火电厂锅炉高硫无烟煤烟气电除尘湿式脱硫系统设计
shf精选范文型锅炉高硫无烟煤烟气湿式石灰法除尘脱硫一体化系统设计
1文献综述前言针对发展中国家投入到烟气脱硫的资金不多,特别是面广量大的中小型锅炉用户,对排烟脱硫费用承受能力有限又不便于集中统一管理的实际情况,而开发一些投资省,运行费用低,便于维护的,适合我国国情的除尘脱硫装置,即一台设备同时除尘又脱硫,从而减低系统的投资费用和占地面积。
对此原则是:首先要求主体设备“地租高效”,在不增加动力的前提下,对细微尘粒有较高的补集率和较强的脱硫功能;其次是源于价格低廉的脱硫剂:包括可利用的碱性废渣,废水等,从而降低运行费用。
本课程设计主要介绍湿式石灰脱硫功能及对除尘的处理,目前世界各地用于烟气脱硫的方法,主要有石灰石/石灰洗涤法,双碱法,韦尔曼洛德法,氧化法及氨法等。
这些方法大致可分为两类:一类为干法,即采用粉状或粒状吸收剂,吸附剂或催化剂来脱除烟气中的二氧化硫;另一类为湿法,即采用液体吸收剂洗涤烟气,以及吸收烟气中的二氧化硫。
反应原理1.2.1吸收原理吸收液通过喷嘴雾化喷入吸收塔,分散成细小的液滴并覆盖吸收塔的整个断面。
这些液滴与塔内烟气逆流接触,发生传质与吸收反应,烟气中的SO2、SO3及HCl 、HF被吸收。
SO2吸收产物的氧化和中和反应在吸收塔底部的氧化区完成并最终形成石膏。
为了维持吸收液恒定的pH值并减少石灰石耗量,石灰石被连续加入吸收塔,同时吸收塔内的吸收剂浆液被搅拌机、氧化空气和吸收塔循环泵不停地搅动,以加快石灰石在浆液中的均布和溶解。
1.2.2化学过程强制氧化系统的化学过程描述如下:(1)吸收反应烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下:SO2+H2O→H2SO3(溶解)H 2SO3?H++HSO3-(电离)吸收反应的机理:吸收反应是传质和吸收的的过程,水吸收SO2属于中等溶解度的气体组份的吸收,根据双膜理论,传质速率受气相传质阻力和液相传质阻力的控制,吸收速率=吸收推动力/吸收系数(传质阻力为吸收系数的倒数)强化吸收反应的措施:a)提高SO2在气相中的分压力(浓度),提高气相传质动力。
毕业设计论文:某燃煤锅炉房烟气除尘脱硫系统设计
目录一、引言 (1)1.1 烟气除尘脱硫的意义ﻩ 11.2 设计目的 (1)1.3 设计任务及内容ﻩ 11.4设计资料.................................................... 2二、工艺方案的确定及说明 (3)2.1工艺流程图................................................... 32.2 基础资料的物料衡算 (3)2.3 工艺方案的初步选择与确定.................................. 52.4整体工艺方案说明ﻩ 5三、主要处理单元的设计计算ﻩ 63.1 除尘器的选择和设计ﻩ63.1.1除尘器的选择ﻩ 63.1.2袋式除尘器滤料的选择 (7)3.1.3 选择清灰方式 (9)3.1.4 袋式除尘器型号的选择ﻩ103.2脱硫设备设计ﻩ113.2.1常见的烟气脱硫工艺ﻩ113.2.2 比对脱硫技术ﻩ123.2.3脱硫技术的选择 (14)3.3 湿法脱硫简介和设计........................................ 143.3.1 基本脱硫原理 (14)3.3.2 脱硫工艺流程 (15)3.3.3 脱硫影响因素 (15)3.4 脱硫中喷淋塔的计算ﻩ163.4.1 塔内流量计算ﻩ163.4.2喷淋塔径计算 (16)3.4.3喷淋塔高计算ﻩ173.4.4 氧化钙的用量 (18)3.5 烟囱设计ﻩ193.5.1 烟囱高度计算 (19)3.5.2烟囱直径计算ﻩ193.5.3 烟囱内温度降 ............................................ 203.5.4 烟囱抽力计算ﻩ20四、官网的设置ﻩ214.1 管道布置原则ﻩ214.2管道管径计算ﻩ214.3 系统阻力计算ﻩ22五、风机和电动机的计算........................................... 235.1 风机风量计算................................................ 235.2风机风压计算ﻩ235.3 电机功率计算ﻩ25六、总结ﻩ26七、主要参考文献.................................................. 27一、引言1.1烟气除尘脱硫的意义目前,大气污染已经变成了一个全球性的问题,主要有温室效应、臭氧层破坏和酸雨。
火电厂锅炉高硫无烟煤烟气电除尘湿式脱硫系统设计
火电厂锅炉高硫无烟煤烟气电除尘湿式脱硫系统设计随着环境保护要求的提高,火电厂锅炉烟气处理逐渐成为一个重要的环节。
对于高硫无烟煤烟气的处理,电除尘湿式脱硫系统是一种有效的治理方式。
电除尘是烟气处理过程中常用的技术之一、它通过高电压电场产生的电离作用,将烟气中的颗粒物捕集下来,从而达到净化烟气的目的。
对于高硫无烟煤烟气,电除尘可以有效去除烟气中的灰尘和颗粒物,减少对环境的污染。
同时,电除尘还可以有效地提高锅炉的热效率,减少能源的浪费。
在电除尘之后,湿式脱硫是进一步处理烟气中的二氧化硫的有效方法。
湿式脱硫使用碱液或碱性物质与烟气中的二氧化硫发生反应,生成不溶于水的化合物,从而达到减少烟气中二氧化硫含量的目的。
在高硫无烟煤烟气处理过程中,湿式脱硫是一种重要的脱硫方法,可以有效地将烟气中的二氧化硫含量降低到环保标准以下。
设计电除尘湿式脱硫系统的关键是确定合适的操作参数和设备。
首先,根据烟气中的污染物成分和浓度,确定电除尘装置的处理能力和效果。
其次,根据烟气中的二氧化硫含量和水分含量,确定湿式脱硫装置的操作参数,如碱液浓度、进料量、吸收塔温度等。
最后,选择适当的设备,如电除尘器、吸收塔、风机、泵站等。
在电除尘器的设计中,要考虑烟气中的颗粒物性质和负荷,选择合适的电场形式和电场布局。
同时,还要考虑电除尘器的清灰系统,确保灰尘的及时清除和回收。
在湿式脱硫设备的设计中,要考虑碱液的循环和浓度控制,以及酸性废水的处理问题。
设计完整的电除尘湿式脱硫系统需要考虑以下几个方面:首先,确定烟气中的污染物成分和浓度,以此确定电除尘和湿式脱硫的处理能力和效果。
