离散数学二元关系传递性判别、闭包方法实验报告

离散数学二元关系传递性判别、闭包方法实验报告
离散数学二元关系传递性判别、闭包方法实验报告

离散数学二元关系传递性判别、闭包方法实验报告

学院:理学院班级:11信息与计算科学1班

姓名:***学号:*************

一、实验目的

1. 通过上机程序,进一步加深对二元关系传递性判别,自反闭包,对称闭包,传递闭

包的理解。

2. 掌握传递性判别,Warshall算法。

3. 学会用程序解决离散数学中的问题。

4. 增强我们编写程序的能力

二、实验内容

实验1:二元关系传递性判别

实验2:有限集上给定关系的自反、对称和传递闭包(用Warshall算法)。

三、实验环境

在microsoft visual c++实验环境下完成的,而所设计的程序也在这个环境下通过了编译,运行和测试。

四、实验原理和实现过程

实验1:

#include

using namespace std;

void main()

{

intn,i,j,k;

int m=0; //m是判断传递关系计数参数

cout<<"请输入矩阵的行列数n:";

cin>>n;

int a[20][20];

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

cout<<"请输入a["<

cin>>a[i][j];

}

} //输入R矩阵

cout<<"R的关系矩阵为:"<

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

cout<

}

cout<

} //输出R矩阵

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

if(a[i][j]!=0)

{

for(k=1;k<=n;k++)

{

if(a[i][k]

{

m=m+1; //如果有一个数不成立,m加1

}

}

}

}

}

if(m==0) cout<<"R有传递关系"<

else cout<<"R没有传递关系"<

}

实验2:

1)自反闭包

#include

using namespace std;

void main()

{

intn,i,j;

cout<<"请输入矩阵的行列数n:";

cin>>n;

int a[20][20];

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

cout<<"请输入a["<

cin>>a[i][j];

}

}

cout<<"R的关系矩阵为:"<

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

cout<

}

cout<

}

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

if(a[i][j]!=0)

{

a[i][i]=1;

a[j][j]=1; //把符合条件的对角线上的值改为1 }

}

}

cout<<"R的关系矩阵为:"<

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

cout<

}

cout<

}

}

2)对称闭包

#include

using namespace std;

void main()

{

intn,i,j;

cout<<"请输入矩阵的行列数n:";

cin>>n;

int a[20][20];

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

cout<<"请输入a["<

cin>>a[i][j];

}

}

cout<<"R的关系矩阵为:"<

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

cout<

}

cout<

}

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

if(a[i][j]!=0)

{

a[j][i]=1; //对称元素的值改为1

}

}

}

cout<<"R的对称闭包矩阵为:"<

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

cout<

}

cout<

}

}

3)传递闭包

#include

using namespace std;

void main()

{

intn,i,j,k;

int m=0;

cout<<"请输入矩阵的行列数n:";

cin>>n;

int a[20][20];

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

cout<<"请输入a["<

cin>>a[i][j];

}

}

cout<<"R的关系矩阵为:"<

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

cout<

}

cout<

}

for(j=1;j<=n;j++)

{

for(i=1;i<=n;i++)

{

if(a[i][j]==1)

{

for(k=1;k<=n;k++)

{

a[i][k]=a[i][k]+a[j][k];//warshall方法

if(a[i][k]==2) a[i][k]=1; //规范布尔加}

}

}

}

cout<<"R的传递闭包矩阵为:"<

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

cout<

}

cout<

}

}

五、实验输入输出和数据

实验1:

1)输入没有传递关系的关系矩阵R

2)输入课本P30/例2.6

实验2:

1)自反闭包

2)对称闭包

3)传递闭包P52/例2.13

六、实验体会

通过这次的实验,使我明白了,平日里学习不能浅尝辄止,必须要知道它的方法。

做这次实验前我以为我对这块知识已经很熟了,但实际做的时候,发现我还是不是特别懂,必须要反复看书。其次,让我知道了,我平时学的数学知识可以很好的跟计算机结合,让我对程序设计有了更好的人是。

离散数学期末考试试题(有几套带答案)

离散数学试题(A卷及答案) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R)?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R)?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R?T∧R(置换)?R 2)?x(A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x))??x?A(x)∨?xB(x)???xA(x)∨?xB(x)??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分) 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E, ?E→(A ∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E (2) ?E→(A∧?B) (3) (C∨D)→(A∧?B) (4) (A∧?B)→(R∨S) (5) (C∨D)→(R∨S) (6) C∨D

