2020年黑龙江省大兴安岭中考数学试卷(含解析)印刷版
黑龙江省大兴安岭地区2020年中考数学试卷A卷
黑龙江省大兴安岭地区2020年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)﹣的相反数是()A . -2B . -C .D . 22. (2分) x=2是方程ax-3(x-1)=5的根,则a=()A . 3B . 4C . -1D . -43. (2分)武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为().A . 1.68×103mB . 16.8×103 mC . 0.168×104mD . 1.68×104m4. (2分) (2020八下·贵阳开学考) 我市某一周每天的最高气温统计如下(单位:℃):27,28,29,28,29,30,29.这组数据的众数与中位数分别是().A . 28,28B . 28,29C . 29,28D . 29,295. (2分)(2014•盘锦)如图,下面几何体的左视图是()A .B .C .D .6. (2分) (2016七上·岑溪期末) 如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD等于()A . 15°B . 25°C . 35°D . 45°7. (2分)(2019·龙岗模拟) 给出下列5个命题:①两点之间直线最短;②同位角相等;③等角的补角相等;④不等式组的解集是﹣2<x<2;⑤对于函数y=﹣0.2x+11,y随x的增大而增大.其中真命题的个数是()A . 2B . 3C . 4D . 58. (2分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M ,交y轴于点N ,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P .点P关于x轴的对称点P′的坐标为(a , b),则a与b的数量关系为()A . a+b=0B . a+b>0C . a-b=0D . a-b>09. (2分)下列各式是因式分解且完全正确的是()A . ab+ac+d=a(b+c)+dB . x3﹣x=x(x2﹣1)C . (a+2)(a﹣2)=a2﹣4D . a2﹣1=(a+1)(a﹣1)10. (2分)一台机器原价100万元,每年的折旧率是x ,两年后这台机器约为y万元,则y与x的函数关系式为()A . y=100(1-x)2B . y=100(1-x)C . y=100-x2D . y=100(1+x)211. (2分) (2019九上·鹿城月考) 如图,矩形中,,,以为圆心,长为半径画圆弧,交于点,则的长为()A .B .C .D .12. (2分)从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A .B .C .D .13. (2分)关于x的方程(x-3)(x-5)=m(m>0)有两个实数根, ( < ),则下列不符合题意的是()A . 3< < <5B . 3< <5<C . <2< <5D . <3且>514. (2分)(2017·安徽模拟) 设△ABC的一边长为x,这条边上的高为y,y与x满足的反比例函数关系如图所示.当△A BC为等腰直角三角形时,x+y的值为()A . 4B . 5C . 5或3D . 4或3二、填空题 (共4题;共4分)15. (1分) (2019七下·新罗期末) 把方程2x﹣y﹣3=0化成用含x的代数式表示y的形式:y=________.16. (1分)(2013·崇左) 函数中自变量x的取值范围是________.17. (1分) (2017九上·莒南期末) 在△ABC中,D是AB的中点,DE∥BC,则S△ADE:S△ABC=________.18. (1分)(2016·温州) 如图,将△AB C绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=________度.三、解答题 (共6题;共62分)19. (10分) (2020八下·蓬溪期中) 计算:(1)(2)20. (15分)(2018·洪泽模拟) 我市组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定,现随机抽取部分学生书法作品的评定结果进行统计,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?21. (5分)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.22. (5分) (2019八下·嘉兴开学考) 已知海岛A的周围6km的范围内有暗礁,一艘海轮在B处测得海岛A 在北偏东30°的方向;向正北方向航行6km到达C处,又测得该岛在北偏东60°的方向,如果海轮不改变航向,继续向正北航行,有没有触礁的危险?23. (15分)(2018·娄底模拟) 如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明:四边形AHBG是菱形;(3)若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)24. (12分)(2017·石景山模拟) 在平面直角坐标系xOy中,对“隔离直线”给出如下定义:点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k≠0)是图形G1与G2的“隔离直线”.如图1,直线l:y=﹣x﹣4是函数y= (x<0)的图象与正方形OABC的一条“隔离直线”.(1)在直线y1=﹣2x,y2=3x+1,y3=﹣x+3中,是图1函数y= (x<0)的图象与正方形OABC的“隔离直线”的为________;请你再写出一条符合题意的不同的“隔离直线”的表达式:________;(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是(,1),⊙O的半径为2.是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;(3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的右侧,点M(1,t)是此正方形的中心.若存在直线y=2x+b是函数y=x2﹣2x﹣3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共4题;共4分)15-1、16-1、17-1、18-1、三、解答题 (共6题;共62分)19-1、19-2、20-1、20-2、20-3、21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、。
黑龙江省大兴安岭地区2020年中考数学试卷B卷
黑龙江省大兴安岭地区2020年中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2017·海曙模拟) ﹣3的绝对值是()A . 3B . ﹣3C .D .2. (2分) (2016九上·沙坪坝期中) 如果关于x的不等式组的解集为x>1,且关于x的分式方程 + =3有非负整数解,则符合条件的m的所有值的和是()A . ﹣2B . ﹣4C . ﹣7D . ﹣83. (2分)(2019·防城模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)下列计算不正确的是()A .B .C .D .5. (2分)已知一组数据:1,2,6,3,3,下列说法正确的是()A . 中位数是6B . 平均数是4C . 众数是3D . 方差是56. (2分) (2018九上·开封期中) 如图所示,⊙O的半径为10,弦AB的长度是16,ON垂直AB,垂足为N,则ON的长度为()A . 5B . 6C . 8D . 107. (2分) (2018八上·伍家岗期末) 在正方形网格中,的位置如图所示,到的两边距离相等的点应是()A . 点MB . 点QC . 点PD . 点N8. (2分)电子跳蚤游戏盘是如图所示的△ABC,AB=8,AC=9,BC=10,如果跳蚤开始时在BC边的点P0处,BP0=4.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳回到BC边的P3处,且BP3=BP2 ,…,跳蚤按上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2007与P2010间的距离为()A . 1B . 2C . 3D . 4二、填空题 (共6题;共15分)9. (10分) (2018八上·大连期末)(1)分解因式:(2)解方程:10. (1分) (2019八上·柳州期末) 将数字0.0026用科学记数法表示为________.11. (1分) (2017九上·灌云期末) 一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是________.12. (1分) (2016七上·常州期末) 如图所示,将等边三角形ABC分割成大小相同的9个小等边三角形,分别标上数字1,2,3,…,9,那么标有数字2的小等边三角形绕它下面的顶点O旋转180°,可以和标有数字________的小等边三角形重合.13. (1分)已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是________ .14. (1分)(2019·遵义模拟) 在平面直角坐标系xOy中,点A(-2,m)绕坐标原点O顺时针旋转90°后,恰好落在图中⊙P中的阴影区域(包括边界)内,⊙P的半径为1,点P的坐标为(3,2),则m的取值范围是________.三、解答题 (共9题;共79分)15. (5分)计算:()﹣1﹣|﹣4|++(sin30°)0 .16. (5分)(2017·邗江模拟) 求不等式组的整数解.17. (15分)(2019·澄海模拟) 如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C 运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.(1)求线段AC的长度;(2)当点Q从B点向A点运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为l:①当l经过点A时,射线QP交AD于点E,求AE的长;②当l经过点B时,求t的值.18. (5分)(2018·柳州模拟) 学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
大兴安岭地区2020年中考数学试卷(I)卷
大兴安岭地区2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2017·道外模拟) ﹣的倒数是()A . 2B .C . ﹣2D . ﹣2. (2分)节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.将数350 000 000用科学记数法表示为A .B .C .D .3. (2分)(2020·大通模拟) 如图,是一个水管的三叉接头,它的左视图是()A .B .C .D .4. (2分)(2019·九江模拟) 小明用手机软件记录了最近30天的运动步数,并将记录结果制作成了如下统计表:步数/万步 1.1 1.2 1.3 1.4 1.5天数395a b 小明这30天平均每天走1.3万步,在每天所走的步数中,众数和中位数分别是()A . 1.3,1.3B . 1.4,1.3C . 1.4,1.4D . 1.3,1.45. (2分)(2020·吴江模拟) 下列运算正确的是()A . a2+a3=a5B . (a+b)2=a2+b2C . (a2)3=a5D . x2•x3=x56. (2分) (2017七下·安顺期末) 方程组的解为,则a、b的值分别为()A . 1,2B . 5,1C . 2,1D . 2,37. (2分)(2020·潍坊) 如图,点E是的边上的一点,且,连接并延长交的延长线于点F,若,则的周长为()A . 21B . 28C . 34D . 428. (2分)如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,△DEB的周长为()21coA . 4cmB . 6cmC . 10cmD . 不能确定二、填空题 (共8题;共8分)9. (1分)(2020·合肥模拟) 分解因式: ________.10. (1分)(2016·鸡西模拟) 不等式组的解集是________.11. (1分)(2020·甘肃) 在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球约有________个.12. (1分) (2017八下·安岳期中) 已知反比例函数y=﹣的图象经过点P(2,a),则a=________.13. (1分)已知三角形的一边长为x,这条边上的高为x的2倍少1,则三角形的面积y与x之间的关系为________.14. (1分)找规律填空:﹣1,3,﹣5,7,﹣9,11,________,15.15. (1分)(2020·云梦模拟) 如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F是CD上一点,连接AF分别交BD,DE于点M,N且AF⊥DE,连接PN,则以下结论中:①S△ABM=4S△FDM;②PN=;③tan∠EAF=;④△PMN∽△DPE.正确的是________.(填序号)16. (1分) (2019八上·涡阳月考) 如图,∠CBA=∠DAB,要使用AAS判定△ABC≌△BAD,还需添加的条件是________三、解答题 (共10题;共101分)17. (5分) (2019八下·长春期末) 如图,在△ABC中,,,,求AB 的长.18. (10分)(2018·眉山) 在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上,请解答下列问题:(1)①作出△ABC向左平移4个单位长度后得到的△A1B1C1 ,并写出点C1的坐标;②作出△ABC关于原点O对称的△A2B2C2 ,并写出点C2的坐标;(2)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式.19. (20分)(2012·北海) 去年4月,我市开展了“北海历史文化进课堂”的活动,北海某校政教处就同学们对北海历史文化的了解程度进行随机抽样调查,并绘制成了如下两幅不完整的统计图.