大学物理(清华)第3章刚体的定轴转动习题解答
刚体定轴转动 大学物理习题答案

薄圆盘对过球心轴的转动惯量为 d J 1 r 2 d m 1 R5 cos 5 d
2
2
J 2
/2 1 r2 dm
/2
R5 cos 5d
8
R 5
8
m R5 2 mR 2
02
0
15
15 4 R 3
5
3
由平行轴定理, J J mR 2 2 mR 2 mR 2 7 mR 2
5
5
悬垂。现有质量 m=8g 的子弹,以 v=200m/s 的速率从 A 点射入棒中,假定 A 点与 O 点的距离为 3 l , 4
如图 4-11 所示。求:(1)棒开始运动时的角速度;(2)棒的最大偏转角。
解:(1) 子弹射入前后系统对 O 点的角动量守恒
mv 3 l J , J 1 Ml 2 m ( 3 l)2 1 1 0.42 0.008 9 0.42 0.054 kg m2
计小球大小)
A
解:M (3m m)g l cos l mg cos ,J 3m( l )2 1 ml2 m( l )2 1 ml 2
4
2
4 12
43
l/4 O
l
图 4-5
13
大学物理练习册—刚体定轴转动
M
l mg cos 2
3g
cos
J
1 ml 2
2l
3
4-6 一均匀圆盘,质量为 m,半径为 R,可绕通过盘中心的光滑竖直轴在水平桌面上转动,如图 4-6 所示。 圆盘与桌面间的动摩擦因数为 ,若用外力推动使其角速度达到 0 时,撤去外力,求(1)转动过程 中,圆盘受到的摩擦力矩;(2)撤去外力后,圆盘还能转动多少时间?
dt d 0
0
刚体的定轴转动(带答案)

刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是[ C ](A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C)取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
2、(本题3分)0165均匀细棒OA可绕通过某一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?[ A ](A)角速度从小到大,角加速度从大到小。
(B)角速度从小到大,角加速度从小到大。
(C)角速度从大到小,角加速度从大到小。
(D)角速度从大到小,角加速度从小到大。
3.(本题3分)5640一个物体正在绕固定的光滑轴自由转动,则[D ](A)它受热或遇冷伸缩时,角速度不变.(B)它受热时角速度变大,遇冷时角速度变小.(C)它受热或遇冷伸缩时,角速度均变大.(D )它受热时角速度变小,遇冷时角速度变大.4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ](A )不变 (B )变小 (C )变大 (D )无法判断5、(本题3分)5028如图所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M的物体,B 滑轮受拉力F ,而且F=Mg 设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 [ C ](A )βA =βB (B )βA >βB(C )βA <βB (D )开始时βA =βB ,以后βA <βB6、(本题3分)0294刚体角动量守恒的充分而必要的条件是 [ B ](A )刚体不受外力矩的作用。
(B )刚体所受合外力矩为零。
大学物理学课后3第三章答案

题 3.8(a)图 (1) m1 , m2 和柱体的运动方程如下:
题 3.8(b)图
T2 m2 g m2a2
①
m1g T1 m1a1
②
T1R T2r J
③
式中 T1 T1,T2 T2 , a2 r , a1 R
而 由上式求得
J 1 MR 2 1 mr 2
∵
Fr N
N N
∴ 又∵
∴ ①
Fr
N
l1
l2 l1
F
J 1 mR 2 , 2
Fr R 2(l1 l2 ) F
J
mRl1
以 F 100 N 等代入上式,得
2 0.40 (0.50 0.75) 100 40 rad s2
0.20m, r =0.10m, m =4 kg, M =10 kg, m1 = m2 =2 kg,且开始时 m1 , m2 离地均为 h =2m.求: (1)柱体转动时的角加速度; (2)两侧细绳的张力.
解: 设 a1 , a2 和β分别为 m1 , m2 和柱体的加速度及角加速度,方向如图(如图 b).
习题 3
3.1 选择题
(1) 有两个力作用在一个有固定转轴的刚体上:
① 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;
② 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;
③ 当这两个力的合力为零时,它们对轴的合力矩也一定是零;
④ 当这两个力对轴的合力矩为零时,它们的合力也一定是零.