其次,确定合适的操作参数,如电场电压、湿式脱硫塔中碱液的浓度和流量等。
最后,选择合适的设备和材料,确保系统的可靠性和稳定性。
综上所述,火电厂锅炉高硫无烟煤烟气电除尘湿式脱硫系统设计是一个复杂的工程,需要综合考虑烟气成分和浓度、操作参数以及设备选型等多方面因素。
只有通过科学合理的设计,才能确保系统的高效运行和达到环保要求。
燃煤锅炉烟气除尘改造方案选择原则及湿式除尘器设计技术规范介绍
第二部分 超净排放(5mg)湿式电除尘 技术规范要求
7.阳极材料采用316L不锈钢或以上等级抗腐蚀金属材料,极板厚 度大于或等于1.2毫米,尽量避免焊接加工,必须焊接加工时, 避免使用2205不锈钢。为防止极端情况,如放电、失火造成 烟气温度升高而使湿式电除尘毁坏,不建议使用导电玻璃钢等 燃点较低的非金属材料做阳极板。
第一部分 除尘改造方案选择原则
2.重点地区(要求排放浓度≤20mg/Nm3) 1)原除尘器已经进行过改造,能够控制出口烟尘浓 度≤30-40mg/Nm3的,结合脱硫系统洗尘作用, 达到烟尘排放浓度≤20mg/Nm3; 2)对于除尘器改造同时脱硫洗尘后仍不能达标排放, 以及目前尚未实施改造的,原则上考虑采用在脱硫设 施后增加湿式除尘器的方案,但应保证进入湿式除尘 器烟尘浓度不高于≤40-60mg/m3。
第一部分 除尘改造方案选择原则
3.超净排放要求地区(烟尘排放≤5mg/Nm3):
方案一:本体提效改造或本体扩容改造+湿式电除尘
本体提效改造或本体增容应控制出口设计烟尘浓度≤40mg/Nm3;增设湿式电除尘器, 出口粉尘浓度≤5mg/Nm3设计。
方案二:低低(低)温除尘+本体提效改造或本体扩容改造+湿式电 除尘
域、燃用煤质、飞灰特性、改造场地、运行年限及排 放要求等因素区别对待。 3.慎重比选:在达标排放的前提下,通过技术经济综合 比选,优先选择工程投资少、运维费用低的改造方案。 4.预留裕量:考虑政策形势要求及排放标准变化,存在 再次改造的可能,应适当考虑设计裕量及空间布置上 预留进一步改造的位置。
第一部分 除尘改造方案选择原则
第一部分 除尘改造方案选择原则
方案一:本体提效改造或本体扩容改造+湿式电除尘 本体提效改造或本体增容应控制出口设计烟尘浓度≤60mg/Nm3; 增设湿式电除尘器,入口粉尘浓度≤40mg/Nm3设计。
大气污染控制工程课程设计-DZL2-13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计
1 卫博《大气污染控制工程》课程设计任务书1.设计题目DZL2-13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计2.设计原始资料锅炉型号:DZL2-13 即,单锅筒纵置式链条炉,蒸发量2t/h,出口蒸汽压力13MPa设计耗煤量:350kg/h设计煤成分:C Y=65% H Y=4% O Y=2% N Y=1% S Y=3% A Y=15% W Y=10% ;V Y=8%,属于高硫无烟煤排烟温度:160℃空气过剩系数=1.3飞灰率=16%烟气在锅炉出口前阻力550Pa污染物排放按照锅炉大气污染物排放标准中二类区新建排污项目执行。
连接锅炉、净化设备及烟囱等净化系统的管道假设长度50m,90°弯头10个。
3.设计内容及要求(1)根据燃煤的原始数据计算锅炉燃烧产生的烟气量,烟尘和二氧化硫浓度。
(2)净化系统设计方案的分析,包括净化设备的工作原理及特点;运行参数的选择与设计;净化效率的影响因素等。
(3)除尘设备结构设计计算(4)脱硫设备结构设计计算(5)烟囱设计计算(6)管道系统设计,阻力计算,风机电机的选择(7)根据计算结果绘制设计图,系统图要标出设备、管件编号、并附明细表;除尘系统、脱硫设备平面、剖面布置图若干张,以解释清楚为宜,最少4张A3图,并包括系统流程图一张。
2 井添祺《大气污染控制工程》课程设计任务书1.设计题目DZL2-13型锅炉中硫烟煤烟气旋风除尘湿式脱硫系统设计2.设计原始资料锅炉型号:DZL2-13 即,单锅筒纵置式链条炉,蒸发量2t/h,出口蒸汽压力13MPa设计耗煤量:390kg/h设计煤成分:C Y=64.5% H Y=4% O Y=3% N Y=1% S Y=1.5% A Y=18% W Y=8%;V Y=15%;属于中硫烟煤排烟温度:160℃空气过剩系数=1.3飞灰率=16%烟气在锅炉出口前阻力550Pa污染物排放按照锅炉大气污染物排放标准中二类区新建排污项目执行。
DZL2_13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计书
DZL2-13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计书1.工艺流程的选择及说明脱硫除尘工艺设计说明:双碱法烟气脱硫工艺主要包括吸收剂制备和补充系统,烟气系统,SO2吸收系统,脱硫产物处理系统四部分组成。
1.吸收剂制备和补充系统脱硫装置启动时用氢氧化钠作为吸收剂,氢氧化钠干粉料加入碱液罐中,加水配制成氢氧化钠碱液,在碱液罐中可以定期进行氢氧化钠的补充,以保证整个脱硫系统的正常运行及烟气的达标排放。
为避免再生生成的亚硫酸钙、硫酸钙也被打入脱硫塔容易造成管道及塔发生结垢、堵塞现象,可以加装瀑气装置进行强制氧化或特将水池做大,再生后的脱硫剂溶液经三级沉淀池充分沉淀保证大的颗粒物不被打回塔体。
另外,还可在循环泵前加装过滤器,过滤掉大颗粒物质和液体杂质。
2.烟气系统锅炉烟气经烟道进入除尘器进行除尘后进入脱硫塔,洗涤脱硫后的低温烟气经两级除雾器除去雾滴后进入主烟道,经过烟气再热后由烟囱排入大气。
当脱硫系统出现故障或检修停运时,系统关闭进出口挡板门,烟气经锅炉原烟道旁路进入烟囱排放。
3.SO2吸收系统锅炉烟气从烟道切向进入主塔底部,在塔螺旋上升中与沿塔下流的脱硫液接触,进行脱硫除尘,经脱水板除雾后,由引风机抽出排空。
脱硫液从螺旋板塔上部进入,在旋流板上被气流吹散,进行气叶两相的接触,完成脱硫除尘后从塔底流出,通过明渠流到综合循环池。
4. 脱硫产物处理系统脱硫系统的最终脱硫产物仍然是石膏浆,从曝气池底部排浆管排出,由排浆泵送入水力旋流器。
由于固体产物中掺杂有各种灰分及NaSO4,严重影响了石膏品质,所以一般以抛弃为主。
