(4分)如图,△ABC中,∠ABC=20°,∠ACB=16°,把△ABC沿AB翻折得到△ABD,则∠DAC的度数是72°.【分析】由折叠得,ABC=20°=∠ABD,∠ACB=16°=∠ADB,由三角形的外角得∠DAE=∠ABD+∠ADB=20°+16°=36°,∠CAE=∠ABC+∠ACB=20°+16°=36°,进而求出答案.【解答】解:由折叠得,∠ABC=20°=∠ABD,∠ACB=16°=∠ADB,延长BA到E,∵∠DAE=∠ABD+∠ADB=20°+16°=36°,∠CAE=∠ABC+∠ACB=20°+16°=36°,∴∠DAC=∠DAE+∠CAE=36°+36°=72°,故答案为:72°.17.(4分)对x、y、z三个数这样规定:min[x,y,z]表示x、y、z这三个数中的最小数,如min[﹣1,2,3]=﹣1,如果min[+1,2,6﹣2x]=2,则x的取值范围是≤x≤2.【分析】先根据新定义列出关于x的不等式组,分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集.【解答】解:根据题意,得:,解不等式①,得:x≥,解不等式②,得:x≤2,则x的取值范围是≤x≤2,故答案为:≤x≤2.18.(4分)如图,△ABC中,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,AD∥BC.以下结论:①∠ABC=∠ACB;②∠ADC+∠ABD=90°;③BD 平分∠ADC;④2∠BDC=∠BAC.其中正确的结论有①②④.(填序号)【分析】根据角平分线的定义得到∠EAD=∠CAD,根据平行线的性质得到∠EAD=∠ABC,∠CAD=∠ACB,求得∠ABC=∠ACB,故①正确;根据角平分线的定义得到∠ADC=90°﹣∠ABC,求得∠ADC+∠ABD=90°故②正确;根据全等三角形的性质得到AB=CB,与题目条件矛盾,故③错误,根据角平分线的定义和三角形外角的性质即可得到2∠BDC=∠BAC,故④正确.【解答】解:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠ABC,∠CAD=∠ACB,∴∠ABC=∠ACB,故①正确;∵AD,CD分别平分∠EAC,∠ACF,∴可得∠ADC=90°﹣∠ABC,∴∠ADC+∠ABC=90°,∴∠ADC+∠ABD=90°,故②正确;∵∠ABD=∠DBC,BD=BD,∠ADB=∠BDC,∴△ABD≌△BCD(ASA),∴AB=CB,与题目条件矛盾,故③错误,∵∠DCF=∠DBC+∠BDC,∠ACF=∠ABC+∠BAC,∴2∠DCF=2∠DBC+2∠BDC,2∠DCF=2∠DBC+∠BAC,∴2∠BDC=∠BAC,故④正确,故答案为:①②④.三、解答题:(本大题共7个小题,共78分).解答应写出相应的文字说明、证明过程或演算步骤.(注意:在试题卷上作答无效)19.(12分)解下列方程(组)(1)(2)【分析】(1)根据一元一次方程的解法即可求出答案.(2)根据二元一次方程的解法即可求出答案.【解答】解:(1)∵,∴4(2x+5)﹣3(3x﹣2)=24,∴8x+20﹣9x+6=24,∴﹣x=﹣2,∴x=2;(2),∴①×3得:6x﹣21y=24③,②×2得:6x﹣16y=20④,③﹣④得:y=,将y=代入①得:x=,∴该方程组的解为20.(10分)解不等式组:,并把解集在数轴上表示出来.【分析】先分别解两个不等式得到x>﹣3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.【解答】解:,解①得x>﹣3,解②得x≤2,所以不等式组的解集为﹣3<≤2,用数轴表示为:21.(10分)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得C2P+C1P的值最小.【分析】(1)将A、B、C按平移条件找出它的对应点A1、B1、C1,顺次连接A1B1、B1C1、C1A1,即得到平移后的图形.(2)利用轴对称性质,作出A、B、C关于直线m的对称点,A2、B2、C2,顺次连接A2B2、B2C2、C2A2,即得到关于直线m对称的△A2B2C2;(3)两点间线段最短,连接C1与C2与m的交点即为点P,使得CP+C1P的值最小.【解答】解:(1)如图,△A1B1C1为所作图形(2)如图,△A2B2C2为所作图形(3)如图,两点间线段最短,故如图,连接C1与C2与m的交点即为点P,使得C2P+C1P 的值最小.22.(10分)如图,△ABD中,E、F、M分别在边AB、AD、BD上,BF、DE相交于点N,∠A=62°,∠ADE=35°,∠ABF=20°,MN平分∠BND,求∠MND的度数.【分析】利用三角形的外角的性质求解即可.【解答】解:∵∠BED=∠A+∠ADE,∠BND=∠BED+∠EBN,∴∠BND=∠EBN+∠A+∠ADE=62°+35°+20°=117°,∵MN平分∠BND,∴∠MND=∠BND=58.5°.23.(10分)若关于x、y的二元一次方程组.(1)若方程组的解满足x﹣y=1,求k的值;(2)若x+y≤﹣1,求k的取值范围.【分析】(1)先利用加减消元法解方程组得到,则利用x﹣y=1得到﹣17k ﹣15﹣(9k+10)=1,然后解关于k的方程即可;(2)利用x+y≤﹣1得到﹣17k﹣15+9k+10≤﹣1,然后解关于k的不等式即可.【解答】解:(1)解方程组得,∵x﹣y=1,∴﹣17k﹣15﹣(9k+10)=1,∴k=﹣1;(2)∵x+y≤﹣1,∴﹣17k﹣15+9k+10≤﹣1,∴k≥﹣.24.(12分)为了做好学生返校“复学”的疫情防控工作,育英学校计划购买A、B两种型号的体温枪.已知A、B两种型号体温枪的购买单价分别为每支310元、460元.(1)若购买A、B两种型号的体温枪共50支,恰好支出20000元,求A、B两种型号体温枪各购买多少支?(2)若购买A、B两种型号的体温枪共50支,且支出不超过18000元,求A种型号体温枪至少要购买多少支?【分析】(1)设A种型号体温枪购买了x支,B种型号体温枪购买了y支,根据“购买A、B两种型号的体温枪共50支,恰好支出20000元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A种型号体温枪购买了m支,则B种型号体温枪购买了(50﹣m)支,根据总支出不超过18000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最小整数值即可得出结论.【解答】解:(1)设A种型号体温枪购买了x支,B种型号体温枪购买了y支,依题意,得:,解得:.答:A种型号体温枪购买了20支,B种型号体温枪购买了30支.(2)设A种型号体温枪购买了m支,则B种型号体温枪购买了(50﹣m)支,依题意,得:310m+460(50﹣m)≤18000,解得:m≥33.又∵m为正整数,∴m可取的最小值为34.答:A种型号体温枪至少要购买34支.25.(14分)如图,在△ABC中,∠ABC=∠ACB,E为BC边上一点,以E为顶点作∠AEF,∠AEF的一边交AC于点F,使∠AEF=∠B.(1)如果∠ABC=40°,则∠BAC=100°;(2)判断∠BAE与∠CEF的大小关系,并说明理由;(3)当△AEF为直角三角形时,求∠AEF与∠BAE的数量关系.【分析】(1)根据等腰三角形的性质解答即可;(2)根据三角形内角与外角的关系可得∠B+∠BAE=∠AEC=∠AEF+∠FEC,再由条件∠AEF=∠B可得∠BAE=∠FEC;(3)分别根据当∠AFE=90°时,以及当∠EAF=90°时利用外角的性质得出即可.【解答】解:(1)∵在△ABC中,∠ABC=∠ACB,∠ABC=40°,∴∠ACB=40°,∴∠BAC=180°﹣40°﹣40°=100°,故答案为:100°.(2)∠BAE=∠FEC;理由如下:∵∠B+∠BAE=∠AEC,∠AEF=∠B,∴∠BAE=∠FEC;(3)如图1,当∠AFE=90°时,∵∠B+∠BAE=∠AEF+∠CEF,∠B=∠AEF=∠C,∴∠BAE=∠CEF,∵∠C+∠CEF=90°,∴∠BAE+∠AEF=90°,即∠AEF与∠BAE的数量关系是互余;如图2,当∠EAF=90°时,∵∠B+∠BAE=∠AEF+∠1,∠B=∠AEF=∠C,∴∠BAE=∠1,∵∠C+∠1+∠AEF=90°,∴2∠AEF+∠1=90°,即2∠AEF与∠BAE的数量关系是互余.2020-2021学年度第二学期七年级(下)期末数学试卷一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)下列各方程组中,是二元一次方程组的是()A.B.C.D.2.(3分)计算a2•a3的结果等于()A.a5B.a6C.a﹣1D.a233.(3分)下列各式中,与(a﹣1)2相等的是()A.a2﹣1B.a2﹣2a+1C.a2﹣2a﹣1D.a2+14.(3分)把多项式m2﹣16m分解因式,结果正确的是()A.(m+4)(m﹣4)B.m(m+4)(m﹣4)C.m(m﹣16)D.(m﹣4)25.(3分)如图,直线a,b被直线c所截,那么∠2的同旁内角是()A.∠1B.∠3C.∠4D.∠56.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.7.(3分)若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.08.(3分)已知a﹣b=14,ab=6,则a2+b2的值是()A.196B.36C.20D.208二、填空题(本题共6个小题,每小题3分,共18分)9.(3分)如果单项式5x m+2n y n﹣2m+2与7x5y7是同类项,那么m n的值是.10.(3分)如果二次三项式x2+kx+49是一个整式的平方,则k的值是.11.(3分)如图,已知AD∥BC,CE=5,CF=8,且CE⊥AD,CF⊥AB垂足分别为E,F.则AD与BC间的距离是.12.(3分)数据1,2,3,4,5的方差为.13.(3分)已知a m=2,a n=3(m,n为正整数),则a3m+2n=.14.(3分)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+l)(x+9),则a﹣b的值是.三、解答题(共58分)15.(6分)解下列方程组:(1)(2)16.(6分)因式分解:(1)m3﹣16m;(2)xy3﹣10xy2+25xy.17.(6分)先化简,再求值:(2x﹣1)2﹣(2x+1)(2x﹣1)+(x+1)(3﹣x),其中x=.18.(6分)如图,AB∥DF,DE∥BC,∠1=65°,求∠2、∠3的度数.19.(6分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:鞋号23.52424.52525.526人数344711(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?20.(6分)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?21.(8分)先阅读材料:分解因式:(a+b)2+2(a+b)+1.解:令a+b=M,则(a+b)2+2(a+b)+1=M2+2M+1=(M+1)2所以(a+b)2+2(a+b)+1=(a+b+1)2.材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:(1)分解因式:1﹣2(x+y)+(x+y)2=;(2)分解因式:(m+n)(m+n﹣4)+4;(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.22.(6分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°.(1)写出点A,B的对应点;(2)求∠AOB'和∠A'OB的度数.23.(8分)在综合与实践课上,老师计同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.(1)如图(1),若三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,∠CFG=β,则∠AEG与∠CFG的数量关系是什么?用含α,β的式子表示(不写理由).参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)下列各方程组中,是二元一次方程组的是()A.B.C.D.【分析】要正确地判断哪一个属于二元一次方程组,需要掌握二元一次方程及二元一次方程组的定义.所谓二元一次方程是指含有两个未知数,并且未知数的项的最高次数是1的整式方程;而二元一次方程组是指由两个二元一次方程组成的方程组.根据以上定义即可判断此题.【解答】解:A、b是二次,故不是二元一次方程组,故此选项错误;B、含有三个未知数,是三元而不是二元方程组,故此选项错误;C、xy是二次项,是二次而不是一次方程,故此选项错误;D、是二元一次方程组.故此选项正确;故选:D.2.(3分)计算a2•a3的结果等于()A.a5B.a6C.a﹣1D.a23【分析】根据同底数幂的乘法法则,求出a2•a3的结果等于多少即可.【解答】解:a2•a3=a5.故选:A.3.(3分)下列各式中,与(a﹣1)2相等的是()A.a2﹣1B.a2﹣2a+1C.a2﹣2a﹣1D.a2+1【分析】根据完全平方公式求出(a﹣1)2=a2﹣2a+1,即可选出答案.【解答】解:∵(a﹣1)2=a2﹣2a+1,∴与(a﹣1)2相等的是B,故选:B.4.(3分)把多项式m2﹣16m分解因式,结果正确的是()A.(m+4)(m﹣4)B.m(m+4)(m﹣4)C.m(m﹣16)D.(m﹣4)2【分析】直接提公因式m即可.【解答】解:m2﹣16m=m(m﹣16),故选:C.5.(3分)如图,直线a,b被直线c所截,那么∠2的同旁内角是()A.∠1B.∠3C.∠4D.∠5【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.【解答】解:∵直线a、b被直线c所截,∴∠2的同旁内角是∠4.故选:C.6.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.7.(3分)若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.0【分析】首先利用平方差公式,求得a2﹣b2+2b=(a+b)(a﹣b)+2b,继而求得答案.【解答】解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.8.(3分)已知a﹣b=14,ab=6,则a2+b2的值是()A.196B.36C.20D.208【分析】根据完全平方公式,即可解答.【解答】解:a2+b2=(a﹣b)2+2ab=142+2×6=208,故选:D.二、填空题(本题共6个小题,每小题3分,共18分)9.(3分)如果单项式5x m+2n y n﹣2m+2与7x5y7是同类项,那么m n的值是﹣1.【分析】利用同类项的定义列出方程组,求出方程组的解得到m与n的值,代入原式计算即可求出值.【解答】解:∵单项式2x m+2n y n﹣2m+2与x5y7是同类项,∴,解得:,则原式=﹣1,故答案为:﹣1.10.(3分)如果二次三项式x2+kx+49是一个整式的平方,则k的值是±14.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【解答】解:∵二次三项式x2+kx+49是一个整式的平方,∴kx=±2×7x,解得k=±14.故答案为:±14.11.(3分)如图,已知AD∥BC,CE=5,CF=8,且CE⊥AD,CF⊥AB垂足分别为E,F.则AD与BC间的距离是5.【分析】从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.【解答】解:∵AD∥BC,CE⊥AD于E,∴平行线AD与BC间的距离等于CE的长,∵CE=5,∴AD与BC间的距离是5.故答案为:5.12.(3分)数据1,2,3,4,5的方差为2.【分析】根据方差的公式计算.方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:数据1,2,3,4,5的平均数为(1+2+3+4+5)=3,故其方差S2=[(3﹣3)2+(1﹣3)2+(2﹣3)2+(4﹣3)2+(5﹣3)2]=2.故答案为:2.13.(3分)已知a m=2,a n=3(m,n为正整数),则a3m+2n=72.【分析】直接利用积的乘方运算法则以及同底数幂的乘法运算法则计算得出答案.【解答】解:∵a m=2,a n=3(m,n为正整数),∴a3m+2n=(a m)3×(a n)2=23×32=8×9=72.故答案为:72.14.(3分)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+l)(x+9),则a﹣b的值是﹣3.【分析】直接利用多项式乘法结合已知进而得出a,b的值,进而得出答案.【解答】解:∵分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4),∴(x+2)(x+4)=x2+6x+8,则a=6,∵分解因式x2+ax+b时,乙看错了a,分解结果为(x+l)(x+9),∴(x+l)(x+9)=x2+10x+9,则b=9,故a﹣b=6﹣9=﹣3.故答案为:﹣3.三、解答题(共58分)15.(6分)解下列方程组:(1)(2)【分析】(1)方程组利用加减消元法求出解即可.(2)方程组利用加减消元法求出解即可.【解答】(1)解:,①+②得:8x=8,解得,x=1,把x=1代入①得:y=2,∴原方程组的解为,(2)原方程组可化为,①×3﹣②×4,得7y=14,∴y=2,把y=2代入①,得x=2,∴原方程组的解是.16.(6分)因式分解:(1)m3﹣16m;(2)xy3﹣10xy2+25xy.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=m(m2﹣16)=m(m+4)(m﹣4);(2)原式=xy(y2﹣10y+25)=xy(y﹣5)2.17.(6分)先化简,再求值:(2x﹣1)2﹣(2x+1)(2x﹣1)+(x+1)(3﹣x),其中x=.【分析】首先计算完全平方、平方差和多项式乘以多项式,然后再去括号,合并同类项,化简后,再代入x的值计算即可.【解答】解:原式=4x2﹣4x+1﹣(4x2﹣1)+(3x﹣x2+3﹣x),=4x2﹣4x+1﹣4x2+1+3x﹣x2+3﹣x,=﹣x2﹣2x+5,将代入,原式=.18.(6分)如图,AB∥DF,DE∥BC,∠1=65°,求∠2、∠3的度数.【分析】利用两直线平行,内错角相等,则∠1=∠2,两直线平行,同旁内角互补,则有∠2+∠3=180°,故可求出结论.【解答】解:∵DE∥BC∴∠1=∠2=65°∵AB∥DF∴∠2+∠3=180°,∴∠3=180°﹣65°=115°.故答案为∠2=65°,∠3=115°.19.(6分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:鞋号23.52424.52525.526人数344711(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?【分析】根据平均数、中位数、众数的概念计算和判断.【解答】解:(1)由题意知:男生鞋号数据的平均数==24.55;男生鞋号数据的众数为25;男生鞋号数据的中位数==24.5.∴平均数是24.55,中位数是24.5,众数是25.(2)厂家最关心的是众数.20.(6分)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?【分析】(1)设每盒豆腐乳x元,每盒猕猴桃果汁y元,根据若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元,列出方程组,求解即可;(2)将(1)中的每盒豆腐乳和每盒猕猴桃果汁的价格代入解得即可.【解答】解:(1)设每盒豆腐乳x元,每盒猕猴桃果汁y元,可得:,解得:,答:每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元;(2)把每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元代入,可得:4×30+2×45=210(元),答:该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需210元.21.(8分)先阅读材料:分解因式:(a+b)2+2(a+b)+1.解:令a+b=M,则(a+b)2+2(a+b)+1=M2+2M+1=(M+1)2所以(a+b)2+2(a+b)+1=(a+b+1)2.材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:(1)分解因式:1﹣2(x+y)+(x+y)2=(1﹣x﹣y)2;(2)分解因式:(m+n)(m+n﹣4)+4;(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.【分析】(1)将(x+y)看作一个整体进行因式分解;(2)将(m+n)看作一个整体进行因式分解;(3)先计算(n+1)(n+2)得n2+3n+2,再将n2+3n看做整体因式分解得原式=(n2+3n+1)2,继而由n2+3n+1为正整数可得答案.【解答】解:(1)原式=(1﹣x﹣y)2;故答案是:(1﹣x﹣y)2;(2)令A=m+n,则(m+n)(m+n﹣4)+4=A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,所以,(m+n)(m+n﹣4)+4=(m+n﹣2)2.(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.∵n是正整数,∴n2+3n+1也为正整数.∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.22.(6分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°.(1)写出点A,B的对应点;(2)求∠AOB'和∠A'OB的度数.【分析】(1)由旋转的性质可得;(2)由旋转的性质可得∠AOA'=∠BOB'=45°,即可求解.【解答】解:(1)∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴点A的对应点A',点B的对应点B';(2)∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠AOA'=∠BOB'=45°,∴∠AOB'=30°,∠A'OB=60°.23.(8分)在综合与实践课上,老师计同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.(1)如图(1),若三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,∠CFG=β,则∠AEG与∠CFG的数量关系是什么?用含α,β的式子表示(不写理由).【分析】(1)根据平行线的性质可知∠1=∠EGD,依据∠2+∠FGE+∠EGD=180°,可求解∠1的度数;(2)过点F作FP∥AB,易得FP∥AB∥CD,通过平行线的性质把∠AEF和∠FGC转化到∠EFG上即可;(3)依据AB∥CD,可知∴∠AEF+∠CFE=180°,再代入∠AEF=α﹣30°,∠CFE=。
2020-2021学年七年级下学期期末考试数学试卷及答案