(7) R∨S 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) (2)P(a) (3)?x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)?x(P(x)∧R(x)) (11)Q(y)∧?x(P(x)∧R(x)) 四、设m是一个取定的正整数,证明:在任取m+1个整数中,至少有两个整数,它们的差是m的整数倍 证明设 1 a,2a,…,1+m a为任取的m+1个整数,用m去除它们所得余数 只能是0,1,…,m-1,由抽屉原理可知, 1 a,2a,…,1+m a这m+1个整 数中至少存在两个数 s a和t a,它们被m除所得余数相同,因此s a和t a的差是m的整数倍。 五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (15分)证明∵x∈ A-(B∪C)? x∈ A∧x?(B∪C)? x∈ A∧(x?B∧x?C)?(x∈ A∧x?B)∧(x∈ A∧x?C)? x∈(A-B)∧x∈(A-C)? x∈(A-B)∩(A-C)∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,y∈N∧y=x2},S={| x,y∈N∧y=x+1}。求R-1、R*S、S*R、R{1,2}、S[{1,2}](10分) 解:R-1={| x,y∈N∧y=x2},R*S={| x,y∈N∧y=x2+1},S*R={| x,y∈N∧y=(x+1)2}, 七、若f:A→B和g:B→C是双射,则(gf)-1=f-1g-1(10分)。 证明:因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数

离散数学实验报告

《离散数学》实验报告专业网络工程 班级 姓名 学号 授课教师 二 O 一六年十二月

目录 实验一联结词的运算 实验二根据矩阵的乘法求复合关系 实验三利用warshall算法求关系的传递闭包实验四图的可达矩阵实现

实验一联结词的运算 一.实验目的 通过上机实验操作,将命题连接词运算融入到C语言的程序编写中,一方面加强对命题连接词运算的理解,另一方面通过编程实现命题连接词运算,帮助学生复习与锻炼C语言知识,将理论知识与实际操作结合,让学生更加容易理解与记忆命题连接词运算。 二.实验原理 (1) 非运算, 符号:? ,当P=T时 ,?P为F, 当P=F时 ,?P为T 。 (2) 合取, 符号: ∧ , 当且仅当P与Q的真值同为真,命题P∧Q的真值才为真;否则,P∧Q的真值为假。 (3) 析取, 符号: ∨ , 当且仅当P与Q的真值同为假,命题P∨Q的真值才为假;否则,P∨Q的真值为真。 (4) 异或, 符号: ▽ , 当且仅当P与Q的真值不同时,命题P▽Q的真值才为真;否则,P▽Q的真值为真。 (5) 蕴涵, 符号: →, 当且仅当P为T,Q为F时,命题P→Q的真值才为假;否则,P→Q 的真值为真。 (6) 等价, 符号: ? , 当且仅当P,Q的真值不同时,命题P?Q的真值才为假;否 则,P→Q的真值为真。 三.实验内容 编写一个程序实现非运算、合取运算、析取运算、异或运算、蕴涵运算、等价运算。四.算法程序 #include void main() { printf("请输入P、Q的真值\n"); int a,b; scanf("%d%d",&a,&b); int c,d; if(a==1) c=0; else c=1; if(b==1) d=0; else d=1; printf("非P、Q的结果为%d,%d\n",c,d);

离散数学期末试题

离散数学考试试题(A 卷及答案) 一、(10分)求(P ↓Q )→(P ∧?(Q ∨?R ))的主析取范式 解:(P ↓Q )→(P ∧?(Q ∨?R ))??(?( P ∨Q ))∨(P ∧?Q ∧R )) ?(P ∨Q )∨(P ∧?Q ∧R )) ?(P ∨Q ∨P )∧(P ∨Q ∨?Q )∧(P ∨Q ∨R ) ?(P ∨Q )∧(P ∨Q ∨R ) ?(P ∨Q ∨(R ∧?R ))∧(P ∨Q ∨R ) ?(P ∨Q ∨R )∧(P ∨Q ∨?R )∧(P ∨Q ∨R ) ?0M ∧1M ?2m ∨3m ∨4m ∨5m ∨6m ∨7m 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。则根据题意应有: 甲:?P ∧Q 乙:?Q ∧P 丙:?Q ∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P ,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为: ((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?' R 。则sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。