在水力旋流器,石膏浆被浓缩(固体含量约40%)之后用泵打到渣处理场,溢流液回流入再生池。
2.除尘器的设计及计算2.1燃煤锅炉烟气量、烟尘和二氧化硫浓度的计算2.1.1标准状况下理论空气量Qa'=4.67×(1.867C+5.56H+0.7S-0.7O)式中:C、H、S、O--分别为煤中各元素所含的质量分数Qa'=4.76×(1.867+0.65+5.56×0.04+0.7×0.03-0.7×0.02)=1.44×4.76=6.868(m3/㎏)2.1.2 标准状态下理论烟气量Qs'=1.867×(C+0.375S)+11.2H+1.24W+0.016 Qa¹+0.79 Qa¹+0.8N式中: Q a ′——标准状态下理论空气量 m 3/kg ; W ——煤中水分的的质量分数; N ——N 元素在煤中的质量分数。
DZL2_13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计书
DZL2-13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计书1.工艺流程的选择及说明脱硫除尘工艺设计说明:双碱法烟气脱硫工艺主要包括吸收剂制备和补充系统,烟气系统,SO2吸收系统,脱硫产物处理系统四部分组成。
1.吸收剂制备和补充系统脱硫装置启动时用氢氧化钠作为吸收剂,氢氧化钠干粉料加入碱液罐中,加水配制成氢氧化钠碱液,在碱液罐中可以定期进行氢氧化钠的补充,以保证整个脱硫系统的正常运行及烟气的达标排放。
为避免再生生成的亚硫酸钙、硫酸钙也被打入脱硫塔容易造成管道及塔发生结垢、堵塞现象,可以加装瀑气装置进行强制氧化或特将水池做大,再生后的脱硫剂溶液经三级沉淀池充分沉淀保证大的颗粒物不被打回塔体。
另外,还可在循环泵前加装过滤器,过滤掉大颗粒物质和液体杂质。
2.烟气系统锅炉烟气经烟道进入除尘器进行除尘后进入脱硫塔,洗涤脱硫后的低温烟气经两级除雾器除去雾滴后进入主烟道,经过烟气再热后由烟囱排入大气。
当脱硫系统出现故障或检修停运时,系统关闭进出口挡板门,烟气经锅炉原烟道旁路进入烟囱排放。
3.SO2吸收系统锅炉烟气从烟道切向进入主塔底部,在塔螺旋上升中与沿塔下流的脱硫液接触,进行脱硫除尘,经脱水板除雾后,由引风机抽出排空。
脱硫液从螺旋板塔上部进入,在旋流板上被气流吹散,进行气叶两相的接触,完成脱硫除尘后从塔底流出,通过明渠流到综合循环池。
4. 脱硫产物处理系统脱硫系统的最终脱硫产物仍然是石膏浆,从曝气池底部排浆管排出,由排浆泵送入水力旋流器。
由于固体产物中掺杂有各种灰分及NaSO4,严重影响了石膏品质,所以一般以抛弃为主。
在水力旋流器,石膏浆被浓缩(固体含量约40%)之后用泵打到渣处理场,溢流液回流入再生池。
2.除尘器的设计及计算2.1燃煤锅炉烟气量、烟尘和二氧化硫浓度的计算2.1.1标准状况下理论空气量Qa'=4.67×(1.867C+5.56H+0.7S-0.7O)式中:C、H、S、O--分别为煤中各元素所含的质量分数Qa'=4.76×(1.867+0.65+5.56×0.04+0.7×0.03-0.7×0.02)=1.44×4.76=6.868(m3/㎏)2.1.2 标准状态下理论烟气量Qs'=1.867×(C+0.375S)+11.2H+1.24W+0.016 Qa¹+0.79 Qa¹+0.8N式中: Q a ′——标准状态下理论空气量 m 3/kg ; W ——煤中水分的的质量分数; N ——N 元素在煤中的质量分数。
SHF型锅炉高硫无烟煤烟气湿式石灰法除尘脱硫一体化系统设计
SHF型锅炉高硫无烟煤烟气湿式石灰法除尘脱硫一体化系统设计一、系统工艺流程该系统的主要工艺流程包括除尘工艺和脱硫工艺。
具体流程如下:1.除尘工艺:高硫无烟煤锅炉烟气中的颗粒物主要通过湿式除尘器进行捕集。
烟气经过除尘器后,颗粒物被捕集,净化后的烟气进入脱硫工艺。
2.脱硫工艺:烟气进入脱硫塔后,首先与石灰石浆液接触,石灰石浆液会与烟气中的二氧化硫发生化学反应,生成硫酸钙。
接着,烟气与氧化剂(如氧气或空气)接触,将硫酸钙氧化为石膏。
最终,净化后的烟气经过除尘器的再净化后排放。
二、系统设计要求1.净化效率要求高:系统设计要求符合国家或地方的大气污染物排放标准,保证净化后的烟气中二氧化硫和颗粒物的浓度达到相应标准要求。
2.能耗低:系统设计要尽可能降低设备运行的能耗,减少处理成本。
3.操作维护方便:系统设计要简单可行,设备操作和维护方便,降低操作维护人员的工作强度。
三、系统设计方案基于以上要求,可以采用以下系统设计方案:1.除尘器选型:根据烟气中的颗粒物浓度和颗粒物的粒径分布等参数,选用高效的湿式除尘器,如湿电除尘器或湿式静电除尘器。
除尘器要求具备高除尘效率、低能耗和运行稳定等特点。
2.脱硫塔设计:选用湿式石灰法脱硫塔进行脱硫处理。
脱硫塔应具备较大的接触面积,以便使烟气中的硫酸钙能够充分生成。
脱硫塔内要设置合适的喷淋装置,以保证石灰石浆液与烟气的充分接触,并确保氧化剂的充足供应。
3.配套设备设计:包括石灰石浆液的制备、输送和循环系统的设计,以及石膏的处理系统设计。
可以采用石灰石破碎、石灰石浆液搅拌和循环泵等设备,并设计石膏输送和储存系统。
四、系统运行维护系统运行过程中需要定期检查和维护设备,如检查除尘器和脱硫塔的运行状态,清理积灰和更换石灰石等。
此外,需要定期监测烟气中的二氧化硫和颗粒物浓度,确保符合排放标准要求。
总结:SHF型锅炉高硫无烟煤烟气湿式石灰法除尘脱硫一体化系统设计要求净化效率高、能耗低、操作维护方便。
大气污染控制课程设计采用电除尘器和湿式脱硫技术来处理高硫无烟煤