2020-2021学年七年级下期末考试数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列方程中,是二元一次方程的有()A.6x﹣2z=5y+3B.1x +1y=5C.x2﹣3y=1D.x=2y【解答】解:A、只含有3个未知数,不符合二元一次方程的定义;B、该方程不是整式方程;C、未知数的项的最高次数是2,不符合二元一次方程的定义;D、符合二元一次方程的定义;故选:D.2.(3分)下列说法:①“从13张黑桃扑克牌中随机抽取一张,抽出的牌上点数小于5的概率是313”;②“从装有无差别的5个红球,3个绿球的不透明袋子中抽出4个球,一定抽出3个绿球”;③“射击运动员射击一次,命中靶心的概率是0.5”,其中不正确的个数是()A.0B.1C.2D.3【解答】解:从13张黑桃扑克牌中随机抽取一张,抽出的牌上点数小于5的有4张,因此抽出的牌上点数小于5的概率是413,故①不正确;从装有无差别的5个红球,3个绿球的不透明袋子中抽出4个球,可能都是红球,因此②不正确;射击运动员射击一次,命中靶心的概率不一定是0.5,因此③不正确;综上所述,不正确的个数是3个,故选:D.3.(3分)下列事件是随机事件的是()A.只买一张彩票,就中了大奖B.威海市某天的最低气温为﹣150℃C.口袋中装的全是黑球,从中摸出一个球是黑球D.抛掷8枚硬币,结果是3个正面朝上与6个反面朝上【解答】解:A、只买一张彩票,就中了大奖,是随机事件;B、威海市某天的最低气温为﹣150℃,是不可能事件;C 、口袋中装的全是黑球,从中摸出一个球是黑球,是必然事件;D 、抛掷8枚硬币,结果是3个正面朝上与6个反面朝上,是不可能事件;故选:A .4.(3分)已知方程组{x −12y =2x −2y =n中的x ,y 互为相反数,则n 的值为( ) A .2 B .﹣2 C .0 D .4 【解答】解:由题意得:x +y =0,即y =﹣x ,代入x −12y =2得:x +12x =2,解得:x =43,即y =−43,代入得:n =x ﹣2y =43+83=4,故选:D .5.(3分)如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6+∠4=180°;其中能判断直线l 1∥l 2的有( )A .②③④B .②③⑤C .②④⑤D .②④【解答】解:①由∠1=∠2不能得到l 1∥l 2,故本条件不合题意;②∵∠4=∠5,∴l 1∥l 2,故本条件符合题意;③由∠2+∠5=180°不能得到l 1∥l 2,故本条件不合题意;④∵∠1=∠3,∴l 1∥l 2,故本条件符合题意.⑤由∠6+∠4=180°不能得到l 1∥l 2,故本条件不合题意.故选:D .6.(3分)在一个不透明的袋子中装有质地相同的若干个黄球和8个白球,若从中摸出黄球的概率为15,则袋中共有球( ) A .15个 B .10个 C .12个D .8个 【解答】解:设袋子中装有黄球x 个,根据题意得:x x+8=15, 解得:x =2,经检验x =2是方程的解,则袋中共有球2+8=10(个);故选:B .7.(3分)已知x >y ,则下列不等式不成立的是( )A .x ﹣2>y ﹣2B .2y >2xC .﹣2x <﹣2yD .x +2>y +2【解答】解:A 、不等式的两边都减2,不等号的方向不变,故A 正确;B 、不等式的两边都乘以2,不等号的方向不变,故B 错误;C 、不等式的两边都乘以负数,不等号的方向改变,故D 正确;D 、不等式的两条边都加2,不等号的方向不变,故C 正确;故选:B .8.(3分)下列命题正确的是( )A .若分式x 2−4x−2的值为0,则x 的值为±2B .一个正数的算术平方根一定比这个数小C .若b >a >0,则a b >a+1b+1D .若c ≥2,则一元二次方程x 2+2x +3=c 有实数根【解答】解:A 、若分式x 2−4x−2的值为0,则x 值为﹣2,故错误;B 、一个正数的算术平方根不一定比这个数小,故错误;C 、若b >a >0,则a b <a+1b+1,故错误;D 、若c ≥2,则一元二次方程x 2+2x +3=c 有实数根,正确,故选:D .9.(3分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长( )尺.A .25B .20C .15D .10【解答】解:设索长x 尺,竿子长y 尺,依题意,得:{x −y =5y −12x =5,解得:{x =20y =15. 故选:B .10.(3分)如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列结论中正确的个数是( )①AD 是∠BAC 的平分线②∠ADC =60°;③AD =BD ;④点D 在AB 的垂直平分线上⑤S △ABD =S △ACDA .2个B .3个C .4个D .5个【解答】解:利用基本作图得AD 平分∠BAC ,所以①正确;∵∠C =90°,∠B =30°,∴∠BAC =60°,而AD 平分∠BAC ,∴∠CAD =∠DAB =30°,∴∠ADC =90°﹣∠CAD =60°,所以②正确;∵∠DAB =∠B =30°,∴DA =DB ,所以③正确;∴点D 在AB 的垂直平分线上,所以④正确;∵AD =2CD ,∴BD =2CD ,∴S △ABD =2S △ACD ,所以⑤错误.故选:C .11.(3分)不等式组{2−x ≥03x +2>−1的解集是( )A .﹣1<x ≤2B .﹣2≤x <1C .x <﹣1或x ≥2D .2≤x <﹣1【解答】解:{2−x ≥0①3x +2>−1②, 由①得,x ≤2,由②得,x >﹣1,故此不等式组的解集为:﹣1<x ≤2.故选:A .12.(3分)已知弹簧的长度y (cm )与所挂物体的质量x (kg )之间的函数关系如图所示,则弹簧不挂物体时的长度为( )A .12cmB .11cmC .10cmD .9cm【解答】解:设弹簧的长度y (cm )与所挂物体的质量x (kg )之间的函数关系式为y =kx +b ,∵该函数经过点(6,15),(20,22),∴{6k +b =1520k +b =22, 解得{k =0.5b =12, 即弹簧的长度y (cm )与所挂物体的质量x (kg )之间的函数关系式为y =0.5x +12, 当x =0时,y =12,即弹簧不挂物体时的长度为12cm ,故选:A .二.填空题(共6小题,满分18分,每小题3分)13.(3分)在平面直角坐标系中,点P (6﹣2m ,4﹣m )在第三象限,则m 的取值范围是m >4 .【解答】解:根据题意,得:{6−2m <0①4−m <0②, 解不等式①,得:m >3,解不等式②,得:m >4,则不等式组的解集为m >4,故答案为:m >4.14.(3分)如图,在矩形纸片上作随机扎针试验,针头扎在阴影区域内的概率为 12 .【解答】解:观察发现:图中阴影部分面积=12S 矩形,∴针头扎在阴影区域内的概率为12; 故答案为:12. 15.(3分)欢欢观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB ∥CD ,∠BAE =92°,∠DCE =115°,则∠E 的度数是 23 °.【解答】解:如图,延长DC 交AE 于F ,∵AB ∥CD ,∠BAE =92°,∴∠CFE =92°,又∵∠DCE =115°,∴∠E =∠DCE ﹣∠CFE =115°﹣92°=23°.故答案为:23.16.(3分)某种型号汽车每行驶100km 耗油10L ,其油箱容量为40L .为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是 350 km .【解答】解:设行驶xkm ,∵油箱内剩余油量不低于油箱容量的18, ∴40−10100x ≥40×18. ∴x ≤350故该辆汽车最多行驶的路程是350km ,故答案为:350.17.(3分)如图,已知∠B =30°,则∠A +∠D +∠C +∠G = 210 °.【解答】解:∵∠B =30°,∴∠BEF +∠BFE =180°﹣30°=150°,∴∠DEF +∠GFE =360°﹣150°=210°.∵∠DEF =∠A +∠D ,∠GFE =∠C +∠G ,∴∠A +∠D +∠C +∠G =∠DEF +∠GFE =210°,故答案为:210.18.(3分)如图,在Rt △ABC 中,AB =3,AC =4,∠BAC =90°,BC 的中垂线DE 与∠BAC 的角平分线AF 交于点E ,则四边形ABEC 的面积为 494 .【解答】解:如图,过点E 作EH ⊥AB ,EG ⊥AC ,∵∠BAC =90°,EH ⊥AB ,EG ⊥AC ,∴四边形ABEG 是矩形,∴AH =EG ,∵AE 平分∠BAC ,EH ⊥AB ,EG ⊥AC ,∴EH =EG ,∴AG =AH =HE =EG ,∵DE 垂直平分BC ,∴BE =EC ,且EH =EG ,∴Rt △BEH ≌Rt △CEG (HL ),∴BH =GC ,S △BEH =S △CEG ,∴四边形ABEC 的面积=S 四边形AHEG ,∵AB +AC =AB +AG +GC =AB +BH +AG =AH +AG =2AG =7,∴AH =AG =72,∴S 四边形AHEG =AG •AH =494,故答案为:494.三.解答题(共7小题,满分66分)19.(10分)(1)解不等式组{−3(x −2)≥4−x 1+2x 3>x −1,并把解集表示在数轴上. (2)已知关于x ,y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x +y >−32,求出满足条件的m 的所有正整数值.【解答】解:(1){−3(x −2)≥4−x①1+2x 3>x −1②解不等式①得:x ≤1,解不等式②得:x <4,所以不等式组的解集为:x ≤1,在数轴上表示为:(2){2x +y =−3m +2①x +2y =4②, ①+②得:3(x +y )=﹣3m +6,即x +y =﹣m +2,代入不等式得:﹣m +2>−32,解得:m <72,则满足条件m 的正整数值为1,2,3.20.(7分)已知,△ABC 中,AB =AC ,点D 在BC 边上,E 在△ABC 的外部,连接AD 、AE 、CE ,且AD =AE ,∠BAC =∠DAE .(1)如图1,求证:BD =CE .(2)如图2,当∠B =45°,∠BAD =22.5°时,连接DE 交AC 于点F ,作DG ⊥DE 交AB 于点G ,在不添加任何辅助线的情况下,请直接写出图2中四个顶角为45°的等腰三角形.【解答】证明(1)∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,{AD =AE ∠BAD =∠CAE AB =AC,∴△BAD ≌△CAE (SAS ),∴BD =CE ;(2)∵∠B=45°,AB=AC,∴∠B=∠ACB=45°,∴∠BAC=90°=∠DAE,又∵AD=AE,∴∠ADE=∠AED=45°,∵DG⊥DE,∴∠GDE=90°,∴∠GDA=45°,∵∠BAD=22.5°,∴∠DAF=67.5°,∠BGD=∠BAD+∠ADG=67.5°,∴∠BDG=180°﹣∠B﹣∠BGD=67.5°=∠BGD,∠AFD=180°﹣∠ADF﹣∠DAF=67.5°=∠DAF,∠ADC=180°﹣∠ACB﹣∠DAC=67.5°=∠DAC,∴△BDG,△ADC,△ADF都是顶角为45°的等腰三角形,∵△BAD≌△CAE,∴∠B=∠ACE=45°,又∵∠AFD=∠CFE=67.5°,∴∠CFE=∠CEF=67.5°,∴△CEF是顶角为45°的等腰三角形.21.(8分)有3张正面分别写有数字﹣2,0,1的卡片,它们的背面完全相同,现将这3张卡片背面朝上洗匀,小明先从中任意抽出一张卡片记下数字为x;小亮再从剩下的卡片中任意取出一张记下数字为y,记作P(x,y).(1)用列表或画树状图的方法列出所有可能的点P的坐标;(2)若规定:点P(x,y)在第二象限小明获胜;点P(x,y)在第四象限小亮获胜,游戏规则公平吗?【解答】解:(1)根据题意,列表如下:﹣210﹣2(1,﹣2)(0,﹣2)1(﹣2,1)(0,1)0(﹣2,0)(1,0)一共有6种等可能情况;(2)由表知,点P 在第二象限有1种结果,在第四象限的有1种结果,∴小明获胜的概率为16,小亮获胜的概率为16, 因此此游戏规则公平.22.(8分)已知一次函数y =ax +2与y =kx +b 的图象如图所示,且方程组{ax −y =−2kx −y =−b的解为{x =2y =1点B 坐标为(0,﹣1).求这两个一次函数的表达式.【解答】解:由题意可得A (2,1).把A 的坐标代入y =ax +2,得1=2a +2,解得a =−12,所以y =−12x +2;把A 、B 的坐标代入y =kx +b ,{2k +b =1b =−1,解得 {k =1b =−1,所以y =x ﹣1. ∴两个一次函数的表达式为y =−12x +2,y =x ﹣1.23.(10分)将一批抗疫物资运往武汉,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:甲种货车(辆) 乙种货车(辆) 总量(吨) 第一次4 5 31 第二次 3 6 30 (1)甲、乙两种货车每辆分别能装货多少吨?(2)现有45吨物资需要再次运往武汉,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?请全部设计出来.【解答】解:(1)设每辆甲种货车能装货x 吨,每辆乙种货车能装货y 吨,依题意,得:{4x +5y =313x +6y =30, 解得:{x =4y =3. 答:每辆甲种货车能装货4吨,每辆乙种货车能装货3吨.(2)设租用m 辆甲种货车,n 辆乙种货车,依题意,得:4m +3n =45,∴n =15−43m ,又∵m ,n 均为正整数,∴{m =3n =11或{m =6n =7或{m =9n =3, ∴共有3种租车方案,方案1:租用3辆甲种货车,11辆乙种货车;方案2:租用6辆甲种货车,7辆乙种货车;方案3:租用9辆甲种货车,3辆乙种货车.24.(11分)如图,在四边形ABCD 中,AB ∥CD ,对角线AC 与BD 相交于点E ,且∠DAC=∠DCA .(1)求证:AC 平分∠BAD ;(2)若∠AEB =125°,且∠ABD =2∠CBD ,DF 平分∠ADB 交AB 边于点F ,求∠BDF ﹣∠CBD 的值.【解答】解:(1)证明:∵AB ∥CD ,∴∠BAC =∠DCA ,又∵∠DAC =∠DCA ,∴∠BAC =∠DAC ,∴AC 平分∠BAD ;(2)∵∠BAC =∠DAC ,∠DAC +∠ADB =∠AEB =125°,∴∠ADB =125°﹣∠BAC ,又∵DF 平分∠ADB 交AB 边于点F ,∴∠BDF =125°−∠BAC 2, 由∠AEB =125°可得∠BAC =55°﹣∠ABD ,∵∠ABD =2∠CBD ,∴∠BAC =55°﹣2∠CBD ,∴∠CBD =55°−∠BAC 2, ∴∠BDF ﹣∠CBD =125°−∠BAC 2−55°−∠BAC 2=35°. 25.(12分)如图,△ABD 和△BCE 都是等边三角形,AE 与CD 相交于F ,连接BF .(1)求证:AE =CD ;(2)求证:BF 平分∠DFE .【解答】证明:(1)∵△ABD 和△BCE 都是等边三角形,∴DB =AB ,BC =BE ,∠DBA =∠CBE =60°,∴∠DBC =∠ABE ,在△DBC 和△ABE 中,{DB =AB ∠DBC =∠ABE BC =BE,∴△DBC ≌△ABE (SAS ),∴AE =CD ;(2)如图,过点B 作BM ⊥CD 于M ,BN ⊥AE 于E ,∵△DBC ≌△ABE ,∴S △DBC =S △ABE ,∴12CD ×BM =12AE ×BN , ∴BM =BN ,又∵BM⊥CD,BN⊥AE,∴BF平分∠DFE.。
2020-2021学年七年级下期末数学试卷含答案解析(共3套)

2020-2021学年七年级(下)期末数学试卷一、选择题(每小题3分,共36分)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.若是关于x、y的方程ax﹣y=3的解,则a=()A.1 B.2 C.3 D.43.如果a<b,那么下列不等式中一定成立的是()A.a2<ab B.ab<b2C.a2<b2D.a﹣2b<﹣b4.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)5.在下列实数:、、、、﹣1.010010001…中,无理数有()A.1个B.2个C.3个D.4个6.在平面直角坐标系中,点A的坐标为(1,2),将点A向右平移3个单位长度后得到A′,则点A′的坐标是()A.(﹣2,2) B.(1,5)C.(1,﹣1) D.(4,2)7.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石8.下列调查中,适宜采用普查方式的是()A.调查涪陵电视台节目《晚间播报》的收视率B.调查涪陵市民对皮影表演艺术的喜爱程度C.调查涪陵城区居民对“武陵山大裂谷”的知晓率D.调查我国首艘宇宙飞船“天舟一号”的零部件质量9.不等式组的解集在数轴上表示为()A.B. C.D.10.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A.B. C. D.11.如图,已知∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转()度.A.12 B.18 C.22 D.2212.下列图形都是由圆和几个黑色围棋子按一定规律组成,图①中有4个黑色棋子,图②中有7个黑色棋子,图③中有10个黑色棋子,…,依次规律,图⑨中黑色棋子的个数是()A.23 B.25 C.26 D.28二、填空题(每小题2分,共12分)13.不等式<的解集是.14.已知a,b为两个连续整数,且,则a+b=.15.如图,计算把水从河中引到水池A中,先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.16.某班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息,可得成绩高于60分的学生占全班参赛人数的百分率是.17.《孙子算经》是中国传统数学最重要的著作,约成书于四、五世纪.现在传本的《孙子算经》共三卷.卷上叙述算筹记数的纵横相间制度和筹算乘除法则;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法.其中记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”设绳长x尺,长木为y尺,可列方程组为.18.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上.则细线的另一端所在位置的点的坐标是.三、解答题(每小题6分,共36分)19.计算:5+|﹣1|﹣++(﹣1)2017.20.解方程组.21.解不等式组.22.如图,已知AB∥CD,EF交AB于点E,交CD于点F,FG平分∠EFD,交AB于点G.若∠1=50°,求∠BGF的度数.23.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?24.已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC . (2)求△ABC 的面积;(3)设点P 在坐标轴上,且△ABP 与△ABC 的面积相等,求点P 的坐标.25.潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A 、B 两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表: 种植户种植A 类蔬菜面积 (单位:亩)种植B 类蔬菜面积 (单位:亩)总收入 (单位:元)甲 3 1 12500 乙2316500 说明:不同种植户种植的同类蔬菜每亩平均收入相等. (1)求A 、B 两类蔬菜每亩平均收入各是多少元?(2)某种植户准备租20亩地用来种植A 、B 两类蔬菜,为了使总收入不低于63000元,且种植A 类蔬菜的面积多于种植B 类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.26.如图1,已知直线PQ ∥MN ,点A 在直线PQ 上,点C 、D 在直线MN 上,连接AC 、AD ,∠PAC=50°,∠ADC=30°,AE 平分∠PAD ,CE 平分∠ACD ,AE 与CE 相交于E . (1)求∠AEC 的度数;(2)若将图1中的线段AD 沿MN 向右平移到A 1D 1如图2所示位置,此时A 1E 平分∠AA 1D 1,CE 平分∠ACD 1,A 1E 与CE 相交于E ,∠PAC=50°,∠A 1D 1C=30°,求∠A1EC的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.2020-2021学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.9的平方根为()A.3 B.﹣3 C.±3 D.【考点】21:平方根.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.2.若是关于x、y的方程ax﹣y=3的解,则a=()A.1 B.2 C.3 D.4【考点】92:二元一次方程的解.【分析】把x=2,y=1代入后得出方程,求出方程的解即可.【解答】解:∵是关于x、y的方程ax﹣y=3的解,∴代入得:2a﹣1=3,解得:a=2,故选B.3.如果a<b,那么下列不等式中一定成立的是()A.a2<ab B.ab<b2C.a2<b2D.a﹣2b<﹣b【考点】C2:不等式的性质.【分析】根据不等式的性质进行选择即可.【解答】解:∵a<b,∴a﹣2b<b﹣2b,即a﹣2b<﹣b,故选D.4.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【考点】D1:点的坐标.【分析】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.【解答】解:∵点P(m+3,m+1)在x轴上,∴y=0,∴m+1=0,解得:m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.5.在下列实数:、、、、﹣1.010010001…中,无理数有()A.1个B.2个C.3个D.4个【考点】26:无理数.【分析】根据无理数的定义,可得答案.【解答】解:、、﹣1.010010001…是无理数,故选:C.6.在平面直角坐标系中,点A的坐标为(1,2),将点A向右平移3个单位长度后得到A′,则点A′的坐标是()A.(﹣2,2) B.(1,5)C.(1,﹣1) D.(4,2)【考点】Q3:坐标与图形变化﹣平移.【分析】将点A的横坐标加3,纵坐标不变即可求解.【解答】解:点A(1,2)向右平移3个单位长度得到的点A′的坐标是(1+3,2),即(4,2).故选D.7.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石【考点】V5:用样本估计总体.【分析】根据254粒内夹谷28粒,可得比例,再乘以1534石,即可得出答案.【解答】解:根据题意得:1534×≈169(石),答:这批米内夹谷约为169石;故选:B.8.下列调查中,适宜采用普查方式的是()A.调查涪陵电视台节目《晚间播报》的收视率B.调查涪陵市民对皮影表演艺术的喜爱程度C.调查涪陵城区居民对“武陵山大裂谷”的知晓率D.调查我国首艘宇宙飞船“天舟一号”的零部件质量【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、调查涪陵电视台节目《晚间播报》的收视率,适合抽样调查,故A选项错误;B、调查涪陵市民对皮影表演艺术的喜爱程度,适合抽样调查,故B选项错误;C、调查涪陵城区居民对“武陵山大裂谷”的知晓率,适合抽样调查,故C选项错误;D、调查我国首艘宇宙飞船“天舟一号”的零部件质量,适于全面调查,故D选项正确.故选:D9.不等式组的解集在数轴上表示为()A.B. C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选A.10.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A.B. C. D.【考点】97:二元一次方程组的解.【分析】根据题意可以分别求出●与★的值,本题得以解决.【解答】解:∵方程组的解为,∴将x=5代入2x﹣y=12,得y=﹣2,将x=5,y=﹣2代入2x+y得,2x+y=2×5+(﹣2)=8,∴●=8,★=﹣2,故选D.11.如图,已知∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转()度.A.12 B.18 C.22 D.22【考点】R2:旋转的性质;J9:平行线的判定.【分析】根据OD'∥AC,运用两直线平行,同位角相等,求得∠BOD'=∠A,即可得到∠DOD'的度数,即旋转角的度数.【解答】解:∵OD'∥AC,∴∠BOD'=∠A=70°,∴∠DOD'=82°﹣70°=12°.故选:A.12.下列图形都是由圆和几个黑色围棋子按一定规律组成,图①中有4个黑色棋子,图②中有7个黑色棋子,图③中有10个黑色棋子,…,依次规律,图⑨中黑色棋子的个数是()A.23 B.25 C.26 D.28【考点】38:规律型:图形的变化类.【分析】由题意可知:图①中有3+1=4个黑色棋子,图②中有3×2+1=7个黑色棋子,图③中有3×3+1=10个黑色棋子,…,依次规律,图n中黑色棋子的个数是3n+1,由此进一步求得答案即可.【解答】解:∵图①中有3+1=4个黑色棋子,图②中有3×2+1=7个黑色棋子,图③中有3×3+1=10个黑色棋子,…图n中黑色棋子的个数是3n+1,由此图⑨中黑色棋子的个数是3×9+1=28.故选:D.二、填空题(每小题2分,共12分)13.不等式<的解集是x<3.【考点】C6:解一元一次不等式.【分析】首先去掉分母,然后去括号、移项、合并同类项,最后化系数为1即可求出不等式的解集.【解答】解:<,去分母得:3(x﹣1)<2x,去括号得:3x﹣3<2x,移项、合并同类项得:x<3,故答案为x<3.14.已知a,b为两个连续整数,且,则a+b=7.【考点】2B:估算无理数的大小.【分析】因为32<13<42,所以3<<4,求得a、b的数值,进一步求得问题的答案即可.【解答】解:∵32<13<42,∴3<<4,即a=3,b=b,所以a+b=7.故答案为:7.15.