离散数学(高起专)阶段性作业4

离散数学(高起专)阶段性作业4 总分:100分得分:0分 一、单选题 1. 设Q是有理数集,(*为普通乘法) 不能构成_______。(5分) (A) 群 (B) 独异点 (C) 半群 (D) 交换半群 参考答案:A 2. 在自然数集N上,下列哪种运算是可结合的?_______(5分) (A) a*b=a-b (B) a*b=max{a,b} (C) a*b=a+2b (D) a*b=|a-b| 参考答案:B 3. Q是有理数集, Q上的运算*为,则代数系统的单位元是_______。(5分) (A) a (B) b (C) 1 (D) 0 参考答案:D 4. 循环群<{1,-1,i,-i},*>(*是普通乘法,)的所有生成元是_______。(5分) (A) 1,-1 (B) i (C) -i (D) i,-i 参考答案:D 5. 下列哪个集合中关于减法运算是封闭的_______。(5分) (A) N (B) {2x|x?I} (C) {2x+1|x?I} (D) {2x|x是质数} 参考答案:B 6. 设R为实数集,函数f:R→R,f(x)=2x,则f是_______(5分) (A) 满射函数 (B) 单射函数 (C) 双射函数 (D) 非单射非满射

参考答案:B 二、多选题 1. 设R为实数集,函数f:R→R,f(x)=x-1,则f是_______(5分) (A) 满射函数 (B) 单射函数 (C) 双射函数 (D) 非单射非满射 参考答案:A,B,C 2. Q是有理数集, Q上的运算*为,则代数系统的非零元是_______。(5分) (A) i (B) j (C) 0 (D) 1 参考答案:A,B,C 3. 下列的代数系统中,哪些构成群_______。(5分) (A) G=Q(有理数集)*是普通乘法 (B) G=Q(有理数集)*是普通加法 (C) G=<{1,3,4,5,9},*>*是模11的乘法 (D) G=<{1,10},*>*是模11的乘法 参考答案:B,C,D 4. 循环群(+是普通加法)的生成元是_______。(5分) (A) 1 (B) -1 (C) 0 (D) 2 参考答案:A,B 三、判断题 1. 素数阶群一定是循环群。(5分) 正确错误 参考答案:正确 解题思路: 2. 设A={2,4,6},A上的二元运算*定义为:a*b=max{a,b},则在独异点中,单位元是6.零元是2。(5分) 正确错误 参考答案:错误 解题思路: 3. 循环群的满同态像是循环群。(4分) 正确错误 参考答案:正确 解题思路: 4. 独异点的单位元是唯一的。(4分)

离散数学实验报告

离散数学实验报告(实验ABC) 专业班级 学生姓名 学生学号 指导老师 完成时间

目录 第一章实验概述..................................... 错误!未定义书签。 实验目的....................................... 错误!未定义书签。 实验内容....................................... 错误!未定义书签。 实验环境....................................... 错误!未定义书签。第二章实验原理和实现过程........................... 错误!未定义书签。 实验原理....................................... 错误!未定义书签。 建立图的邻接矩阵,判断图是否连通 ............ 错误!未定义书签。 计算任意两个结点间的距离 ................... 错误!未定义书签。 对不连通的图输出其各个连通支 ................ 错误!未定义书签。 实验过程(算法描述)........................... 错误!未定义书签。 程序整体思路 ............................... 错误!未定义书签。 具体算法流程 ................................ 错误!未定义书签。第三章实验数据及结果分析........................... 错误!未定义书签。 建立图的邻接矩阵并判断图是否连通的功能测试及结果分析错误!未定义书签。 输入无向图的边 .............................. 错误!未定义书签。 建立图的连接矩阵 ............................ 错误!未定义书签。 其他功能的功能测试和结果分析................... 错误!未定义书签。 计算节点间的距离 ............................ 错误!未定义书签。 判断图的连通性 .............................. 错误!未定义书签。 输出图的连通支 .............................. 错误!未定义书签。 退出系统 .................................... 错误!未定义书签。第四章实验收获和心得体会........................... 错误!未定义书签。

浙江工业大学_离散数学测_验(含答案)