根据统计图中的信息,解答下列问题:(1)本次调查的样本容量是多少,调查中“了解很少”的学生占多少;(2)补全条形统计图;(3)若全校共有学生900人,那么该校约有多少名学生“很了解”北海的历史文化?(4)通过以上数据的分析,请你从爱家乡、爱北海的角度提出自己的观点和建议.20. (6分)(2020·和平模拟) 在一个不透明的盒子中放有三张卡片,每张卡片上写有1个实数,分别为1,2,3.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是2的概率________;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为点P的横坐标,卡片不放回,再随机抽取一张卡片,将卡片上的实数作为点P的纵坐标,两次抽取的卡片上的实数分别作为点P的横纵坐标.请你用列表法或树状图法,求出点P在反比例函数上的概率.21. (5分) (2019八下·惠安期末) 王老师计划用36元购买若干袋洗衣液,恰遇超市降价促销,每袋洗衣液降价3元,因而王老师只用24元便可以购买到相同袋数的洗衣液.问这种洗衣液每袋原价是多少元?22. (10分)(2017·长沙) 如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E, =(1)求证:OA=OB;(2)已知AB=4 ,OA=4,求阴影部分的面积.23. (5分)(2018·湖北模拟) 如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)24. (10分) (2019九上·泗阳期末) 某商场以每件40元的价格购进一种服装,由试销知,每天的销售量t (件)与每件的销售价x(元)之间的函数关系为t=180﹣3x.(1)试写出每天销售这种服装的毛利润y(元)与每件销售价x(元)之间的函数表达式(毛利润=销售价﹣进货价);(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?25. (15分) (2017八下·辉县期末) 如图,在△ABC中,D是BC边上一点,E是AD的中点,过A作BC的平行线交CE的延长线F,且AF=BD,连结BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论;(3)当△ABC满足什么条件时,四边形AFBD为正方形?(写出条件即可,不要求证明)26. (15分)(2017·青海) 如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共101分)17-1、18-1、18-2、19-1、19-2、19-3、19-4、20-1、20-2、21-1、22-1、22-2、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
黑龙江省大兴安岭地区2020版中考数学试卷A卷
黑龙江省大兴安岭地区2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·邵阳模拟) |﹣3|的相反数是()A . 3B . ﹣3C . ±3D .2. (2分)(2018·莘县模拟) 在坐标平面内,点P(4﹣2a,a﹣4)在第三象限.则a的取值范围是()A . a>2B . a<4C . 2<a<4D . 2≤a≤43. (2分)(2019·山西) 下列运算正确的是()A .B .C .D .4. (2分) (2017七下·顺义期末) 如图,直线,点在直线上,且,,则的度数为()A .B .C .D .5. (2分)(2019·萧山模拟) 长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是()A . 12cm2B . 8cm2C . 6cm2D . 4cm26. (2分)如图,四边形ABCD是菱形,过点A作BD的平行线交CD的延长线于点E,则下列式子不成立的是()A . DA=DEB . BD=CEC . ∠EAC=90°D . ∠ABC=2∠E7. (2分)时代中学周末有40人去体育场观看足球赛,40张票分别为B区第2排1号到40号,分票采用随机抽样的办法,小明第一个抽取,他抽取的座号为10号,接着小亮从其余的票任意抽取一张,取得的一张票恰好与小明邻座的概率是()A .B .C .D .8. (2分)(2018·天水) 从一块正方形的木板上锯掉2 m宽的长方形木条,剩下的面积是48㎡,则原来这块木板的面积是()A . 100㎡B . 64㎡C . 121㎡D . 144㎡9. (2分) (2019九上·天台月考) 如图,反比例函数y=(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B(3,2).当ax+b<时,则x的取值范围是()A . 1<x<3B . x<1或x>3C . 0<x<1D . 0<x<1或x>310. (2分)正多边形的一边所对的中心角与该正多边形一个内角的关系是().A . 两角互余B . 两角互补C . 两角互余或互补D . 不能确定二、填空题 (共6题;共6分)11. (1分) (2017九上·乐清期中) 分解因式:x2-2x=________.12. (1分)(2019·淮安) 现有一组数据2,7,6,9,8,则这组数据的中位数是________.13. (1分) (2019九上·钦州港期末) 如图△ABC中,∠A=30°,∠C=90°,作△ABC的外接圆.若弧AB的长为12cm,那么弧AC的长是________.14. (1分)某班同学去观影,甲种票每张35元,乙种票每张25元,如果56名同学每人购买1张甲种票或者1张乙种票,购票恰好用去1370元,设甲种票买了x张,乙种票买了y张,根据题意,可列方程组为________.15. (1分)如图,在高楼AB前D点测得楼顶A的仰角为30°,向高楼前进60米到C点,又测得楼顶A的仰角为60°,则该高楼AB的高度为________米.16. (1分) (2015八下·津南期中) 如图,四边形ABCD的两条对角线AC,BD互相垂直,A1 , B1 , C1 ,D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为________.三、解答题 (共10题;共96分)17. (10分)(2018·江都模拟)(1)计算:(2)解不等式组:18. (5分) (2017·雅安模拟) 解不等式组:,并求出它的所有整数解的和.19. (5分)(2018·龙岩模拟) 如图,在□ABCD中,是对角线上的两点,且,求证:.20. (10分)(2013·绍兴) 某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从乒乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:(1)这次被调查的共有多少名同学?并补全条形统计图.(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?21. (5分)(2017·农安模拟) 为了减少雾霾,美化环境,小王上班的交通方式由驾车改为骑自行车,小王家距单位的路程是15千米,在相同的路线上,小王驾车的速度是骑自行车速度的4倍,小王每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小王骑自行车的速度.22. (6分) (2020八上·安陆期末) 观察以下等式:第1个等式: ,第2个等式: ,第3个等式: ,第4个等式: ,第5个等式: ,……按照以上规律,解决下列问题:(1)写出第6个等式:________;(2)写出你猜想的第n个等式(用含n的等式表示),并证明.23. (20分)(2017·青岛模拟) 如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm.点P从点A出发沿AB 方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s.当一个动点到达终点时,另一个动点也随之停止运动.设运动时间为t(s).(1)当t为何值时,△APC为等腰三角形.(2)当点Q在线段BC上运动时,△PBQ的面积为S(cm2),写出S与t之间的函数关系.(3)当点Q在线段BC上运动时,是否存在某一时刻t,使S△PBQ:S四边形APQC=5:3?若存在,求出t值;若不存在,说明理由.(4)在运动过程中,是否存在某一时刻t,使BQ平分∠ABC?若存在,求出t的值;若不存在,请说明理由.24. (15分) (2016·南平模拟) 如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣ x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P 的坐标;若不存在,请说明理由.25. (10分)(2017·祁阳模拟) 如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE•OF.26. (10分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD 的面积为ym2 .(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共96分)17-1、17-2、18-1、19-1、20-1、20-2、21-1、22-1、22-2、23-1、23-2、23-3、23-4、24-1、24-2、24-3、25-1、25-2、26-1、26-2、。
2020大兴安岭中考数学
2020年黑龙江省大兴安岭地区中考数学试卷一・选择題(每小題只有一个正确答案,每小題3分,满分30分〉1 -(3分)2020的倒数是( 3・(3分)下列计算正确的是( 〉A • a A2a=3a C. (-2a)4. (3分〉一个庾地均匀的小正方体,六个面分别标有数宇椰小IF 方体后,观察朝卜一面的数字出现偶数的槪率杲(1 2 ° 4 D •亍5. (3分)卒强同学去登山‘先匀速登上L1J 顶.原地休息一段时间后.又匀谑下山'上山的速度小于下III 的速度•在登L1J 过程中,他行走的路程S 随时间f 的变化规律空大致團象6. (3分)数学老师在课堂上给同学们布羞了 10个埴空题作为课堂练习,并将全班同学的丄 C ,20202. (3分)下面四个化学仪器示竜團中,是轴对称團形的是(A. 2020B. -2020D —W20D.D. a A2(r=2^B.B.答题情况绘制成条形统计图・由图可知,全班同学答对题数的众数为(A ・7 7■分〉若矢于询分式方程三二总+5的解为正数'贝“的取值范围为()B. ?nW — 10c •刃$— 10且加去・6 8.( 3分〉母亲节来临,小明去花店为妈妈准备节日礼物•已知康乃聲每支2元,百合每支3元•小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有( 〉A ・3种B.4种C.5种D ・6种9. (3分〉有两个直角三角形纸板,一个含45。
角,另一个含30。
唐,如图①所示養放,先将含30。
角的纸板固定不动,再将含45。
角的纸板绕顶点兔顺时针旋转,使劝瞒如图②所示,则旋转 10. 〈3分〉如朗葩物线yn/c (20)与x 轴交于点<4,0>,其对称轴九直线x =1,结合国象绐出下列结论:① ac< 0; ② 4幺一③ 当x>2时,丁随为的増大而増大,©矢于r 的一元二次万程d+bE7 = 0有两个不相等妁妄数根・其中正确的结论有()C • 45° D. 60°D.加>一 10且加去B ・8角的度数为(二•填空題(每小題3分,满分21分〉11. (3分)2020年初新冠肺炎疫情发生以来,近4000000若城纟•社区工作老亩战在中国人地的疫情防控一线•将数据4000000用科学记数注表示为__________ ・12. (3分〉在函数中,自变臺x的取道范區是 ______________ ・13・(3分)如囲*已知在I刼和MBC^p'ZDAB= ZCAB,点・4、B、E在同一务肓线上'若使勿应邂则还雷添加的一个条件是 ___________________ ・(只填一个即可)14. <3分〉期图是一个几何体的三视创,馅民團中翕出的数据,计算出这个几何体的便面积是______主视图左观图俯视團15・(3分)竽脖三角形的两争边《:分别为3和》刚逹彳〜等孩三角形的周*:是______ 16. (3分)如團,在平直直甬坐标系中,矩形.仍CD的边肋在〉轴上,点C坐标为(2,■2),并且BO= 1:2,点£>在函数尸£(x>0)的图象上,则斤的值为___________________>♦17.(3分)如图,在平面直角坐标系中,等腰直毎三角形①沿*轴正半轴滚动并且按一走规律变换,野次变换后得到的區形仍是尊腰直角三角形.第一次滚动后点/I (0, 2)变涣到点、如〈6,0),得到等腰直角三角形第二充纭!J后点%交快到点、心〈6, 0〉,得到等搜直弟三角形③;第三安滚动后点如变涣到点”4 <10, 4V2),得到等屐直毎三角形④;第四次滚动后点力4变换到点乂5 (10+12迈,0力得到等腹直角三甬形⑤;依此规律・“,则第2020个等腹育角三角形的面积杲三、解答題(本題共7道大題,共69分〉18 ・(10 分)(1)计算:sin3(T +V16- (3 -、2)呵一扌(2)因式分^.3cr-4819・(5分)解方程:X2- 5x八6 =020・(8分〉如图,曲为00能宜径,C、刀为OO上能两个軽AC= CD = DB f连接Mb过点。
黑龙江省大兴安岭地区中考数学试卷