如图,计算把水从河中引到水池A中,先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短.【考点】J4:垂线段最短.【分析】根据垂线段的性质,可得答案.【解答】解:先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短;故答案为:垂线段最短.16.某班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息,可得成绩高于60分的学生占全班参赛人数的百分率是80%.【考点】V8:频数(率)分布直方图.【分析】根据频数分布直方图可得全班的总人数及成绩高于60分的学生,从而得出答案.【解答】解:∵全班的总人数为3+6+12+11+7+6=45人,其中成绩高于60分的学生有12+11+7+6=36人,∴成绩高于60分的学生占全班参赛人数的百分率是×100%=80%,故答案为:80%.17.《孙子算经》是中国传统数学最重要的著作,约成书于四、五世纪.现在传本的《孙子算经》共三卷.卷上叙述算筹记数的纵横相间制度和筹算乘除法则;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法.其中记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”设绳长x尺,长木为y尺,可列方程组为.【考点】99:由实际问题抽象出二元一次方程组.【分析】本题的等量关系是:绳长﹣木长=4.5;木长﹣绳长=1,据此可列方程组求解.【解答】解:设绳长x尺,长木为y尺,依题意得,故答案为:,18.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上.则细线的另一端所在位置的点的坐标是(1,﹣2).【考点】D2:规律型:点的坐标.【分析】根据点A、B、C、D的坐标可得出AB、BC的长度以及四边形ABCD 为矩形,进而可求出矩形ABCD的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置,此题得解.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=CD=2,AD=BC=3,且四边形ABCD为矩形,=2(AB+BC)=10.∴矩形ABCD的周长C矩形ABCD∵2017=201×10+7,AB+BC+CD=7,∴细线的另一端落在点D上,即(1,﹣2).故答案为(1,﹣2).三、解答题(每小题6分,共36分)19.计算:5+|﹣1|﹣++(﹣1)2017.【考点】2C:实数的运算.【分析】原式利用绝对值的代数意义,立方根、平方根定义,以及乘方的意义计算即可得到结果.【解答】解:原式=5+1﹣2+3﹣1=6.20.解方程组.【考点】98:解二元一次方程组.【分析】方程组整理后两方程相减消去y求出x的值,进而求出y的值,即可确定出方程组的解.【解答】解:方程组整理得:,①﹣②得:2x=﹣6,即x=﹣3,将x=﹣3代入①,得:y=﹣,则方程组的解为.21.解不等式组.【考点】CB:解一元一次不等式组.【分析】首先分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:,由①得:x≤1,由②得:x>﹣2,不等式组的解集为:﹣2<x≤1.22.如图,已知AB∥CD,EF交AB于点E,交CD于点F,FG平分∠EFD,交AB于点G.若∠1=50°,求∠BGF的度数.【考点】JA:平行线的性质.【分析】先根据平行线的性质求出∠CFE的度数,再由补角的定义求出∠EFD 的度数,根据角平分线的性质求出∠DFG的度数,进而可得出结论.【解答】解:∵AB∥CD,∠1=50°,∴∠CFE=∠1=50°.∵∠CFE+∠EFD=180°,∴∠EFD=180°﹣∠CEF=130°.∵FG平分∠EFD,∴∠DFG=∠EFD=65°.∵AB∥CD,∴∠BGF+∠DFG=180°,∴∠BGF=180°﹣∠DFG=180°﹣65°=115°.23.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了200名同学;(2)条形统计图中,m=40,n=60;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;(3)根据艺术类读物所在扇形的圆心角是:×360°=72°;(3)根据喜欢其他类读物人数所占的百分比,即可估计6000册中其他读物的数量;【解答】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得(册).答:学校购买其他类读物900册比较合理.24.已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积;(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.【考点】D5:坐标与图形性质;K3:三角形的面积.【分析】(1)确定出点A、B、C的位置,连接AC、CB、AB即可;(2)过点C向x、y轴作垂线,垂足为D、E,△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积;(3)当点p在x轴上时,由△ABP的面积=4,求得:BP=8,故此点P的坐标为(10,0)或(﹣6,0);当点P在y轴上时,△ABP的面积=4,解得:AP=4.所以点P的坐标为(0,5)或(0,﹣3).【解答】解:(1)如图所示:(2)过点C向x、y轴作垂线,垂足为D、E.∴四边形DOEC的面积=3×4=12,△BCD的面积==3,△ACE的面积==4,△AOB的面积==1.∴△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积=12﹣3﹣4﹣1=4.当点p在x轴上时,△ABP的面积==4,即:,解得:BP=8,所点P的坐标为(10,0)或(﹣6,0);当点P在y轴上时,△ABP的面积==4,即,解得:AP=4.所以点P的坐标为(0,5)或(0,﹣3).所以点P的坐标为(0,5)或(0,﹣3)或(10,0)或(﹣6,0).25.潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲3112500乙2316500说明:不同种植户种植的同类蔬菜每亩平均收入相等.(1)求A、B两类蔬菜每亩平均收入各是多少元?(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)根据等量关系:甲种植户总收入为12500元,乙种植户总收入为16500元,列出方程组求解即可;(2)根据总收入不低于63000元,种植A类蔬菜的面积多于种植B类蔬菜的面积列出不等式组求解即可.【解答】解:(1)设A、B两类蔬菜每亩平均收入分别是x元,y元.由题意得:,解得:,答:A、B两类蔬菜每亩平均收入分别是3000元,3500元.(2)设用来种植A类蔬菜的面积a亩,则用来种植B类蔬菜的面积为(20﹣a)亩.由题意得:,解得:10<a≤14.∵a取整数为:11、12、13、14.∴租地方案为:类别种植面积单位:(亩)A11121314B987626.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E 平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.【考点】Q2:平移的性质;JA:平行线的性质.【分析】(1)直接利用角平分线的性质结合平行线的性质得出∠CAE以及∠ECA 的度数,进而得出答案;(2)直接利用角平分线的性质结合平行线的性质得出∠CAE以及∠ECA的度数,进而得出答案;(3)直接利用角平分线的性质结合平行线的性质得出∠1和∠2的度数,进而得出答案.【解答】解:(1)如图1所示:∵直线PQ∥MN,∠ADC=30°,∴∠ADC=∠QAD=30°,∴∠PAD=150°,∵∠PAC=50°,AE平分∠PAD,∴∠PAE=75°,∴∠CAE=25°,可得∠PAC=∠ACN=50°,∵CE平分∠ACD,∴∠ECA=25°,∴∠AEC=180°﹣25°﹣25°=130°;(2)如图2所示:∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∴∠PA1D1=150°,∵A1E平分∠AA1D1,∴∠PA1E=∠EA1D1=75°,∵∠PAC=50°,PQ∥MN,∴∠CAQ=130°,∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=25°,∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;(3)如图3所示:过点E作FE∥PQ,∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∵A1E平分∠AA1D1,∴∠QA1E=∠2=15°,∵∠PAC=50°,PQ∥MN,∴∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=∠ECN=∠1=25°,∴∠CEA1=∠1+∠2=15°+25°=40°.2020-2021学年七年级(下)期末数学试卷一、选择题:(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在下列方框内.1.2﹣2的值是()A.﹣4 B.4 C.D.﹣2.下列图形是轴对称图形的是()A.B.C. D.3.下列各组数是勾股数的是()A.3,4,5 B.7,8,9 C.9,41,47 D.52,122,1324.计算(a3b)2的结果是()A.a6b B.a6b2C.a5b2D.a3b25.下列事件为确定事件的是()A.明天要下雨B.水中捞月C.守株待兔D.任意掷一枚图钉,落地后针尖朝上6.如图,直线AB、CD相交于点E,DF∥AB.若∠D=70°,则∠CEB等于()A.70°B.80°C.90°D.110°7.如图所示,转盘被等分成4个扇形,并在上面一次写上数字1,2,3,5,若自1转动转盘当它停止转动时,指针指向奇数区的概率是()A.B.C.D.8.如图,在△ABC中,若AB=10,AC=16,AC边上的中线BD=6,则BC等于()A.8 B.10 C.11 D.129.为了缓解交通压力,改变堵车现状,我市决定对机场路机械改造,施工队在工作了一段时间后,因暴雨被迫停了几天,不过施工队加快了进度,按时完成某路段的改造.下面能反映该工程尚未改造的道路里程y(公里)与时间x(天)的变化情况的大致图象是()A.B.C.D.10.如图,一只蚂蚁从长宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.(3+8)cm B.10cm C.14cm D.无法确定11.用同样大小的黑色五角星按如图所示的方式摆图案,按照这样的规律摆下去,第7个图案需要的黑色五角星的个数是()A.10 B.11 C.12 D.1312.关于多项式﹣2x2+8x+5的说法正确的是()A.有最大值13 B.有最小值﹣3 C.有最大值37 D.有最小值1二、填空题:(本大题共6小题,每小题4分,共24分)请将正确答案填在下列方框内. 13.台湾新北市八仙水上乐园6月27日晚间疑似粉尘爆炸,目前已造成逾200多人灼伤,据了解,此次引起粉尘爆炸的粉末爆炸的粉尘成分主要是玉米粉,玉米粉的爆炸下限为每立方米45000000微克,把数45000000用科学记数法表示为.14.计算:(π﹣2015)0﹣|2|=.15.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5则y关于x的关系式为.16.如图,在△ABC中,∠C=90°,AB的中垂线交AB于点D,交BC于点E,连接AE,若∠BED=70°,则∠CAE的度数为.17.已知m2﹣5m﹣1=0,则=.18.已知如图,在矩形ABCD中,点E是AD的中点,连结BE,将△ABE沿着BE翻折得到△FBE,EF交BC于点H,延长BF、DC相交于点G,若DG=16,BC=24,则FH=.三、解答题:(本题共8个小题,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.作图题:(要求:在下列空白处尺规作图,保留作图痕迹,不写作法,要作答.)已知:∠α,线段c,求作:△ABC,时∠A=∠α,AB=2c,BC=3c.20.计算:(1)(a﹣b)2+b(2a+b);(2)[(2x﹣y)(y﹣4x)+(3x+y)2]+x.21.如图,∠A=90°,∠D=90°,AC与BD相交于点E,BE=EC.求证:△ABC≌△DCB.22.为规范学生的在校表现,我校某班实行了操行评分制,根据学生的操行分高低分为A、B、C、D四个等级,现对该班本学期的操行等级进行了统计,并绘制了不完整的两种统计图,请根据图象回答问题:(1)该班的总人数为人,得到等级A的学生人数占总人数的百分比为;(2)补全条形统计图;(3)据统计获得等级A的学生中有2名男生,其余全为女生,现班主任打算从操行等级为A的学生中任意抽取一名为代表,参加下学期开学的“国旗下的讲话”演讲活动,请求出抽到女生的概率.23.读一读:式子“1×2×3×4×5×^×100”表示从1开始的100个连续自然数的积,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1×2×3×4×5×^×100”表示为n,这里“π”是求积符号.例如:1×35×7×9×^×99,即从1开始的100以内的连续奇数的积,可表示为(2n﹣1),又如13×23×33×43×53×63×73×83×93×103可表示为n3,通过对以上材料的阅读,请解答下列问题:(1)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积)用求积符号可表示为;(2)1×××…×用求积符号可表示为;(3)计算:(1﹣).24.如图,△ABC中,∠ABC=90°,D为BC上一点,且BD=AB,连接AD,E是AC上一点,∠ABE=∠BDE且∠C+2∠EBC=90°.(1)求证:DE2+BE2=DB2;(2)已知DE=2,求BE的长.25.2015年5月中旬,中国和俄罗斯海军在地中海海域举行了代号为“海上联合﹣2015(1)”的联合军事演习,这是中国第一次地中海举行军事演习,也是这个海军距本土最远的一次军演,某天,“临沂舰”、“潍坊舰”两舰同时从A、B两个港口出发,均沿直线匀速驶向演习目标地海岛C,两舰艇都到达C岛后演习第一阶段结束,已知B刚位于A港、C港之间,且A、B、C在一条直线上,如图所示,l临、l潍分别表示“临沂舰”、“潍坊舰”离B港的距离行驶时间x(h)变化的图象.(1)A港与C岛之间的距离为;(2)分别求出“临沂舰”、“潍坊舰”的航速即相遇时行驶的时间;(3)若“临沂舰”、“潍坊舰”之间的距离不超过2km时就属于最佳通讯距离,求出两舰艇在演习第一阶段处于最佳通讯距离时的x的取值范围.26.已知在四边形ABCD中,∠ABC+∠ADC=180°,∠BAD+∠BCD=180°,AB=BC.(1)如图1,连接BD,若∠BAD=90°,AD=7,求DC的长度;(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=∠ABP+∠QBC;(3)若点Q在DC的延长线上,点P在DA的延长线上,如图3所示,仍然满足PQ=AP+CQ,请写出∠PBQ与∠ADC的数量关系,并给出证明过程.2020-2021学年七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在下列方框内.1.2﹣2的值是()A.﹣4 B.4 C.D.﹣【考点】负整数指数幂.【分析】根据有理数的负整数指数次幂等于正整数指数次幂的倒数计算.【解答】解:2﹣2==.故选C.【点评】本题主要考查了负整数指数幂的运算,是基础题,需要熟练掌握.2.下列图形是轴对称图形的是()A.B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.下列各组数是勾股数的是()A.3,4,5 B.7,8,9 C.9,41,47 D.52,122,132【考点】勾股数.【分析】根据勾股定理的逆定理进行分析,从而得到答案.【解答】解:A、是,因为32+42=52;B、不是,因为72+82≠92;C、不是,因为92+412≠472;D、不是,因为(52)2+(122)2≠(132)2.故选:A.【点评】考查了勾股数,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.4.计算(a3b)2的结果是()A.a6b B.a6b2C.a5b2D.a3b2【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方法则进行计算即可.【解答】解:原式=a6b2.故选B.【点评】本题考查的是幂的乘方与积的乘方法则,熟知幂的乘方法则是底数不变,指数相乘是解答此题的关键.5.下列事件为确定事件的是()A.明天要下雨B.水中捞月。
2020-2021学年七年级下学期期末考试数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.(3分)下列实数中是无理数的是( ) A .23B .√2C .3.1D .0解:A 、23是分数,属于有理数,故本选项不合题意; B 、√2是无理数,故本选项符合题意;C 、3.1是有限小数,属于有理数,故本选项不合题意;D 、0是整数,属于有理数,故本选项不合题意. 故选:B .2.(3分)如图,若AB ∥DE ,∠B =130°,∠D =35°,则∠C 的度数为( )A .80°B .85°C .90°D .95°解:过C 作CM ∥AB , ∵AB ∥DE , ∴AB ∥CM ∥DE ,∴∠1+∠B =180°,∠2=∠D =35°, ∵∠B =130°, ∴∠1=50°,∴∠BCD =∠1+∠2=85°, 故选:B .3.(3分)下列等式正确的是( )A .±√9=3B .√273=±3C .√(−3)33=−3D .√(−3)2=−3解:A 、原式=±3,故A 错误. B 、原式=3,故B 错误. C 、原式=﹣3,故C 正确. D 、原式=3,故D 错误. 故选:C .4.(3分)如图,直线AB ,CD 相交于点O ,OE ⊥CD ,垂足为点O .若∠BOE =40°,则∠AOC 的度数为( )A .40°B .50°C .60°D .140°解:∵OE ⊥CD , ∴∠EOD =90°, ∵∠BOE =40°,∴∠BOD =90°﹣40°=50°, ∴∠AOC =∠BOD =50°. 故选:B .5.(3分)已知a <b ,下列结论中成立的是( ) A .﹣a +1<﹣b +1 B .﹣3a <﹣3bC .−12a +2>−12b +2D .如果c <0,那么ac<bc解:A 、a <b 则﹣a +1>﹣b +1,故原题说法错误; B 、a <b 则﹣3a >﹣3b ,故原题说法错误; C 、a <b 则−12a +2>−12b +2,故原题说法正确; D 、如果c <0,那ac>bc ,故原题说法错误;故选:C .6.(3分)下列实数中,是无理数的是( )A .3.14159265B .√36C .√7D .227解:A 、3.1415926是有限小数是有理数,选项错误. B 、√36=6,是整数,是有理数,选项错误; C 、√7是无理数,选项正确; D 、227是分数,是有理数,选项错误;故选:C .7.(3分)不等式组{2x −4≤0x +2>0的解集在数轴上用阴影表示正确的是( )A .B .C .D .解:{2x −4≤0①x +2>0②,由①得x ≤2,由②得x >﹣2, 故此不等式组的解集为:故选:C .8.(3分)点P (t +3,t +2)在直角坐标系的x 轴上,则P 点坐标为( ) A .(0,﹣2)B .(﹣2,0)C .(1,2)D .(1,0)解:∵点P (t +3,t +2)在直角坐标系的x 轴上, ∴t +2=0, 解得:t =﹣2, 故t +3=1,则P 点坐标为(1,0). 故选:D .9.(3分)老大爷背了一背鸡鸭到市场出售,单价是每只鸡100元,每只鸭80元,他出售完收入了660元,那么这背鸡鸭只数可能的方案有( ) A .4种B .3种C .2种D .1种解:设鸡有x 只,鸭有y 只, 依题意,得:100x +80y =660, ∴y =33−5x4.又∵x ,y 均为正整数, ∴{x =1y =7或{x =5y =2, ∴这背鸡鸭只数只有2种方案. 故选:C .10.(3分)在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(a ,b ),则点A 2020的坐标为( ) A .(a ,b )B .(﹣b +1,a +1)C .(﹣a ,﹣b +2)D .(b ﹣1,﹣a +1)解:观察发现:A 1(a ,b ),A 2(﹣b +1,a +1),A 3(﹣a ,﹣b +2),A 4(b ﹣1,﹣a +1),A 5(a ,b ),A 6(﹣b +1,a +1)…∴依此类推,每4个点为一个循环组依次循环, ∵2020÷4=505,∴点A 2020的坐标与A 4的坐标相同,为(b ﹣1,﹣a +1), 故选:D .二.填空题(共5小题,满分15分,每小题3分) 11.(3分)若√a 3=−7,则a = ﹣343 . 解:∵√a 3=−7, ∴a =(﹣7)3=﹣343. 故答案为:﹣343.12.(3分)新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是 普查 .(填“普查”或“抽样调查”)解:新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是普查. 故答案为:普查.13.(3分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为 {4x +6y =28x =y +2 .解:由题意可得,{4x +6y =28x =y +2, 故答案为:{4x +6y =28x =y +2.14.(3分)已知关于x ,y 的方程组{4x +y =3mx −y =7m −5的解满足不等式2x +y >8,则m 的取值范围是 m <﹣6 .解:解方程组得x =2m ﹣1,y =4﹣5m , 将x =2m ﹣1,y =4﹣5m 代入不等式2x +y >8得 4m ﹣2+4﹣5m >8, ∴m <﹣6, 故答案为m <﹣6.15.(3分)如图,点A (1,0),B (2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为 (0,4)或(0,﹣4) .解:设△ABC 边AB 上的高为h , ∵A (1,0),B (2,0), ∴AB =2﹣1=1, ∴△ABC 的面积=12×1•h =2, 解得h =4,点C 在y 轴正半轴时,点C 为(0,4), 点C 在y 轴负半轴时,点C 为(0,﹣4), 所以,点C 的坐标为(0,4)或(0,﹣4). 故答案为:(0,4)或(0,﹣4). 三.解答题(共8小题,满分75分) 16.(10分)(1)解方程组{x +y =102x −y =11;(2)解不等式3x ﹣2(x ﹣1)≥10.解:(1){x +y =10①2x −y =11②,由①+②,得3x =21, 解得x =7,把x =7代入①,得y =3. ∴原方程组的解为:{x =7y =3.(2)3x ﹣2(x ﹣1)≥10. 去括号,得3x ﹣2x +2≥10, 移项,得3x ﹣2x ≥10﹣2, 合并同类项,得x ≥8.17.(5分)已知5a +2的立方根是3,3a +b ﹣1的算术平方根是4,c 是√11的整数部分. (1)求a ,b ,c 的值; (2)求3a ﹣b +c 的平方根.解:(1)∵5a +2的立方根是3,3a +b ﹣1的算术平方根是4, ∴5a +2=27,3a +b ﹣1=16, ∴a =5,b =2;∵3<√11<4,c 是√11的整数部分,∴c =3;(2)3a ﹣b +c =15﹣2+3=16,16的平方根是±4.18.(9分)如图,三角形ABC 三个顶点的坐标分别是A (﹣3,﹣2),B (0,﹣1),C (﹣1,1),将三角形ABC 进行平移,点A 的对应点为A '(1,0),点B 的对应点是B ',点C 的对应点是C '.(1)画出平移后的三角形A 'B 'C '并写出B ',C '的坐标; (2)写出由三角形ABC 平移得到三角形A 'B 'C '的过程;(3)分别连接BB ',CC ',则BB '和CC '有怎样的关系?(直接写出答案,不需证明)解:(1)如图所示,△A'B'C'即为所求:∴B'(4,1),C'(3,3);(2)△ABC先向右平移4个单位长度,再向上平移2个单位长度得到△A'B'C';(3)根据平移性质可得:BB'和CC'平行且相等.19.(10分)我区的数学爱好者申请了一项省级课题﹣﹣《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名? 