测 验 【一】 已知8阶群

的运算表见下,试完成以下要求: (1)填写表中的空缺部分。 (2 (3 ◇P 的子集。 (4)给出一条理由说明

的各个子群的左陪集就是右陪集。给出一条理由说明4阶子群 【二】 证明如果f 是由的同态映射,g 是由的同态映 射,则f g 是由的同态映射。 证明: ) (△)())((△))(()) (*)(())☆(()☆(,,b f g a f g b f g a f g b f a f g b a f g b a f g A b a ====∈? 所以f g 是由的同态映射。 【三】 设〈L ,≤〉是格,?a 、b 、c 、d ∈L ,证明:(a ∧b)∨(c ∧d)≤(a ∨c )∧(b ∨d ) 证明 ?a 、b 、c 、d ∈L ,因为a ∧b ≤a ,a ∧b ≤b ,c ∧d ≤c ,c ∧d ≤d ,所以 (a ∧b)∨(c ∧d)≤a ∨c , (a ∧b)∨(c ∧d)≤b ∨d 因此 (a ∧b)∨(c ∧d)≤(a ∨c )∧(b ∨d )

【四】 设S 是30的因子集合,S 上关系“|”是整除关系。 a)请画出该关系所对应的格的Hasse 图; b)判断是否存在子格为布尔格; c)如果存在子格为布尔格,请给出这些子格并写出布尔格的原子。 解 (1)G={1,2,3,5,6,10,15,30},其哈斯图见图7.4.1。 (2)〈G ,|〉的所有元素个数大于等于4的不同构的子格的Hasse 图见图7.4.2。 (3)所有的子格均是分配格、模格。图7.4.2(b )、(f )所示的格还是有补格。 (4)图(b )、(f )所示的格是布尔代数。其中,图(b )的原子集合为{15,6},图(f )的原子集合为{2,3,5}。 【五】 假设当前有n 个人,其中任意两个人合起来认识所留下的n-2个人。 (a) 证明:当n ≥3时,n 个人能站成一排,使得中间每个人两旁站着自己的朋友,两端的两个人每个人旁边站着他的一个朋友。 (b) 证明:当n ≥4时,n 个人能站成一圈,使每个人的两旁站着自己的朋友。 由已知图G 中任意两个顶点u ,v 认识余下的n-2人,得 degn-2(u)+degn-2(v)≥n-2,且其余 n-2个顶点必与u 或v 相邻接 下面证明当n ≥3,必有 deg(u)+deg(v)≥ n-1, 则图G 中存在一条哈密尔顿通路。 (a) 若u ,v 相邻,则 deg(u)+deg(v)=(1+degn-2(u))+(1+degn-2(v)) ≥n (b) 若u ,v 不相邻,V-{u ,v}中恰有的n-2≥1个顶点。 如果 degn-2(u)+degn-2(v)= n-2,且其余 n-2个顶点必与u 或v 相邻接,则每一个顶点 3056 256 2 3110 51 65 306 1 5(a )(b )(c ) (f )(e )(d )

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学实验报告--四个实验!!!

《离散数学》 课程设计 学院计算机学院 学生姓名 学号 指导教师 评阅意见 提交日期 2011 年 11 月 25 日

引言 《离散数学》是现代数学的一个重要分支,也是计算机科学与技术,电子信息技术,生物技术等的核心基础课程。它是研究离散量(如整数、有理数、有限字母表等)的数学结构、性质及关系的学问。它一方面充分地描述了计算机科学离散性的特点,为学生进一步学习算法与数据结构、程序设计语言、操作系统、编译原理、电路设计、软件工程与方法学、数据库与信息检索系统、人工智能、网络、计算机图形学等专业课打好数学基础;另一方面,通过学习离散数学课程,学生在获得离散问题建模、离散数学理论、计算机求解方法和技术知识的同时,还可以培养和提高抽象思维能力和严密的逻辑推理能力,为今后爱念族皮及用计算机处理大量的日常事务和科研项目、从事计算机科学和应用打下坚实基础。特别是对于那些从事计算机科学与理论研究的高层次计算机人员来说,离散数学更是必不可少的基础理论工具。 实验一、编程判断一个二元关系的性质(是否具有自反性、反自反性、对称性、反对称性和传递性) 一、前言引语:二元关系是离散数学中重要的内容。因为事物之间总是可以 根据需要确定相应的关系。从数学的角度来看,这类联系就是某个集合中元素之间存在的关系。 二、数学原理:自反、对称、传递关系 设A和B都是已知的集合,R是A到B的一个确定的二元关系,那么集合R 就是A×B的一个合于R={(x,y)∈A×B|xRy}的子集合 设R是集合A上的二元关系: 自反关系:对任意的x∈A,都满足∈R,则称R是自反的,或称R具有自反性,即R在A上是自反的?(?x)((x∈A)→(∈R))=1 对称关系:对任意的x,y∈A,如果∈R,那么∈R,则称关系R是对称的,或称R具有对称性,即R在A上是对称的? (?x)(?y)((x∈A)∧(y∈A)∧(∈R)→(∈R))=1 传递关系:对任意的x,y,z∈A,如果∈R且∈R,那么∈R,则称关系R是传递的,或称R具有传递性,即R在A上是传递的? (?x)(?y)(?z)[(x∈A)∧(y∈A)∧(z∈A)∧((∈R)∧(∈R)→(∈R))]=1 三、实验原理:通过二元关系与关系矩阵的联系,可以引入N维数组,以数 组的运算来实现二元关系的判断。 图示:

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

离散数学期末模拟题

湖南工业大学 2009学年上学期考试试题 一、选择题.(每小题2分,总计30) 1.给定语句如下: (1)15是素数(质数)。 (2)10能被2整除,3是偶数。 (3)你下午有会吗?若无会,请到我这儿来! (4)2x+3>0. (5)只有4是偶数,3才能被2整除。 (6)明年5月1日是晴天。 以上6个语句中,是简单命题的为(A),是复合命题的为(B),是真命题的为(C), 是假命题的是(D),真值待定的命题是(E) A: ①(1)(3)(4)(6) ②(1)(4)(6) ③(1)(6) B: ①(2)(4) ②(2)(4)(6) ③(2)(5) C: ①(1)(2)(5)(6) ②无真命题③(5) D: ①(1)(2) ②无假命题③(1)(2)(4)(5) E: ①(4)(6) ②(6)③无真值待定的命题 2.将下列语句符号化: (1)4是偶数或是奇数。(A) 设p:4是偶数,q:4是奇数 (2)只有王荣努力学习,她才能取得好成绩。(B) 设p:王荣努力学习,q:王荣取得好成绩 (3)每列火车都比某些汽车快。(C) 设F(x):x是火车,G(y):y是汽车,H(x,y):x比y快。 A: ① p∨q ② p∧q ③ p→q B: ① p→q ② q→p ③ p∧q C: ①?x?y ((F(x)∧G(y))→ (H(x,y)) ②?x (F(x)→?y(G(y)∧H(x,y))) ③?x (F(x)∧?y(G(y)∧H(x,y))) 3.设S={1,2,3},下图给出了S上的5个关系,则它们只具有以下性质:R1是 (A),R2是(B),R3是(C)。

A B C:①自反的,对称的,传递的 ②反自反的,对称的 ③自反的 ④ 反对称的 ⑤对称的 ⑥自反的,对称的,反对称的,传递的 4. 设S={Ф,{1},{1,2}},则有 (1)(A )∈S (2)(B)?S (3) P(S)有(C )个元数。 (4)(D )既是S 的元素,又是S 的子集 A: ① {1,2} ② 1 B: ③{{1,2}} ④{1} C: ⑤ 3 ⑥ 6 ⑦ 7 ⑧ 8 D: ⑨ {1} ⑩Ф 二、证明(本大题共2小题,第1小题10分,第2小题10分,总计20分) 1、用等值演算算法证明等值式 (p ∧q)∨(p ∧?q)?p 2、构造下面命题推理的证明 如果今天是星期三,那么我有一次英语或数学测验;如果数学老师有事,那么没有数学测验;今天是星期三且数学老师有事,所以我有一次英语测验。 三、计算(本大题共4小题,第1小题5分,第2小题10分,第3小题15分, 总计30分) 1、设()(){}212,,,个体域为 为,整除为

离散数学实验报告()