黑龙江省大兴安岭地区中考数学试卷姓名:________ 班级:________ 成绩:________一、(共14小题,每小题3分,满分42分)在每小题给出的四个选项 (共14题;共28分)1. (2分)一个数的相反数是最大的负整数,则这个数是()A . -1B . 1C . 0D . ±12. (2分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是()A . 第一次向右拐50°第二次向左拐130°B . 第一次向左拐30°第二次向右拐30°C . 第一次向右拐50°第二次向右拐130°D . 第一次向左拐50°第二次向左拐130°3. (2分)(2017·黄冈模拟) 下列计算结果为x6的是()A . x•x6B . (x2)3C . (2x2)3D . (x3)4÷x24. (2分)(2016·临沂) 不等式组的解集,在数轴上表示正确的是()A .B .C .D .5. (2分)如图所示的几何体中,俯视图形状相同的是()A . ①④B . ②④C . ①②④D . ②③④6. (2分)下列说法正确的是()A . 一枚质地均匀的硬币已连续抛掷了 600次,正面朝上的次数更少,那么掷第601次一定正面朝上B . 可能性小的事件在一次实验中一定不会发生C . 天气预报说明天下雨的概率是50%,意思是说明天将有一半时间在下雨D . 拋掷一枚图钉,钉尖触地和钉尖朝上的概率不相等7. (2分)在四边形ABCD中,∠A+∠C=160°,∠B比∠D大60°,则∠B为()A . 70°B . 80°C . 120°D . 130°8. (2分)(2019·江汉) 把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A . 3种B . 4种C . 5种D . 9种9. (2分)下面的条形统计图描述了某车间工人日加工零件的情况,则下列说法正确的是()A . 这些工人日加工零件数的众数是9,中位数是6B . 这些工人日加工零件数的众数是6,中位数是6C . 这些工人日加工零件数的众数是9,中位数是5.5D . 这些工人日加工零件数的众数是6,中位数是5.510. (2分)(2018·绍兴模拟) 如图,PA,PB分别切⊙O于A,B两点,射线PD与⊙O相交于C,D两点,点E是CD中点,若∠APB=40°,则∠AEP的度数是()A . 40°B . 50°C . 60°D . 70°11. (2分) (2020七下·江夏期中) 一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到,然后按图中箭头所示方向跳动……,每次跳一个单位长度,则第2020次跳到点()A .B .C .D .12. (2分)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B’,则图中阴影部分的面积是()A .B .C .D .13. (2分)(2018九上·绍兴月考) 已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a-b+c>1;③ab>0;④4a-2b+c<0;⑤c-a>1.其中所有正确的个数是()A . 2B . 3C . 4D . 514. (2分) (2020八下·卫辉期末) 在函数的图象上有三点,,,,已知,则下列各式正确的是()A .B .C .D .二、填空题(共5小题,每小题3分,满分15分) (共5题;共5分)15. (1分) (2018七上·利川期末) 分解因式:2a3+8a2b+8ab2=________.16. (1分)(2017·武汉模拟) 计算﹣的结果是________.17. (1分)(2017·临沂模拟) 如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则 =________.18. (1分)如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为________19. (1分) (2018九上·唐河期末) 计算:()0﹣4sin45°tan45°+()﹣1• +(﹣1)2017+=________.三、解答题(共7小题,满分63分) (共7题;共74分)20. (5分) (2017八上·新化期末) 计算:(1+ )(﹣1)﹣|2﹣ |+(﹣2016)0 .21. (16分)(2017·大冶模拟) 为积极响应市委政府“加快建设天蓝•水碧•地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:请根据所给信息解答以下问题:(1)这次参与调查的居民人数为:________;(2)请将条形统计图补充完整;(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?22. (5分) (2020九下·舞钢月考) 如图,在某次斯诺克比赛中,白球位于点A处,在点A正北方向的点B 处有一颗红球,在点A正东方向C处有一颗黑球,在BC正中间的点D处有一颗篮球,其中点C在点B的南偏东37°方向上,选手将白球沿正北方想推进10cm到达点E处时,测得点D在点E的北偏东45°方向上,求此时白球与红球的距离有多远?(参考数据:sin37°≈ ,cos37°≈ ,tan37°≈ )23. (15分)如图①,在平面直角坐标系中,直线y=kx+b与x轴正半轴交于点A,与y轴负半轴交于点B,圆心P在x轴的正半轴上,已知AB=10,AP=(1)求点P到直线AB的距离;(2)求直线y=kx+b的解析式;(3)在图②中存在点Q,使得∠BQO=90°,连接AQ,请求出AQ的最小值.24. (12分) (2015八上·句容期末) 如图1,甲、乙两车分别从相距480km的A,B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题:(1)乙车的速度是________千米/时,乙车行驶的时间t=________小时;(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;(3)直接写出甲车出发多长时间两车相距8O千米.25. (10分) (2019八下·焦作期末) 如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,,.(1)求证:四边形BCED是平行四边形;(2)已知,连接BN,若BN平分,求CN的长.26. (11分) (2019九上·温州期中) 如图,二次函数y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y轴交于点C(0,4).点D为抛物线上一点(1)求抛物线的解析式及A点坐标;(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)若△BCD是锐角三角形,请直接写出点D的横坐标m的取值范围________.参考答案一、(共14小题,每小题3分,满分42分)在每小题给出的四个选项 (共14题;共28分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题(共5小题,每小题3分,满分15分) (共5题;共5分)15-1、16-1、17-1、18-1、19-1、三、解答题(共7小题,满分63分) (共7题;共74分)20-1、21-1、21-2、21-3、21-4、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
大兴安岭地区2020年中考数学试卷(I)卷
大兴安岭地区2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·南京模拟) 计算|﹣4+1|的结果是()A . ﹣5B . ﹣3C . 3D . 52. (2分) (2019七上·南浔期中) 据统计,2019年十一期间,湖州市共接待国内外游客约585万人次,数据585万用科学记数法表示为()A . 5.85×105B . 5.85×106C . 0.585×107D . 585×1063. (2分)如果4个不同的正整数m、n、p、q满足(7﹣m)(7﹣n)(7﹣p)(7﹣q)=4,那么,m+n+p+q等于()A . 10B . 2lC . 24D . 284. (2分) (2018八下·东台期中) 下列图形中,是中心对称图形,但不是轴对称图形的是()A . 正方形B . 矩形C . 菱形D . 平行四边形5. (2分) (2017·威海模拟) 小红、小明在玩“剪子、包袱、锤子”游戏,小红给自己一个规定:一直不出“锤子”.小红、小明获胜的概率分别是P1 , P2 ,则下列结论正确的是()A . P1=P2B . P1>P2C . P1<P2D . P1≤P26. (2分) (2019八上·福田期末) 如图所示,直线、、、的位置如图所示,若,,,则的度数为A .B .C .D .7. (2分)函数y=中自变量x的取值范围是()A . x=2B . x≠2C . x>2D . x<28. (2分)(2016·福州) 不等式组的解集是()A . x>﹣1B . x>3C . ﹣1<x<3D . x<39. (2分) (2018七上·中山期末) 下列图形中,不是三棱柱的表面展开图的是()A .B .C .D .10. (2分)一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折大拍卖,那么该商品三月份的价格比进货价()A . 高12.8%B . 低12.8%C . 高28%D . 高40%11. (2分)(2017·曹县模拟) 如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A . 1:3B . 2:3C . :2D . :312. (2分)(2017·武汉模拟) 我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4 与x轴、y轴分别交于A,B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A . 6B . 8C . 10D . 12二、填空题 (共3题;共4分)13. (2分) (2018八上·武邑月考) 的平方根是________, =________.14. (1分)(2018·深圳模拟) 分解因式: ________.15. (1分)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是________(结果保留π).三、解答题 (共8题;共65分)16. (5分)(1)计算: -(π-3)0+()-1-||(2)先化简,再求值:,其中a=-2。
黑龙江省大兴安岭地区2020中考数学统考试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数 2 3 2 4 5 2 1 1则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.07252.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE 的度数为()A.31°B.28°C.62°D.56°3.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()A.37 B.38 C.50 D.514.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3 B.4 C.5 D.65.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是( )A .AB =DE B .DF ∥AC C .∠E =∠ABCD .AB ∥DE6.二次函数y =ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②3b+2c <0;③4a+c <2b ;④m (am+b )+b <a (m≠﹣1),其中结论正确的个数是( )A .1B .2C .3D .47.小手盖住的点的坐标可能为( )A .()5,2B .()3,4-C .()6,3-D .()4,6--8.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .109.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2ky x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83;④当x>0时,1y随x的增大而增大,2y随x的增大而减小.其中正确结论的个数是()A.1 B.2 C.3 D.410.如图,四边形ABCD内接于⊙O,F是CD上一点,且DF BC,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°二、填空题(本题包括8个小题)11.在△ABC中,∠C=90°,若tanA=12,则sinB=______.12.如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=_____.13.计算:﹣1﹣2=_____.14.如图,在△ABC中,AB=AC,BE、AD分别是边AC、BC上的高,CD=2,AC=6,那么CE=________.15.一个圆锥的母线长为5cm,底面半径为1cm,那么这个圆锥的侧面积为_____cm1.16.分解因式:(2a+b)2﹣(a+2b)2= .17.若正六边形的内切圆半径为2,则其外接圆半径为__________.18.计算:cos245°-tan30°sin60°=______.三、解答题(本题包括8个小题)19.(6分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.20.(6分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)21.(6分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.22.(8分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?23.(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.24.(10分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.25.(10分)关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.求m的取值范围;若m 为符合条件的最小整数,求此方程的根.26.(12分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.2.D【解析】【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°. 故选D . 【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等. 3.D 【解析】 试题解析:第①个图形中有3 盆鲜花, 第②个图形中有336+=盆鲜花, 第③个图形中有33511++=盆鲜花, …第n 个图形中的鲜花盆数为23357(21)2n n ++++⋯++=+, 则第⑥个图形中的鲜花盆数为26238.