在
上
述
说
(5) 一圆盘正绕垂直于盘面的水平光滑固定轴 O 转动,如图射来两个质量相同,
大学物理第三章刚体力学基础习题答案

方向竖直向下
3-15 由角动量守恒得
mul J mvl 1 1 2 1 2 2 mu m v J 因弹性碰撞,系统机械能守恒: 2 2 2 1 1 2 2 又: J M 2l Ml 12 3 6mu M 3m u 联立可得: v M 3m l M 3m
2 2 2 1 mv l [m( l ) M l 2 ] 3 3 3
o
2 l 3
6mv (4m 3M ) l
v
m
A
3-9 电风扇在开启电源后,经过t1时间到达了额定 转速,此时相应的角速度为 0。当关闭电源后,经 过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。 解: 设电机的电磁力矩为M,摩擦力矩为Mf
1
0
t1
3-9 (1)
mg T ma
T mg sin 30 ma
g 2 a m/s 4
方向竖直向下
T2 N 2
mg
(2)
mg T1 ma
T2 mg sin 300 ma
T1r T2r J
a r
T1
1
mg
J k m r2
g 联立求解得: a 22 k
质点运动 m 质 量 力 F 刚体定轴转动 2 J r 转动惯量 m dm 力矩 M Fr sin
dp dL F m a F 第二定律 转动定律 M J M dt dt p mv 动 量 角动量 L J t t2 动量定理 t Fdt mv2 mv1 角动量定理 t Mdt J 2 J1 1 动量守恒 F 0, mv 恒矢量 角动量守恒 M 0, J 恒矢量 力矩的功 W Md 力 的 功 W F dr
大学物理五第三章习题答案

第三章 刚体的转动习题答案1、对于定轴转动刚体上不同的点来说:线速度、法向加速度、切向加速度具有不同的值,角位移、角速度、角加速度具有相同的值。
2、由sin M r F Fr θ=⨯=可知,(1)0,0F M ≠=,当0r =或者sin 0θ=,即力通过转轴或者力与转轴平行; (2)0,0F M =≠,这种情况不存在; (3)0,0F M ==,这种情况任何时候都存在。
3、根据均匀圆盘对中心轴的转动惯量:221122I mr vr ρ==可知,对于相同几何形状的铁盘和铝盘,密度大的转动惯量大。
通常我们取铁的密度为37.9/g cm ,铝的密度32.7/g cm ,因此铁盘对中心轴的转动惯量大;根据刚体动能定理:21222111d 22A M I I θθθωω==-⎰,可知对铁盘的外力矩要做更多的功。
4、轮A 的转动惯量212I mr =,轮B 的转动惯量2I mr =,根据刚体的转动定律M I β=,因为两者所受的阻力矩相等,可知轮A 的转动角加速度大于轮B 的转动角加速度,故轮A 先停止。
5、舞蹈演员在旋转过程中,可以近似地认为角动量守恒,当其把双手靠近身体时,转动惯量减小,故角速度增大;当其把双手伸开,转动惯量增大,故角速度减小。
6、解:2334d a bt ct dtθω==+-, 2612d b t c t dtωβ==-。
7、解:11200240/60rad s πωπ⨯==,22700290/60rad s πωπ⨯==, 2215025/126rad s t ωωππβ-===∆, 2117803902t t n θωβπ=+==。
8、解:根据均匀球体对直径轴的转动惯量225I mr =,得到地球对自转轴的转动惯量3729.810I kg m =⨯⋅,地球自转角速度2/246060rad s πω=⨯⨯,转动动能22813102k E I J ω==⨯。
9、解:已知030/rad s ωπ=,切断电源后的角位移752150θππ=⨯=,根据匀减速运动规律2220023/2rad s ωωβθβπθ=⇒==,由于电扇是匀减速,可知阻力矩为常量,因此根据刚体转动动能定理22101144.422M I I J θωω=-=-, 可得到转动惯量2244.420.01I kg m ω⨯==⋅,以及阻力矩44.40.1150M N m π=≈⋅。
大学物理第三章练习及答案

大学物理第三章练习及答案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、判断题1. 刚体是质点与质点之间的相对位置保持不变的质点系。
………………………………[√]2. 刚体中任意质点都遵循质点力学规律。
…………………………………………………[√]3. 定轴转动的刚体上的每一个质点都在作圆周运动,都具有相同的角速度。
…………[√]4. 刚体对轴的转动惯量越大,改变其对轴的运动状态就越困难。
………………………[√]5. 刚体质量一定,其转动惯量也就一定。