《离散数学》实验报告 专业网络工程 班级 姓名 学号 授课教师 二 O 一六年十二月

目录 实验一联结词的运算 实验二根据矩阵的乘法求复合关系 实验三利用warshall算法求关系的传递闭包实验四图的可达矩阵实现

实验一联结词的运算 一.实验目的 通过上机实验操作,将命题连接词运算融入到C语言的程序编写中,一方面加强对命题连接词运算的理解,另一方面通过编程实现命题连接词运算,帮助学生复习和锻炼C语言知识,将理论知识与实际操作结合,让学生更加容易理解和记忆命题连接词运算。二.实验原理 (1) 非运算, 符号: ,当P=T时,P为F, 当P=F时,P为T 。 (2) 合取, 符号: ∧ , 当且仅当P和Q的真值同为真,命题P∧Q的真值才为真;否则,P∧Q的真值为假。 (3) 析取, 符号: ∨ , 当且仅当P和Q的真值同为假,命题P∨Q的真值才为假;否则,P∨Q的真值为真。 (4) 异或, 符号: ▽ , 当且仅当P和Q的真值不同时,命题P▽Q的真值才为真;否则,P▽Q的真值为真。 (5) 蕴涵, 符号: →, 当且仅当P为T,Q为F时,命题P→Q的真值才为假;否则,P→Q 的真值为真。 (6) 等价, 符号: ?, 当且仅当P,Q的真值不同时,命题P?Q的真值才为假;否则,P→Q的真值为真。 三.实验内容 编写一个程序实现非运算、合取运算、析取运算、异或运算、蕴涵运算、等价运算。四.算法程序 #include void main() { printf("请输入P、Q的真值\n"); int a,b; scanf("%d%d",&a,&b); int c,d; if(a==1) c=0; else c=1; if(b==1) d=0;

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

离散数学阶段性作业21

中国地质大学(武汉)远程与继续教育学院 离散数学课程作业2(共 4 次作业) 学习层次:专科涉及章节:第2-3章 1.指出下列命题公式那个不是重言式: A. Q→(P∨Q); B.(P∧Q)→P; C.?(P∧?Q); D.?(?P∧0). 2. “每个大学生不是文科生就是理科生”写出下命题在一阶逻辑中符号形式. 3. 构造下面的推理的证明: 前提:R ∧ ?R Q P Q ? , ), (? ∨ ? 结论:P ? 4. 指出公式P→(Q ∨R)的值为0的真值指派P,Q,R: 5.写出公式:所有的人都会死,苏格拉底是人,所以苏格拉底是会死的.符号化形 式 6. 证明A∧(A→B) →B 是重言式. 7. 构造下面推理的证明: 前提:. ∨ ? ∧ A? ? ? B , (C ), B C 结论: A ? 8. 符号化命题并证明或推理:小李或者小张是三好学生.如果小李是三好学生,你 是知道的, .如果小张是三好学生, 小赵也是三好学生;你不知道小李是三 好学生,问谁是三好学生? P: 小李张是三好学生 Q:小张是三好学生 R: 小赵是三好学生 9.符号化命题并证明或推理:如果一个人怕困难,那么他就不会获得成功;每个人 或者获得成功,或者曾经失败过;有些人未失败过,所以有些人不怕困难. 10. 指出下列语句中何为真命题。 A.我正在说谎; B. 如果雪是黑的,那么1+2=5; C.严禁吸烟!; D.如果1+2=3,那么雪是黑的.

11. 用形式演绎法证明: },,{r q r s q p →?→?∨? 蕴涵p →s 。 前提:r , ,→?→?∨?q r s q p 结论:s p → 12. 用真值表或命题演算判断下列各命题(或公式)的真值: 1. (P ∧?P)?Q 。 2. ((P →Q) ∧(Q →R)) →(P →R) 。 3. Q →(P ∨Q) 。 4. ?)1(∨?q 。 参考答案 1. 答: C 不是重言式. 2. 解: 设F(x): x 是大学生,H(x): x 是理科生, H(x): x 是文科生,则命题的符号化形式为:))()()((x H x G x F x ∨→? 3. 证明: );(2).5). P 6) );(3).4). Q 5).); ( R 4).); ( R Q ).3); ( Q P 2).); ( )( ).1的析取三段论的析取三段论前提引入前提引入莫根律置换前提引入???∨?∨??∧?Q P 4. 答: 公式P →(Q ∨R)的值为0的真值指派P,Q,R 为(1,0,0) . 5. 解: P:人Q:会死; R:苏格拉底.符号化形式为: (P →Q) ∧(R →P)? (P →Q) 6. 证明: A ∧(A →B) →B ? A ∧(?A ∨B) →B ??A ∨(A ∧?B) ∨B ? (?A ∨A) ∧(?A ∨?B) ∨B ?(?A ∨?B) ∨B ?1