+= 故选C. 4.B 【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B . 5.A 【解析】 【分析】由EB=CF ,可得出EF=BC ,又有∠A=∠D ,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC ≌△DEF ,那么添加的条件与原来的条件可形成SSA ,就不能证明△ABC ≌△DEF 了. 【详解】 ∵EB=CF ,∴EB+BF=CF+BF ,即EF=BC , 又∵∠A=∠D ,A 、添加DE=AB 与原条件满足SSA ,不能证明△ABC ≌△DEF ,故A 选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.C【解析】【分析】试题解析:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正确∴正确的有①②④三个,故选C.考点:二次函数图象与系数的关系.【详解】请在此输入详解!7.B【解析】【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【详解】根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B符合.故选:B.【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).8.B【解析】【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=12AC,由此即可解决问题.【详解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴,∵DE是△ABC的中位线,∴DF∥BM,DE=12BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=12AC=5,∴DF=DE+EF=3+5=2.故选B.9.C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确; ∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题. 10.B 【解析】 【分析】先根据圆内接四边形的性质求出∠ADC 的度数,再由圆周角定理得出∠DCE 的度数,根据三角形外角的性质即可得出结论. 【详解】∵四边形ABCD 内接于⊙O ,∠ABC=105°, ∴∠ADC=180°﹣∠ABC=180°﹣105°=75°. ∵DF BC =,∠BAC=25°, ∴∠DCE=∠BAC=25°,∴∠E=∠ADC ﹣∠DCE=75°﹣25°=50°. 【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.二、填空题(本题包括8个小题)11.25【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如图所示:∵∠C=90°,tanA=12,∴设BC=x,则AC=2x,故5,则sinB=255ACAB x==.25.点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.12.1:2【解析】【分析】△ABC与△DEF是位似三角形,则DF∥AC,EF∥BC,先证明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,据此可得答案.【详解】解:∵△ABC与△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,则OE:EB=1:2故答案为:1:2【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线.13.-3【解析】-1-2=-1+(-2)=-(1+2)=-3, 故答案为-3. 14.43【解析】∵AB=AC ,AD ⊥BC , ∴BD=CD=2,∵BE 、AD 分别是边AC 、BC 上的高, ∴∠ADC=∠BEC=90°, ∵∠C=∠C , ∴△ACD ∽△BCE ,∴AC CDBC CE =, ∴624CE =, ∴CE=43,故答案为43.15.10π 【解析】分析:根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.详解:∵圆锥的底面半径为5cm ,∴圆锥的底面圆的周长=1π•5=10π,∴圆锥的侧面积=12•10π•1=10π(cm 1). 故答案为10π.点睛:本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R ,(l 为弧长). 16.3(a+b )(a ﹣b ). 【解析】(2a+b )2﹣(a+2b )2=4a 2+4ab+b 2-(a 2+4ab+4b 2)= 4a 2+4ab+b 2-a 2-4ab-4b 2=3a 2-3b 2=3(a 2-b 2)=3(a+b)(a-b)17 【解析】 【分析】根据题意画出草图,可得OG=2,60OAB ∠=︒,因此利用三角函数便可计算的外接圆半径OA. 【详解】解:如图,连接OA 、OB ,作OG AB ⊥于G ; 则2OG =,∵六边形ABCDEF 正六边形, ∴OAB 是等边三角形,∴60OAB ∠=︒,∴43sin 603OG OA ===︒, ∴正六边形的内切圆半径为243. 43. 【点睛】本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路. 18.0 【解析】 【分析】直接利用特殊角的三角函数值代入进而得出答案. 【详解】2cos 45tan30sin60︒-︒︒=223311022=-= . 故答案为0. 【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键. 三、解答题(本题包括8个小题)19.(2)k=﹣2,﹣2.(2)方程的根为x 2=x 2=2. 【解析】 【分析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k 的不等式,求出不等式的解集即可得到k 的值;(2)将k 的值代入原方程,求出方程的根,经检验即可得到满足题意的k 的值. 【详解】解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k )≥0, 解得 k≥﹣2. ∵k 为负整数, ∴k=﹣2,﹣2.(2)当k=﹣2时,不符合题意,舍去;当k=﹣2时,符合题意,此时方程的根为x 2=x 2=2. 【点睛】本题考查了根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.20 【解析】 【分析】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF. 【详解】过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG 中,()1sin 3050252CG AC cm =︒=⨯=, 由题意,得()GD 503020cm =-=, ∴()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H . 由题意,得30H ∠=︒.在Rt CDH 中,()290sin 30CDCH CD cm ===︒,∴()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH 中,)tan 30290EF EH cm =︒==.答:支角钢CD 的长为45cm ,EF .考点:三角函数的应用21.()1200名;()2见解析;()336;(4)375.【解析】【分析】()1根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;()2根据()1中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;()3根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;()4根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.【详解】解:()113065%200÷=,答:此次抽样调查中,共调查了200名学生;()2反对的人数为:2001305020--=,补全的条形统计图如右图所示;()3扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:2036036200⨯=;(4)50 1500375200⨯=,答:该校1500名学生中有375名学生持“无所谓”意见.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)10,30;(2)y=15(02)3030(211)x xx x≤≤⎧⎨-≤≤⎩;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【解析】【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A 地时距地面的高度b 的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y 关于x 的函数关系; (3)当乙未到终点时,找出甲登山全程中y 关于x 的函数关系式,令二者做差等于50即可得出关于x 的一元一次方程,解之即可求出x 值;当乙到达终点时,用终点的高度﹣甲登山全程中y 关于x 的函数关系式=50,即可得出关于x 的一元一次方程,解之可求出x 值.综上即可得出结论. 【详解】(1)(300﹣100)÷20=10(米/分钟), b=15÷1×2=30, 故答案为10,30; (2)当0≤x≤2时,y=15x ;当x≥2时,y=30+10×3(x ﹣2)=30x ﹣30, 当y=30x ﹣30=300时,x=11,∴乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式为y=()()150********x x x x ⎧≤≤⎪⎨-≤≤⎪⎩;(3)甲登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式为y=10x+100(0≤x≤20). 当10x+100﹣(30x ﹣30)=50时,解得:x=4, 当30x ﹣30﹣(10x+100)=50时,解得:x=9, 当300﹣(10x+100)=50时,解得:x=15,答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米. 【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y 关于x 的函数关系式;(3)将两函数关系式做差找出关于x 的一元一次方程.23.(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台. 【解析】 【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可; (2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可. 【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩,解得:1210x y =⎧⎨=⎩, 则甲,乙两种型号设备每台的价格分别为12万元和10万元; (2)设购买甲型设备m 台,乙型设备()10m -台, 则()121010110m m +-≤, ∴5m ≤,∵m 取非负整数, ∴0,1,2,3,4,5m =, ∴有6种购买方案;(3)由题意:()240180102040m m +-≥, ∴4m ≥, ∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元), 当5m =时,购买资金为:125105110⨯+⨯=(万元), 则最省钱的购买方案是选购甲型设备4台,乙型设备6台. 【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.24.(1)50人;(2)补图见解析;(3)110. 【解析】分析:(1)根据化学学科人数及其所占百分比可得总人数; (2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得. 详解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人, 补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为21= 2010.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.25.(1)m>94-;(2)x1=0,x2=1.【解析】【分析】解答本题的关键是是掌握好一元二次方程的根的判别式.(1)求出△=5+4m>0即可求出m的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.【详解】解:(1)△=1+4(m+2)=9+4m>0∴94m>-.(2)∵m为符合条件的最小整数,∴m=﹣2.∴原方程变为2=0x x∴x1=0,x2=1.考点:1.解一元二次方程;2.根的判别式.26.(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价1元时,商场日盈利可达到2000元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.故答案为2x;50-x.(3)根据题意,得:(50-x)×(30+2x)=2000,整理,得:x2-35x+10=0,解得:x1=10,x2=1,∵商城要尽快减少库存,∴x=1.答:每件商品降价1元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高2.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于( )A.2﹣2B.1 C.2D.2﹣l3.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )A .B .C . D4.