目录1 绪论 (1)1.1设计背景 (4)1.2脱硫除尘技术简介 (4)1.2.1除尘技术 (4)1.2.2电除尘器工作原理及特点 (5)1.2.3脱硫技术 (6)1.2.4湿式石灰法工作原理及特点 (6)2电除尘器与湿式石灰法的运行条件及参数 (8)2.1影响电除尘器效率的因素 (8)2.2电除尘器运行参数 (8)2.3电除尘器的结构工艺 (9)2.4影响脱硫效率的因素 (9)2.5湿式石灰法的运行参数 (10)2.6湿式石灰法的工艺流程图 (12)3火电厂高硫无烟煤烟气电除尘器湿式脱硫计算 (12)3.1原始数据 (12)3.2基础燃烧计算 (13)3.2.1基础需氧量及烟气量的计算 (13)3.2.2烟气中各组分的浓度计算 (14)3.3电除尘器结构设计计算 (16)3.3.1电除尘器的结构计算 (16)3.3.2电除尘器总体计算 (18)3.4湿式石灰法脱硫工艺的设计计算 (19)3.4.1 由物料平衡得反应参数 (19)3.4.2吸收塔的设计计算 (20)3.4.3喷淋层的设计 (20)3.4.4除雾器的设计 (20)3.4.5储液槽的设计计算 (21)3.4.5吸收塔总高计算 (21)3.5烟囱的计算 (22)3.5.1烟囱高度计算 (22)3.5.2烟囱的进出口内径计算 (24)3.5.3烟囱阻力计算 (25)3.6管道及风机计算 (26)3.6.1管道直径计算 (26)3.6.2管道系统阻力的计算 (26)3.6.3风机的设计计算 (27)3.6.4系统总阻力的计算 (28)4达标分析 (29)4.1排放浓度角度 (29)4.2排放速率角度 (30)4.3从排放总量角度 (30)5设计感受........................................................................... 错误!未定义书签。
参考文献.............................................................................. 错误!未定义书签。
DZL2_13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计任务书
DZL2-13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计任务书一、课程设计的题目DZL2-13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计二、课程设计的目的《大气污染控制工程》课程设计是配合大气污染控制工程专业课程而单独设立的设计性实践课程。
教学目的和任务是使学生在学习专业技术基础和主要专业课程的基础上,学习和掌握环境工程领域主要设备设计的基本知识和方法,培养学生综合运用所学的环境工程领域的基础理论、基本技能和专业知识分析问题和解决工程设计问题的能力,培养学生调查研究,查阅技术文献、资料、手册,进行工程设计计算、图纸绘制及编写技术文件的基本能力。
三、设计原始资料DZL2-13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计锅炉型号:DZL2—13 即:蒸发量2t/h ,出口蒸汽压力13 Mpa 设计耗煤量:350Kg/hY Y Y Y Y Y Y Y 设计煤成分:C Y=65% H Y=4% O Y=2% N Y=1% S Y=3% A Y=15% W Y=10%;V Y=8%,属于高硫无烟煤烟气密度P =1.36 Kg/m 3(标准状态下)当地大气压:98KPa排烟温度:160C空气过剩系数a =1.3飞灰率=16%烟气在锅炉出口前阻力550Pa 污染物排放按照锅炉大气污染物排放标准中二类区新建排污项目执行。
连接锅炉、净化设备及烟囱等净化系统的管道假设长度50m, 90°弯头10个。
注:锅炉大气污染排放标准(GB1327-2001)中二类区执行标准烟气浓度排放标准(标准状况下):200mg/m3二氧化硫排放标准(标准状况下):900mg/m3若烟囱高度达不到GB1327—2001表4锅炉房烟囱最低允许高度(4t锅炉烟囱高度最低35m 6t锅炉烟囱高度最低40n)的要求,其排放标准值按50%丸行,即:烟尘浓度排放标准(标准状态下):100 mg/m3二氧化硫排放标准(标准状态下):450 mg/m3四、课程教学要求本课程设计的选题紧紧围绕大气污染控制工程烟气除尘为主题。
火电厂锅炉高硫无烟煤烟气电除尘湿式脱硫系统设计
火电厂锅炉高硫无烟煤烟气电除尘湿式脱硫系统设计S G-400/140型火电厂锅炉高硫无烟煤烟气电除尘湿式脱硫系统设计摘要现如今火电厂数量逐渐增加,火电厂锅炉产生的烟气量也随之增多,烟气中的二氧化硫等气体若未经处理达到国家排放标准就排放,无疑会对我们的大气造成污染,危害人类及动植物的健康。
因此,我们需要按照不同型号锅炉参数进行设计计算,以使烟气排放在达到国家标准的前提下尽可能的提高净化效率,使污染及危害降到最低。
本次课程设计就是针对SG-400/140型火电厂锅炉高硫无烟煤烟气,利用电除尘湿式脱硫的方法,设计计算出最高效的除尘净化系统,以降低烟气中有害气体的排放浓度,保护我们的大气环境。
关键词:烟气排放,湿式脱硫,大气污染,净化目录1 引言 01.1 电除尘简介 01.2 湿式石灰法脱硫简介 02 燃烧计算 (1)2.1 理论需氧量 (1)2.2 理论空气量 (1)2.3 理论烟气量 (1)2.4 实际烟气量 (2)2.5 烟尘浓度计算 (2)2.6 SO2浓度计算 (2)3 净化系统设计方案的分析 (2)3.1 净化设备的工作原理及特点 (2)3.1.1 电除尘器的工作原理及特点 (2)3.1.2 湿式石灰法脱硫的工作原理及特点 (2)3.2 运行参数的选择与设计 (3)3.2.1 电除尘器运行参数的选择与设计 (3)3.2.2 湿式石灰法脱硫运行参数的选择与设计 (3)3.3 净化效率的影响因素 (3)4 尺寸计算 (4)4.1 除尘设备结构设计计算 (4)4.2 脱硫设备结构设计计算 (5)4.2.1 喷淋塔内流量计算 (5)4.2.2 喷淋塔径计算 (5)4.2.3 喷淋塔高度计算 (5)4.2.4 新鲜浆料的确定 (7)4.3 烟囱设计计算 (7)4.3.1 烟囱的几何高度的计算 (7)4.3.2 烟气释放热计算 (7)4.3.3 烟气抬升高度计算 (8)4.3.4 烟囱直径的计算 (8)4.3.5 烟囱高度校核 (8)5 阻力计算 (9)5.1 管径计算 (9)5.2 摩擦压力损失 (9)5.3 局部压力损失 (10)5.4 烟囱阻力计算 (10)5.5 系统总阻力计算 (10)6 设备选型 (11)6.1 风量的计算 (11)6.2 风机风压的计算 (11)6.3 电机功率的核算 (11)7 总结 (12)参考文献 (12)致谢 (12)1 引言1.1 电除尘简介我国全面系统地对电除尘器技术进行研究和开发始于上个世纪60年代。
课程设计--火电厂电除尘系统设计
课程设计--火电厂电除尘系统设计前言地球环境构成人类繁衍发展的物质基础,承载着人类繁衍发展产生的种种后果。