…………………………………………………[×]6. 当作用在刚体上的两个力合力矩为零时,则它们的合力也一定为零。
………………[×]7. 当作用在刚体上的两个力合力为零时,则它们的合力矩也一定为零。
………………[×]8. 平行于转轴的力对刚体定轴转动没有贡献。
……………………………………………[√]9. 刚体所受合外力矩为零时,刚体总角动量守恒。
………………………………………[√] 10. 刚体对某一轴的角动量守恒,刚体的所受合外力矩为零。
……………………………[×] 二、填空题11. 质量为m 的质点沿半径为r 的圆周以速率v 运动,质点对过圆心的中心轴转动惯量J =2mr ,角动量L =;质量为m 的质点沿着直线以速率v 运动,它相对于直线外距离为d 的一点的角动量为L =mdv 。
12. 长度为l 的均匀细棒放在Oxy 平面内,其一端固定在坐标原点O 位置,另一端可在平面内自由转动,当其转动到与x 轴正方向重合时,在细棒的自由端受到了一个34F i j =+牛顿的力,则此力对转轴的力矩M =4l 。
13. 在Oxy 平面内有一个由3个质点组成的质点系,其质量分别为1m 、2m 、3m ,坐标分别为()11,x y 、()22,x y 、()33,x y ,则此质点系对z 轴的转动惯量J =()()()222222*********m x y m x y m x y +++++。
大学物理同步训练第2版第三章刚体定轴转动详解

mg
3g 1 cos L 1 1 1 cos mL2 2 2 2 3 L
可知当 从 0 至 90 度的过程中,角速度从小到大。 5. (☆)如图 3 所示,A、B 为两个相同的绕着轻绳的定滑轮。A 滑 轮挂一质量为 m 的物体,B 滑轮受拉力 G,而且 G=mg。设 A、B 两 滑轮的角加速度分别为βA 和βB,不计滑轮轴的摩擦,则有 (A) A B (C) A B 答案:C 分析: (定性)由于物体 m 有向下的加速度,故作用于物体上的绳子张力小于 mg,即小于 右边绳子的张力(=mg) ,故 A 滑轮受到的力矩小于 B 滑轮,故 A B 。 (定量)设圆盘转动惯量为 I ,参考计算题第 1 题的计算过程,可得 A、B 圆盘的转动角加 速度为 (B) A B (D)开始时 A B ,以后 A B
mg TA ma mgR mgR A ; GR I B B TA R I A 2 I mR I R a A
故 A B 。 6. 一轻绳跨过一具有水平光滑轴、转动惯量为 J 的定滑轮, 绳的两端分别悬 有质量为 m1 和 m2 的物体 (m1<m2) , 如图 4 所示。 绳与轮之间无相对滑动。 若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A)处处相等 (C)右边大于左边 答案:C 分析: (定性)由于重的物体 m2 最终必然下落,可知圆盘最后将做顺时针转动,因此圆盘 受到的合外力矩应为顺时针,即右边绳子的张力要大于左边绳子的张力。 (定量)参考课本例题( (★)阿特伍德机:P84,例 3-5)可得 (B)左边大于右边 (D)无法判断哪边大
A J B A
6. (☆)如图 10 所示,一静止的均匀细棒,长为 L,质量为 m1,可绕通过棒的端点且垂直 于棒长的光滑固定轴 O 在水平面内转动,转动惯量为 m1L2/3。一质量为 m、速率为 v 的子 弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为 v/2,则 此时棒的角速度应为 答案: 。
大学物理第3章-刚体力学习题解答

大学物理第3章-刚体力学习题解答第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。
解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题3-1 一汽车发动机曲轴的转速在12s 内由每分钟1200转匀加速地增加到每分钟2700转,求:(1)角加速度;(2)在此时间内,曲轴转了多少转?解:(1))/(401s rad πω= )/(902s rad πω=)/(1.13)/(6251240902212s rad s rad t≈=-=∆-=πππωωβ匀变速转动(2))(78022122rad πβωωθ=-= )(3902圈==πθn 3-2 一飞轮的转动惯量为J ,在0=t 时角速度为0ω,此后飞轮经历制动过程。
阻力矩M 的大小与角速度ω的平方成正比,比例系数0>K 。
求:(1)当0ωω=时,飞轮的角加速度;(2)从开始制动到0ωω=所需要的时间。