下列各图中,∠1与∠2互为邻补角的是( )A .B .C .D .5.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°6.若一个圆锥的底面半径为3cm ,母线长为5cm ,则这个圆锥的全面积为( ) A .15πcm 2B .24πcm 2C .39πcm 2D .48πcm 27.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( ) A .55×105B .5.5×104C .0.55×105D .5.5×1058.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根9.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-10.下列图案是轴对称图形的是()A.B.C.D.二、填空题(本题包括8个小题)11.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.12.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限,若反比例函数kyx=的图象经过点B,则k的值是_____.13.肥皂泡的泡壁厚度大约是0.0007mm,0.0007mm用科学记数法表示为_______mm.14.如图,已知△ABC和△ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB=4,则OE的最小值为_____.15.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量100 200 500 1000 2000A出芽种子数96 165 491 984 1965发芽率0.96 0.83 0.98 0.98 0.98B 出芽种子数96 192 486 977 1946发芽率0.96 0.96 0.97 0.98 0.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号). 16.如图,圆锥底面圆心为O ,半径OA =1,顶点为P ,将圆锥置于平面上,若保持顶点P 位置不变,将圆锥顺时针滚动三周后点A 恰好回到原处,则圆锥的高OP =_____.17.因式分解:2xy 4x -= .18.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s 2:甲 乙 丙 丁 平均数(cm ) 561 560 561 560 方差s 2(cm 2)3.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_____. 三、解答题(本题包括8个小题)19.(6分)如图,已知A ,B 两点在数轴上,点A 表示的数为-10,OB=3OA ,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动(点M 、点N 同时出发)数轴上点B 对应的数是______.经过几秒,点M 、点N 分别到原点O 的距离相等?20.(6分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y (米)与小张出发后的时间x (分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y 与x 之间的函数表达式;求小张与小李相遇时x 的值.。
2020年黑龙江省大兴安岭地区中考数学试卷含答案解析
2020年黑龙江省大兴安岭地区中考数学试卷一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.2020的倒数是( )A .2020B .﹣2020C .12020D .−120202.下面四个化学仪器示意图中,是轴对称图形的是( )A .B .C .D .3.下列计算正确的是( )A .a +2a =3aB .(a +b )2=a 2+ab +b 2C .(﹣2a )2=﹣4a 2D .a •2a 2=2a 24.一个质地均匀的小正方体,六个面分别标有数字“1”、“2”、“3”、“4”、“5”、“6”,掷小正方体后,观察朝上一面的数字出现偶数的概率是( )A .12B .13C .14D .23 5.李强同学去登山,先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山的速度.在登山过程中,他行走的路程S 随时间t 的变化规律的大致图象是( )A .B .C .D .6.数学老师在课堂上给同学们布置了10个填空题作为课堂练习,并将全班同学的答题情况绘制成条形统计图.由图可知,全班同学答对题数的众数为( )A.7B.8C.9D.107.若关于x的分式方程3xx−2=m2−x+5的解为正数,则m的取值范围为()A.m<﹣10B.m≤﹣10C.m≥﹣10且m≠﹣6D.m>﹣10且m≠﹣68.母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种9.有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为()A.15°B.30°C.45°D.60°10.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①ac<0;②4a﹣2b+c>0;③当x>2时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,满分21分)11.2020年初新冠肺炎疫情发生以来,近4000000名城乡社区工作者奋战在中国大地的疫情防控一线.将数据4000000用科学记数法表示为.12.在函数y=√x+3x−2中,自变量x的取值范围是.13.如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)14.如图是一个几何体的三视图,依据图中给出的数据,计算出这个几何体的侧面积是.15.等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是.16.如图,在平面直角坐标系中,矩形ABCD的边AB在y轴上,点C坐标为(2,﹣2),并且AO:BO=1:2,点D在函数y=kx(x>0)的图象上,则k的值为.17.如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是.三、解答题(本题共7道大题,共69分)18.(10分)(1)计算:sin30°+√16−(3−√3)0+|−1 2|(2)因式分解:3a2﹣4819.(5分)解方程:x2﹣5x+6=020.(8分)如图,AB为⊙O的直径,C、D为⊙O上的两个点,AĈ=CD̂=DB̂,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.21.(10分)新冠肺炎疫情期间,某市防控指挥部想了解自1月20日至2月末各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们的志愿服务时间进行统计,整理并绘制成两幅不完整的统计图表.请根据两幅统计图表中的信息回答下列问题:(1)本次被抽取的教职工共有名;(2)表中a=,扇形统计图中“C”部分所占百分比为%;(3)扇形统计图中,“D”所对应的扇形圆心角的度数为°;(4)若该市共有30000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?志愿服务时间(小时)频数A0<x≤30aB30<x≤6010C60<x≤9016D90<x≤1202022.(10分)团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km,在行驶过程中乙车速度始终保持80km/h,甲车先以一定速度行驶了500km,用时5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离齐齐哈尔的路程y(km)与所用时间x(h)的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是km/h,乙车行驶h到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式,不用写出自变量x的取值范围;(3)甲车到达绥芬河时,乙车距绥芬河的路程还有km;出发h时,甲、乙两车第一次相距40km.23.(12分)综合与实践在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM(填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN 是什么特殊三角形?答:;进一步计算出∠MNE=°;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=°;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST于点O,连接AT.求证:四边形SATA'是菱形.解决问题:(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值.24.(14分)综合与探究在平面直角坐标系中,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线的解析式;(2)直线AB的函数解析式为,点M的坐标为,cos∠ABO=;连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为;(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.2020年黑龙江省大兴安岭地区中考数学试卷参考答案与试题解析一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.2020的倒数是()A.2020B.﹣2020C.12020D.−12020解:2020的倒数是12020,故选:C.2.下面四个化学仪器示意图中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.3.下列计算正确的是()A.a+2a=3a B.(a+b)2=a2+ab+b2C.(﹣2a)2=﹣4a2D.a•2a2=2a2解:A.a+2a=(1+2)a=3a,此选项计算正确;B.(a+b)2=a2+2ab+b2,此选项计算错误;C.(﹣2a)2=4a2,此选项计算错误;D.a•2a2=2a3,此选项计算错误;故选:A.4.一个质地均匀的小正方体,六个面分别标有数字“1”、“2”、“3”、“4”、“5”、“6”,掷小正方体后,观察朝上一面的数字出现偶数的概率是()A .12B .13C .14D .23 解:∵掷小正方体后共有6种等可能结果,其中朝上一面的数字出现偶数的有2、4、6这3种可能,∴朝上一面的数字出现偶数的概率是36=12, 故选:A .5.李强同学去登山,先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山的速度.在登山过程中,他行走的路程S 随时间t 的变化规律的大致图象是( )A .B .C .D .解:因为登山过程可知: 先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山的速度. 所以在登山过程中,他行走的路程S 随时间t 的变化规律的大致图象是B .故选:B .6.数学老师在课堂上给同学们布置了10个填空题作为课堂练习,并将全班同学的答题情况绘制成条形统计图.由图可知,全班同学答对题数的众数为( )A .7B .8C .9D .10解:由条形统计图可得,全班同学答对题数的众数为9,故选:C .7.若关于x 的分式方程3x x−2=m 2−x +5的解为正数,则m 的取值范围为( ) A .m <﹣10B .m ≤﹣10C .m ≥﹣10且m ≠﹣6D .m >﹣10且m ≠﹣6解:去分母得:3x =﹣m +5(x ﹣2),解得:x =m+102, 由方程的解为正数,得到m +10>0,且m +10≠4,则m 的范围为m >﹣10且m ≠﹣6,故选:D .8.母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有( )A .3种B .4种C .5种D .6种解:设可以购买x 支康乃馨,y 支百合,依题意,得:2x +3y =30,∴y =10−23x .∵x ,y 均为正整数,∴{x =3y =8,{x =6y =6,{x =9y =4,{x =12y =2, ∴小明有4种购买方案.故选:B .9.有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A 顺时针旋转,使BC ∥DE ,如图②所示,则旋转角∠BAD 的度数为( )A.15°B.30°C.45°D.60°解:如图,设AD与BC交于点F,∵BC∥DE,∴∠CF A=∠D=90°,∵∠CF A=∠B+∠BAD=60°+∠BAD,∴∠BAD=30°故选:B.10.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①ac<0;②4a﹣2b+c>0;③当x>2时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有()A .1个B .2个C .3个D .4个解:抛物线开口向上,因此a >0,与y 轴交于负半轴,因此c <0,故ac <0,所以①正确;抛物线对称轴为x =1,与x 轴的一个交点为(4,0),则另一个交点为(﹣2,0),于是有4a ﹣2b +c =0,所以②不正确;x >1时,y 随x 的增大而增大,所以③正确;抛物线与x 轴有两个不同交点,因此关于x 的一元二次方程ax 2+bx +c =0有两个不相等的实数根,所以④正确;综上所述,正确的结论有:①③④,故选:C .二、填空题(每小题3分,满分21分)11.2020年初新冠肺炎疫情发生以来,近4000000名城乡社区工作者奋战在中国大地的疫情防控一线.将数据4000000用科学记数法表示为 4×106 .解:将数据4000000用科学记数法表示为4×106,故答案为:4×106.12.在函数y =√x+3x−2中,自变量x 的取值范围是 x ≥﹣3且x ≠2 .解:由题可得,{x +3≥0x −2≠0, 解得{x ≥−3x ≠2, ∴自变量x 的取值范围是x ≥﹣3且x ≠2,故答案为:x ≥﹣3且x ≠2.13.