人类在生产和生活活动中,成年累月地向大气中排出各种污染物质,使大气遭到严重污染。
与此同时,随着人类社会的不断进步、经济的持续发展、生活水平的日益提高以及对自身健康的重视,人们对生存环境条件越来越关注,对大气环境质量的要求越来越严格。
除尘工程是防治大气污染的重要内容,是环境工程的重要组成部分。
除尘工程设计是实施防治大气污染的具体步骤。
【1】随着我国国民经济的快速增长,电力工业得到了超常规发展,由于电力生产过程污染物排放量的剧增,电力环境问题也日益严重,从某种程度上来说,环境问题已成为电力工业可持续发展的制约因素之一。
燃煤电厂废气治理的对策对燃煤电厂的治理,应大力推行洁净技术并尽快进行技术改造和加强企业管理,以降低煤耗,这是电厂减少废气排放的重要途径之一。
此外,应积极开发和应用高效的废气治理技术和综合资源利用技术,如锅炉烟气除尘效率高的电除尘器、开发高效的电厂脱硫脱硝新工艺、采用热电联产等措施。
燃煤电厂废气治理的技术政策:为促进燃煤电厂废气治理,电力部门要进一步贯彻“预防为主,防治结合,综合治理”的方针,坚持治理污染与节约能源、综合利用资源相结合,严格控制新污染,加速老污染源的治理,强化管理,依靠科技进步,挖掘潜力,提高环保设施投资的综合效益,努力做到经济效益、社会效益和环境效益的统一。
根据近年来的治理经验,今后应当继续贯彻以下技术政策:(1)大力推行节约能源及有利于环境保护的能源政策;节约能源不仅是减少能源消耗、提高经济效益的需要,也是谋求经济建设与环境保护长期协调发展的重要措施。
与发达国家相比,我国节能潜力很大。
因此,要继续采取措施,大力节约能源。
(2)严格把好“三同时”关,控制新污染;(3)依靠科技进步,有效地控制污染物排放,实现污染防治与综合利用资源相结合;(4)挖掘潜力,提高现有环保设施运转率,发挥其投资效益;(5)积极筹措基金,治理老厂污染。
关于火电厂锅炉脱硫脱硝及烟气除尘的技术分析
关于火电厂锅炉脱硫脱硝及烟气除尘的技术分析摘要:近年来,我国环境污染问题日益凸显,尤其是大气环境污染。
大气污染物主要来源于工业废气,火电厂污染物排放,硫氮氧化物含量不断增加,严重破坏生态环境。
火电厂提出了脱硫脱硝与烟气除尘技术,有效减少了大气污染物排放量,减轻大气环境污染。
为了进一步提升火电厂排污技术,结合技术特点与发展现状,本文对火电厂锅炉脱硫脱硝及烟气除尘技术进行探究,并提出创新展望及发展建议。
关键词:火电厂、脱硫脱硝、烟气除尘引言:国内外,煤炭资源需求量越来越大,中国作为资源大国,也不可忽视资源短缺问题。
国际上,坚持可持续发展理念,走可持续发展道路,环境保护意识深入人心。
火电厂应用火力发电,电力供应又以火力发电为主,燃烧消耗大量煤炭资源,直接排放到大气中,破坏大气层。
因此,尽可能的减小污染物排放量,提升煤炭资源利用率,对火电厂锅炉脱硫脱硝及烟气除尘技术不断优化改进,切实降低污染物排放量。
一、火电厂锅炉脱硫脱硝及烟气除尘技术的发展现状国家加大控制环境污染,企业不断加强环保力度,控制污染物排放量,锅炉脱硫脱硝及烟气除尘技术是时代遗留的产物,利用自身优势与特性,在火电厂锅炉环节发展已经较为成熟。
但在经济发展过程中,各行各业煤炭能源需求量不断增加,与节能减排发展要求存在矛盾,有些企业不但没有降低污染物排放量,反而产生更多污染有害气体,这与可持续发展战略相违背,不利于今后长远发展。
因此,在脱硫脱硝与烟气除尘技术上,要调整修改方案,改进设备,优化技术应用。
根据调查表明,脱硫脱硝及烟气除尘技术已经实现大部分电站企业的应用,改善了一些地区的大气污染问题,煤炭燃烧量有效降低。
相关技术人员监管脱硫脱硝情况,满足基本污染物排放要求,但吸收塔形式存在差异,脱硫脱硝效果不一,吸收塔无阻塞情况会导致资源浪费,增大原料消耗量,提高成本。
研究吸收塔反应原理,适当改进炉内空间结构,修正回流设备,易吸收塔为切入点增强除尘技术。
电厂锅炉脱硫脱硝及烟气除尘技术
电厂锅炉脱硫脱硝及烟气除尘技术摘要:社会经济的发展促进着人们生活水平的提高,同时也带来了资源紧张的问题。
随着我国可持续发展和国际环保理念的推动,作为我国的能源消耗最多及污染物排放量位列前茅的燃料电厂,需要对生产系统进行脱硫脱硝改造,对生产过程的烟气除尘技术进行优化,确保电厂生产过程的污染量得以降低,从而提高能源的利用效率。
根据国家出台的有关方案对电厂的煤炭燃烧排放量进行约束,保证电厂锅炉荷载能力和抗震性满足电厂安全生产的需求,采用最新的技术和设备确保燃煤发电组实现超低排放量的目的。
关键词:电厂锅炉;脱硫脱硝;烟气除尘;技术1锅炉脱硫脱硝及烟气除尘技术现状及优势现阶段我国大部分使用锅炉的企业已经开始应用脱硫脱硝及烟气除尘技术,多数企业技术人员通过对锅炉设备的系统设计和调试,基本完成了脱硫脱硝及除尘的参与实现,同时企业投入大量的人力和资金对设备和技术进行改进。
脱硝脱硫和烟气除尘在技术工艺应用方面并不复杂,经过漫长的技术革新,当前脱硫脱硝及烟气除尘技术完成了操作流程的简化和整体自动化操作的集成,有效减少工作人员的工作量,从而不需要企业耗费过多的人力和财力。
通过控制酸碱度及操作温度就可以实现基础参数观测和控制,降低了企业成本支出。
广泛的技术应用、简化的流程操作使得脱硫脱硝及除尘技术有利于各种规模和类型锅炉技术升级,装置环保有效,确保燃烧装置不会对环境产生不良影响,避免环境的二次污染。
2电厂锅炉脱硫脱硝技术2.1干法脱硫技术干法脱硫技术一般应用的环境必须保证其干燥度,这项技术通过颗粒状或者粉末状的吸收剂对锅炉产生的废气中的硫和硝进行吸收,经过一系列的反应后呈现的产物必须为干粉,从而实现脱硫脱硝的目的。
在这个反应过程中,不会产生废硫或水蒸气等对锅炉设备造成腐蚀的气体,从而在一定程度上对机器设备起到保护作用。
现阶段最常见的两种干法脱硫技术为荷电干式喷射法和等离子体法,前一种通过吸收剂使反应程度和反应过程进行变化,从而实现脱硝效率提高的目的;后一种方法通过电子束辐照烟气或者借助高能电子,通过电力分解硫元素和氮元素产生的化合物,再将化合物应用于农业生产中,从而提高脱硫脱硝技术的使用价值。
DZL2-13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计
