刚体定轴转动习题
第五章刚体定轴转动典型题型

• 例3一质量为m,半径为R的均匀圆盘,求 通过中心o并与盘面垂直的轴的转动惯量
• 例4一半径为R的光滑置于竖直平面内,一 质量为m的小球穿在圆环上,并可在圆环 上滑动,小球开始 时静止于圆环上的电 A(该点在通过环心o的水平面上),然 后从A点开始下滑,设小球与圆环间的摩 擦略去不计。求小球滑到点B时对环心o 的角动量和角速度。
O
A
质点运动与钢体定轴转动对照表
质点运动
速度
v dr / dt
加速度 a dv / dt
力
F
钢体定轴转动
角速度 d / dt
角加速度 d / dt
力矩
M
质量 m
转动惯量 J
动量 p mv
角动量 L J
牛二律 F m a
F dp / dt
转动定律 M J
M dL / dt
第五章 刚体定轴转动
• 例1一飞轮半径为0.2m,转速为150r/min, 因受到制动二均匀减速,经30s停止转动, 试求:
1)角加速度和在此时间内飞轮所转的圈数
2)制动开始后t=6s时飞轮的角速度
3) t=6s时飞轮边缘上一点的线速度,切线 加速度和法线加速度。
• 例2一质量为m,长为的均匀细长棒,求 1)通过其中心并于棒垂直的转动惯量 2)通过棒端点并与棒垂直的轴的转动惯量
角加速度( )
• 例8 质量为M,半径为R的转台,可绕过 中心的竖直轴无摩擦的转动。质量为m的 一个人,站在距离中心r处(r<R),开 始时,人和台处于静止状态。如果这个人 沿着半径为r的圆周匀速走一圈,设它相 对于转台的运动速度为u,求转台的旋转 角速度和相对地面的转过的角度。
r
R
• 5)角动量守恒定律和机械能守恒定律的综 合应用
第3章 刚体的定轴转动 习题答案

1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'
0
r dr
2
3
0
r dr
刚体的定轴转动习题解答

- 第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为,角加速度为,则其转动加快的依据是:( )A. > 0B. > 0,> 0C. < 0,> 0D.> 0,< 0解:答案是B 。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线- 作定轴转动,则在2秒F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
简要提示:由定轴转动定律: α221MR FR =,得:mRF t 4212==∆αθ 所以:m F M W /42=∆=θ5. 一电唱机的转盘正以 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J +B .0121ωJ J J +C .021ωJ JD .012ωJ J 解:答案是A 。
大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。
二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。
刚体定轴转动练习题及答案

刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。
设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。
B 角速度从小到大,角加速度从小到大。
C 角速度从大到小,角加速度从大到小。
D 角速度从大到小,角加速度从小到大。
3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。
(B )n a 、t a 的大小均保持不变。
(C )n a 的大小变化, t a 的大小恒定不变。
(D )n a 的大小恒定不变, t a 的大小变化。
5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
A 只有(1)是正确的。
B (1),(2)正确,(3),(4)错误。
刚体定轴转动习题