解:(1)依题意 2ωβK J M -== )/(92202s rad JK J K ωωβ-=-= (2)由JK dt d 2ωωβ-== 得 ⎰⎰-=3200ωωωωK Jd dt tωK Jt 2=3-3 如图所示, 发电机的轮A 由蒸汽机的轮B 通过皮带带动。
两轮半径A R =30cm ,=B R 75cm 。
当蒸汽机开动后,其角加速度π8.0=B βrad/s 2,设轮与皮带之间没有滑动。
求(1)经过多少秒后发电机的转速达到A n =600rev/min ?(2)蒸汽机停止工作后一分钟内发电机转速降到300rev/min ,求其角加速度。
解:(1)t A A βω= t B B βω=因为轮和皮带之间没有滑动,所以A 、B 两轮边缘的线速度相同,即B B A A R R ωω=又)/(20606002s rad A ππω=⨯=联立得)(10s R R t B B A A ==βω(2))/(10603002s rad A ππω=⨯=)/(62s rad t A A A πωωβ=-'= 3-4 一个半径为=R 1.0m 的圆盘,可以绕过其盘心且垂直于盘面的转轴转动。
一根轻绳绕在圆盘的边缘,其自由端悬挂一物体。
若该物体从静止开始匀加速下降,在t ∆=2.0s 内下降的距离h =0.4m 。
求物体开始下降后第3秒末,盘边缘上任一点的切向加速度与法向加速度。
解:物体下落的加速度())/(2.0222s m t ha =∆=又 βR a a t == ,得圆盘的角加速度 )/(2.02s rad =β 第3秒末,圆盘的角速度)/(6.0s rad t ==βω所以 )/(2.02s m a t = )/(36.022s m R a n ==ω3-5 一个砂轮直径为0.4m ,质量为20kg ,以每分钟900转的转速转动。
撤去动力后,一个工件以100N 的正压力作用在砂轮边缘上,使砂轮在11.3s 内停止,求砂轮和工件的摩擦系数(忽略砂轮轴的摩擦)。
解:βJ M =其中NR M μ-= ,得JNRJ M dt d μωβ-===⎰⎰-=0ωμωNR Jd dt t, 即NRtJ 0ωμ= 又)/(306090020s rad ππω=⨯=,)(4.022122m kg d m J ⋅=⎪⎭⎫⎝⎛= 得167.0=μ3-6 如图所示,质量为m 的匀质圆环,半径为R ,当它绕通过环心的直径轴转动时,求圆环对轴的转动惯量J 。
解:方法一:设过环心且垂直于圆环所在平面的轴线为z 轴,过环心的两条互相垂直的直径分别为x 轴和y 轴,根据垂直轴定理y x z J J J +=由对称性可知y x J J =,又2mR J z =得221mR J J J y x ===方法二:θλλRd dl dm ==,其中Rm πλ2=()θθλθd R R dm dJ 232sin sin ==23202321sin mR R d R J ===⎰λπθθλπ3-7 如图所示,长为L 2的匀质细棒,质量为M ,未端固定一质量为m 的质点,当它绕过棒中点的水平轴转动时,求转动惯量J 。
习题3-6图习题3-3图解:22M 31mL ML J J J m +=+= 3-8 如图所示,从质量为M ,半径为R 的匀质薄圆板上挖去一个半径为r 的圆孔,圆孔的中心位于半径的中点。
求此时圆板对于原板中心且与板面垂直的轴线的转动惯量。
解:可以把带孔的圆板看成均匀的完整圆板减去一个跟圆孔大小一致的圆板,即孔板圆板J J J -=221MR J =圆板,22)2(21R m mr J +=孔板,其中M R r m 22ππ=得2242412121Mr R r M MR J --=3-9 如图所示,把两根质量均为m ,长为l 的匀质细棒一端焊接相连,其夹角︒=120θ,取连接处为坐标原点,两个细棒所在的平面为Oxy 平面,求此结构分别对Ox 轴、Oy 轴、Oz 轴的转动惯量。
习题3-7图习题3-8图习题3-9图习题3-10图解:(1)x x x J J J 右左+=, 其中0=x J 右︒=30cos y l ,︒===30cos 222l dy my dl l m y dmy dJ x 左, ⎰︒=︒=30cos 0224130cos l x ml l dy my J 左,即241ml J J J x x x =+=右左(2)y y y J J J 右左+=, 其中231ml J y =右 ︒=30sin x l , ︒===30sin 222l dx mx dl l m x dmx dJ y 左, ⎰︒=︒=30sin 02212130sin l ml l dx mx J 左,所以2125ml J J J y y y =+=右左(3) 222323131ml ml ml J z =+=或 2223212541ml ml ml J J J y x z =+=+=3-10 如图所示,在边长为a 的正六边形的六个顶点上各固定一个质量为m 的质点,设这正六边形放在Oxy 平面内,求:(1)对Ox 轴、Oy 轴、Oz轴的转动惯量;(2)对过中心C 且平行于Oy 的y O '轴的转动惯量。