离散数学实验报告

大连民族学院 计算机科学与工程学院实验报告 实验题目:判断关系的性质 课程名称:离散数学 实验类型:□演示性□验证性□操作性□设计性□综合性 专业:班级:学生姓名:学号: 实验日期:年月日实验地点: 实验学时:实验成绩: 指导教师签字:年月日 实验报告正文部分(具体要求详见实验报告格式要求) 实验报告格式 [实验题目] 判断关系的性质 [实验目的] 使学生掌握利用计算机语言实现判断关系性质的基本方法。[实验环境] Microsoft Visual C++6.0 [实验原理] 实验内容与要求:对给定表示有穷集上关系的矩阵,确定这个关系是否是自反的或反自反的;对称的或反对称的;是否传递的。 通过二元关系与关系矩阵的联系,可以引入N维数组,以数组的运算来实现二元关系的判断。

图示: 程序源代码: #include #define N 4 main() { int i,j,k; int f,e,z; int M[N][N]; printf("判断R是否为自反关系、对称关系、是否可传递?\n"); printf("请输入一个4*4的矩阵。\n"); for(i=0;i

scanf("%d",&M[i][j]); for(i=0;i

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x))xA(x)xB(x) 证明:x(A(x)B(x))x(A(x)∨B(x)) x A(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x) 二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1) (C∨D) E ?P (2) E(A∧B) ??P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S)??P (5) (C∨D)(R∨S) ? T(3)(4),I (6) C∨D P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I 四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。 解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。 先求|A∩B|。 ∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。 于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。 证明:∵x A-(B∪C) x A∧x(B∪C) xA∧(xB∧x C) (x A∧x B)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C) ∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x2} R*S={| x,y N∧y=x2+1} S*R={<x,y>| x,yN∧y=(x+1)2},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。 七、设R={<a,b>,,<c,a>},求r(R)、s(R)和t(R) (15分)。 解:r(R)={,,,<b,b>,

离散数学考试题详细答案

离散数学考试题详细答案

离散数学考试题(后附详细答案) 一、命题符号化(共6小题,每小题3分,共计 18分) 1.用命题逻辑把下列命题符号化 a)假如上午不下雨,我去看电影,否则就在家里读书或看报。 设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报”,命题符号化为:(?P?Q)∧(P?R∨S) b)我今天进城,除非下雨。 设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:?Q→P或?P→Q c)仅当你走,我将留下。 设P表示命题“你走”,Q表示命题“我留下”,命题符号化为: Q→P 2.用谓词逻辑把下列命题符号化 a)有些实数不是有理数 设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为: ?x(R(x) ∧?Q(x)) 或??x(R(x) →Q(x))

b)对于所有非零实数x,总存在y使得xy=1。 设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为: ?x(R(x) ∧?E(x,0) →?y(R(y) ∧E(f(x,y),1)))) c)f 是从A到B的函数当且仅当对于每个a∈A 存在唯一的b∈B,使得f(a)=b. 设F(f)表示“f是从A到B的函数”, A(x)表示“x ∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)??a(A(a)→?b(B(b) ∧E(f(a),b) ∧?c(S(c) ∧ E(f(a),c) →E(a,b)))) 二、简答题(共6道题,共32分) 1.求命题公式(P→(Q→R))?(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。(5分) (P→(Q→R))?(R→(Q→P))?(?P∨?Q∨R)?(P∨?Q∨?R) ?((?P∨?Q∨R)→(P∨?Q∨?R)) ∧((P∨?Q∨?R) →(?P∨?Q∨R)).

离散数学实验报告

离散数学实验报告 姓名: 学号: 班级: 实验地点: 实验时间:

1 实验目的和要求 运用最小生成树思想和求最小生成树程序解决实际问题。实际问题描述如下: 八口海上油井相互间距离如下表,其中1号井离海岸最近,为5km 。问从海岸经1号井铺设油管把各井连接起来,怎样连油管长度最短(为便于检修,油管只准在油井处分叉)? 2 实验环境和工具 实验环境:Windows 7 旗舰版 工具:Dev-C++ 5.8.3 3 实验过程 3.1 算法流程图

3.2程序核心代码 //油管铺设问题Prim算法实现 #include #include using namespace std; #define MAXV 10 #define INF 32767 //INF表示∞ typedef int InfoType; typedef struct{ int no; //顶点编号 InfoType info; //顶点其他信息 } VertexType; //顶点类型 typedef struct{ //图的定义 float edges[MAXV][MAXV]; //邻接矩阵 int vexnum; //顶点数 VertexType vexs[MAXV]; //存放顶点信息 } MGraph; //图的邻接矩阵类型

/*输出邻接矩阵g*/ void DispMat(MGraph g){ int i,j; for (i=0;i