解:(1)本次调查共抽取学生为:205%=400(名),∴不太了解的学生为:400﹣120﹣160﹣20=100(名), 补全条形统计图如下:(2)“理解”所占扇形的圆心角是:120400×360°=108°;(3)8000×(40%+120400)=5600(名), 所以“理解”和“了解”的共有学生5600名. 20.(9分)完成推理填空如图,已知∠B =∠D ,∠BAE =∠E .将证明∠AFC +∠DAE =180°的过程填写完整. 证明:∵∠BAE =∠E ,∴ AB ∥ DE ( 内错角相等,两直线平行 ). ∴∠B =∠ BCE ( 两直线平行,内错角相等 ). 又∵∠B =∠D ,∴∠D =∠ BCE (等量代换).∴AD ∥BC ( 同位角相等,两直线平行 ).∴∠AFC +∠DAE =180°( 两直线平行,同旁内角互补 ).证明:∵∠BAE =∠E ,∴AB ∥DE (内错角相等,两直线平行). ∴∠B =∠BCE (两直线平行,内错角相等). 又∵∠B =∠D ,∴∠D =∠BCE (等量代换).∴AD ∥BC (同位角相等,两直线平行).∴∠AFC +∠DAE =180°(两直线平行,同旁内角互补).故答案为:AB ,DE ,内错角相等,两直线平行;BCE ,两直线平行,内错角相等;BCE ,同位角相等,两直线平行;两直线平行,同旁内角互补.21.(8分)甲、乙两人共同解方程组{ax +5y =15①4x =by −2②时,甲看错了方程①中的a ,解得{x =−3y =−1,乙看错了②中的b ,解得{x =5y =4,求a 2019+(−b 10)2020的值. 解:将{x =−3y =−1代入方程组中的4x =by ﹣2得:﹣12=﹣b ﹣2,即b =10;将x =5,y =4代入方程组中的ax +5y =15得:5a +20=15,即a =﹣1, 则a 2019+(−b 10)2020=(−1)2019+(−1010)2020=−1+1=0. 22.(11分)某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元. (1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本? 解:(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元, 由题意可得:{15x +20y =25010x +25y =225,解得:{x =10y =5,答:购买一个甲种笔记本需10元,一个乙种笔记本需5元; (2)设需要购买a 个甲种笔记本, 由题意可得:10a +5(35﹣a )≤300, 解得:a ≤25,答:至多需要购买25个甲种笔记本.23.(13分)已知,点Q 、A 、D 均在直线l 1上,点B 、C 均在直线l 2上,且l 1∥l 2,点E 是BA延长上一点.(1)如图1,CD∥AB,CE与AD相交于点F,AC与BF相交于点O,∠1=∠2,求证∠3=∠4;(2)在(1)的条件下,若BF平分∠ABC,试直接写出∠CFB与∠ACF的数量关系为∠CFB+12∠ACF=90°;(3)如图2,点N是∠QAB角平分线上一点,点M在射线BC上,若∠NMC与∠ABC 满足2∠NMC﹣∠ABC=180°的数量关系,请判断直线MN与直线AN的位置关系,并说明理由.解:(1)证明:∵∠1=∠2,∴∠1+∠ACF=∠2+∠ACF即:∠BCE=∠ACD,∵AB‖CD,∴∠ACD=∠4,∴∠BCE=∠4,∵l1∥l2∴∠3=∠BCE∴∠3=∠4;(2)如图,设∠ABF=∠5,∠ACF=∠6,∠CFB=∠7,∵BF 平分∠ABC ,∴∠ABC =2∠5,∠CBF =∠5,∵l 1∥l 2,∴∠AFB =∠CBF =∠5,∴∠AFC +∠BCF =180°,即∠1+∠6+∠5+∠7=180°①, ∵AB ‖CD ,l 1∥l 2,∴∠ABC +∠BCD =180°,∠BCD +∠CDF =180°,∴∠CDF =2∠5,∴∠1+∠6+∠2+2∠5=180°,∵∠1=∠2,∴2∠1+∠6+2∠5=180°,∴∠1+12∠6+∠5=90°②,∴①﹣②得:12∠6+∠7=90°, ∴∠CFB 与∠ACF 的数量关系为∠CFB +12∠ACF =90°. 故答案为:∠CFB +12∠ACF =90°.(3)直线MN 与直线AN 的位置关系为:MN ⊥AN .理由如下: 过点N 作NR ∥l 1,∵l1∥l2,NR∥l2,∴∠ABC=∠QAB,∠QAN=∠ANR,∠RNM=∠NMB,∵NA平分∠QAB,∴∠QAB=2∠QAN,不妨设∠QAN=x°,∠NAM=∠NMB=y°,∴∠ABC=∠QAB=2x°,∴y+∠NMC=180°①,∵2∠NMC﹣∠ABC=180°,∴2∠NMC﹣2x=180°,∠NMC﹣x=90°②,①﹣②得:x+y=90°,∴∠ANM=90°,∴MN⊥AN.。
邢台市宁晋县七年级(下)期末数学试卷有答案

河北省邢台市七年级(下)期末数学试卷一、选择题(本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的1.以下描述中,能确定具体位置的是()A.万达电影院2排 B.距薛城高铁站2千米C.北偏东30℃ D.东经106℃,北纬31℃2.实数是()A.正分数B.负分数C.无理数D.有理数3.如图,直线AB、CD相交于点O,下列条件中,不能说明AB⊥CD的是()A.∠AOD=90°B.∠AOC=∠BOCC.∠BOC+∠BOD=180°D.∠AOC+∠BOD=180°4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.45.若﹣a≥b,则a≤﹣2b,其根据是()A.不等式的两边都加上(或减去)同一个整式,不等号的方向不变B.不等式的两边都乘(或除以)同一个正数,不等号的方向不变C.不等式的两边都乘(或除以)同一个负数,不等号的方向改变D.不等式的两边都乘(或除以)同一个负数,不等号的方向不变6.在平面直角坐标系中,点P(3,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限7.用代入法解方程组时,将方程①代入②中,所得的方程正确的是()A.3x+4y﹣6=8 B.3x﹣4x+6=8 C.3x+2y﹣3=8 D.3x﹣2y﹣6=88.为了调查班级中对新班主任老师的印象,下列更具有代表性的样本是()A.调查前十名的学生B.调查后十名的学生C.调查单号学生D.调查全体男同学9.若实数m满足1<m<2,则实数m可以是()A.B.C.D.﹣10.已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b的值可以是()A.a=2,b=﹣1 B.a=﹣4,b=3 C.a=1,b=﹣7 D.a=﹣7,b=511.假期的某一天,学生小华的作息时间统计如图,统计图提供了4条信息,其中不正确的信息是()A.表示小华学习时间的扇形的圆心角是15°B.小华在一天中三分之一时间安排活动C.小华的学习时间再增加1小时就与做家务的时间相等D.小华的睡觉时间已超过9小时12.不等式组的解集是x>2,则m的取值范围是()A.m≤2 B.m≥2 C.m≤1 D.m>113.已知如图,直线a⊥c,b⊥c,∠1=140°,那么∠2的度数是()A.40°B.50°C.60°D.140°14.已知三角形的三个顶点坐标分别是(﹣2,1),(2,3),(﹣3,﹣1),把△ABC运动到一个确定位置,在下列各点坐标中,()是平移得到的.A.(0,3),(0,1),(﹣1,﹣1)B.(﹣3,2),(3,2),(﹣4,0)C.(1,﹣2),(3,2),(﹣1,﹣3)D.(﹣1,3),(3,5),(﹣2,1)二、填空题(本小题共4个小题,每小题3分,共12分)15.一个数的立方根为,则这个数为.16.如图所示,已知∠C=100°,若增加一个条件,使得AB∥CD,试写出符合要求的一个条件.17.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是.18.若关于x,y的二元一次方程组的解满足x+y,求满足条件的m的取值范围为.三、解答题(本大题共7个小题,满分66分,解答题应写出必要的解题步骤或文字说明)19.(9分)春天到了,七(2)班组织同学到公园春游,张明、李华对着景区示意图,如下描述牡丹园位置(图中小正方形边长代表100m)张明:“牡丹园坐标(300,300)”李华:“牡丹园在中心广场东北方向约420m处”若他们二人所说的位置都正确.(1)在图中建立适当的平面直角坐标系;(2)用坐标描述其它景点位置.20.(9分)某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.a=,b=;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?21.(9分)一个正数x的两个平方根是2a﹣3与5﹣a,求x的值.22.(9分)关于x的不等式组(1)当a=3时,解这个不等式组;(2)若不等式组的解集x<1,求a的值.23.(10分)如图,A、B、C.三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.24.(10分)据统计资料,甲、乙两种作物的单位面积产量的比是1:2,现要把一块长100m、宽80m的长方形土地分为两块小长方形土地,分别种植这两种作物,怎样划分这块土地,使甲、乙两种作物的总产量的比是2:1?请你设计两种不同的种植方案.25.(10分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.若顾客购物应付x元,请根据x的取值,讨论顾客到哪家商场购物花费少?参考答案一、选择题(本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的1.D;2.C;3.C;4.D;5.C;6.D;7.B;8.C;9.C;10.D;11.D;12.C;13.A;14.D;二、填空题(本小题共4个小题,每小题3分,共12分)15. 1 816.∠BEF=100°或∠BEC=80°或∠AEC=100°(答案不唯一)17. -318.72 m19.解:(1)建立平面直角坐标系如图所示;……………………………………4分(2)中心广场(0,0),音乐台(0,400),望春亭(-200,-100),南门(100,-600),游乐园(200,-400).…………………………………………………9分20.解:(1)60,0.05.………………………………………………………………4分(2)频数分布直方图如图所示,………………………………………………6分(3)视力正常的人数占被调查人数的百分比是140200×100%=70%.……………9分 21.解:∵一个正数x 的两个平方根是2a-3与5-a ,∴2a-3+5-a=0,…………………………………………………………………… 3分解得a=-2,…………………………………………………………………6分∴2a-3=2×(-2)-3=-7,∴x=(-7)2=49.………………………………………………………… 9分22.解:(1)当a =3时,由①得:2x +8>3x +6,解得:x <2,…………………2分由②得x <3,……………………………………………………………………4分∴原不等式组的解集是x <2.…………………………………………………6分(2)由①得:x <2,由②得x <a ,……………………………………………8分而不等式组的解集是x <1,∴a =1.………………………………………………………………………………………………9分 23.解:BD ∥CF ,……………………………………………………………………2分理由如下:∵∠1=∠2,∴AD ∥BF ,………………………………………………4分∴∠D =∠DBF ,………………………………………………………………………6分∵∠3=∠D ,∴∠3=∠DBF ,………………………………………………………8分∴BD ∥CF .…………………………………………………………………………10分24.解:方案1:如图,设AE=x ,EB=y ,则80:2802:1100x y x y ⨯=⎧⎨+=⎩()(),…………………………………………………………………3分 解得:8020x y =⎧⎨=⎩,即将原长方形的常分为80m 和20m 两部分;………………… 5分 方案2:如图,设AE=a ,EC=b ,则80100:21002:1a b a b +=⎧⎨⨯=⎩()(),………………………………………………………………8分解得:6416ab=⎧⎨=⎩,即将原长方形的宽分为64m和16m两部分。
2020-2021学年七年级下学期期末数学试卷含答案解析

2020-2021学年七年级下学期期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)若x=﹣2是方程ax+b=1(a≠0)的解,则2a﹣b的值为()A.﹣2B.﹣1C.0D.1【解答】解:把x=﹣2代入方程得:﹣2a+b=1,则2a﹣b=﹣1.故选:B.2.(3分)下列图形中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.3.(3分)将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需_______个正五边形()A.6B.7C.8D.9【解答】解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O ,则∠1=360°﹣108°×3=360°﹣324°=36°, 360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B .4.(3分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长( )尺.A .25B .20C .15D .10【解答】解:设索长x 尺,竿子长y 尺,依题意,得:{x −y =5y −12x =5, 解得:{x =20y =15. 故选:B .5.(3分)一个数x 的13与4的差不小于这个数的2倍加上5所得的和,则可列不等式是( ) A .13x ﹣4>2x +5 B .13x ﹣4<2x +5 C .13x ﹣4≥2x +5 D .13x ﹣4≤2x +5 【解答】解:根据题意,得13x ﹣4≥2x +5.故选:C .6.(3分)如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,连接CD 、CE ,若△ACD 的面积为10,则四边形ACED 的面积为( )A.15B.18C.20D.24【解答】解:∵△ABC沿直线AB向右平移后到达△BDE的位置,∴AB=BD,BC∥DE且BC=DE,∴四边形BDEC是平行四边形,∵平行四边形BDEC和△ABC等底等高,∴S平行四边形BDEC=2S△ABC=10,∴S四边形ACED=S平行四边形BDEC+S△ABC=10+5=15.故选:A.7.(3分)如图,点D,E在△ABC边上,沿DE将△ADE翻折,点A的对应点为点A′,∠A′EC=40°,∠A′DB=110°,则∠A等于()A.30°B.35°C.60°D.70°【解答】解:∵∠A′EC=40°,∴∠AEC+∠A′EC=180°+40°=220°,由翻折可知:∠AED=∠A′ED=12×220°=110°,∵∠A′DB=110°,∴∠A′DA=70°,由翻折可知:∠ADE=∠A′DE=12∠A′DA=35°,∴∠A=180°﹣∠ADE﹣∠AED=35°.故选:B.8.(3分)如图,在五边形ABCDE 中,若去掉一个30°的角后得到一个六边形BCDEMN ,则∠1+∠2的度数为( )A .210°B .110°C .150°D .100°【解答】解:解法一:∵∠A +∠B +∠C +∠D +∠E =(5﹣2)×180°=540°,∠A =30°,∴∠B +∠C +∠D +∠E =510°,∵∠1+∠2+∠B +∠C +∠D +∠E =(6﹣2)×180°=720°,∴∠1+∠2=720°﹣510°=210°,解法二:在△ANM 中,∠ANM +∠AMN =180°﹣∠A =180°﹣30°=150°,∴∠1+∠2=360°﹣(∠AMN +∠ANM )=360°﹣150°=210°故选:A .9.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三;问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( )A .{y =5x +45y =7x +3B .{y =5x −45y =7x +3C .{y =5x +45y =7x −3D .{y =5x −45y =7x −3 【解答】解:依题意,得:{y =5x +45y =7x −3. 故选:C .10.(3分)如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转100°得到△AB ′C ′,连接CC ′,若CC ′∥AB ,则∠CAB '的度数为( )A .45°B .60°C .70°D .90°【解答】解:∵将△ABC 绕点A 按逆时针方向旋转100°得到△AB ′C ′,∴AC =AC ',∠BAB '=∠CAC '=100°,∴∠ACC '=∠AC 'C =40°,∵AB ∥CC ',∴∠BAC =∠ACC '=40°,∴∠CAB '=∠BAB '﹣∠BAC =60°,故选:B .二.填空题(共5小题,满分15分,每小题3分)11.(3分)已知对任意有理数a 、b ,关于x 、y 的二元一次方程(a ﹣b )x ﹣(a +b )y =a +b有一组公共解,则公共解为 {x =0y =−1. 【解答】解:由已知得,a (x ﹣y ﹣1)﹣b (x +y +1)=0,即{x −y −1=0①x +y +1=0②, ①+②,2x =0,x =0;把x =0代入①得,y =﹣1,故此方程组的解为:{x =0y =−1. 故答案为:{x =0y =−1. 另法:解:因为对于任意有理数a ,b ,关于xy 的二元一次方程(a ﹣b )x ﹣(a +b )y =a +b 都有一组公共解,所以,设a =1,b =﹣1(a +b =0),则(a ﹣b )x ﹣(a +b )y =a +b 为:2x =0,x =0,设a =b =1,(a ﹣b =0),则(a ﹣b )x ﹣(a +b )y =a +b 为:﹣2y =2,y =﹣1,所以公共解为:x =0,y =﹣1.12.(3分)甲乙两人同解方程组{ax +by =2cx −7y =8时,甲正确解得{x =3y =−2,乙因抄错c 而得{x =−2y =2,则a +c = 2 . 【解答】解:{ax +by =2①cx −7y =8②把{x =3y =−2代入②得:3c +14=8, 解得:c =﹣2,把{x =3y =−2和{x =−2y =2代入①得:{3a −2b =2−2a +2b =2, 解得:{a =4b =5, 所以a +c =4+(﹣2)=2,故答案为:2.13.(3分)若关于x 的不等式2x ﹣a ≥3的解集如图所示,则常数a = ﹣5 .【解答】解:由数轴上关于x 的不等式的解集可知x ≥﹣1,解不等式2x ﹣a ≥3得x ≥3+a 2,故3+a 2=−1,解得a =﹣5.故答案为:﹣5.14.(3分)如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,可以求出这两个角的度数的方程组是 {x +y =90y −x =15.【解答】解:根据“AB ⊥BC ”,得方程为x +y =90;根据“∠ABD 的度数比∠DBC 的度数少15°”,得方程y ﹣x =15.那么方程组应该是:{x +y =90y −x =15. 15.(3分)如图,在三角形ABC 中∠BAC =90°,AD 是BC 边上的高,∠CAD =35°,则∠B = 35° .【解答】解:∵AD 是BC 边上的高,∴∠ADC =90°,在△ACD 中,∠CAD =35°,∠ADC =90°,∴∠C =180°﹣∠CAD ﹣∠ADC =180°﹣35°﹣90°=55°.在△ABC 中,∠BAC =90°,∠C =55°,∴∠B =180°﹣∠BAC ﹣∠C =180°﹣90°﹣55°=35°.故答案为:35°.三.解答题(共8小题,满分75分)16.(8分)解方程(组):(1)15﹣(7﹣5x )=2x +(5﹣3x );(2)3+0.2x 0.2−0.2+0.03x 0.01=0.75;(3){3x −2y +4=03y +2x −19=0; (4){x+32+y+53=7x−43+2y−35=2. 【解答】解:(1)15﹣(7﹣5x )=2x +(5﹣3x ),去括号,得15﹣7+5x =2x +5﹣3x ,移项,得5x ﹣2x +3x =5﹣15+7,合并同类项,得6x =﹣3,系数化为1,得x =−12;(2)3+0.2x 0.2−0.2+0.03x 0.01=0.75, 方程变形,得30+2x 2−20+3x 1=34,去分母,得2(30+2x )﹣4(20+3x )=3,去括号,得60+4x ﹣80﹣12x =3,移项,得4x ﹣12x =3﹣60+80,合并同类项,得﹣8x =23,系数化为1,得x =−238; (3)方程组变形,得{3x −2y =−4①2x +3y =19②, ①×3+②×2得13x =26,解得x =2,把x =2代入①得,y =5,所以方程组的解为{x =2y =5; (4)方程变形,得{3x +2y =23①5x +6y =59②, ①×3﹣②得x =52,把x =52代入①得,y =314,所以方程组的解为{x =52y =314. 17.(9分)(1)解不等式3x +5<8(x ﹣1)+3,并写出满足此不等式的最小整数解.(2)解不等式组{−2(x +3)≤7x +3x+12−16<x+33,并把它的解集在数轴上表示出来.【解答】解:(1)3x +5<8x ﹣8+3,3x ﹣8x <﹣8+3﹣5,﹣5x <﹣10,x >2,所以此不等式的最小整数解为3;(2)解不等式﹣2(x +3)≤7x +3,得:x ≥﹣1,解不等式x+12−16<x+33,得:x <4,则不等式组的解集为﹣1≤x <4,将不等式组的解集表示在数轴上如下:18.(9分)下列图形中,哪些是中心对称图形?哪些是轴对称图形?请画出它们的对称中心或对称轴.【解答】解:中心对称图形有:①②③④⑤.轴对称图形有:①②③.图中的点O 即为对称中心,图中的虚线即为对称轴.19.(9分)糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?【解答】解:设竹签有x 根,山楂有y 个,由题意得:{5x +4=y 8(x −7)=y, 解得:{x =20y =104, 答:竹签有20根,山楂有104个.20.(9分)如图,在△ABC 中,AM 是△ABC 的高线,AN 是△ABC 的角平分线,已知∠B=50°,∠BAC =100°,分别求出∠C 和∠MAN 的度数.【解答】解:在△ABC中,∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣100°=30°.在△ABM中,∠B=50°,AM⊥BM,∴∠AMB=90°,∴∠BAM=90°﹣∠B=40°.∵AN平分∠BAC,∴∠BAN=12∠BAC=50°,∴∠MAN=∠BAN﹣∠BAM=50°﹣40°=10°.21.(10分)小明骑自行车从家中前往地铁一号线的B站,与此同时,一列地铁从A站开往B站.3分钟后,地铁到达B站,小明离B站还有1800米.已知A、B两站间距离和小明家到B站的距离恰好相等,这列地铁的平均速度是小明的4倍.(1)求小明骑车的平均速度;(2)如果此时另有一列地铁需8分钟到达B站,且小明骑车到达B站后还需2分钟才能走到地铁站台候车,他要想乘上这趟地铁,骑车的平均速度至少应提高多少?【解答】解:(1)设小明骑车的平均速度是x米/分,根据题意,得3x+1800=12 x,解方程,得x=200.答:小明骑车的平均速度是200米/分.(2)设小明的速度提高a米/分,根据题意,得6×(200+a)≥1800,解不等式,得a≥100.答:小明的速度至少应提高100米/分.22.(10分)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)写出图中互相平行的线段:CG∥BE,AC∥FG(2)写出图中全等的三角形:△ABC≌△FEG≌△EDB(3)将△DBE变换到与△FEG重合,变换的方法是:将△DBE逆时针旋转90°再平移BE的距离与△FEG重合.(4)判断线段DE、FG的位置关系,并说明理由.FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED..【解答】解:(1)互相平行的线段:CG∥BE,AC∥FG;(2)图中全等的三角形:△ABC≌△FEG≌△EDB;(3)将△DBE逆时针旋转90°再平移BE的距离与△FEG重合;(4)FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG ⊥ED .23.(11分)喜迎元旦,某玩具店购进2022年冬奥会吉祥物冰墩墩与冬残奥会吉祥物雪容融共100个,花去3300元,这两种吉祥物的进价、售价如下表:进价(元/个) 售价 (元/个) 冰墩墩30 40 雪容融 35 50(1)求冰墩墩、雪容融各进了多少个?(2)如果销售完100个吉祥物所得的利润,全部捐赠,那么,该玩具店捐赠了多少钱?【解答】解:(1)设冰墩墩进x 个,雪容融进了y 个,由题意可得:{30x +35y =3300x +y =100, 解得:{x =40y =60, 答:冰墩墩进40个,雪容融进了60个;(2)∵利润=(40﹣30)×40+(50﹣35)×60=1300(元),∴玩具店捐赠了1300元.。