解:(1)223)23(402ma a m J x =⨯+⨯= 22229)2(1)23(2)2(201ma a m aa m J y =⨯+⨯+⨯+⨯=222212)2(1)3(2201ma a m a ma J z =⨯+⨯+⨯+⨯=(2)2223)2(42ma a m ma J y =⨯+⨯=' 或根据平行轴定理2236ma a m J J y y =⨯-='3-11 匀质圆盘质量为m 、半径为R ,放在粗糙的水平桌面上,绕通过盘心的竖直轴转动,初始角速度为0ω,已知圆盘与桌面的摩擦系数为μ,问经过多长时间后圆盘静止?解:可以把圆盘看成由许许多多的小圆环组成,其中半径为r 、宽度dr 的质量为rdr dS dm πσσ2== ,其中2Rm πσ=, 受到的摩擦力矩为dr gr dmgr dM 22πμσμ-=-=所以整体圆盘受到的摩擦力矩为mgR gR dr gr M R μπμσπμσ32322302-=-=-=⎰又βJ M =, 221mR J =RgJ M dt d 34μωβ-=== 常量 gRt μωβω43000=-=3-12如图所示,斜面倾角为θ,位于斜面顶端的卷扬机鼓轮半径为r 、转动惯量为J 、受到的驱动力矩M ,通过绳索牵引斜面上质量为m 的物体,物体与斜面间摩擦系数为μ,求重物上滑的加速度。
绳与斜面平行,不计绳质量。
解:⎪⎩⎪⎨⎧==--=-βθθμβr a ma mg mg T J Tr M sin cos得 2)sin cos (mrJ rmg umg M a +--=θθ 3-13 如图所示,两物体质量分别为1m 和2m ,定滑轮的质量为m 、半径为r ,可视作均匀圆盘。
已知2m 与桌面间的滑动摩擦系数为k μ,求1m 下落的加速度和两段绳子中的张力各是多少?设绳子和滑轮间无相对滑动,滑轮轴受的摩擦力忽略不计。
解: ⎪⎪⎪⎩⎪⎪⎪⎨⎧===-=-=-r a mr J J r T r T am g m T am T g m k ββμ22122211121得 mm m g m g m a k ++-=212122)(2μmm m gmm g m m a g m T k ++++=-=211211122)1(2)(μ •习题3-12图习题3-13图mm m gmm g m m a m g m T k k k ++++=+=2122122222)1(2μμμ3-14 如图所示的飞轮制动装置,飞轮质量m =600kg ,半径R =0.25m ,绕其水平中心轴O 转动,转速为900rev/min 。
闸杆尺寸如图示,闸瓦与飞轮间的摩擦系数40.0=μ,飞轮的转动惯量可按匀质圆盘计算,现在闸杆的一端加一竖直方向的制动力N 100=F ,问飞轮将在多长时间内停止转动?在这段时间内飞轮转了几转?解:设作用在飞轮上的压力为N ,则有)75.05.0(5.0+⨯=⨯F N ,得)N (250=N)/(340221s rad mRNR J M -=-==μβ 又)/(306090020s rad ππω=⨯=, 所以)(07.700s t ≈-=βω 又βωθ2020-=,得)(532转==πθn 3-15 如图所示,长为l ,•质量为M 的匀质细棒可绕过其端点的水平轴在竖直面内自由转动,现将棒提到水平位置并由静止释放,当棒摆到竖直位习题3-15图习题3-14图置时与放在地面上质量为m 的物体相碰。
设碰后棒不动,物体与地面的摩擦系数为μ,求碰撞后物体经过多少时间停止运动?解:由机械能守恒2212ωJ L Mg=,得J MgL =ω 又角动量守恒得mvL J =ω,有LMgJmmL J v 1==ω 又g a μ-=,得LMgJmg a v t μ10=-=又231ML J =,即gL mg M t 33μ=3-16 质量为M 、半径为R 的水平转台,可绕过中心的竖直轴无摩擦地转动。
质量为m 的人站在转台的边缘,人和转台原来都静止。
当人沿转台边缘走一周时,求人和转台相对地面转过的角度。
解:以人和转台组成的系统为研究对象,设人相对于转盘的角速度为ω',转台相对地的角速度为ω,由角动量守恒得ωωω2221)(MR mr =-' 移项得 ωω)21(222mr MR mr +='即 dtd mr MR dt d mr θθ)21(222+=' 两边消去dt ,并积分的⎰⎰+='θπθθ022202)21(d mr MR d mr解得 221222MR mr mr +=πθ 3-17 质量为M 、半径为R 的水平转台,可绕过中心的竖直轴无摩擦地转动。