刚体定轴转动习题刚体定轴转动⼀、选择题(每题3分)1、个⼈站在有光滑固定转轴的转动平台上,双臂伸直⽔平地举起⼆哑铃,在该⼈把此⼆哑铃⽔平收缩到胸前的过程中,⼈、哑铃与转动平台组成的系统的( )(A)机械能守恒,⾓动量守恒; (B)机械能守恒,⾓动量不守恒,(C)机械能不守恒,⾓动量守恒; (D)机械能不守恒,⾓动量不守恒.2、⼀圆盘绕通过盘⼼且垂直于盘⾯的⽔平轴转动,轴间摩擦不计.如图射来两个质量相同,速度⼤⼩相同,⽅向相反并在⼀条直线上的⼦弹,它们同时射⼊圆盘并且留在盘内,则⼦弹射⼊后的瞬间,圆盘和⼦弹系统的⾓动量L以及圆盘的⾓速度ω的变化情况为( ) (A) L 不变,ω增⼤ (B) 两者均不变(C) L不变,ω减⼩ (D) 两者均不确定3、有两个⼒作⽤在⼀个有固定转轴的刚体上:(1)这两个⼒都平⾏于轴作⽤时,它们对轴的合⼒矩⼀定是零(2)这两个⼒都垂直于轴作⽤时,它们对轴的合⼒矩可能是零(3)当这两个⼒的合⼒为零时,它们对轴的合⼒矩也⼀定是零(4)当这两个⼒对轴的合⼒矩为零时,它们的合⼒也⼀定是零在上述说法中,正确的是()(A)只有(1)是正确的(B)只有(1)、(2)正确(C)只有(4)是错误的(D)全正确4、以下说法中正确的是()(A)作⽤在定轴转动刚体上的⼒越⼤,刚体转动的⾓加速度越⼤。
(B)作⽤在定轴转动刚体上的合⼒矩越⼤,刚体转动的⾓速度越⼤。
(C)作⽤在定轴转动刚体上的合⼒矩越⼤,刚体转动的⾓加速度越⼤。
(D)作⽤在定轴转动刚体上的合⼒矩为零,刚体转动的⾓速度为零。
5、⼀质量为m的均质杆长为l,绕铅直轴o o'成θ⾓转动,其转动惯量为()6、⼀物体正在绕固定光滑轴⾃由转动()(A) 它受热膨胀或遇冷收缩时,⾓速度不变.(B) 它受热时⾓速度变⼩,它遇冷时⾓速度变⼤.(C)它受热或遇冷时,⾓速度均变⼤.(D) 它受热时⾓速度变⼤,它遇冷时⾓速度变⼩.O7、关于刚体对轴的转动惯量,下列说法中正确的是( )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置⽆关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置⽆关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布⽆关.8、两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若A ρ﹥B ρ,但两圆盘的质量与厚度相同,如两盘对通过盘⼼垂直于盘⾯的转动惯量各为J A 和J B ,则()(A )J A >J B (B )J B >J A(C )J A = J B (D )J A 、 J B 哪个⼤,不能确定9、某转轮直径d =40cm ,以⾓量表⽰的运动⽅程为θ=3t -3.02t +4.0t ,式中θ的单位为rad,t 的单位为s,则t =2.0s 到t =4.0s 这段时间内,平均⾓加速度为( )(A)212-?srad (B)26-?s rad(C)218-?s rad (C)212-?s m10、轮圈半径为R ,其质量M 均匀分布在轮缘上,长为R 、质量为m 的均质辐条固定在轮⼼和轮缘间,辐条共有2N 根。
05刚体的定轴转动习题解答.

第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。
若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。
简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。
4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
大学物理AⅠ刚体定轴转动习题答案及解法