2020-2021学年人教版七年级下期末考试数学试卷及答案

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.(3分)√64的立方根是( ) A .±2B .±4C .4D .2【解答】解:√64=8,8的立方根是2, 故选:D .2.(3分)已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为( )A .﹣2<x <2B .x <2C .x ≥﹣2D .x >2【解答】解:根据数轴图示可知,这两个不等式组成的不等式组的解集为x >2, 故选:D .3.(3分)如图,在阴影区域的点是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(1,﹣2)【解答】解:由图可知,阴影区域在第二象限,所以,各选项点的坐标中,在阴影区域的点是(﹣1,2). 故选:B .4.(3分)下列实数中是无理数的是( ) A .23B .√2C .3.1D .0【解答】解:A 、23是分数,属于有理数,故本选项不合题意; B 、√2是无理数,故本选项符合题意;C 、3.1是有限小数,属于有理数,故本选项不合题意;D 、0是整数,属于有理数,故本选项不合题意. 故选:B .5.(3分)如图,一个倾斜的天平两边分别放有小立方体和砝码,每个砝码的质量都是5克,每个小立方体的质量都是m克,则m的取值范围为()A.m<15B.m>15C.m<152D.m>152【解答】解:由题意得:2m>3×5,解得:m>15 2.故选:D.6.(3分)下列四个图形中,BE不是△ABC的高线的图是()A.B.C.D.【解答】解:BE不是△ABC的高线的图是C,故选:C.7.(3分)如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()A.3个B.4个C.5个D.6个【解答】解:①由∠1=∠2,可得a∥b;②由∠3+∠4=180°,可得a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠2=∠3,不能得到a∥b;⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;⑥由∠7+∠4﹣∠1=180°,∠7﹣∠1=∠3,可得∠3+∠4=180°,即可得到a∥b;故选:C.8.(3分)下列语句是命题的是()A.你喜欢数学吗?B.小明是男生C.大庙香水梨D.出门戴口罩【解答】解:A、你喜欢数学吗?是疑问句,没有对事情做出判断,不是命题,不符合题意;B、小明是男生是命题,符合题意;C、大庙香水梨是陈述性的句子,没有做出判断,不是命题,不符合题意;D、出门戴口罩是陈述性的句子,没有做出判断,不是命题,不符合题意;故选:B.9.(3分)某公司的生产量在1~7月份的增长变化情况如图所示,从图上看,下列结论正确的是()A.2~6月生产量逐月减少B.1月份生产量最大C.这七个月中,每月的生产量不断增加D.这七个月中,生产量有增加有减少【解答】解:观察折线图可知,这七个月中,每月的生产量不断增加,故选:C.10.(3分)若关于x的不等式3x+1<m的正整数解是1,2,3,则整数m的最大值是()A.10B.11C.12D.13【解答】解:解不等式3x+1<m,得x<13(m﹣1).∵关于x的不等式3x+1<m的正整数解是1,2,3,∴3<13(m﹣1)≤4,∴10<m≤13,∴整数m的最大值是13.故选:D.二.填空题(共8小题,满分18分)11.(2分)√2−1的相反数是1−√2.【解答】解:√2−1的相反数是1−√2,故答案为:1−√2.12.(2分)为统计了解某市4万名学生平均每天读书的时间,有以下步骤:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示,请您对以上步骤进行合理排序③④②①.(只填序号)【解答】解:调查的一般步骤:先随机抽样,再收集整理数据,然后分析数据,最后得出结论.故答案为:③④②①.13.(3分)欢欢观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是23°.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=92°,∴∠CFE=92°,又∵∠DCE=115°,∴∠E=∠DCE﹣∠CFE=115°﹣92°=23°.故答案为:23.14.(2分)已知平面内有一点A的横坐标为﹣6,且到原点的距离等于10,则A点的坐标为(﹣6,8)或(﹣6,﹣8).【解答】解:∵点A的横坐标为﹣6,到原点的距离是10,∴点A到x轴的距离为√102−62=8,∴点A的纵坐标为8或﹣8,∴点A的坐标为(﹣6,8)或(﹣6,﹣8).故答案为:(﹣6,8)或(﹣6,﹣8).15.(2分)若一个多边形的内角和与外角和之和是1800°,则此多边形是十边形.【解答】解:∵多边形的一个内角与它相邻外角的和为180°,∴1800°÷180°=10.故答案为:十.16.(2分)“如果1a >1b,那么a<b.”是假命题,举一个反例,其中a=1,b=﹣2.【解答】解:当a=1,b=﹣2可说明“如果1a >1b,那么a<b.”是假命题.故答案为1,﹣2.17.(2分)如图,在△ABC中,点D在边BC上,已知点E,F分别是AD,CE边上的中点,且△BEF的面积为6,则△ABC的面积等于24.【解答】解:∵由于E、F分别为AD、CE的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,∴S△BEC=2S△BEF=12,∴S△ABC=2S△BEC=24.故答案为24.18.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2019的坐标为(0,4).【解答】解:如图,观察图形可知P6与P重合,6次一个循环,2019÷6=336余数为3,∴P2019与P3重合,∴P2019的坐标为(0,4).故答案为(0,4).三.解答题(共8小题,满分52分)19.(6分)解一元一次不等式组:{2x+4<4 1−2x>0.【解答】解:由①得:x<0,由②得:x<1 2,∴不等式组的解集为:x<0.20.(6分)已知关于x的一元二次方程x2﹣mx﹣3=0.(1)求证:无论m取何值,该方程总有两个不相等的实数根;(2)当m=2时,求方程的根.【解答】解:(1)∵x2﹣mx﹣3=0,∵△=(﹣m)2﹣4×1×(﹣3)=m2+12>0,∴无论m取何值,方程总有两个不相等的实数根;(2)把m=2代入方程得到x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,解得x1=3,x2=﹣1.21.(6分)已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.【解答】(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)∠AEM ,∠GEM ,∠DFN ,∠HFN 度数都为135°.理由如下: ∵AB ∥CD ,∴∠AEF +∠CFE =180°, ∵FN 平分∠CFE , ∴∠CFE =2∠CFN , ∵∠AEF =2∠CFN , ∴∠AEF =∠CFE =90°, ∴∠CFN =∠EFN =45°,∴∠DFN =∠HFN =180°﹣45°=135°, 同理:∠AEM =∠GEM =135°.∴∠AEM ,∠GEM ,∠DFN ,∠HFN 度数都为135°.22.(6分)如图,在正方形网格中,每个小正方形的边长均为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A 、C 的坐标分别为(﹣4,5)、(﹣1,3). (1)请在如图所示的网格平面内画出平面直角坐标系;(2)点D (m ,n )是△ABC 边BC 上任意一点,三角形经过平移后得到△A 1B 1C 1,点P 的对应点为P 1(m +6,n ﹣2).①直接写出点B 1的坐标 (4,﹣1) ; ②画出△ABC 平移后的△A 1B 1C 1.(3)在y 轴上是否存在点P ,使△AOP 的面积等于△ABC 面积的23,若存在,请求出点P 的坐标;若不存在,请说明理由.【解答】解:(1)如图,平面直角坐标系如图所示:(2)①B 1(4,﹣1). 故答案为(4,﹣1). ②如图,△A 1B 1C 1即为所求.(3)设P (0,m ).由题意,12×|m |×4=23×(3×4−12×2×4−12×2×3−12×1×2),解得m =±43,∴P (0,43)或(0,−43).23.(7分)期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生,请按要求回答下列问题: 【收集数据】(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有 ②③ ;(只要填写序号即可) ①随机抽取一个班级的48名学生; ②在全年级学生中随机抽取48名学生; ③在全年级12个班中分别各抽取4名学生; ④从全年级学生中随机抽取48名男生; 【整理数据】(2)将抽取的48名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为60°、30°.②估计全年级A、B类学生大约一共有432名;成绩(单位:分)频数频率A类(80~100)0.5B类(60~79)0.25C类(40~59)8D类(0~39)4(3)学校为了解其他学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:学校平均数(分)极差(分)方差A、B类的频率和第一中学71524320.75第二中学71804970.82你认为哪所学校的教学效果较好?结合数据,请给出一个解释来支持你的观点.【解答】解:(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有:②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各抽取4名学生;①④都比较片面,故答案为:②③;(2)①C类和D类部分的圆心角度数分别为:8×360°=60°,48448×360°=30°.②估计全年级A、B类学生大约一共有:12×48×(0.5+0.25)=432(名);故答案为:60°,30°,432;(3)第一中学的教学效果较好,因为第一中学的极差小,两极分化不严重,方差小,学生总体成绩波动不大.24.(7分)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套280元,430元,且每种型号健身器材必须整套购买.若购买A,B两种型号的健身器材共50套,且支出不超过16000元,求A 种型号健身器材至少要购买多少套?【解答】解:设购进x套A种型号健身器材,则购进(50﹣x)套B种型号健身器材,依题意,得:280x+430(50﹣x)≤16000,解得:x≥110 3.又∵x为正整数,∴x的最小值为37.答:A种型号健身器材至少要购买37套.25.(7分)【基础模型】已知等腰直角△ABC,∠ACB=90°,AC=CB,过点C任作一条直线l(不与CA、CB 重合),过点A作AD⊥l于D,过点B作BE⊥l于E.(1)如图②,当点A、B在直线l异侧时,求证:△ACD≌△CBE【模型应用】在平面直角坐标性xOy中,已知直线l:y=kx﹣4k(k为常数,k≠0)与x轴交于点A,与y轴的负半轴交于点B.以AB为边、B为直角顶点作等腰直角△ABC.(2)若直线l经过点(2,﹣3),当点C在第三象限时,点C的坐标为(﹣6,﹣2).(3)若D是函数y=x(x<0)图象上的点,且BD∥x轴,当点C在第四象限时,连接CD交y轴于点E,则EB的长度为2.(4)设点C的坐标为(a,b),探索a,b之间满足的等量关系,直接写出结论.(不含字母k)【解答】解:【基础模型】:∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);(1)∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);【模型应用】:(2)如图1,过点C作CE⊥y轴于E,∵直线l:y=kx﹣4k经过点(2,﹣3),∴2k﹣4k=﹣3,∴k=3 2,∴直线l的解析式为y=32x﹣6,令x=0,则y=﹣6,∴B(0,﹣6),∴OB=6,令y=0,则0=32x﹣6,∴x=4,∴A(4,0),∴OA=4,同(1)的方法得,△OAB≌△EBC(AAS),∴CE=OB=6,BE=OA=4,∴OE=OB﹣BE=6﹣4=2,∵点C在第三象限,∴C(﹣6,﹣2),故答案为:(﹣6,﹣2);(3)如图2,针对于直线l:y=kx﹣4k,令x=0,则y=﹣4k,∴B(0,﹣4k),∴OB=4k,令y=0,则kx﹣4k=0,∴x=4,∴A(4,0),∴OA=4,过点C作CF⊥y轴于F,同【基础模型】的方法得,△OAB≌△FBC(AAS),∴BF=OA=4,CF=OB=4k,∴OF=OB+BF=4k+4,∵点C在第四象限,∴C(4k,﹣4k﹣4),∵B(0,﹣4k),∵BD∥x轴,且点D在直线y=x上,∴D(﹣4k,﹣4k),∴BD=4k=CF,∵CF⊥y轴于F,∴∠CFE=90°,∵BD∥x轴,∴∠DBE=90°=∠CFE,∵∠BED=∠FEC,∴△BED≌△FEC(AAS),∴BE=EF=12BF=2,故答案为:2;(4)当点C在第四象限时,由(3)知,C(4k,﹣4k﹣4),∵C(a,b),∴a=4k,b=﹣4k﹣4,∴b=﹣a﹣4,当点C在第三象限时,由(2)知,B(0,﹣4k),A(4,0),∴OB=4k,OA=4,如图1,由(2)知,△OAB≌△FBC(AAS),∴CE=OB=4k,BE=OA=4,∴OE=OB﹣BE=4k﹣4,∴C(﹣4k,4﹣4k),∵C(a,b),∴a=﹣4k,b=4﹣4k,∴b=a+4,即:b=a+4或b=﹣a﹣4.26.(7分)已知AB∥CD,AM平分∠BAP,CM平分∠PCD.(1)如图①,当点P、M在直线AC同侧,∠AMC=60°时,求∠APC的度数;(2)如图②,当点P、M在直线AC异侧时,直接写出∠APC与∠AMC的数量关系.【解答】解:(1)如图1,延长AP交CD于点Q,则可得到∠BAP=∠AQC,则∠APC=∠BAP+∠DCP=2(∠MAP+∠MCP),连接MP并延长到点R,则可得∠APR=∠MAP+∠AMP,∠CPR=∠MCP+∠CMP,所以∠APC=∠AMC+∠MAP+∠MCP,所以∠APC=∠AMC+12∠APC,所以∠APC=2∠AMC=120°.(2)如图2,过P作PQ∥AB于Q,MN∥AB于N,则AB∥PQ∥MN∥CD,∴∠APQ=180°﹣∠BAP,∠CPQ=180°﹣∠DCP,∠AMN=∠BAM,∠CMN=∠DCM,∵AM平分∠BAP,CM平分∠PCD,∴∠BAP=2∠BAM,∠DCP=2∠DCM,∴∠APC=∠APQ+∠CPQ=180°﹣∠BAP+180°﹣∠DCP=360°﹣2(∠BAM+∠DCM)=360°﹣2(∠BAM+∠DCM)=360°﹣2∠AMC,即∠APC=360°﹣2∠AMC.四.解答题(共2小题)27.已知等腰三角形ABC.(1)若其两边长分别为2和3,求△ABC的周长;(2)若一腰上的中线将此三角形的周长分为9和18,求△ABC的周长.【解答】解:(1)当2为底时,三角形的三边为3,2,3,可以构成三角形,周长为:3+2+3=8;当3为底时,三角形的三边为3,2,2,可以构成三角形,周长为:3+2+2=7.△ABC的周长为8或7.(2)设三角形的腰为x,如图:△ABC是等腰三角形,AB=AC,BD是AC边上的中线,则有AB+AD=9或AB+AD=18,分下面两种情况解.a:x+12x=9,∴x=6,∵三角形的周长为9+18=27cm,∴三边长分别为6,6,15,∵6+6<15,不符合三角形的三边关系,∴舍去;b:x+12x=18,∴x=12,∵三角形的周长为27,∴三边长分别为12,12,3.综上可知:这个等腰三角形的周长为27.28.在小学四年级我们学过三角形的内角和等于180°;科学实验又证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等(例如:∠1=∠4).利用上述知识进行下面的探究活动:(一)探究:(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被平面镜b反射.若被平面镜b反射出的光线n平行于m,且1=50°,则∠2=100°,∠3=90°;(2)在(1)中,若∠1=40°,则∠3=90°,若∠1=55°,则∠3=90°;(二)猜想:由(1)(2)请你猜想:当∠3=90°时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行的.(三)证明:请证明你的上述猜想.【解答】解:(一)探究:(1)如图,∵射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等,∠1=50°,∴∠4=∠1=50°,∠5=∠7,∴∠6=180°﹣50°﹣50°=80°,∵m∥n,∴∠2+∠6=180°,∴∠2=100°,∴∠5=∠7=40°,∴∠3=180°﹣50°﹣40°=90°,故答案为:100°,90°;(2)∵∠1=40°,射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等,∴∠4=∠1=40°,∠5=∠7,∴∠6=180°﹣40°﹣40°=100°,∵m∥n,∴∠2+∠6=180°,∴∠2=80°,∴∠5=∠7=50°,∴∠3=180°﹣50°﹣40°=90°;∵∠1=55°,∴∠4=∠1=55°,∴∠6=180°﹣55°﹣55°=70°,∵m∥n,∴∠2+∠6=180°,∴∠2=110°,∵射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等,∴∠5=∠7=35°,∴∠3=180°﹣55°﹣35°=90°;故答案为:90°,90°;(二)猜想:当∠3=90°时,m∥n,故答案为:90°;(三)证明:∵∠3=90°,∴∠4+∠5=180°﹣90°=90°,∵∠1=∠4,∠7=∠5,∴∠1+∠4+∠5+∠7=2×90°=180°,∴∠6+∠2=180°﹣(∠1+∠4)+180°﹣(∠5+∠7)=180°,∴m∥n.五.解答题(共1小题)29.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?【解答】解:设用x张制作盒身,(144﹣x)张制作盒底,可以正好制成整套罐头盒.根据题意,得2×15x=42(144﹣x)解得x=84,∴144﹣x=60(张).答:用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.。
2020-2021学年七年级下学期期末数学试卷含答案

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)关于x 的方程3−3a−x 2=0与方程2x ﹣5=1的解相同,则常数a 是( ) A .2 B .﹣2 C .3 D .﹣3【解答】解:方程2x ﹣5=1,移项得:2x =1+5,合并得:2x =6,解得:x =3,把x =3代入得:3−3a−32=0,去分母得:6﹣3a +3=0,解得:a =3.故选:C .2.(4分)小成心里想了两个数字a ,b ,满足下列三个方程,那么不满足的那个方程是() A .a ﹣b =3 B .2a +3b =1 C .3a ﹣b =7 D .2a +b =5【解答】解:假设满足选项A 、B 两个方程,则{a −b =32a +3b =1.解得{a =2b =−1.把{a =2b =−1代入选项C 的方程,满足选项C 的方程,说明不满足的那个方程是选项D 的方程,故选:D .3.(4分)若二元一次方程3x ﹣y =7,2x +3y =1,y =kx ﹣9有公共解,则k 的取值为()A .3B .﹣3C .﹣4D .4【解答】解:解{3x −y =72x +3y =1得:{x =2y =−1,代入y =kx ﹣9得:﹣1=2k ﹣9,解得:k =4.故选:D .4.(4分)已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1B.x>1C.﹣3<x≤﹣1D.x>﹣3【解答】解:两个不等式的解集的公共部分是:﹣1及其右边的部分.即大于等于﹣1的数组成的集合.故选:A.5.(4分)如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.5米B.10米C.15米D.20米【解答】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.6.(4分)已知不等式2x﹣a≤0的正整数解恰好是1,2,3,4,5,那么a的取值范围是()A.a>10B.10≤a≤12C.10<a≤12D.10≤a<12【解答】解:解不等式2x﹣a≤0得:x≤12a.根据题意得:5≤12a<6,解得:10≤a<12.故选:D.7.(4分)解不等式1+x 2≤1+2x 3+1时,去分母步骤正确的是( )A .1+x ≤1+2x +1B .1+x ≤1+2x +6C .3(1+x )≤2(1+2x )+1D .3(1+x )≤2(1+2x )+6 【解答】解:1+x 2≤1+2x 3+1,去分母得:3(1+x )≤2(1+2x )+6,故选:D .8.(4分)下列说法中,正确的个数有( )①若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形; ②一个三角形中,至少有一个角不小于60°;③三角形的外角大于与它不相邻的任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°.A .1个B .2个C .3个D .4个【解答】解:①若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形,说法错误;改正为:若任意两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;②一个三角形中,至少有一个角不小于60°,说法正确;③三角形的外角大于与它不相邻的任意一个内角,说法正确;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°,说法正确. 所以正确的个数有3个.故选:C .9.(4分)下面四个化学仪器示意图中,是轴对称图形的是( )A .B .C .D .【解答】解:A 、不是轴对称图形,故本选项不合题意;B 、不是轴对称图形,故本选项不合题意;C 、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.10.(4分)下列说法不正确的是()A.旋转后图形的大小形状均不变B.平移后图形的大小形状均不变C.旋转后对应点所连线段平行D.平移后对应点所连线段相等【解答】解:∵旋转的性质为旋转后图形的大小形状均不变,旋转后对应点所连线段平行或共线,平移的性质为平移后图形的大小形状均不变,平移后对应点所连线段相等,∴选项A,B,D不符合题意,选项C符合题意,故选:C.二.填空题(共10小题,满分30分)11.(10分)如图所示,图中共有24个三角形.【解答】解:图中三角形的个数是24个.故答案是:24.12.(2分)若3x m+(n﹣2)y﹣5=0是关于x的一元一次方程,则m+n=3.【解答】解:∵3x m+(n﹣2)y﹣5=0是关于x的一元一次方程,∴m=1,n﹣2=0,解得m=1,n=2,∴m+n=1+2=3.故答案是:3.13.(8分)若a >b ,要使ac <bc ,则c < 0.【解答】解:∵a >b ,∴要使ac <bc ,必须c <0,故答案为:<.14.若a >b ,则2020﹣2a < 2020﹣2b (填>,=或<).【解答】解:∵a >b ,∴﹣2a <﹣2b ,∴2020﹣2a <2020﹣2b ,故答案为:<.15.设a >b ,则2a ﹣5 > 2b ﹣5(填“>”或“<”).【解答】解:∵a >b ,∴2a >2b ,∴2a ﹣5>2b ﹣5,故答案为:>.16.已知关于x 的不等式(2a ﹣b )x >a ﹣2b 的解是x >52,则关于x 的不等式ax +b <0的解为 x >﹣8 .【解答】解:∵关于x 的不等式(2a ﹣b )x >a ﹣2b 的解是x >52,∴2a ﹣b >0,x >a−2b 2a−b ∴2a >b ,a−2b 2a−b =52∴2a ﹣4b =10a ﹣5b∴8a =b∴2a >8a∴a <0∵ax +b <0∴ax <﹣b∴x >−b a∵8a =b∴x >﹣8故答案为:x >﹣8.17.