DZL2-13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计大气污染控制工程课程设计题目:DZL2-13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计学生姓名:学号:班级:专业:环境监测与治理技术指导教师:2010 年 6 月前言如今随着经济的快速发展,大气污染问题越来越受到人们的重视。
大气污染问题如果处理不好,将成为国家谋求发展、提升综合国力的瓶颈。
我国的环境更是尤为严重。
大气中已经产生危害或被人们注意到的污染物约有100种左右,其中影响范围广,对人类环境威胁较大的主要有碳氢化合物、一氧化碳、氮氧化合物、硫氧化物、硫化氢、氟化物、光化学氧化剂和微粒物质。
特别是排放量逐年增长。
大气污染不得到治理,人类的可持续发展将无法实现,控SO2制大气污染将长期作为我国污染控制领域的主要任务之一。
因此,学习大气处理知识的课程尤为重要。
相关的课程设计实训更是不能少。
大气课程设计是大气污染控制工程教学中综合性和实践性较强的教学环节,是理论系实际的桥梁,是体察工程实际问题复杂性的初次尝试。
通过大气课程设计,要求我们能综合运用本课程和前修课程的基本知识,进行融会贯通的独立思考,在规定的时间内完成指定的大气设计任务,从而得到大气课程设计的初步训练。
气体吸收、大气除尘是重要的单元操作。
气体吸收是用是适当的液体吸收剂处理气体混合物以去除其中的一种或多种组分的操作。
大气除尘是运用先进的除尘设备去除烟尘的技术。
两者广泛应用于大气污染处理中。
本次课程设计的题目是DZL2-13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计。
要求有:根据燃煤的原始数据计算锅炉燃烧产生的烟气量,烟尘和二氧化硫浓度。
净化系统设计方案的分析,包括净化设备的工作原理及特点;运行参数的选择与设计;净化效率的影响因素等。
设备结构设计计算,烟囱设计计算,管道系统设计,阻力计算,风机电机的选择,设备选择依据和工艺流程介绍;还要根据计算结果绘制设计图,系统图要标出设备、管件编号、并附明细表;除尘系统、脱硫设备平面、剖面布置图若干张等。
电厂锅炉脱硫脱硝及烟气除尘技术
电厂锅炉脱硫脱硝及烟气除尘技术摘要:中国目前最主要的发电方式是通过燃烧煤炭、天然气、石油等能源原料,从化学能源转换为申能能源。
随着人民生活水平的提高,对电力的要求越来越高,由此产生的烟尘污染问题也越来越突出。
在此背景下,针对电厂的实际运行状况,制定一套完善的烟气脱硫、脱硝和烟气除尘技术,并逐步提升对干烟气污染的治理能力,确保可以在发电过程中有效落实可持续发展的环保理念。
关键词:电厂锅炉;脱硫;脱硝;烟气除尘1电厂锅炉脱硫脱硝及烟气除尘技术概述1.1意义在这一阶段,各个行业都在发展,对煤炭的需求量越来越大。
根据调取的数据,目前采用干法燃烧的煤炭总量已达6吨/天。
尤其是在火电厂等地方,煤炭的消耗越来越大,在这种情况下,火申厂排放出来的污染物质会对周围环境造成污染,降低病态质量,难以满足节能减排理念下的发展要求。
所以,在火电厂逐步采用脱硫、脱硝、除尘等工艺,施工单位要充分保障其运行状况,进行相应的优化改造,并牢固掌握脱硫、脱硝、烟气除尘技术,并在此基础上提出更为完善的控制策略,进而为工业的可持续发展打下坚实的基础。
1.2现状中国在经济发展的同时,也越来越关注环保问题。
在此背景下,加强对火申厂的污染治理势在必行。
从目前的发展趋势来看,脱硫、脱硝和烟尘技术在干火炉生产中得到了广泛的应用,为节能减排作出了巨大的贡献。
但是,目前国内的脱硫、脱硝、烟尘等技术在实践中还有很大的发展空间,与国外先进技术相比还有很大的差距,所以,火申厂必须根据自己的实际,对相关技术进行优化和完善,使该技术能够为节能减排作出更大的贡献,并促进该厂在市场中综合竞争力的显著提升。
1.3技术特点在过去的火力发电厂中, C、 N、 S等元素对大气环境构成了很大的威胁,比如不完全燃烧会导致C0和0,如果不经过任何处理,就会对环境造成很大的危害,而这些有害物质的存在也会影响到整个生态环境。
在煤炭的燃烧中,碳的利用率非常低,同时,煤炭中的氧化物也会排放到大气中,对大气造成污染,还会产生酸雨和光化学烟雾等污染现象。
DLP4-13型锅炉高硫无烟煤烟气旋风除尘系统设计
1 燃烧计算锅炉型号:DLP4-13 即,单锅筒横置式抛煤机炉,蒸发量4t/h ,出口蒸汽压力13MPa设计耗煤量:610kg/h设计煤成分: C Y =72% H Y =2% O Y =2% N Y =1% S Y =3% A Y =18% W Y =2% ; V Y =8% 属于高硫无烟煤; 排烟温度:160℃; 空气过剩系数=1.4; 飞灰率=21% 。
烟气在锅炉出口前阻力650Pa污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。
连接锅炉、净化设备及烟囱等净化系统的管道假设长度50m ,90°弯头10个。
解:以1kg 该煤燃烧为基础,则表1.1烟气成分理论需氧量为煤kg m /14634.22)9375.0625.0560(3=⨯+-+假定干空气中氮和氧的摩尔比(体积比)为3.78,则1kg 该煤完全燃烧所需要的理论空气量为()煤kg m /14.699378.3114633=+⨯空气过剩系数=1.4,则实际空气量为煤kg m N /369.97904.114.69933=⨯理论烟气量为煤kg m /2554.1140414.6693369.979078.314634.22)111.10.93751060(3=-+⨯+⨯+++160οC 时实际烟气体积为()煤kg m N /01.1614.27316014.27340.113=+⨯ 设计煤耗量下的排烟烟气体积为h m /1102961008.183=⨯烟气含尘质量为g 8.37%21180=⨯烟气含尘质量浓度为3/7.209008.1837800m mg = 生成SO 2的质量为g 60640.9375=⨯排烟温度下的SO 2的浓度为3/9.21738.1330000m mg =2 旋风除尘器设计2.1 旋风除尘系统重要组成旋风除尘器由带锥行的外圆筒、进气筒、排气筒(内圆筒)、圆锥筒和贮灰箱及排灰阀等组成。
排气管插入外圆筒形成内圆筒,进气管与外圆相切,外圆筒下部是圆锥筒,圆锥筒下部是贮灰箱。
燃煤锅炉烟气除尘脱硫系统设计毕业论文