《大学物理A Ⅰ》2010 刚体定轴转动习题、答案及解法一.选择题1.两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若A B J J >,但两圆盘的的质量和厚度相同,如两盘的密度各为A ρ和B ρ,则( A )(A )B A ρρ> (B )B A ρρ<(C )B A ρρ= (D )不能确定B A ρρ的大小参考答案: B B A Ah R h R M ρπρπ22== A A A h M MR J ρπ222121== BB B h M MR J ρπ222121== 2.有两个半径相同、质量相等的细圆环。
1环的质量分布均匀。
2环的质量分布不均匀,它们对通过圆心并与环面垂直的轴的转动惯量分别为A J 和B J ,则( C )(A )21J J > (B )21J J <(C )21J J = (D )不能确定21J J 的大小 参考答案:∵ ⎰=Mdm r J 2 ∴ 21J J =3.一圆盘绕过圆心且于盘面垂直的光华固定轴O 以角速度1ω按图所示方向转动,将两个大小相等,方向相反的力F 沿盘面同时作用到圆盘上,则圆盘的角速度变为2ω,那么( C )(A )21ωω> (B )21ωω=(C )21ωω< (D )不能确定如何变化 参考答案:()12ωωJ J t r R F -=∆⋅- ()12ωω+∆⋅-=t r R JF4.均匀细棒OA 的质量为m 。
长为L ,可以绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法那一种是正确的[ A ](A )合外力矩从大到小,角速度从小到大,角加速度从大到小。
(B )合外力矩从大到小,角速度从小到大,角加速度从小到大。
(C )合外力矩从大到小,角速度从大到小,角加速度从大到小。
(D )合外力矩从大到小,角速度从大到小,角加速度从小到大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刚体定轴转动一、选择题(每题3分)1、个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的( )(A)机械能守恒,角动量守恒; (B)机械能守恒,角动量不守恒,(C)机械能不守恒,角动量守恒; (D)机械能不守恒,角动量不守恒.2、一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( ) (A) L 不变,ω增大 (B) 两者均不变(C) L不变,ω减小 (D) 两者均不确定3、有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零在上述说法中,正确的是()(A)只有(1)是正确的(B)只有(1)、(2)正确(C)只有(4)是错误的(D)全正确4、以下说法中正确的是()(A)作用在定轴转动刚体上的力越大,刚体转动的角加速度越大。
(B)作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大。
(C)作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大。
(D)作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零。
5、一质量为m的均质杆长为l,绕铅直轴o o'成θ角转动,其转动惯量为()6、一物体正在绕固定光滑轴自由转动()(A) 它受热膨胀或遇冷收缩时,角速度不变.(B) 它受热时角速度变小,它遇冷时角速度变大.(C)它受热或遇冷时,角速度均变大.(D) 它受热时角速度变大,它遇冷时角速度变小.O7、关于刚体对轴的转动惯量,下列说法中正确的是( )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.8、两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若A ρ﹥B ρ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面的转动惯量各为J A 和J B ,则( )(A )J A >J B (B )J B >J A(C )J A = J B (D )J A 、 J B 哪个大,不能确定9、某转轮直径d =40cm ,以角量表示的运动方程为θ=3t -3.02t +4.0t ,式中θ的单位为rad,t 的单位为s,则t =2.0s 到t =4.0s 这段时间内,平均角加速度为( )(A)212-⋅srad (B)26-⋅s rad(C)218-⋅s rad (C)212-⋅s m10、 轮圈半径为R ,其质量M 均匀分布在轮缘上,长为R 、质量为m 的均质辐条固定在轮心和轮缘间,辐条共有2N 根。
今若将辐条数减少N 根,但保持轮对通过轮心.垂直于轮平面轴的转动惯量保持不变,则轮圈的质量应为( )(A )m N 12+M . (B)m N 6 +M . (C)m N 32+M . (D)m N 3+M 11、一轻绳绕在有水平轴的定滑轮上,绳下端挂一物体。
物体所受重力为p ,滑轮的角加速度为β。
若将物体去掉而用与p 相等的力直接向下拉绳子,则滑轮的角加速度β将( ) (A )不变 (B )变小(C )变大 (D )无法判断12、几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体( )(A )必然不会转动 (B )转速必然不变(C )转速必然改变 (D )转速可能不变,也可能改变二、填空题(每题3分)1、转动惯量的物理意义是 ;它的大小与 、 、 有关。
2、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J , 开始时转台以匀角速度ω 0转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为 。
3、如图所示,一质量为m 的小球由一绳索系着,以角速度ω0 在无摩擦的水平面上,作半径为r 0 的圆周运动.如果在绳的另一端作用一竖直向下的拉力,使小球作半径为r 0/2 的圆周运动.则小球新的角速度为 , 拉力所作的功 。