(4分)等边三角形有 3 条对称轴.【解答】解:等边三角形有3条对称轴.故答案为:3.18.(2分)已知关于x 的不等式组{x −a >05−2x ≥−1无解,则a 的取值范围是 a ≥3 . 【解答】解:由x ﹣a >0,∴x >a ,由5﹣2x ≥﹣1移项整理得,2x ≤6,∴x ≤3,又不等式组{x −a >05−2x ≥−1无解, ∴a ≥3.19.(2分)已知{x =−2y =5是方程ax +y ﹣1=0的解,则a = 2 . 【解答】解:由题意,得﹣2a +5﹣1=0.解得a =2,故答案为:2.20.(2分)在一个直角三角形中,已知一个锐角比另一个锐角的4倍多15°,则两个锐角分别为 75°、15° .【解答】解:设另一个锐角是x ,则这个锐角是4x +15°,根据题意得,x +4x +15°=90°,解得x =15°,4x +15°=4×15°+15°=75°,所以,这两个锐角分别为75°、15°.故答案为:75°、15°.三.解答题(共6小题,满分50分)21.(10分)解方程(组):(1)15﹣(7﹣5x )=2x +(5﹣3x );(2)3+0.2x 0.2−0.2+0.03x 0.01=0.75;(3){3x −2y +4=03y +2x −19=0; (4){x+32+y+53=7x−43+2y−35=2. 【解答】解:(1)15﹣(7﹣5x )=2x +(5﹣3x ),去括号,得15﹣7+5x =2x +5﹣3x ,移项,得5x ﹣2x +3x =5﹣15+7,合并同类项,得6x =﹣3,系数化为1,得x =−12;(2)3+0.2x 0.2−0.2+0.03x 0.01=0.75, 方程变形,得30+2x 2−20+3x 1=34, 去分母,得2(30+2x )﹣4(20+3x )=3,去括号,得60+4x ﹣80﹣12x =3,移项,得4x ﹣12x =3﹣60+80,合并同类项,得﹣8x =23,系数化为1,得x =−238;(3)方程组变形,得{3x −2y =−4①2x +3y =19②, ①×3+②×2得13x =26,解得x =2,把x =2代入①得,y =5,所以方程组的解为{x =2y =5; (4)方程变形,得{3x +2y =23①5x +6y =59②, ①×3﹣②得x =52,把x =52代入①得,y =314,所以方程组的解为{x =52y =314.22.(10分)解不等式(组),并在数轴上表示它的解集.(1)6x+16>2x﹣4;(2){2x−3(x−1)≥−8 2x−13>x2+1.【解答】解:(1)6x+16>2x﹣4,6x﹣2x>﹣4﹣16,4x>﹣20,x>﹣5,在数轴上表示为:;(2){2x−3(x−1)≥−8①2x−13>x2+1②,解不等式①得:x≤11,解不等式②得:x>8,所以不等式组的解集是8<x≤11,在数轴上表示为:.23.(10分)某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?【解答】解:设应分配x人生产甲种零件,12x×2=23(62﹣x)×3,解得x=46,62﹣46=16(人).故应分配46人生产甲种零件,16人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.24.(10分)已知a、b、c为三角形三边的长,化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|.【解答】解:∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,∴原式=|a﹣(b+c)|+|b﹣(c+a)|+|c﹣(a+b)|=b+c﹣a+a+c﹣b+a+b﹣c=a+b+c.25.如图,已知在△ABC中,BD是∠ABC的角平分线,∠A=60°,∠BDC=80°,求∠DBC的度数.【解答】解:∵∠A=60°,∠BDC=80°,∴∠ABD=∠BDC﹣∠A=80°﹣60°=20°.又∵BD是∠ABC的角平分线,∴∠DBC=∠ABD=20°.26.(10分)如图,在△ABC中,∠ACB=90°,CD是斜边上的高线,CE是∠ACB的角平分线,且∠CEB=105°,分别求∠ECB,∠ECD的大小.【解答】解:∵∠ACB=90°,CE是∠ACB的角平分线,∴∠ECB=12∠ACB=12×90°=45°.∵∠AEC+∠CEB=180°,∴∠AEC=180°﹣∠CEB=75°.在△CDE中,∠CDE+∠CED+∠ECD=180°,∴∠ECD=180°﹣∠CDE﹣∠CED=180°﹣90°﹣75°=15°.。
(4份试卷汇总)2020-2021学年河北省邢台市初一下学期期末数学检测试题

2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确) 1.如图,正方形 ABCD 的边长为 4,P 为正方形边上一动点,沿 A →D →C →B →A 的路径匀速移动,设 P 点经过的路径长为 x ,△APD 的面积是 y ,则下列图象能大致反映 y 与 x 的函数关系的是( )A .B .C .D .2.下列等式由左边到右边的变形中,属于因式分解的是( )A .x 2+5x -1=x(x +5)-1B .x 2-4+3x =(x +2)(x -2)+xC .x 2-9=(x +3)(x -3)D .(x +2)(x -2)=x 2-43.若a>b ,则下列不等式变形正确的是( )A .a+5<b+5B .33a b <C .3a>3bD .-4a > -4b4.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .16B .13C .12D .235.已知实数,x y 22(1)0x y -+=,则x y -等于( )A .3B .-3C .1D .-16.已知:如图,在ABC ∆中,点D ,E 、F 分别在AB 、AC 、BC 上,连接DE 、CD 、DF ,则下列条件中,不能..判定AC DF ∥的有:( ) ①13∠=∠;②24∠∠=;③;5ACB ∠=∠;④ADE B ∠=∠;⑤180ACB CED ∠+∠=A .1个B .2个C .3个D .4个 7.下列说法正确的是( )A .23x y -和25yx 不是同类项B .24a b -的系数和次数分别是1和4C .358x y xy +=D .()233m m n m n --=-+8.如图,BC ⊥AE 于点C ,CD ∥AB ,∠B=40°,则∠ECD 的度数是( )A .70°B .60°C .50°D .40°9.下列四个多项式中,能因式分解的是( )A .a 2+1B .a 2-6a+9C .x 2+5yD .x 2-5y 10.若是关于,的二元一次方程,则的值是( ) A .或 B . C . D .二、填空题题11.点A 在x 轴上,且到原点的距离为3,则点A 的坐标是_______.12.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.13.计算: 231332--⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭____. 14.如果将点A (1,3)先向下平移3个单位,再向右平移2个单位后,得到点B ,那么点B 的坐标是_____.15.点()2,1M -关于y 轴的对称点的坐标为______. 16.满足不等式1102x -+≥的非负整数解是______.17.写出一个第四象限的点的坐标_____.三、解答题18.本商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定,顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准打折区域顾客就可以获得此项待遇(转盘等分成8份,指针停在每个区域的机会相等). (1)顾客小华消费150元,获得打折待遇的概率是多少?(2)顾客小明消费120元,获得五折待遇的概率是多少?(3)小华对小明说:“我们用这个转盘来做一个游戏,指针指到五折你赢,指针指到七折算我赢”,你认为这个游戏规则公平吗?请说明理由.19.(6分)如图,点F 在线段AB 上,点,E G 在线段CD 上,//FG AE ,12∠=∠.(1)求证: //AB CD ;(2)若FG BC ⊥于点H ,BC 平分ABD ∠,100D ∠=,求1∠的度数.20.(6分)王勇和李华一起做风筝,选用细木棒做成如图所示的“筝形”框架,要求AB AD =,BC CD =,AB BC >.(1)观察此图,是否是轴对称图形,若是,指出对称轴;(2)ABC ∠和ADC ∠相等吗?为什么?(3)判断BD 是否被AC 垂直平分,并说明你的理由.21.(6分)某同学化简a (a +2b )﹣(a +b )(a ﹣b )出现了错误,解答过程如下:原式=a 2+2ab ﹣(a 2﹣b 2) (第一步)=a 2+2ab ﹣a 2﹣b 2(第二步)=2ab ﹣b 2 (第三步)(1)该同学解答过程从第 步开始出错,错误原因是 ;(2)写出此题正确的解答过程.22.(8分)甲乙两队进行足球对抗赛,比赛的规则规定每队胜一场得3分,平一场得1分,负一场得0分.两队一共进行10场比赛,甲队未负一场,得分超过22分.甲队至少胜了多少场?23.(8分)某条河河流目前的水位是4.5m ,超过警戒线1.5m ,预测未来3天平均每天下降0.55m. 试问预计3天后该河流的水位线是多少米?是否已低于警戒线?24.(10分)数形结合是解决数学问题的重要思想方法,借助图形可以对很多数学问题进行直观推导和解释. 如图1,有足够多的A 类、C 类正方形卡片和B 类长方形卡片. 用若干张A 类、B 类、C 类卡片可以拼出如图2的长方形,通过计算面积可以解释因式分解:2223(2)()a ab b a b a b ++=++.(1)如图3,用1张A 类正方形卡片、4张B 类长方形卡片、3张C 类正方形卡片,可以拼出以下长方形,根据它的面积来解释的因式分解为________;(2)若解释因式分解2234()(3)a ab b a b a b ++=++,需取A 类、B 类、C 类卡片若干张(三种卡片都要取到),拼成一个长方形,请画出相应的图形;(3)若取A 类、B 类、C 类卡片若干张(三种卡片都要取到),拼成一个长方形,使其面积为225a mab b ++,则m 的值为________,将此多项式分解因式为________.25.(10分)计算或化简(1)022120192()2--+(2)233223(4)?()(2)x y x y --÷参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x 的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.【详解】解:①当点P由点A向点D运动时,y的值为0;②当点P在DC上运动时,y随着x的增大而增大;③当点P在CB上运动时,y=12AB•AD,y不变;④当点P在BA上运动时,y随x的增大而减小.故选:B.【点睛】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.2.C【解析】【分析】根据因式分解的方法和要求逐个分析即可.【详解】A. x2+5x-1=x(x+5)-1,右边不是积的形式,故错误;B. x2-4+3x=(x+2)(x-2)+x,右边不是积的形式,故错误;C. x2-9=(x+3)(x-3),运用了平方差公式,正确;D. (x+2)(x-2)=x2-4,右边不是积的形式,故错误;故选:C【点睛】考核知识点:因式分解.理解因式分解的定义和方法是关键.3.C【解析】根据不等式的性质即可判断.【详解】∵a>b ,∴A. a+5>b+5,A 错误; B. 33a b >,B 错误; C. 3a>3b ,正确D. -4a < -4b ,D 错误,故选C.【点睛】此题主要考查不等式的性质,解题的关键是熟知不等式的基本性质判断.4.C【解析】【分析】利用轴对称图形的定义得出符合题意的图形,再利用概率公式求出答案.【详解】如图所示:当涂黑②④⑤时,与图中阴影部分构成轴对称图形, 则构成轴对称图形的概率为:3162= 故选:C .【点睛】此题主要考查了几何概率以及轴对称图形的定义,正确得出符合题意的图形是解题关键.5.A【解析】【分析】根据根号和平方的非负性,求出x ,y 的值代入即可得出.【详解】因为根号和平方都具备非负性,所以20,10x y -=+=,可得2,1x y ==-,所以2(1)3x y -=--=. 故选A.6.C【解析】【分析】先观察已知角的位置关系,根据平行线的判定定理判断通过已知角可得哪两条直线平行,可得出结论.①13∠=∠,根据内错角相等,两直线平行,可判断AC DF ∥;②24∠∠=,根据内错角相等,两直线平行,可判断DE FC ;③5ACB ∠=∠,根据同位角相等,两直线平行,可判断AC DF ∥;④ADE B ∠=∠,根据同位角相等,两直线平行,可判断DE FC ;⑤180ACB CED ∠+∠=,根据同旁内角互补,两直线平行,可判断DE FC ; 故不能判定AC DF ∥的有②④⑤,共三个,选C.【点睛】本题考查平行线的判定定理,本题中每组条件都可判断直线平行,但是有三个不能判断题目所需的直线平行,所以依据平行线的判定定理,要找准截线和被截线.7.D【解析】【分析】根据同类项定义判断A 、C 选项,根据单项式系数和次数定义判断B 选项,根据去括号法则判断D 选项.【详解】A .﹣3x 2y 和5yx 2是同类项,不符合题意;B .﹣a 2b 4的系数和次数分别是﹣1和6,不符合题意;C .3x 和5y 不是同类项,不能合并,不符合题意;D .2m ﹣3(m ﹣n )=2m ﹣3m +3n =﹣m +3n ,符合题意.故选D .【点睛】本题考查了整式的加减,以及同类项,熟练掌握运算法则和相关定义是解答本题的关键.8.C【解析】试题分析:∵BC ⊥AE ,∴∠ACB=90°,在Rt △ABC 中,∠B=40°,∴∠A=90°﹣∠B=50°,∵CD ∥AB , ∴∠ECD=∠A=50°,故选C .考点:平行线的性质;垂线.9.B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、C 、D 都不能把一个多项式转化成几个整式积的形式,故A 、C 、D 不能因式分解;B是完全平方公式的形式,故B能分解因式;故选B.10.C【解析】【分析】二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程.据此分析即可.【详解】若是关于,的二元一次方程,则所以k=-1故选:C【点睛】考核知识点:二元一次方程.理解定义是关键.二、填空题题11.(-3,0),(3,0)【解析】当点A在原点得右侧时,坐标为(3,0);当点A在原点得左侧时,坐标为(-3,0);∴点A的坐标为(3,0)或(-3,0)12.1【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=1°;故应填1.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.13.8 3【解析】【分析】先计算乘方,再相乘.【详解】231332--⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭=8927⨯=83故答案是:83. 【点睛】考查了负整数指数幂,解题关键是抓住a -m =1ma . 14.(3,0)【解析】【分析】向右平移得到横坐标为1+2=3,向下平移得到纵坐标为3-3=0,即可得到点B 的坐标.【详解】由题意得点B 坐标为(3,0).故填(3,0).【点睛】此题考查坐标的平移变化,当点沿x 轴左右平移时规律是横坐标左减右加,沿y 轴上下平移时规律是纵坐标上加下减.15.()2,1【解析】【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.16.0,1,2.【解析】【分析】先解不等式求得其解集,再找到不等式解集中的非负整数即可.【详解】解不等式110 2x-+≥,两边同时乘以2-得:20x-≤,移项得:2x≤,∴原不等式的非负整数解为:0,1,2.故答案为:0,1,2.【点睛】本题考查了求一元一次不等式的整数解,“能正确解原不等式,求出其解集”是解答本题的关键. 17.(1,﹣1)(答案不唯一)【解析】【分析】第四象限的点的坐标必须满足:横坐标是正数,纵坐标是负数.【详解】根据第四象限的点的坐标特点,可以是(1,﹣1),(2,-3)等.故答案为(1,﹣1)(答案不唯一)【点睛】本题考核知识点:各象限中点的坐标.解题关键点:熟记各象限点的坐标特点.三、解答题18.(1)58;(2)14;(3)公平,理由见解析.【解析】【分析】(1)由顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,即可得顾客小华消费150元,能获得1次转动转盘的机会;由共有8种等可能的结果,有5次打折机会,直接利用概率公式求解即可求得答案(2)利用获得打五折待遇的有2种情况,直接利用概率公式求解即可求得答案;(3)由共有8种等可能的结果,获得七折待遇的有2种情况,直接利用概率公式求解即可求得答案,进而比较得出答案.【详解】解:(1)∵顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,∴顾客小华消费150元,能获得1次转动转盘的机会,∵共有8种等可能的结果,获得打折待遇的有5种情况,∴小华获得打折待遇的概率是:58 ; (2)∵共有8种等可能的结果,获得五折待遇的有2种情况,∴获得五折待遇的概率是:2184= ; (3)公平,∵共有8种等可能的结果,获得七折待遇的有2种情况, ∴获得七折待遇的概率是:2184=; 则两人获胜的概率相同都为:14 ,故此游戏公平. 故答案为:(1)58;(2)14;(3)公平,理由见解析. 【点睛】本题考查概率公式的应用以及游戏公平性.用到的知识点为:概率=所求情况数与总情况数之比. 19.(1)见解析;(2)150∠=【解析】【分析】(1)先由平行线的性质得∠2=∠3,再证∠1=∠3,从而得出结论;(2)由AB ∥CD 可得80ABD ∠=,再由BC 平分ABD ∠得∠ABC=40°,再根据直角三角形两锐角互余可得结论.【详解】如图1(1)∵//FG AE∴23∠∠=∵12∠=∠∴13∠=∠∴//AB CD(2)∵//AB CD∴180ABD D ∠+∠=∵100D ∠=∴18080ABD D ∠=-∠=∵BC 平分ABD ∠ ∴14402ABD ∠=∠= 由FG BC ⊥可得1490∠+∠=∴190450∠=-∠=【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(1)是轴对称图形,对称轴是AC 所在直线;(2)ABC ADC ∠=∠;(3)BD 被AC 垂直平分【解析】【分析】(1)是轴对称图形.对称轴是AC 所在的直线.(2)∠ABC =∠ADC .理由:△ABC △ADC(SSS),∴∠ABC =∠ADC .(3)BD 被AC 垂直平分.理由多方面:比如B 、D 关于AC 所在直线对称,∴BD 被AC 垂直平分;或者:BC =CD 知△BCD 是等腰三角形,又CA 平分∠BCD ,所以AC 垂直平分BD ;或者:证△BCO ≌△DCO ,∴BO =DO .又∠BOC =∠DOC ,∴AC ⊥BD .【详解】解:(1)是轴对称图形,对称轴是AC 所在直线(2)ABC ADC ∠=∠,理由:因为AB AD =,BC CD =,AC AC =,所以ABC ADC ∆≅∆,因此ABC ADC ∠=∠.(或者:因为AB AD =,BC CD =,所以ABD ADB ∠=∠,CBD CDB ∠=∠,因此,ABC ADC ∠=∠)(3)BD 被AC 垂直平分,理由:因为BC CD =,所以,BCD ∆是等腰三角形,由(2)知:ABC ADC ∆≅∆,可得ACB ACD ∠=∠,由等腰三角形的“三线合一”,所以AC 垂直平分BD .【点睛】本题考查等腰三角形,解题关键在于熟练掌握等腰三角形的性质.21.(1)二,去括号时没有变号;(1)见解析.【解析】【分析】(1)逐步分析查找不符合运算法则的步骤即可.(1)先计算乘法,然后计算减法.【详解】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;故答案为:二,去括号时没有变号;(1)原式=a1+1ab﹣(a1﹣b1)=a1+1ab﹣a1+b1=1ab+b1.【点睛】本题考查了平方差公式和实数的运算,去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;②a-(b-c)=a-b+c,括号前是“-”号,去括号时连同它前面的“-”号一起去掉,括号内各项都要变号.22.甲队至少胜了7场.【解析】【分析】设甲队胜了x场,则平了(10-x)场,根据得分超过22分,列不等式求解.【详解】解:设甲队胜了x场,则平了(10-x)场,由题意得,3x+10-x>22,解得;x>1.∵x是整数,∴x的最小值为7,答:甲队至少胜了7场.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列不等式求解.23.2.85米,已低于警戒线.【解析】【分析】目前的水位的高度−未来3天下降的高度=3天后该河流的水位线的高度,依此列式与警戒线比较即可.【详解】解: 4.5−0.55×3=4.5−1.65=2.85(m),4.5−1.5=3(m),2.85<3,故3天后该河流的水位线是2.85米,已低于警戒线.考查了有理数的混合运算和有理数大小比较,得到3天后该河流的水位线的高度是解题的关键. 24.(1)()(3)a b a b ++(2)见解析(3)m=6,()(5)a b a b ++【解析】【分析】(1)根据图形,可以解答本题(2)根据题意可以画出相应的图形(3)根据题意和因式分解的方法可知m 的值为6,然后对式子分解因式即可解答本题.【详解】解:(1)2243()(3).a ab b a b a b ++=++(2)如下图:(3) 6.m =2256()(5).a ab b a b a b ++=++【点睛】由本题可以看出数形结合是解决数学问题的重要思想方法,借助图形可以对很多数学问题进行直观推导和解释.25.(1)1;(2)38y -.【解析】【分析】(1)根据零指数幂、负整数指数幂可以解答本题;(2)根据积的乘方和同底数幂的乘除法可以解答本题.【详解】(1)2021201922-⎛⎫-+ ⎪⎝⎭ 144=-+,(2)()()()3232324?2x y x y --÷ ()()666364?8x y x y =-÷,38y =-.【点睛】本题考查整式的混合运算、零指数幂、负整数指数幂,解答本题的关键是明确整式混合运算的计算方法.2019-2020学年初一下学期期末模拟数学试卷 一、选择题(每题只有一个答案正确)1.下列各式从左边到右边的变形是因式分解的是( ) A .221(2)1x x x x -+=-+B .44331234x y x y xy =⋅C .2(2)(2)4x x x +-=-D .2269(3)x x x -+=-2.若3236a b a b -=-=,,则b a -的值(). A .-2 B .2 C .-4 D .43.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折4.如图,平行河岸两侧各有一城镇P ,Q ,根据发展规划,要修建一条公路连接P ,Q 两镇,已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案( )A .B .C .D .5.如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的面积S n =( )A .2nB .22n -C .12n +D .12n -6.如图,将直线11沿着AB 的方向平移得到直线l 2,若∠1=55°,则∠2的度数是( )A .125°B .55°C .90°D .50°7.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上。
2020-2021学年河北省初中七年级下册期末考试数学试题有答案A-精品试卷

最新度第二学期期末质量监测七年级数学试卷注意事项:1.本次考试试卷共6页,试卷总分120分,考试时间90分钟。
2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,务必在答题卡规定的地方填写自己的姓名、准考证号,并认真核对答题卡上所粘贴的条形码中姓名、准考证号和本人姓名、准考证号是否一致。
3.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号。
写在本试卷上无效。
一、精心选一选,慧眼识金(本大题共16个小题:每小题3分,共48分。