燃煤锅炉烟气除尘脱硫系统设计1.前言 (1)2.工作项目介绍 (1)3.脱硫系统结构简介 (2)4.石灰石浆液制备系统工作原理 (3)5.吸收塔工作原理 (5)6.除雾器功能说明 (8)7.脱硫系统氧化方式介绍 (13)8.增压风机系统组成 (14)9.石膏脱水系统原理 (14)10.真空皮带机脱水原理介绍 (17)11.石膏产物的利用 (19)12.石膏产物的储存 (19)13.脱硫废水的处理方法 (20)14.个人小结 (23)15.参考文献 (23)目前,污染已经变成了一个全球性的问题,主要有温室效应、臭氧层破坏和酸雨。
而大气污染可以说主要是人类活动造成的,大气污染对人们身体及动植物造成极大的影响。
随着经济和社会的发展,煤煤锅炉排放的二氧化硫严重地污染了我们赖以生存的环境。
由于中国燃料结构以煤为主的特点,至使中国目前大气污染仍以煤烟型污染为主,其中就以尘和酸雨危害最大,且污染程度还在加剧。
因此,控制燃煤烟尘的SO2对改善大气污染状况至关重要。
除尘脱硫一体化是将高温煤气中的粉尘颗粒和气态SO2在一个单独的捕集单中脱硫。
国内外除尘系统大至画分为水膜除尘器、文丘里旋风水膜除尘器、卧式旋风水膜除尘器、喷淋塔除尘脱硫装置、冲击式水浴除尘器、自激式除尘器、旋流板塔脱硫除尘一体化装置以及高压静电滤槽复合型卧式除尘器等湿式处理装置。
由于除尘脱硫一体化工艺具有投资少、运转费用低、脱硫率适中、操作管理简便、结构紧凑、占地面积小等优点,近年来已被广泛应用。
本人自从毕业至今参加工作十余年,参加各种项目工艺的工程设备的安装调试工作,鞍山鞍钢的4#高炉建设;营口老边五矿的高炉、热风炉、高压鼓风机、布袋除尘系统;朝阳鞍钢水处理系统;鞍山三冶德龙铜管精整线系统编程以及朝阳凌原钢厂与北京蓝星环境工程有限公司合作的项目污水处理净化成生活用水工艺编程;黑龙江卓达轻型材料有限公司煤燃烧锅炉热水项目的编程等工程。
参与多个煤燃烧锅炉的脱硫工艺调试项目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火电厂锅炉高硫无烟煤烟气电除尘湿式脱硫系统设计Modified by JEEP on December 26th, 2020.S G-400/140型火电厂锅炉高硫无烟煤烟气电除尘湿式脱硫系统设计摘要现如今火电厂数量逐渐增加,火电厂锅炉产生的烟气量也随之增多,烟气中的二氧化硫等气体若未经处理达到国家排放标准就排放,无疑会对我们的大气造成污染,危害人类及动植物的健康。
因此,我们需要按照不同型号锅炉参数进行设计计算,以使烟气排放在达到国家标准的前提下尽可能的提高净化效率,使污染及危害降到最低。
本次课程设计就是针对SG-400/140型火电厂锅炉高硫无烟煤烟气,利用电除尘湿式脱硫的方法,设计计算出最高效的除尘净化系统,以降低烟气中有害气体的排放浓度,保护我们的大气环境。
关键词:烟气排放,湿式脱硫,大气污染,净化目录1 引言电除尘简介我国全面系统地对电除尘器技术进行研究和开发始于上个世纪60年代。
国内的研究主要分布在本质机理研究、存在问题与改造试验研究、外围辅助设备研究;而国外的研究主要包括:电场特性研究、除尘效率研究、粒子运动研究和模拟方法研究。
并指出采用数据融合的技术来研究电除尘器的思路。
电除尘器是火力发电厂必备的配套设备,它的功能是将燃灶或燃油锅炉排放烟气中的颗粒烟尘加以清除,从而大幅度降低排入大气层中的烟尘量,这是改善环境污染,提高空气质量的重要环保设备。
在收集细粉尘的场合,电除尘器是主要的除尘装置之一。
电除尘器是含尘气体在通过高压电厂进行电离的过程中,使尘粒荷电,并在电场力的作用下使尘粒趁机在集尘极上,将尘粒从含尘气体中分离出来的一种除尘设备。
电除尘过程与其他除尘过程的根本区别在于,分离离直接作用在粒子上,而不是作用在整个气流上,这就决定了它具有分离粒子耗能小,气流阻力也小的特点。
由于作用在粒子上的静电力相对较大,所以即使对亚微米级的粒子也能有效的捕集。
电除尘器主要由电晕电极、集尘极、高压供电设备、气流分布板等组成。
电除尘器的工作原理涉及悬浮粒子荷电,带电离子在电厂内迁移和捕集,以及将捕集物从集尘表面上清除三个基本过程。
在正负离子运行中,电晕区里的粉尘带正电荷,移向电晕极,因此,电晕极也会不断积灰,只不过量较小。
收集到的粉尘通过振打装置使其跌落,聚集到下部的灰斗中由排灰电机排出,使气体得到净化。
湿式石灰法脱硫简介湿式石灰法脱硫是采用石灰石或者石灰浆液脱除烟气中SO2的方法。
该方法开发较早,工艺成熟,吸收廉价易得,因而应用广泛。
且具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。
日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。
它的工作简介是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。
经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。
由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。
2 燃烧计算以1kg 煤燃烧为基础,则表1 燃烧成分表重量/g摩尔数/mol需O 2量/mol生成物 生成物量/molC 670 CO 2 H 23 23H 2OO 130S 35SO 2 N 15 N 2H 2O45理论需氧量kg mol n O /65.621.175.58.552=++= (式) 理论空气量kg mol n /47.29965.6278.4=⨯=理论空气 (式) 理论烟气量理论空气量条件下烟气组成(mol )为:CO 2: H 2O:145.25.11=+SO 2: N 2:37.23778.365.6255.0=⨯+ 理论烟气量为:kg mol V fg /27.30837.2371.1148.550=+++= (式)实际烟气量kg m kg mol n V V fg fg /25.9/1.41347.29935.027.380)1(30==⨯+=⋅-+=理论空气α(式)160 C 时,烟气量为 kg m V fg /67.1425.92731602733=⨯+=(式) 烟气流量 s m h Q N /1.167/m 60147010004167.1433N ==⨯⨯= (式)烟尘浓度计算 已知飞灰率为:ω=% 3/3.267.14%7.30110m g V m fg A A =⨯=⋅=ωρ (式) SO 2浓度计算 33/4800/8.467.14641.122m mg m g V m fgSO SO ==⨯==ρ (式) 3 净化系统设计方案的分析净化设备的工作原理及特点 电除尘器的工作原理及特点原理:电除尘器的工作原理涉及悬浮粒子荷电,带电离子在电厂内迁移和捕集,以及将捕集物从集尘表面上清除三个基本过程。