4、一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度120rad s ωπ=,再转60转后角速度为230rad s ωπ=,则角加速度β= 转过上述60转所需的时间=∆t 。
5、一质量为m 匀质的杆长为l ,绕通过其一端的铅直轴转动,其转动惯量为 。
6、一飞轮的转动惯量为J ,在0=t 时角速度为0ω。
此后飞轮历经制动过程。
阻力矩M 的大小与角速度2ω成正比,比例系数K >0。
当30ωω=时,飞轮的角加速度=β ;从开始制动到30ωω=所经过的时间t= 。
7、动量守恒的条件是 ; 角动量守恒的条件是 。
8、刚性正方形线圈边长为 a ,每边质量为m ,该刚性线圈绕其中一个边转动,其转动惯量为 。
9、质量为m 的均质杆,长为l ,以角速度ω绕过杆端点,垂直于杆的水平轴转动,杆的动量大小为 ,杆绕转动轴的动能为 ,动量矩为 。
三、简答题(每题3分)1、飞轮的质量主要分布在边缘上,有什么好处?2、刚体绕固定轴转动时,在每秒内角速度都增加12rad s π-⋅,它是否作匀加速转动?3、刚体对轴的转动惯量与那些因素有关?四、计算题(每题10分)1、一轻绳绕于半径cm r 20=的飞轮边缘,在绳端施以N F 98=的拉力,飞轮的转动惯量2.5.0m kg J =,飞轮与轮轴间无摩擦,如图所示,试求:(1)飞轮的角加速度;(2)当绳端下降m 5时飞轮获得的动能;(3)如果以质量kg m 10=的物体挂在绳端,试计算飞轮的角加速度。
2、在光滑的水平面上有一木杆,其质量m 1 =1.0 kg ,长l =40cm ,可绕通过其中点并与之垂直的轴转动.一质量为m 2 =10g 的子弹,以v =2.0×102 m · s -1 的速度射入杆端,其方向与杆及轴正交.若子弹陷入杆中,试求所得到的角速度.3、质量为m 的小孩站在半径为R 、转动惯量为J 的可以自由转动的水平平台边缘上(平台可以无摩擦地绕通过中心的竖直轴转动)。
平台和小孩开始时均静止。
当小孩突然一相对地面为v 的速率沿台边缘逆时针走动时,此平台相对地面旋转的角速度ω为多少?4、质量为0.50 kg ,长为0.40 m 的均匀细棒,可绕垂直于棒的一端的水平轴转动.如将此棒放在水平位置,然后任其落下,求:(1) 当棒转过60°时的角加速度和角速度;(2) 下落到竖直位置时的动能;(3)下落到竖直位置时的角速度.5、质量为m 、长为l 的细棒,可绕通过棒一端O 的水平轴自由转动(转动惯量32ml J =),棒于水平位置由静止开始摆下,求:(1)、初始时刻的角加速度; (2)、杆转过θ角时的角速度。
6、如图所示,长为l 的轻杆,两端各固定质量分别为m 和m 2的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为13l 和23l .轻杆原来静止在竖直位置。
今有一质量为m 的小球,以水平速度0v 与杆下端小球m 作对心碰撞,碰后以012v 的速度返回,试求碰撞后轻杆所获得的角速度。
刚体定轴转动答案一、选择题(每题3分)1C 2B 3B 4C 5C 6B 7C 8B 9A 10D 11C 12D二、填空题(每题3分)1、表示刚体转动惯性大小的物理量;刚体的形状,转轴位置,质量分布(3分)2、J ω 0/(J +mR 2)3、10004J J ωωω==,220032W mr ω= 4、1225π 2s rad ;s 8.45、23ml6、J k 920ω- ;02ωk J 7、00==∑∑外外M F8、5ma 2/39、2ωml ;22ωml ; 32ωml三、简答题(每题3分)1、增大转动惯量,使运转平稳。
2、不一定。
因为仅当瞬时角加速度为恒量时,才作匀加速转动,而按题意,只是说每隔1秒钟后角速度增加12rad s π-⋅,而在1秒钟时间间隔内每瞬时的变化未必一定是均等的,故瞬时角加速度未必是恒量。
3、取决于刚体的质量,质量的空间分布和轴的位置.四、计算题(每题10分)1、解(1),βJ Fr =s rad J Fr 2.39==β -------(4分) (2)JFd E k 490==∆-------(3分) (3)⎩⎨⎧===-ββI Tr mr ma T mg 解之得s rad mr J mrg 8.212=+=β---(3分)2、解 根据角动量守恒定理()ωJ J ωJ '+=212――――――(5分)式中()222/2J m l =为子弹绕轴的转动惯量,J 2ω为子弹在陷入杆前的角动量,ω=2v/l 为子弹在此刻绕轴的角速度.211/12J m l =为杆绕轴的转动惯量.可得杆的角速度为 ()1212212s 1.2936-=+=+='m m m J J ωJ ωv ――――――(5分)3、解:此过程角动量守恒 ωJ mrv -=0――――――(6分)J mRv =ω――――――(4分)4、解 (1) 棒绕端点的转动惯量213J ml =由转动定律M =Jα可得棒在θ 位置时的角加速度为()l θg J θM α2cos 3==----(2分)当θ =60°时,棒转动的角加速度2s 418-=.α 由于d d d d t ωωωαθ==,根据初始条件对式(1)积分,有 ⎰⎰=o 6000d d θαωωω则角速度为 1600s 98.7sin 3o-==l θg ω--------(3分)(2) 根据机械能守恒,棒下落至竖直位置时的动能为J 98.021==mgl E K --(3分)(3) 由于该动能也就是转动动能,即212K E J ω=,所以,棒落至竖直位置时的角速度为 1s 57.832-==='l g J E ωK --------(2分)5、解:(1)由转动定律,有β)31(212ml mgl = (3分) ∴l g 23=β (2分)(2)由机械能守恒定律,有221sin 21ωθJ mgl = (3分)∴ω=l g θsin 3 (2分)6、解:根据角动量守衡 有022021322)3()32(32v ml m l m l l mv ⋅-⋅+=ωω――――――(7分) l v 230=ω――――――(3分)。