在每小题给出的四个选项中,只有一个是符合题目要求的)1.计算23a a ⋅正确的是A.aB.5aC.6aD.9a2.某种细菌直径约为0.00000067mm ,若将0.00000067mm 用科学记数法表示为n 107.6⨯mm (n 为负整数),则n 的值为A.-5B.-6C.-7D.-83.下列三天线段不能构成三角形的三边的是A.3cm ,4cm ,5cmB.5cm ,6cm ,11cmC.5cm ,6cm ,10cmD.2cm ,3cm ,4cm4.如图,直线a ,b 被直线c 所截,若a ∥b ,=∠︒=∠︒=∠3702401,则,A.70°B.100°C.110°D.120°5.当x <a <0时,2x 与ax 的大小关系是A.2x >axB.2x ≥axC.2x <axD.2x ≤ax6.不等式组⎩⎨⎧≤+x4-168-x 213x 4>的最小整数解是A.0B.-1C.1D.27.如图,下列能判定AB ∥EF 的条件有①︒=∠+∠180BFE B ②21∠=∠③43∠=∠ ④5∠=∠BA.1个B.2个C.3个D.4个8.当a ,b 互为相反数时,代数式2a +ab-4的值为A.4B.0C.-3D.-49.下列运算正确的是A.222b a b a +=+)(B.(-2ab 3)622b a 4-=C.3a 632a a 2-=D.a 3-a=a (a+1)(a-1)10.(-8)201320148-)(+能被下列整数除的是 A.3 B.5 C.7 D.911.若不等式组⎩⎨⎧-ax <<x 312的解集是x <2,则a 的取值范围是A.a <2B.a ≤2C.a ≥2D.无法确定12.如图,是三个等边三角形(注:等边三角形的三个内角都相等)随意摆放的图形,则321∠+∠+∠等于A.90°B.120°C.150°D.180°13.把三张大小相同的正方形卡片A 、B 、C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S 1;若按图2摆放时,阴影部分的面积为S 2,则S 1和S 2的大小关系是A.S 1>S 2B.S 1<S 2C.S 1=S 2D.无法确定14.已知的结果为,则计算:2m -m -m 01-m -m 342+= A.3 B.-3 C.5 D.-515.甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙得速度的两倍,要保证在2小时以内相遇,则甲的速度A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/h16.如图,E 是△ABC 中BC 边上的一点,且BE=31BC ;点D 是AC 上一点,且AD=41AC ,S =-=∆∆∆ADF EF ABC S S ,则24A.1B.2C.3D.4第Ⅱ (非选择题,共72分)二、细心填一填,一锤定音(每小题3分,共12分)17.分解因式:2-x 22=。
2020-2021学年人教版七年级下学期期末数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.(3分)a6可以表示为()A.6a B.a2•a3C.(a3)2D.a12÷a2【解答】解:A、6a表示6×a,此选项不符合题意;B、a2•a3=a5,此选项不符合题意;C、(a3)2=a6,此选项符合题意;D、a12÷a2=a10,此选项不符合题意;故选:C.2.(3分)下列命题:①如果两个角相等,那么它们是对顶角;②两直线平行,内错角相等;③三角形的一个外角大于任何一个和它不相邻的内角;④等腰三角形的底角必为锐角,其中假命题的个数有()A.1个B.2个C.3个D.4个【解答】解:①如果两个角相等,那么它们是对顶角,错误,是假命题,符合题意;②两直线平行,内错角相等,正确,是真命题,不符合题意;③三角形的一个外角大于任何一个和它不相邻的内角,正确,是真命题,不符合题意;④等腰三角形的底角必为锐角,正确,是真命题,不符合题意,故选:A.3.(3分)已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6B.3x>3yC.﹣2x<﹣2y D.﹣3x+6>﹣3y+6【解答】解:A、∵x>y,∴x﹣6>y﹣6,故本选项错误;B、∵x>y,∴3x>3y,故本选项错误;C、∵x>y,∴﹣x<﹣y,∴﹣2x<﹣2y,故选项错误;D、∵x>y,∴﹣3x<﹣3y,∴﹣3x+6<﹣3y+6,故本选项正确.故选:D.4.(3分)下列命题中是真命题的是()A.相等的角是对顶角B.数轴上的点与实数一一对应C .同旁内角互补D .无理数就是开方开不尽的数【解答】解:A 、相等的角不一定是对顶角,故此命题是假命题; B 、数轴上的点与实数一一对应,故此命题是真命题; C 、两直线平行,同旁内角互补,故此命题是假命题;D 、π2是无理数,但不是开方开不尽的数,故此命题是假命题; 故选:B .5.(3分)若{x =1y =3是二元一次方程mx ﹣y =3的解,则m 为( )A .7B .6C .43D .0【解答】解:把{x =1y =3代入方程得:m ﹣3=3,解得:m =6, 故选:B .6.(3分)若解集在数轴上的表示如图所示,则这个不等式组可以是( )A .{x ≥−2x <3B .{x ≤−2x ≥3C .{x ≥−2x ≤3D .{x >−2x ≤3【解答】解:若解集在数轴上的表示如图所示,可得解集为﹣2≤x <3, 则这个不等式组可以是{x ≥−2x <3.故选:A .7.(3分)如图,下列推理及所证明的理由都正确的是( )A .若AB ∥DG ,则∠BAC =∠DCA ,理由是内错角相等,两直线平行 B .若AB ∥DG ,则∠3=∠4,理由是两直线平行,内错角相等 C .若AE ∥CF ,则∠E =∠F ,理由是内错角相等,两直线平行D .若AE ∥CF ,则∠3=∠4,理由是两直线平行,内错角相等【解答】解:A 、若AB ∥DG ,则∠BAC =∠DCA ,理由是两直线平行,内错角相等;故选项A 错误;B 、若AB ∥DG ,则∠BAC =∠DCA ,并不是∠3=∠4,理由是两直线平行,内错角相等;故选项B 错误;C 、若AE ∥CF ,则∠E =∠F ,理由是两直线平行,内错角相等;故选项C 错误;D 、若AE ∥CF ,则∠3=∠4,理由是两直线平行,内错角相等;正确; 故选:D .8.(3分)如图,带箭头的两条直线互相平行,其中一条直线经过正八边形的一个顶点,若∠1=20°,则∠2的度数为( )A .55°B .60°C .70°D .110°【解答】解:如下图所示,∵正八边形的一个内角为180°×(8−2)8=135°,∴∠4=∠3+∠6=135°,∵∠1+∠4+∠5=180°,∠1=20°,∴∠5=180°﹣∠1﹣∠4=180°﹣20°﹣135°=25°, ∵带箭头的两条直线互相平行,∴∠6=∠5=25°(两直线平行,内错角相等), ∴∠3=135°﹣∠6=135°﹣25°=110°, ∴∠2=180°﹣∠3=180°﹣110°=70°, 故选:C .二.填空题(共8小题,满分32分,每小题4分)9.(4分)人体内某种细胞的形状可近似看做球体,它的直径约为0.0000032m,数字0.00000032用科学记数法表示为 3.2×10﹣7.【解答】解:0.00000032=3.2×10﹣7.故答案为:3.2×10﹣7.10.(4分)已知a=240,b=332,c=424,试比较a,b,c的大小,用“>”将它们连接起来:b>c>a.【解答】解:a=240=(25)8=328,b=332=(34)8=818,c=424=(43)8=648,∵81>64>32,∴b>c>a,故答案为b>c>a.11.(4分)石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则S△ABC1=S△AC1C2=S△AC2C.请回答,S△ABC1=S△AC1C2=S△AC2C成立的理由是:①平行线分线段成比例定理;②等底共高.【解答】解:由BB1=B1B2=B2B3且B1C1∥B2C2∥B3C,依据平行线分线段成比例定理知BC1=C1C2=C2C,再由△ABC1,△AC1C2与△AC2C等底共高知S△ABC1=S△AC1C2=S△AC2C,故答案为:①平行线分线段成比例定理;②等底共高.12.(4分)如图,将边长为5个单位的等边△ABC沿边BC向右平移3个单位得到△A′B′C′,则四边形AA′C′C的周长为16.【解答】解:∵△ABC为等边三角形,∴AB=AC=BC=5,∵等边△ABC沿边BC向右平移3个单位得到△A′B′C’,∴AC=A′C′=5,AA′=CC′=3,∴四边形AA′C′C的周长=3+3+5+5=16.故答案为16.13.(4分)如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.【解答】解:连接BE.∵△CDM和△BEM中,∠DMC=∠BME,∴∠C+∠D=∠MBE+∠BEM,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠MBE+∠BEM+∠DEF+∠F=∠A+∠F+∠ABE+∠BEF=360°.故答案为:360°.14.(4分)a,b,c为△ABC的三边,化简|a﹣b﹣c|﹣|a+b﹣c|+2a结果是2c.【解答】解:∵a,b,c为△ABC的三边,∴a+b>c,b+c>a,∴原式=c+b﹣a﹣(a+b﹣c)+2a=c+b﹣a﹣a﹣b+c+2a=2c.故答案为:2c.15.(4分)已知a﹣b=2,则a2﹣2ab+b2=4.【解答】解:原式=(a﹣b)2,当a﹣b=2时,原式=4.16.(4分)不等式3x﹣6>0的解集为x>2.【解答】解:移项得:3x>6,解得:x>2,故答案为:x>2.三.解答题(共9小题,满分84分)17.(10分)计算:(1)(﹣2a3)2+a8÷a2﹣2a2・a4;(2)(−12)﹣3+(﹣2)3+(−13)0+(14)﹣2.【解答】解:(1)原式=4a6+a6﹣2a6=3a6;(2)原式=1(−12)3−8+1+1(14)2=﹣8﹣8+1+16=1.18.(10分)分解因式: (1)x 2(x ﹣y )+(y ﹣x ); (2)3ax 2﹣6axy +3ay 2.【解答】解:(1)原式=(x ﹣y )(x 2﹣1), =(x ﹣y )(x ﹣1)(x +1);(2)原式=3a (x 2﹣2xy +y 2), =3a (x ﹣y )2.故答案为:(x ﹣y )(x ﹣1)(x +1);3a (x ﹣y )2. 19.(10分)(1){3x −2y =112x +3y =16(2){5x −1>3(x +1)12x −1≤7−32x【解答】解:(1){3x −2y =11①2x +3y =16②,①×3+②×2,得:13x =65, 解得x =5,将x =5代入①,得:15﹣2y =11, 解得y =2, ∴{x =5y =2;(2)解不等式5x ﹣1>3(x +1),得:x >2, 解不等式12x ﹣1≤7−32x ,得:x ≤4,则不等式组的解集为2<x ≤4.20.(8分)先化简,再求值:(a +3)2﹣(a +1)(a ﹣1)﹣2(2a +4),其中a =12. 【解答】解:原式=a 2+6a +9﹣(a 2﹣1)﹣4a ﹣8 =2a +2, ∵a =12,∴原式=1+2=3.21.(6分)已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(5,6),B (﹣2,3),C(3,1).请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC;(2)将三角形ABC先向下平移6个单位长度,再向左平移3个单位长度后得到的三角形A1B1C1(点A1,B1,C1分别是点A,B,C移动后的对应点).①请画出三角形A1B1C1;②并判断线段AC与A1C1的位置与数量关系.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,A1B1C1即为所求,AC与A1C1平行且相等.22.(8分)如图,①AB∥CD,②BE平分∠ABD,③∠1+∠2=90°,④DE平分∠BDC.(1)请以其中三个为条件,第四个为结论,写出一个命题;(2)判断这个命题是否为真命题,并说明理由.【解答】解:(1)如果BE 平分∠ABD ,∠1+∠2=90°,DE 平分∠BDC ,那么AB ∥CD ; (2)这个命题是真命题, 理由如下:∵BE 平分∠ABD , ∴∠1=12∠ABD , ∵DE 平分∠BDC , ∴∠2=12∠BDC , ∵∠1+∠2=90°, ∴∠ABD +∠BDC =180°, ∴AB ∥CD .23.(10分)某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰上运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元,则该校至多购进速滑冰鞋多少双?【解答】解:(1)设每双速滑冰鞋购进价格是x 元,每双花滑冰鞋购进价格是y 元, 由题意,得{30x +20y =850040x +10y =8000.解得{x =150y =200.答:每双速滑冰鞋购进价格是150元,每双花滑冰鞋购进价格是200元;(2)设该校购进速滑冰鞋a 双,根据题意,得 150a +200(2a ﹣10)≤9000. 解得 a ≤20.答:该校至多购进速滑冰鞋20双.24.(10分)已知关于x 的方程a ﹣3(x ﹣1)=7﹣x 的解为负分数,且关于x 的不等式组{−2(a −x)≤x +4,①3x−42<x −3,②的解集为x <﹣2,求符合条件的所有整数a 的积.【解答】解:{−2(a −x)≤x +4①3x−42<x −3②,由①得:x ≤2a +4, 由②得:x <﹣2,由不等式组的解集为x <﹣2,得到2a +4≥﹣2,即a ≥﹣3,把a =﹣3代入方程得:﹣3﹣3(x ﹣1)=7﹣x ,即x =−72,符合题意; 把a =﹣2代入方程得:﹣2﹣3(x ﹣1)=7﹣x ,即x =﹣3,不合题意; 把a =﹣1代入方程得:﹣1﹣3(x ﹣1)=7﹣x ,即x =−52,符合题意; 把a =0代入方程得:﹣3(x ﹣1)=7﹣x ,即x =﹣2,不合题意; 把a =1代入方程得:1﹣3(x ﹣1)=7﹣x ,即x =−32,符合题意; 把a =2代入方程得:2﹣3(x ﹣1)=7﹣x ,即x =﹣1,不合题意; 把a =3代入方程得:3﹣3(x ﹣1)=7﹣x ,即x =−12,符合题意. 故符合条件的整数a 取值为﹣3,﹣1,1,3,积为9.25.(12分)如图,在△ABC 中,AE 平分∠BAC ,AD ⊥BC 于点D .∠ABD 的角平分线BF 所在直线与射线AE 相交于点G ,若∠ABC =3∠C ,求证:3∠G =∠DFB .【解答】证明:∵AE 平分∠BAC ,BF 平分∠ABD , ∴∠CAE =∠BAE ,∠ABF =∠DBF ,设∠CAE =∠BAE =x , ∵∠ABC =3∠C ,∴可以假设∠C =y ,∠ABC =3y ,∴∠ABF =∠DBF =∠CBE =12(180°﹣3y )=90°−32y ,第 11 页 共 11 页 ∵AD ⊥CD ,∴∠D =90°,∴∠DFB =90°﹣∠DBF =32y ,设∠ABF =∠DBF =∠CBE =z ,则{z =x +∠G z +∠G =x +y, ∴∠G =12y ,∴∠DFB =3∠G .。
2020-2021学年河北省初中七年级下册期末数学试卷(有答案)A-精品试卷

最新河北省七年级(下)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(﹣6)2的平方根是()A.﹣6 B.36 C.±6 D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4b B.a+4<b+4 C.﹣4a<﹣4b D.a﹣4<b﹣44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(﹣3,2)和点B(﹣3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组的解集是()A.x B.﹣1C.x D.x≥﹣17.已知是二元一次方程组的解,则m﹣n的值是()A.1 B.2 C.3 D.48.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣511.若|3x﹣2|=2﹣3x,则()A.x=B.x C.x≤D.x≥12.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.二、填空题(每题3分)13.=______.14.计算:=______.15.(﹣5)0的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于______,若某一小组的人数为4人,则该小组的百分比为______%.17.若方程mx+ny=6的两个解是,,则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是______.19.线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标是______.20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=______°.三、解答题21.求下列式子中的x28x2﹣63=0.22.求下列式子中的x(x﹣1)3=125.23.解方程组:24.解方程组:.25.已知方程组,当m为何值时,x>y?26.解不等式:.27.解不等式组,并把解集表示在数轴上.28.△ABC与△A′B′C′在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A′______;B′______;C′______;(2)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为______;(3)求△ABC的面积.29.完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD求证:∠EGF=90°证明:∵HG∥AB(已知)∴∠1=∠3______又∵HG∥CD(已知)∴∠2=∠4∵AB∥CD(已知)∴∠BEF+______=180°______又∵EG平分∠BEF(已知)∴∠1=∠______又∵FG平分∠EFD(已知)∴∠2=∠______∴∠1+∠2=(______)∴∠1+∠2=90°∴∠3+∠4=90°______即∠EGF=90°.30.某果农承包了一片果林,为了了解整个果林的挂果情况,果家随机抽查了部分果树挂果树进行分析.下图是根据这组数据绘制的统计图,图中从左到右各长方形之比为5:6:8:4:2,又知挂果数大于60的果树共有48棵.(1)果农共抽查了多少棵果树?(2)在抽查的果树中,挂果树在40~60之间的树有多少棵,占百分之几?31.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)参考答案与试题解析一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.100【考点】总体、个体、样本、样本容量.【分析】根据样本的定义:从总体中取出的一部分个体叫做这个总体的一个样本解答.【解答】解:∵了解一批电视机的寿命,从中抽取100台电视机进行试验,∴这个问题的样本是所抽取的100台电视机的寿命.故选C.2.(﹣6)2的平方根是()A.﹣6 B.36 C.±6 D.±【考点】平方根.【分析】首先根据平方的定义求出(﹣6)2的结果,然后利用平方根的定义即可解决问题.【解答】解:∵(﹣6)2=36,∴±=±6,∴(﹣6)2的平方根是±6.故选C.3.已知a<b,则下列不等式中不正确的是()A.4a<4b B.a+4<b+4 C.﹣4a<﹣4b D.a﹣4<b﹣4【考点】不等式的性质.【分析】根据不等式的性质1,可判断B、D,根据不等式的性质2,可判断A,根据不等式的性质3,可判断C.【解答】解:A、不等式的两边都乘以一个正数,不等号的方向不变,故A正确;B、不等式的两边都加或都减同一个整式,不等号的方向不变,故B正确;C、不等式的两边都乘以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D正确;故选:C.4.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上【考点】点的坐标.【分析】判断出m=n,再根据各象限内点的坐标特征解答.【解答】解:∵点A(m,n),点B(n,m)表示同一点,∴m=n,∴这一点一定在第一、三象限的角平分线上.故选B.5.过点A(﹣3,2)和点B(﹣3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直【考点】坐标与图形性质.【分析】根据直线平行于y轴的特点:横坐标相等,纵坐标不相等进行解答.【解答】解:∵A(﹣3,2)、B(﹣3,5),∴横坐标相等,纵坐标不相等,则过A,B两点所在直线平行于y轴,故选:A.6.不等式组的解集是()A.x B.﹣1C.x D.x≥﹣1【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>,由②得,x≥﹣1,故不等式组的解集为:x>.故选A.7.已知是二元一次方程组的解,则m﹣n的值是()A.1 B.2 C.3 D.4【考点】二元一次方程组的解.【分析】将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.【解答】解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°【考点】平行线的性质;角平分线的性质.【分析】根据两直线平行,同位角相等可得∠EAD=∠B,再根据角平分线的定义求出∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×30°=60°,∴∠C=∠EAC﹣∠B=60°﹣30°=30°.故选:A.9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多【考点】条形统计图.【分析】根据条形图,可读出各年级的男生和女生人数,进而求出各年级的总人数,根据所得数值,可对四个选项进行判断.【解答】解:根据图中数据计算:七年级人数是8+13=21;八年级人数是14+16=30;九年级人数是10+20=30.所以A和D错误;根据统计图的高低,显然C错误;B中,九年级的男生20人是女生10人的两倍,正确.故选B.10.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣5【考点】平方根.【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a﹣b的值.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.11.若|3x﹣2|=2﹣3x,则()A.x=B.x C.x≤D.x≥【考点】解一元一次不等式;绝对值.【分析】一个数的绝对值一定是非负数,2﹣3x是表示前面那个数的绝对值的.∴2﹣3x≥0解得x≤.【解答】解:一个数的绝对值一定是非负数,2﹣3x是表示前面那个数的绝对值的,∴2﹣3x≥0,解得x≤.故本题的答案选C.12.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.【解答】解:设男生有x人,女生有y人,根据题意得,.故选:D.二、填空题(每题3分)13.= 3 .【考点】二次根式的乘除法.【分析】原式利用平方根的定义化简即可得到结果.【解答】解:原式=3.故答案为:314.计算:= ﹣3 .【考点】立方根.【分析】根据(﹣3)3=﹣27,可得出答案.【解答】解:=﹣3.故答案为:﹣3.15.(﹣5)0的立方根是 1 .【考点】立方根;零指数幂.【分析】先依据零指数幂的性质求得(﹣5)0的值,然后再求得它的立方根即可.【解答】解:(﹣5)0=1,1的立方根是1.故答案为:1.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于 1 ,若某一小组的人数为4人,则该小组的百分比为20 %.【考点】条形统计图.【分析】根据各组的百分比=各组的人数÷总人数,即人数为4人时,则该小组的百分比是4÷20=20%.因为各小组的人数之和等于总人数,则各小组的百分比之和等于1.【解答】解:各小组的百分比之和等于1,该小组的百分比为:4÷20=20%.17.若方程mx+ny=6的两个解是,,则m= 4 ,n= 2 .【考点】二元一次方程的解.【分析】把,分别代入mx+ny=6,得到关于m、n的方程组,解方程组即可得到m、n的值.【解答】解:把,分别代入mx+ny=6,得,(1)+(2),得3m=12,m=4,把m=4代入(2),得8﹣n=6,解得n=2.所以m=4,n=2.18.已知关于x的不等式组的整数解有5个,则a的取值范围是﹣4<a≤﹣3 .【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式①得x≥a,解不等式②得x<2,因为不等式组有5个整数解,则这5个整数是1,0,﹣1,﹣2,﹣3,所以a的取值范围是﹣4<a≤﹣3.19.