如图,已知在△ABD 和△ABC 中,∠DAB =∠CAB ,点A 、B 、E 在同一条直线上,若使△ABD ≌△ABC ,则还需添加的一个条件是 AD =AC (∠D =∠C 或∠ABD =∠ABC 等) .(只填一个即可)解:∵∠DAB=∠CAB,AB=AB,∴当添加AD=AC时,可根据“SAS”判断△ABD≌△ABC;当添加∠D=∠C时,可根据“AAS”判断△ABD≌△ABC;当添加∠ABD=∠ABC时,可根据“ASA”判断△ABD≌△ABC.故答案为AD=AC(∠D=∠C或∠ABD=∠ABC等).14.如图是一个几何体的三视图,依据图中给出的数据,计算出这个几何体的侧面积是65π.解:由三视图可知,原几何体为圆锥,S侧=12•2πr•l=12×2π×5×13=65π.故答案为:65π.15.等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是10或11.解:①3是腰长时,三角形的三边分别为3、3、4,∵此时能组成三角形,∴周长=3+3+4=10;②3是底边长时,三角形的三边分别为3、4、4,此时能组成三角形,所以周长=3+4+4=11.综上所述,这个等腰三角形的周长是10或11.故答案为:10或11.16.如图,在平面直角坐标系中,矩形ABCD的边AB在y轴上,点C坐标为(2,﹣2),并且AO:BO=1:2,点D在函数y=kx(x>0)的图象上,则k的值为2.解:如图,∵点C坐标为(2,﹣2),∴矩形OBCE的面积=2×2=4,∵AO:BO=1:2,∴矩形AOED的面积=2,∵点D在函数y=kx(x>0)的图象上,∴k=2,故答案为2.17.如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.解:∵点A1(0,2),∴第1个等腰直角三角形的面积=12×2×2=2,∵A2(6,0),∴第2个等腰直角三角形的边长为√2=2√2,∴第2个等腰直角三角形的面积=12×2√2×2√2=4=22,∵A4(10,4√2),∴第3个等腰直角三角形的边长为10﹣6=4,∴第3个等腰直角三角形的面积=12×4×4=8=23,…则第2020个等腰直角三角形的面积是22020;故答案为:22020(形式可以不同,正确即得分).三、解答题(本题共7道大题,共69分)18.(10分)(1)计算:sin30°+√16−(3−√3)0+|−1 2|(2)因式分解:3a2﹣48解:(1)sin30°+√16−(3−√3)0+|−1 2|=12+4﹣1+12=4;(2)3a2﹣48=3(a2﹣16)=3(a+4)(a﹣4).19.(5分)解方程:x2﹣5x+6=0解:∵x2﹣5x+6=0,∴(x﹣2)(x﹣3)=0,则x﹣2=0或x﹣3=0,解得x1=2,x2=3.20.(8分)如图,AB为⊙O的直径,C、D为⊙O上的两个点,AĈ=CD̂=DB̂,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.(1)证明:连接OD,∵AĈ=CD̂=DB̂,∴∠BOD=13×180°=60°,∵CD̂=DB̂,∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=√62−32=3√3.21.(10分)新冠肺炎疫情期间,某市防控指挥部想了解自1月20日至2月末各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们的志愿服务时间进行统计,整理并绘制成两幅不完整的统计图表.请根据两幅统计图表中的信息回答下列问题:(1)本次被抽取的教职工共有50名;(2)表中a=4,扇形统计图中“C”部分所占百分比为32%;(3)扇形统计图中,“D”所对应的扇形圆心角的度数为144°;(4)若该市共有30000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?志愿服务时间(小时)频数A0<x≤30aB30<x≤6010C60<x ≤90 16 D 90<x ≤120 20解:(1)本次被抽取的教职工共有:10÷20%=50(名),故答案为:50;(2)a =50﹣10﹣16﹣20=4,扇形统计图中“C ”部分所占百分比为:1650×100%=32%,故答案为:4,32;(3)扇形统计图中,“D ”所对应的扇形圆心角的度数为:360×2050=144°. 故答案为:144;(4)30000×16+2050=216000(人). 答:志愿服务时间多于60小时的教职工大约有216000人.22.(10分)团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km ,在行驶过程中乙车速度始终保持80km /h ,甲车先以一定速度行驶了500km ,用时5h ,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离齐齐哈尔的路程y (km )与所用时间x (h )的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是 100 km /h ,乙车行驶 10 h 到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y (km )与所用时间x (h )之间的函数解析式,不用写出自变量x 的取值范围;(3)甲车到达绥芬河时,乙车距绥芬河的路程还有 100 km ;出发 2 h 时,甲、乙两车第一次相距40km .解:(1)甲车改变速度前的速度为:500出5=100(km /h ),乙车达绥芬河是时间为:800÷80=10(h ),故答案为:100;10;(2)∵乙车速度为80km /h ,∴甲车到达绥芬河的时间为:5+800−50080=354(ℎ), 甲车改变速度后,到达绥芬河前,设所求函数解析式为:y =kx +b (k ≠0),将(5,500)和(354,800)代入得:{5k +b =500354k +b =800, 解得{k =80b =100, ∴y =80x +100,答:甲车改变速度后离齐齐哈尔的路程y (km )与所用时间x (h )之间的函数解析式为y =80x +100(5≤x ≤354);(3)甲车到达绥芬河时,乙车距绥芬河的路程为:800﹣80×354=100(km ),40÷(100﹣80)=2(h ),即出发2h 时,甲、乙两车第一次相距40km .故答案为:100;2.23.(12分)综合与实践在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM是(填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN 是什么特殊三角形?答:等边三角形;进一步计算出∠MNE=60°;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=15°;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST于点O,连接AT.求证:四边形SATA'是菱形.解决问题:(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值7,9.解:(1)如图①∵对折矩形纸片ABCD,使AD与BC重合,∴EF垂直平分AB,∴AN=BN,AE=BE,∠NEA=90°,∵再一次折叠纸片,使点A落在EF上的点N处,∴BM垂直平分AN,∠BAM=∠BNM=90°,∴AB=BN,∴AB=AN=BN,∴△ABN是等边三角形,∴∠EBN=60°,∴∠ENB=30°,∴∠MNE=60°,故答案为:是,等边三角形,60;(2)∵折叠纸片,使点A落在BC边上的点H处,∴∠ABG=∠HBG=45°,∴∠GBN=∠ABN﹣∠ABG=15°,故答案为:15°;(3)∵折叠矩形纸片ABCD,使点A落在BC边上的点A'处,∴ST垂直平分AA',∴AO=A'O,AA'⊥ST,∵AD∥BC,∴∠SAO=∠TA'O,∠ASO=∠A'TO,∴△ASO≌△A'TO(AAS)∴SO=TO,∴四边形ASA'T是平行四边形,又∵AA'⊥ST,∴边形SATA'是菱形;(4)∵折叠纸片,使点A落在BC边上的点A'处,∴AT=A'T,在Rt△A'TB中,A'T>BT,∴AT>10﹣AT,∴AT>5,∵点T在AB上,∴当点T与点B重合时,AT有最大值为10,∴5<AT≤10,∴正确的数值为7,9,故答案为:7,9.24.(14分)综合与探究在平面直角坐标系中,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线的解析式;(2)直线AB的函数解析式为y=x+4,点M的坐标为(﹣2,﹣2),cos∠ABO=√22;连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为(﹣2,2)或(0,4);(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.解:(1)将点A 、C 的坐标代入抛物线表达式得:{12×16−4b +c =012×4+2b +c =6,解得{b =2c =0, 故直线AB 的表达式为:y =12x 2+2x ;(2)点A (﹣4,0),OB =OA =4,故点B (0,4),由点A 、B 的坐标得,直线AB 的表达式为:y =x +4;则∠ABO =45°,故cos ∠ABO =√22;对于y =12x 2+2x ,函数的对称轴为x =﹣2,故点M (﹣2,﹣2);OP 将△AOC 的面积分成1:2的两部分,则AP =13AC 或23AC , 则y Py C =13或23,即y P 6=13或23,解得:y P =2或4, 故点P (﹣2,2)或(0,4);故答案为:y =x +4;(﹣2,﹣2);√22;(﹣2,2)或(0,4);(3)△AMQ 的周长=AM +AQ +MQ =AM +A ′M 最小,点A ′(4,0),设直线A ′M 的表达式为:y =kx +b ,则{4k +b =0−2k +b =−2,解得{k =13b =−43, 故直线A ′M 的表达式为:y =13x −43,令x =0,则y =−43,故点Q (0,−43);(4)存在,理由:设点N(m,n),而点A、C、O的坐标分别为(﹣4,0)、(2,6)、(0,0),①当AC是边时,点A向右平移6个单位向上平移6个单位得到点C,同样点O(N)右平移6个单位向上平移6个单位得到点N(O),即0±6=m,0±6=n,解得:m=n=±6,故点N(6,6)或(﹣6,﹣6);②当AC是对角线时,由中点公式得:﹣4+2=m+0,6+0=n+0,解得:m=﹣2,n=6,故点N(﹣2,6);综上,点N的坐标为(6,6)或(﹣6,﹣6)或(﹣2,6).。
黑龙江省大兴安岭地区中考数学试卷
黑龙江省大兴安岭地区中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项 (共12题;共24分)1. (2分)计算(﹣2a2b)3的结果是()A . ﹣6a6b3B . ﹣8a6b3C . 8a6b3D . ﹣8a5b32. (2分)如图,AB∥DE,AC∥DF,AC=DF,下列条件中,不能判断△ABC≌△DEF的是()A . AB=DEB . ∠B=∠EC . EF=BCD . EF∥BC3. (2分)某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A . 中位数是4,平均数是3.75B . 众数是4,平均数是3.75C . 中位数是4,平均数是3.8D . 众数是2,平均数是3.84. (2分) (2015八下·灌阳期中) 如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为()A . cmB . 4cmC . cmD . 2 cm5. (2分)设x1 , x2是关于x的一元二次方程x2+x+n-2=mx的两个实数根,且x1<0,x2-3x1<0,则()A .B .C .D .6. (2分)在下列立体图形中,只要两个面就能围成的是()A . 长方体B . 圆柱体C . 圆锥体D . 球7. (2分)如图,将矩形纸片ABCD折叠,使点A落在BC上的点F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是()A . 邻边相等的矩形是正方形B . 对角线相等的菱形是正方形C . 两个全等的直角三角形构成正方形D . 轴对称图形是正方形8. (2分)关于x的方程x2﹣4x+4a=0有两个实数根,则a的取值范围是()A . a<1B . a>1C . a≤1D . a≥19. (2分) (2019八下·中山期中) 如图,菱形ABCD的对角线相交于点O,若AC=8,BD=6,则菱形ABCD的周长是()A . 32B . 24C . 20D . 4011. (2分) (2018九上·卫辉期末) 如图,⊙O的半径为lcm,正六边形ABCDEF内接于⊙O,则图中阴影部分的面积为().(结果保留)A .B .C .D .12. (2分)(2019·陕西模拟) 抛物线的部分图象如图所示,与x轴的一个交点坐标为,抛物线的对称轴是下列结论中:;;方程有两个不相等的实数根;抛物线与x轴的另一个交点坐标为;若点在该抛物线上,则.其中正确的有A . 5个B . 4个C . 3个D . 2个二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填 (共6题;共6分)13. (1分) (2019九上·重庆开学考) =________.14. (1分) (2015九上·宁波月考) 已知,K是图中所示正方体中棱CD的中点,连接KE、AE,则cos∠KEA 的值为 ________.15. (1分) (2019九上·哈尔滨月考) 如图所示,中,,,点E、F分别在、边上,,连接,若,则线段的长为________.16. (1分)(2019·江陵模拟) 如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若SABO=4,tan∠BAO=2,则k=________.17. (1分)如图,△ABC中,∠C=30°.将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于F,则∠AFB=________°.18. (1分) (2017八下·广州期中) 如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2 ,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3 ,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是________.三、解答题:本大题共7小题,满分60分,解答时,要写出必要的文字 (共7题;共78分)19. (5分)(2020·中牟模拟) 先化简,再求值:,请从-2,-1,0,1,中选择一个合适的值代入求值.20. (20分)根据下列语句,设适当的未知数,列出二元一次方程:(1)甲数比乙数的3倍少7;(2)甲数的2倍与乙数的5倍的和是4 ;(3)甲数的15%与乙数的23%的差是11;(4)甲数与乙数的和的2倍比乙数与甲数差的多0.25.21. (8分)(2017·上思模拟) 2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是________;扇形统计图中的圆心角α等于________;补全统计直方图________;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.22. (15分) (2020八上·上海期末) 如图,直线与双曲线交于A点,且点A的横坐标是4.双曲线上有一动点C(m , n), .过点A作轴垂线,垂足为B,过点C 作轴垂线,垂足为D,联结OC.(1)求的值;(2)设的重合部分的面积为S,求S与m的函数关系;(3)联结AC,当第(2)问中S的值为1时,求的面积.23. (10分) (2020九上·东台期末) 如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.(1)求证:BC为⊙O的切线;(2)若F为OA的中点,⊙O的半径为2,求BE的长.24. (10分) (2017九上·孝南期中) 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A 按顺时针方向旋转得到的,连接BE,CF相交于点D。