在正负离子运行中,电晕区里的粉尘带正电荷,移向电晕极,因此,电晕极也会不断积灰,只不过量较小。
收集到的粉尘通过振打装置使其跌落,聚集到下部的灰斗中由排灰电机排出,使气体得到净化。
(1) 特点:电除尘过程与其他除尘过程的根本区别在于,分离离直接作用在粒子上,而不是作用在整个气流上,这就决定了它具有分离粒子耗能小,气流阻力也小的特点。
由于作用在粒子上的静电力相对较大,所以即使对亚微米级的粒子也能有效的捕集。
湿式石灰法脱硫的工作原理及特点(1) 原理:采用石灰/石灰石浆液吸收烟气中的2SO ,分为吸收和氧化两个阶段。
先吸收生成的亚硫酸钙:石灰石:3223221122CaCO SO H O CaSO H O CO ++=+↑石灰:O H CaSO O H SO CaO 23225.05.0•→++ 然后将亚硫酸钙氧化成硫酸钙。
(2) 特点:有多种因素影响到吸收洗涤塔的长期可靠运行:设备腐蚀、结垢和堵塞、除雾器堵塞、脱硫剂的利用率、脱硫产物及综合利用等。
运行参数的选择与设计 电除尘器运行参数的选择与设计多孔板通常采用厚度为3~间的钢板,开孔率(开孔面积与板总面积之比)一般为25%~50%之间,孔径为30~50mm 间,分布板层数为2~3层;板式除尘器两平行集尘板板间距离一般为200~400mm ,极板高度为10~15m ,极板的长度为10~20m ;通常高压供电设备的输出峰值电压为70~100kv ,电流为100~2000mA ;气体含尘浓度超过303g m 时,宜加设与净化设备;集尘极内平均流速为~;比集尘极表面积一般为300~240023(1000min)m m ;集尘板长高比至少为~。
湿式石灰法脱硫运行参数的选择与设计再热烟气温度大于750C ,烟气流速在1~5m/s ,浆液Ph 大于9,石灰/石灰石浆质量浓度在10%~15%之间,液气比在8~253L m ,气液反应时间3~5s ,气流速度为s ,喷嘴出口流速10m/s ,喷淋效率覆盖率200%~300%,脱硫石膏含水率为40%~60%,一般喷淋层为3~6层,烟气中2SO 体积分数为4000/610-,脱硫系统阻力在2500~3000Pa 。
净化效率的影响因素(1) 电除尘器净化效率的影响因素:气流分布的影响、气体含尘量、粉尘的比电阻、气流速度、电气参数、清灰等。
(2) 湿式石灰法脱硫净化效率的影响因素:浆液pH 、石灰石粒度、液气比、钙硫比等。
4 尺寸计算除尘设备结构设计计算 (1) 除尘效率的计算: 21(1)100%C C η=-⨯=%2.90%1002300225-1=⨯)( (式) (2) 集尘极的比集尘面积:)//(2.23)902.011ln(1.01)11ln(132s m m f =-=-=ηω(式) (3) 集尘板总面积:27.38762.231.167m Qf A =⨯== (式)考虑因处理气体量,浓度,压力的波动和供电系统的可靠性等因素影响,参照实际生产情况,取富裕系数m=~。
(4) 实际需要的集尘板面积为:7753.4~5815.07.3876)0.2~5.1()0.2~5.1('=⨯==A A (式) 取'A =75002m(5) 实际集尘板的比集尘面积为:)//(9.411.167750032''s m m Q A f ===(式) (6) 电除尘器有效截面积:取气流速度 1.5/v m s = F=v Q =5.11.167=2(式) (7) 集尘板高度为:h=F =4.111= (式)对于板卧式电除尘器而言,其电场断面接近正方形,一边气流与断面均匀分布。
所以,集尘极极板宽度取。
(8) 气体在电除尘器内的通道数:取集尘极间距B=;n==Bh F 55.103.04.111⨯=,取n=35 (式)(9) 集尘板总长度;==nh A l 2'55.103527500⨯⨯=,取l =11m (式) (10) 电晕线间距取300mm ;(11) 灰斗倾斜角45度,灰斗高,出口直径550mm ,共设4个灰斗; 脱硫设备结构设计计算 喷淋塔内流量计算假设喷淋塔内平均温度为080C ,压力为150KPa ,则喷淋塔内烟气流量为:v Q ==+⨯+)1(a 324.101273t 273K P Q Sh /2.153)05.01(150324.101273802731.1673m =+⨯⨯+⨯ (式) 式中:v Q —喷淋塔内烟气流量,3m h ; s Q —标志下烟气流量,3m h ; K —除尘前漏气系数,0~; 喷淋塔径计算依据石灰石烟气脱硫的操作条件参数,可选择喷淋塔内烟气流速v=3m/s ,则喷淋塔截面A 为:A=v Q =31.167=2(式) 则塔径d 为:d=πA4=14.37.554⨯= (式) 取塔径0D =8500mm 。
喷淋塔高度计算喷淋塔可看做由三部分组成,分成为吸收区、除雾区和浆池。
(1) 吸收区高度依据石灰石法烟气脱硫的操作条件参数得,选择喷淋塔喷气液反应时间t=4s ,则喷淋塔的吸收区高度为:H 1=vt=3×4=12m (式)(2) 除雾区高度除雾器设计成两段。
每层除雾器上下各设有冲洗喷嘴。
最下层冲洗喷嘴距最上层~m 。
则取除雾区高度为:2 3.5H m =(3) 浆池高度浆池容量1V 按液气比浆液停留时间1t 确定: 11V L G Q t =⨯⨯=15×10-3×601470×606= (式) 式中: L G —液气比,取153L m ;Q —标况下烟气量,3m ;1t —浆液停留时间,取6min ;选取浆池直径等于或略大于喷淋塔0D ,本设计中选取的浆料直径0D 为9m ,然后再根据1V 计算浆池高度: m D V 2.14914.32.90244h 22010=⨯⨯==π (式) 式中:0h —浆池高度,m ;1V —浆池容积,3m ;0D —浆池直径,m 。