线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标是(1,2).【考点】坐标与图形变化-平移.【分析】由于线段CD是由线段AB平移得到的,而点A(﹣1,4)的对应点为C(4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B(﹣4,﹣1)的对应点D的坐标.【解答】解:∵线段CD是由线段AB平移得到的,而点A(﹣1,4)的对应点为C(4,7),∴由A平移到C点的横坐标增加5,纵坐标增加3,则点B(﹣4,﹣1)的对应点D的坐标为(1,2).故答案为:(1,2).20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2= 70 °.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【解答】解:∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为:70.三、解答题21.求下列式子中的x28x2﹣63=0.【考点】平方根.【分析】先求出x2的值,再根据平方根的定义进行求解.【解答】解:由28x2﹣63=0得:28x2=63,x2=,∴x=±.22.求下列式子中的x(x﹣1)3=125.【考点】立方根.【分析】根据立方根,即可解答.【解答】解:(x﹣1)3=125.x﹣1=5x=6.23.解方程组:【考点】解二元一次方程组.【分析】此题用代入法较简单.【解答】解:由(1),得x=2y.(3)把(3)代入(2),得3•2y+2y=8,解得y=1.把y=1代入(3),得x=2.∴原方程组的解是.24.解方程组:.【考点】解二元一次方程组.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①+②得:3x=24,即x=8,把x=8代入②得:y=1,则方程组的解为.25.已知方程组,当m为何值时,x>y?【考点】解一元一次不等式组;解二元一次方程组.【分析】解此题首先要把字母m看做常数,然后解得x、y的值,结合题意,列得一元一次不等式,解不等式即可.【解答】解:,②×2﹣①得:x=m﹣3③,将③代入②得:y=﹣m+5,∴得,∵x>y,∴m﹣3>﹣m+5,解得m>4,∴当m>4时,x>y.26.解不等式:.【考点】解一元一次不等式.【分析】先去分母,再去括号,移项,再合并同类项,化系数为1即可.【解答】解:去分母得,x﹣2﹣2(x﹣1)<2,去括号得,x﹣2﹣2x+2<2,移项得,x﹣2x<2+2﹣2,合并同类项得,﹣x<2,化系数为1得,x>﹣2.27.解不等式组,并把解集表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x>2,由②得,x≤4,故此不等式组的解集为:2<x≤4.在数轴上表示为:.28.△ABC与△A′B′C′在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A′(﹣3,1);B′(﹣2,﹣2);C′(﹣1,﹣1);(2)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为(a﹣4,b﹣2);(3)求△ABC的面积.【考点】作图-平移变换.【分析】(1)根据平面直角坐标系的特点直接写出坐标;(2)首先根据A与A′的坐标观察变化规律,P的坐标变换与A点的变换一样,写出点P′的坐标;(3)先求出△ABC所在的矩形的面积,然后减去△ABC四周的三角形的面积即可.【解答】解:(1)如图所示:A′(﹣3,1),B′(﹣2,﹣2)、C′(﹣1,﹣1);(2)A(1,3)变换到点A′的坐标是(﹣3,1),横坐标减4,纵坐标减2,∴点P的对应点P′的坐标是(a﹣4,b﹣2);(3)△ABC的面积为:3×2﹣×2×2﹣×3×1﹣×1×1=2.故答案为:(﹣3,1),(﹣2,﹣2)、(﹣1,﹣1);(a﹣4,b﹣2).29.完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD求证:∠EGF=90°证明:∵HG∥AB(已知)∴∠1=∠3 两直线平行、内错角相等又∵HG∥CD(已知)∴∠2=∠4∵AB∥CD(已知)∴∠BEF+ ∠EFD =180°两直线平行、同旁内角互补又∵EG平分∠BEF(已知)∴∠1=∠∠BEF又∵FG平分∠EFD(已知)∴∠2=∠∠EFD∴∠1+∠2=(∠BEF+∠EFD )∴∠1+∠2=90°∴∠3+∠4=90°等量代换即∠EGF=90°.【考点】平行线的性质.【分析】此题首先由平行线的性质得出∠1=∠3,∠2=∠4,∠BEF+∠EFD=180°,再由EG平分∠BEF,FG平分∠EFD得出∠1+∠2=90°,然后通过等量代换证出∠EGF=90°.【解答】解:∵HG∥AB(已知)∴∠1=∠3 (两直线平行、内错角相等)又∵HG∥CD(已知)∴∠2=∠4∵AB∥CD(已知)∴∠BEF+∠EFD=180°(两直线平行、同旁内角互补)又∵EG平分∠BEF,FG平分∠EFD∴∠1=∠BEF,∠2=∠EFD,∴∠1+∠2=(∠BEF+∠EFD),∴∠1+∠2=90°∴∠3+∠4=90°(等量代换),即∠EGF=90°.故答案分别为:两直线平行、内错角相等,∠EFD,两直线平行、同旁内角互补,∠BEF,∠EFD,∠BEF+∠EFD,等量代换.30.某果农承包了一片果林,为了了解整个果林的挂果情况,果家随机抽查了部分果树挂果树进行分析.下图是根据这组数据绘制的统计图,图中从左到右各长方形之比为5:6:8:4:2,又知挂果数大于60的果树共有48棵.(1)果农共抽查了多少棵果树?(2)在抽查的果树中,挂果树在40~60之间的树有多少棵,占百分之几?【考点】频数(率)分布直方图.【分析】(1)用48除以后二组所占的比例,列式计算即可得解;(2)用抽查的果树总棵树乘以第二、三组所占的比例计算即可得解,再根据各长方形之比列式计算即可求出百分比.【解答】解:(1)果农共抽查的果树棵树:48÷=48×=200(棵);(2)挂果树在40~60之间的树的棵数:200×=112(棵),所占的百分比为:×100%=56%.31.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可.【解答】解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得.答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,由题意得100a+60×2a≥11000,解得a≥50,150+50=200(元).答:每台A型号家用净水器的售价至少是200元.2016年9月30日。
河北省邢台市2021年七年级下学期数学期末考试试卷A卷

河北省邢台市2021年七年级下学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020七下·成华期末) 某种新型冠状病毒的直径为0.000000053米,将0.000000053用科学记数法表示为()A . 53×10﹣8B . 5.3×10﹣7C . 5.3×10﹣8D . 5.3×10﹣92. (2分)(2017·东海模拟) 下列汽车标志中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)在△ABC中,AB=9,BC=2,并且AC为奇数,则AC=()A . 5B . 7C . 9D . 114. (2分) (2020八下·贵港期末) 如图,在中,,则的度数为()A .B .C .D .5. (2分)(2020·武汉模拟) 下列事件是必然事件的是()A . 某种彩票中奖率为1%,则买100张这种彩票必然中奖B . 今晚努力学习,明天考试必然考出好成绩C . 从装有2个红球、3个白球的袋中随机摸出4个球,则一定会摸出红球D . 抛掷一枚普通的骰子所得的点数一定小于66. (2分)(2020·温州模拟) 如图,在平面直角坐标系中,以0为圆心,适当长为半径画弧,交x轴于点A,交y轴于点B,再分别以点A、B为圆心,大于 AB的长为半径画弧,两弧在第二象限交于点C。
若点C的坐标为(2x,y-1),则y关于x的函数关系为()A . y=-xB . y=-2x+1C . y=xD . y=1-2x7. (2分)(2020·拱墅模拟) 如图,在△ABC中,∠A=50°,∠1=30°,∠2=40°,∠D的度数是()A . 110°B . 120°C . 130°D . 140°8. (2分) (2018八上·芜湖期中) 如图,已知∠1=∠2,要使△ABC≌△ADE,还需条件()A . AB=AD,BC=DEB . BC=DE,AC=AEC . ∠B=∠D,∠C=∠ED . AC=AE,AB=AD9. (2分)(2018·天桥模拟) 如图所示,用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是() .A . 0.2B . 0.3C . 0.4D . 0.510. (2分)如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.若∠1=129°,则∠2的度数为()A . 49°B . 50°C . 51°D . 52°二、填空题 (共4题;共4分)11. (1分)(2019·石家庄模拟) 化简(π﹣3.14)0+|1﹣2 |﹣的结果是________.12. (1分) (2018八上·桥东期中) 如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠DBC等于________°13. (1分) (2017八下·泰州期中) 如图,正方形ABCD的边长为4cm,E为CD边的中点,,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于________cm.14. (1分)(2020·寿宁模拟) 为了满足广大师生的饮食用餐要求,学校餐厅为师生准备了A,B,C,D四种特制套餐,丁老师和小明同学一起去吃饭,他们每人随机选取一份套餐(套餐量满足师生选择需求),则丁老师和小明选到不同种套餐的概率是________.三、解答题 (共11题;共75分)15. (5分) (2017七下·淮安期中) 计算:(1)﹣3a2•(ab)2(2) x(y﹣5)+y(3﹣x)(3)(x+2)(x﹣1)﹣3x(x+1)(4)(x+3)2﹣(x﹣1)(x﹣2)16. (5分)(2020·阿城模拟) 如图,在边长为1的小正方形方格纸中,有线段、,点、、、均在小正方形的顶点上.(1)在图中画一个以线段为斜边的等腰直角三角形,点在小正方形的顶点上,并直接写出的长;(2)在图中画一个钝角三角形,点在小正方形的顶点上,并且三角形的面积为,.17. (2分)(2020·云南模拟) 在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标为(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1,B1,C1的坐标;(2)将△ABC绕点O顺时针旋转90°,画出旋转后的△A2B2C2,并求出点B旋转到点B2所经过的路径长(结果保留π).18. (10分) (2019八上·泗阳期末) 某电信公司推出甲、乙两种收费方式供手机用户选择:甲种方式:每月收月租费5元,每分钟通话费为元;乙种方式:不收月租费,每分钟通话费为元;(1)请分别写出甲乙两种收费方式每月付费、元与通话时间分钟之间函数表达式;(2)如何根据通话时间的多少选择付费方式,请给出你的方案.19. (5分) (2016八下·鄄城期中) 如图,在Rt△ABC中,∠A=90°,BE平分∠ABC,过点E作BC的垂线交BC于点D,CE=BE.求证:AB=CD.20. (7分)随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理(每小组的速度包含最小值,不包含最大值),得到其频数及频率如表(未完成):数据段(时速)频数(车辆数)频率30~40100.0540~ 503650~60______0.3960~70____________70~80200.1.总计2001(1)请你把表中的数据填写完整(2)补全图中的频数分布直方图.(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?21. (5分) (2017九上·鄞州月考) 如图,已知点A、B、C、D均在已知圆上,AD∥BC, AC平分∠BCD,请找出图中与弦AD相等的线段,并加以证明22. (5分) (2018七上·东莞月考) 某老师把某一小组五名同学的成绩简记为:,,,,,又知道记为的成绩表示分,正数表示超过分,则五名同学的平均成绩为多少分?23. (10分)(2011·河南) 为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图________,并计算扇形统计图中m=________;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?24. (11分)有A、B两个港口,水由A流向B,水流的速度是4千米/小时,甲、乙两船同时由A顺流驶向B,各自不停地在A、B之间往返航行,甲在静水中的速度是28千米/小时,乙在静水中的速度是20千米/小时.设甲行驶的时间为t小时,甲船距B港口的距离为S1千米,乙船距B港口的距离为S2千米,如图为S1(千米)和t(小时)函数关系的部分图象.(1) A、B两港口距离是________千米.(2)在图中画出乙船从出发到第一次返回A港口这段时间内,S2(千米)和t(小时)的函数关系的图象.(3)求甲、乙两船第二次(不算开始时甲、乙在A处的那一次)相遇点M位于A、B港口的什么位置?25. (10分)(2019·高安模拟) 如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连结CP.(1)求∠OAC的度数;(2)如图①,当CP与⊙A相切时,求PO的长;(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共11题;共75分)15-1、15-2、15-3、15-4、16-1、16-2、17-1、17-2、18-1、18-2、19-1、20-1、20-2、20-3、21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、。
2020-2021学年七年级下期末考试数学试卷(含答案)

第 1 页 共 22 页
2020-2021学年七年级下学期期末考试数学试卷
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)若√25.36=5.036,√253.6=15.925,则√253600=( )
A .50.36
B .503.6
C .159.06
D .1.5906
2.(3分)如图,过直线l 1外一点P 作它的平行线l 2,其作图依据是( )
A .两直线平行,同位角相等
B .两直线平行,内错角相等
C .同位角相等,两直线平行
D .内错角相等,两直线平行
3.(3分)下列四个图形中,不能通过基本图形平移得到的是( ) A . B .
C .
D .
4.(3分)以方程组{y =x +1y =−x −32
的解为坐标的点(x ,y )所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
5.(3分)为了了解我县初一4300名学生在疫情期间“数学空课”的学习情况,全县组织
了一次数学检测,从中抽取100名考生的成绩进行统计分析,以下说法正确的是( )
A .这100名考生是总体的一个样本
B .4300名考生是总体
C .每位学生的数学成绩是个体
D .100名学生是样本容量
6.(3分)相传Hippasus 是Pythagoras 的学生,他发现边长为1
的正方形的对角线的长不。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年河北省邢台市宁晋县七年级(下)期末数学试卷一、选择题(本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的1.以下描述中,能确定具体位置的是()A.万达电影院2排 B.距薛城高铁站2千米C.北偏东30℃ D.东经106℃,北纬31℃2.实数是()A.正分数B.负分数C.无理数D.有理数3.如图,直线AB、CD相交于点O,下列条件中,不能说明AB⊥CD的是()A.∠AOD=90°B.∠AOC=∠BOCC.∠BOC+∠BOD=180°D.∠AOC+∠BOD=180°4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.45.若﹣a≥b,则a≤﹣2b,其根据是()A.不等式的两边都加上(或减去)同一个整式,不等号的方向不变B.不等式的两边都乘(或除以)同一个正数,不等号的方向不变C.不等式的两边都乘(或除以)同一个负数,不等号的方向改变D.不等式的两边都乘(或除以)同一个负数,不等号的方向不变6.在平面直角坐标系中,点P(3,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限7.用代入法解方程组时,将方程①代入②中,所得的方程正确的是() A.3x+4y﹣6=8 B.3x﹣4x+6=8 C.3x+2y﹣3=8 D.3x﹣2y﹣6=88.为了调查班级中对新班主任老师的印象,下列更具有代表性的样本是()A.调查前十名的学生B.调查后十名的学生C.调查单号学生D.调查全体男同学9.若实数m满足1<m<2,则实数m可以是()A.B.C.D.﹣10.已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b 的值可以是()A.a=2,b=﹣1 B.a=﹣4,b=3 C.a=1,b=﹣7 D.a=﹣7,b=511.假期的某一天,学生小华的作息时间统计如图,统计图提供了4条信息,其中不正确的信息是()A.表示小华学习时间的扇形的圆心角是15°B.小华在一天中三分之一时间安排活动C.小华的学习时间再增加1小时就与做家务的时间相等D.小华的睡觉时间已超过9小时12.不等式组的解集是x>2,则m的取值范围是()A.m≤2 B.m≥2 C.m≤1 D.m>113.已知如图,直线a⊥c,b⊥c,∠1=140°,那么∠2的度数是()A.40°B.50°C.60°D.140°14.已知三角形的三个顶点坐标分别是(﹣2,1),(2,3),(﹣3,﹣1),把△ABC运动到一个确定位置,在下列各点坐标中,()是平移得到的.A.(0,3),(0,1),(﹣1,﹣1) B.(﹣3,2),(3,2),(﹣4,0)C.(1,﹣2),(3,2),(﹣1,﹣3) D.(﹣1,3),(3,5),(﹣2,1)二、填空题(本小题共4个小题,每小题3分,共12分)15.一个数的立方根为,则这个数为.16.如图所示,已知∠C=100°,若增加一个条件,使得AB∥CD,试写出符合要求的一个条件.17.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是.18.若关于x,y的二元一次方程组的解满足x+y,求满足条件的m 的取值范围为.三、解答题(本大题共7个小题,满分66分,解答题应写出必要的解题步骤或文字说明) 19.(9分)春天到了,七(2)班组织同学到公园春游,张明、李华对着景区示意图,如下描述牡丹园位置(图中小正方形边长代表100m)张明:“牡丹园坐标(300,300)”李华:“牡丹园在中心广场东北方向约42021”若他们二人所说的位置都正确.(1)在图中建立适当的平面直角坐标系;(2)用坐标描述其它景点位置.20219分)某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.视力频数(人)频率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)在频数分布表中,a=,b=;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?21.(9分)一个正数x的两个平方根是2a﹣3与5﹣a,求x的值.22.(9分)关于x的不等式组(1)当a=3时,解这个不等式组;(2)若不等式组的解集x<1,求a的值.23.(10分)如图,A、B、C.三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF 的位置关系,并说明理由.24.(10分)据统计资料,甲、乙两种作物的单位面积产量的比是1:2,现要把一块长100m、宽80m的长方形土地分为两块小长方形土地,分别种植这两种作物,怎样划分这块土地,使甲、乙两种作物的总产量的比是2:1?请你设计两种不同的种植方案.25.(10分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.若顾客购物应付x元,请根据x的取值,讨论顾客到哪家商场购物花费少?2020-2021学年河北省邢台市宁晋县七年级(下)期末数学试卷参考答案一、选择题(本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的1.D;2.C;3.C;4.D;5.C;6.D;7.B;8.C;9.C;10.D;11.D;12.C;13.A;14.D;二、填空题(本小题共4个小题,每小题3分,共12分)15. 1 816.∠BEF=100°或∠BEC=80°或∠AEC=100°(答案不唯一)17. -318.72 m19.解:(1)建立平面直角坐标系如图所示;……………………………………4分(2)中心广场(0,0),音乐台(0,400),望春亭(-2021-100),南门(100,-600),游乐园(2021-400).…………………………………………………9分2021:(1)60,0.05.………………………………………………………………4分(2)频数分布直方图如图所示,………………………………………………6分(3)视力正常的人数占被调查人数的百分比是140200×100%=70%.……………9分 21.解:∵一个正数x 的两个平方根是2a-3与5-a ,∴2a-3+5-a=0,…………………………………………………………………… 3分解得a=-2,…………………………………………………………………6分∴2a-3=2×(-2)-3=-7,∴x=(-7)2=49.………………………………………………………… 9分22.解:(1)当a =3时,由①得:2x +8>3x +6,解得:x <2,…………………2分由②得x <3,……………………………………………………………………4分∴原不等式组的解集是x <2.…………………………………………………6分(2)由①得:x <2,由②得x <a ,……………………………………………8分而不等式组的解集是x <1,∴a =1.………………………………………………………………………………………………9分23.解:BD ∥CF ,……………………………………………………………………2分理由如下:∵∠1=∠2,∴AD ∥BF ,………………………………………………4分∴∠D =∠DBF ,………………………………………………………………………6分∵∠3=∠D ,∴∠3=∠DBF ,………………………………………………………8分∴BD ∥CF .…………………………………………………………………………10分24.解:方案1:如图,设AE=x ,EB=y ,则80:2802:1100x y x y ⨯=⎧⎨+=⎩()(),…………………………………………………………………3分解得:8020x y =⎧⎨=⎩,即将原长方形的常分为80m 和2021部分;………………… 5分 方案2:如图,设AE=a ,EC=b ,则80100:21002:1a b a b +=⎧⎨⨯=⎩()(),………………………………………………………………8分 解得:6416a b =⎧⎨=⎩,即将原长方形的宽分为64m 和16m 两部分。
…………………10分 25.解:(1)当x ≤50时,在甲、乙两个商场购物都不享受优惠,因此到两个商场购物花费一样; ……………………………………………………………………2分(2)当50<x ≤100时,在乙商场购物享受优惠,在甲商场购物不享受优惠,因此在乙商场购物花费少;……………… 4分 (4分)(3)当累计购物超过100元时,即x >100元,甲商场消费为:100+(x -100)×0.9元,在乙商场消费为:50+(x -50)×0.95元,…………………………………………6分 当100+(x -100)×0.9>50+(x -50)×0.95,解得:x <150,当100+(x -100)×0.9<50+(x -50)×0.95,解得:x >150,当100+(x -100)×0.9=50+(x -50)×0.95,解得:x =150, ………………8分综上所述,当累计消费大于50元少于150元时,在乙商店花费少;当累计消费大于150元时,在甲商店花费少;当累计消费等于150元或不超过50元时,在甲乙商场花费一样.……………10分。