黑龙江省大兴安岭地区2020年中考数学试卷(I)卷
黑龙江省大兴安岭地区2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2018·建邺模拟) 下列各数中,相反数、绝对值、平方根、立方根都等于其本身的是()A . 0B . 1C . 0和1D . 1和-12. (2分)若与-8ab2x是同类项,则x+y的值是()A . -1B . 0C . 1D . 23. (2分)如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE 不一定全等的条件是()A . DF=BEB . AF=CEC . CF=AED . CF∥AE4. (2分)若方程组的解是则m、n表示的数分别是()A . 5,1B . 1,4C . 2,3D . 2,45. (2分)如图是由5个相同的立方块所搭成的几何体,其俯视图是()A .B .C .D .6. (2分)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A .B .C .D .7. (2分) (2015九上·龙华期末) 将二次函数y=x2﹣4的图象先向右平移2个单位,再向上平移3个单位后得到的抛物线的函数表达式为()A . y=(x+2)2﹣7B . y=(x﹣2)2﹣7C . y=(x+2)2﹣1D . y=(x﹣2)2﹣18. (2分) (2019九上·新蔡期中) 下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共8分)9. (1分)(2011·绍兴) 因式分解:x2+x=________.10. (1分) (2016七下·明光期中) 已知不等式组无解,则a的取值范围是________.11. (1分)(2013·湖州) 某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如表,则这20户家庭这个月的平均用水量是________吨.用水量(吨)4568户数384512. (1分)(2017·丹东模拟) 某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为________.13. (1分)如图,将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n 个边长为1的小正三角形,若=,则正△ABC的边长是________.14. (1分) (2017八下·宜兴期中) 在平面直角坐标系中,边长为3的正方形OABC的两顶点A、C分别在y 轴、x轴的正半轴上,点O在原点。
大兴安岭地区2020版中考数学试卷A卷
大兴安岭地区2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A . a>b>-b>-aB . a>-a>b>-C . b>a>-b>-aD . -a>b>-b>a2. (2分)(2019·盐城) 下列运算正确的是()A .B .C .D .3. (2分)反比例函数y=图象上有三个点(x1 , y1),(x2 , y2),(x3 , y3),其中x1<x2<0<x3 ,则y1 , y2 , y3的大小关系是()A . y1<y2<y3B . y2<y1<y3C . y3<y1<y2D . y3<y2<y14. (2分)(2018·扬州) 下列说法正确的是()A . 一组数据2,2,3,4,这组数据的中位数是2B . 了解一批灯泡的使用寿命的情况,适合抽样调查C . 小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D . 某日最高气温是,最低气温是,则该日气温的极差是5. (2分)已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是()A . 外离B . 外切C . 相交D . 内切6. (2分)估算﹣2的值()A . 在1到2之间B . 在2到3之间C . 在3到4之间D . 在4到5之间7. (2分)(2019·重庆) 如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A .B .C .D .8. (2分) (2020八下·南康月考) 如图,在平面直角坐标系中,已知点A(﹣2,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的正半轴于点C,则点C的横坐标介于()A . 0和1之间B . 1和2之间C . 2和3之间D . 3和4之间二、填空题 (共10题;共13分)9. (1分)(2014·茂名) 茂名滨海新区成立以来,发展势头良好,重点项目投入已超过2000亿元,2000亿元用科学记数法表示为________亿元.10. (1分)平行四边形ABCD中,对角线AC,BD交于点O,AC=6cm ,BD=8cm,则边AB长度的取值范围是________.11. (1分)(2016·曲靖) 如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是________.12. (1分) (2019七下·硚口期末) 一个瓶子中有一些豆子,从瓶子中取出一些豆子,记录这些取出的豆子的粒数为20,给这些豆子做上记号,把这些豆子放回瓶子中,充分揺匀.从瓶子中再取出一些豆子,记录这些豆子的粒数为30,其中带有记号的豆子粒数为6,则可以估算出此时瓶中剩下的豆子的粒数大约是________.13. (4分)(2018·广水模拟) 下列问题你能肯定的是(填“能”或“不能”):(1)钝角大于锐角:________(2)直线比线段长:________(3)多边形的外角和都是360°:________(4)明天会下雨:________14. (1分) (2016七下·虞城期中) 如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF 折叠成图c,则图c中的∠CFE的度数是________度.15. (1分) (2017九上·邗江期末) 如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M,N分别是AB、BC的中点,则MN长的最大值是________.16. (1分) (2016九上·上城期中) 已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A 在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为________17. (1分)已知x1 , x2是方程x2﹣3x﹣3=0的两根,不解方程可求得x12+x22=________.18. (1分)(2019·江陵模拟) 将一组数,2,,2 ,,…,4 按下面的方式进行排列:(1),2,,2 ,;(2)2 ,,4,3 ,2 ;(3),2 ,,2 ,;…若2 的位置记为(1,4),的位置记为(3,3),则这组数中最大的有理数的位置记为________.三、解答题 (共10题;共86分)19. (7分)魔方,又叫魔术方块,也称鲁比克方块,是匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授在1974年发明的。
黑龙江省大兴安岭地区2020版中考数学试卷(II)卷
黑龙江省大兴安岭地区2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、填空题 (共12题;共13分)1. (1分) (2015七上·海南期末) |﹣ |=________.2. (2分)(2016·青海) 分解因式:2a2b﹣8b=________,计算:8x6÷4x2=________.3. (1分)(2020·昆明模拟) 中新网昆明2月26日电: 1月24日至2月25日,云南铁路累计抢运支援湖北疫情防控保障物资批,约吨. 这个数用科学记数法表示为________4. (1分)(2017·罗平模拟) 函数y= 自变量的取值范围是________.5. (1分)(2017·陆良模拟) 如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=________.6. (1分) (2019七下·思明期中) 如图是一块梯形铁片的残余部分,量出,,原来梯形铁片的的度数是________.7. (1分)老师在一直角坐标系中画了一个反比例函数的图象,请同学们观察此图象有什么特点,小付说:与直线y=﹣x有两个交点;小楠:图象上任意一点到两坐标轴的距离的积都为5,请你根据他们俩的说法写出此反比例函数的表达式:________.8. (1分) (2019九下·衡水期中) 如图,△ABC为等边三角形,△AO′B绕点A逆时针旋转后能与△AOC重合,则∠OAO′=________度.9. (1分)(2019·湟中模拟) 小红、小明、小芳在一起做游戏的先后顺序.他们约定用“剪子、包袱、锤子”的方式确定.问在一个回合中三个人都出包袱的概率是________.10. (1分)如图,BC为⊙O的弦,OA⊥BC交⊙O于点A,∠AOB=70°,则∠ADC=________.11. (1分) (2019八下·博罗期中) 如图,正方形ABCO的顶点C,A分别在轴,轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是________.12. (1分)(2018·陇南) 如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为________.二、选择题 (共8题;共16分)13. (2分)下列计算正确的是()A . a3+a2=2a5B . (2ab2)3=6a3b6C . 2a2b•3ab2=6a2b3D . x3y2÷(﹣2x2y)=﹣xy14. (2分) (2016八上·蕲春期中) 下列图形中是轴对称图形的是()A .B .C .D .15. (2分)一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A .B .C .D .16. (2分) (2017八上·南宁期末) 如图,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A . 60°B . 55°C . 50°D . 45°17. (2分)下面获取数据的方法不正确的是()A . 我们班同学的身高用测量方法B . 快捷了解历史资料情况用观察方法C . 抛硬币看正反面的次数用实验方法D . 全班同学最喜爱的体育活动用访问方法18. (2分) (2020八上·尚志期末) 某学校计划挖一条长为300米的供热管道,开工后每天比原计划多挖5米,结果提前10天完成.若设原计划每天挖米,那么下面所列方程正确的是()A .B .C .D .19. (2分) (2020八上·苏州期末) 如图,一次函数y= x+6的图像与x轴、y轴分别交于点A,B,过点B的直线l平分△ABO的面积,则直线l相应的函数表达式为()A . y= x+6B . y= x+6C . y= x+6D . y= x+620. (2分) (2020八下·云梦期中) 如图,在□ABCD中,对角线AC,BD交于点O,∠BAC=90°,E为AB的中点,若AE=3,AO=4,则AD的长为()A . 10B . 12C .D .三、解答题 (共8题;共72分)21. (5分) (2018七上·富顺期中)22. (5分)有一道题:“先化简再求值:( + )÷ ,其中x=﹣2012”,小明做题时把“x=﹣2012”错抄成了“x=2012”,但他的计算结果也是正确,请你通过计算解释这是怎么回事?23. (10分) (2019八上·兴仁期末) 如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.m≤﹣10
C.m≥﹣10 且 m≠﹣6
D.m>﹣10 且 m≠﹣6
8.(3 分)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支 2 元,百合每支 3 元.小明将
30 元钱全部用于购买这两种花(两种花都买),小明的购买方案共有( )
A.3 种
B.4 种
C.5 种
D.6 种
9.(3 分)有两个直角三角形纸板,一个含Байду номын сангаас45°角,另一个含 30°角,如图①所示叠放,先将含 30°角
的速度.在登山过程中,他行走的路程 S 随时间 t 的变化规律的大致图象是( )
A.
B.
C.
D.
【分析】根据题意进行判断,先匀速登上山顶,原地休息一段时间后,可以排除 A 和 C,又匀速下山, 上山的速度小于下山的速度,排除 D,进而可以判断. 【解答】解:因为登山过程可知: 先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山的速度. 所以在登山过程中,他行走的路程 S 随时间 t 的变化规律的大致图象是 B.故选:B. 6.(3 分)数学老师在课堂上给同学们布置了 10 个填空题作为课堂练习,并将全班同学的答题情况绘制成 条形统计图.由图可知,全班同学答对题数的众数为( )
.
15.(3 分)等腰三角形的两条边长分别为 3 和 4,则这个等腰三角形的周长是
.
16.(3 分)如图,在平面直角坐标系中,矩形 ABCD 的边 AB 在 y 轴上,点 C 坐标为(2,﹣2),并且 AO:
BO=1:2,点 D 在函数 y= (x>0)的图象上,则 k 的值为
.
3
17.(3 分)如图,在平面直角坐标系中,等腰直角三角形①沿 x 轴正半轴滚动并且按一定规律变换,每次
B.(a+b)2=a2+ab+b2
C.(﹣2a)2=﹣4a2
D.a•2a2=2a2
4.(3 分)一个质地均匀的小正方体,六个面分别标有数字“1”、“2”、“3”、“4”、“5”、“6”,掷小正方体
后,观察朝上一面的数字出现偶数的概率是( )
A.
B.
C.
D.
5.(3 分)李强同学去登山,先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山 的速度.在登山过程中,他行走的路程 S 随时间 t 的变化规律的大致图象是( )
变换后得到的图形仍是等腰直角三角形.第一次滚动后点 A1(0,2)变换到点 A2(6,0),得到等腰直
角三角形②;第二次滚动后点 A2 变换到点 A3(6,0),得到等腰直角三角形③;第三次滚动后点 A3
变换到点 A4(10,4 ),得到等腰直角三角形④;第四次滚动后点 A4 变换到点 A5(10+12 ,0),
变量 x 的取值范围;
(3)甲车到达绥芬河时,乙车距绥芬河的路程还有
km;出发
h 时,甲、乙两车第一次
相距 40km.
23.(12 分)综合与实践
在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣
﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累
.
24.(14 分)综合与探究 在平面直角坐标系中,抛物线 y= x2+bx+c 经过点 A(﹣4,0),点 M 为抛物线的顶点,点 B 在 y 轴上,
且 OA=OB,直线 AB 与抛物线在第一象限交于点 C(2,6),如图①.
(1)求抛物线的解析式;
(2)直线 AB 的函数解析式为
,点 M 的坐标为
了数学活动经验.
实践发现:
对折矩形纸片 ABCD,使 AD 与 BC 重合,得到折痕 EF,把纸片展平;再一次折叠纸片,使点 A 落在
EF 上的点 N 处,并使折痕经过点 B,得到折痕 BM,把纸片展平,连接 AN,如图①.
(1)折痕 BM
(填“是”或“不是”)线段 AN 的垂直平分线;请判断图中△ABN 是什么特殊
以一定速度行驶了 500km,用时 5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽
略不计).甲、乙两车离齐齐哈尔的路程 y(km)与所用时间 x(h)的关系如图所示,请结合图象解答
下列问题:
(1)甲车改变速度前的速度是
km/h,乙车行驶
h 到达绥芬河;
5
(2)求甲车改变速度后离齐齐哈尔的路程 y(km)与所用时间 x(h)之间的函数解析式,不用写出自
.
12.(3 分)在函数 y=
中,自变量 x 的取值范围是
.
13.(3 分)如图,已知在△ABD 和△ABC 中,∠DAB=∠CAB,点 A、B、E 在同一条直线上,若使△ABD
≌△ABC,则还需添加的一个条件是
.(只填一个即可)
14.(3 分)如图是一个几何体的三视图,依据图中给出的数据,计算出这个几何体的侧面积是
志愿服务时间(小时) 频数
A
0<x≤30
a
B
30<x≤60
10
C
60<x≤90
16
D
90<x≤120
20
22.(10 分)团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路
线赶往绥芬河.齐齐哈尔距绥芬河的路程为 800km,在行驶过程中乙车速度始终保持 80km/h,甲车先
⊥AC 交 AC 的延长线于点 E. (1)求证:DE 是⊙O 的切线. (2)若直径 AB=6,求 AD 的长.
4
21.(10 分)新冠肺炎疫情期间,某市防控指挥部想了解自 1 月 20 日至 2 月末各学校教职工参与志愿服务 的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们的志愿服务时间进行统计,整理
得到等腰直角三角形⑤;依此规律…,则第 2020 个等腰直角三角形的面积是
.
三、解答题(本题共 7 道大题,共 69 分) 18.(10 分)(1)计算:sin30°+ ﹣(3﹣ )0+|﹣ |
(2)因式分解:3a2﹣48 19.(5 分)解方程:x2﹣5x+6=0 20.(8 分)如图,AB 为⊙O 的直径,C、D 为⊙O 上的两个点, = = ,连接 AD,过点 D 作 DE
(4)在坐标平面内是否存在点 N,使以点 A、O、C、N 为顶点的四边形是平行四边形?若存在,请直
接写出点 N 的坐标;若不存在,请说明理由.
7
2020 年黑龙江省大兴安岭中考数学试卷
参考答案与试题解析
一、选择题(每小题只有一个正确答案,每小题 3 分,满分 30 分) 1.(3 分)2020 的倒数是( )
后,观察朝上一面的数字出现偶数的概率是( )
A.
B.
C.
D.
【分析】用出现偶数朝上的结果数除以所有等可能的结果数即可得. 【解答】解:∵掷小正方体后共有 6 种等可能结果,其中朝上一面的数字出现偶数的有 2、4、6 这 3
8
种可能,∴朝上一面的数字出现偶数的概率是 = ,故选:A. 5.(3 分)李强同学去登山,先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山
三角形?答:
;进一步计算出∠MNE=
°;
(2)继续折叠纸片,使点 A 落在 BC 边上的点 H 处,并使折痕经过点 B,得到折痕 BG,把纸片展平,
如图②,则∠GBN=
°;
拓展延伸:
(3)如图③,折叠矩形纸片 ABCD,使点 A 落在 BC 边上的点 A'处,并且折痕交 BC 边于点 T,交 AD
边于点 S,把纸片展平,连接 AA'交 ST 于点 O,连接 AT.
的纸板固定不动,再将含 45°角的纸板绕顶点 A 顺时针旋转,使 BC∥DE,如图②所示,则旋转角∠
BAD 的度数为( )
A.15°
B.30°
C.45°
D.60°
10.(3 分)如图,抛物线 y=ax2+bx+c(a≠0)与 x 轴交于点(4,0),其对称轴为直线 x=1,结合图象
给出下列结论:①ac<0;②4a﹣2b+c>0;③当 x>2 时,y 随 x 的增大而增大;④关于 x 的一元二次
8.(3 分)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支 2 元,百合每支 3 元.小明将
30 元钱全部用于购买这两种花(两种花都买),小明的购买方案共有( )
A.3 种
B.4 种
C.5 种
D.6 种
【分析】设可以购买 x 支康乃馨,y 支百合,根据总价=单价×数量,即可得出关于 x,y 的二元一次方
2020 年黑龙江省大兴安岭中考数学试卷
一、选择题(每小题只有一个正确答案,每小题 3 分,满分 30 分) 1.(3 分)2020 的倒数是( )
A.2020
B.﹣2020
C.
D.
2.(3 分)下面四个化学仪器示意图中,是轴对称图形的是( )
A.
B.
C.
D.
3.(3 分)下列计算正确的是( )
A.a+2a=3a
方程 ax2+bx+c=0 有两个不相等的实数根.其中正确的结论有( )
2
A.1 个
B.2 个
C.3 个
D.4 个
二、填空题(每小题 3 分,满分 21 分)
11.(3 分)2020 年初新冠肺炎疫情发生以来,近 4000000 名城乡社区工作者奋战在中国大地的疫情防控
一线.将数据 4000000 用科学记数法表示为
,cos∠ABO=
;
连接 OC,若过点 O 的直线交线段 AC 于点 P,将△AOC 的面积分成 1:2 的两部分,则点 P 的坐标
为
;