五年级奥数流水行船问题讲解及练习复习资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/ 14 流水行船问题讲座 流水问题是研究船在流水中的行程问题,因此,又叫行船问题。在小学数学中涉及到的题目,一般是匀速运动的问题。这类问题的主要特点是,水速在船逆行和顺行中的作用不同。 流水问题有如下两个基本公式: 顺水速度=船的静水速+水速(1) 逆水速度=船的静水速-水速(2) 水速=顺水速度-船速(3) 静水船速=顺水速度-水速(4) 水速=静水速-逆水速度(5) 静水速=逆水速度+水速(6) 静水速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8) 例1:一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时? 解析:顺水速度为25+3=28 (千米/时),需要航行140÷28=5(小时). 例2:两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。 解析:(352÷11-352÷16)÷2=5(千米/小时). 例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。 解析:顺水速度:208÷8=26(千米/小时), 逆水速度:208÷13=16(千米/小时), 船速:(26+16)÷2=21(千米/小时), 水速:(26—16)÷2=5(千米/小时) 例4:一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10秒,则在无风时他跑100米要用多少秒. 顺水速度 静水速度 水流速度 逆水速度
/ 14 解析:本题类似于流水行船问题. 根据题意可知,这个短跑选手的顺风速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒,那么他在无风时的速度为(9+7)÷2=8米/秒. 在无风时跑100米,需要的时间为100÷8=12.5秒. 例5:一只小船在静水中的速度为每小时 25千米.它在长144千米的河中逆水而行用了 8小时.求返回原处需用几个小时? 解析:船在144千米的河中行驶了8小时,则船的航行速度为144÷8=18(千米/时) 因为船的静水速度是每小时 25千米,所以水流的速度为:25-18=7(千米/时) 返回时是顺水,船的顺水速度是25+7=32(千米/时) 所以返回原处需要:144÷32=4.5(小时) 例6:(难度等级 ※)一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离? 解析:(船速+6)×4=(船速-6)×7, 可得船速=22,两港之间的距离为: 6×7+6×4=66, 66÷(7-4)=22(千米/时) (22+6)×4=112千米. 例7:甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,4小时后相遇.已知水流速度是6千米/时.

求:相遇时甲、乙两船航行的距离相差多少千米? 解析:在两船的船速相同的情况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船的逆水速度=船速-水速,故:速度差=(船速+水速) -(船速-水速)=2×水速,即: 每小时甲船比乙船多走6×2=12(千米). 4小时的距离差为12×4=48(千米) 顺水速度 - 逆水速度 速度差=(船速+水速) -(船速-水速) =船速+水速 -船速+水速 =2×6=12(千米) 12×4=48(千米) 例8:(难度等级 ※※)乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时? 解:乙船顺水速:120÷2=60(千米/小时). 乙船逆水速:120÷4=30(千米/小时)。
/ 14 水流速:(60-30)÷2=15(千米/小时). 甲船顺水速:12O÷3=4O(千米/小时)。 甲船逆水速:40-2×15=10(千米/小时). 甲船逆水航行时间:120÷10=12(小时)。 甲船返回原地比去时多用时间:12-3=9(小时). 例9:(难度等级 ※※)船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时? 解析:本题中船在顺水、逆水、静水中的速度以及水流的速度都可以求出.但是由于暴雨的影响,水速发生变化,要求船逆水而行要几小时,必须要先求出水速增加后的逆水速度. 船在静水中的速度是: (180÷10+180÷15)÷2=15(千米/小时). 暴雨前水流的速度是: (180÷10-180÷15)÷2=3(千米/小时). 暴雨后水流的速度是: 180÷9-15=5(千米/小时). 暴雨后船逆水而上需用的时间为: 180÷(15-5)=18(小时). 例10:两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时.乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时? 解析:先求出甲船往返航行的时间分别是:逆流时间 (105+35) ÷2=70(小时), 顺流时间:(105-35) ÷2=35(小时). 再求出甲船逆水速度每小时560÷70=8(千米), 顺水速度每小时560÷35=16(千米), 因此甲船在静水中的速度是每小时 (16+8) ÷2=12(千米), 水流的速度是每小时 (16-8) ÷2=4(千米), 乙船在静水中的速度是每小时12×2=24(千米), 所以乙船往返一次所需要的时间是560÷(24+4)+560÷(24-4)=48(小时). 例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。此船在静水中的速度是多少? 解:此船的顺水速度是: 25÷5=5(千米/小时) 因为“顺水速度=船速+水速”,所

以,此船在静水中的速度是“顺水速度-水速”。 5-1=4(千米/小时) 综合算式: 25÷5-1=4(千米/小时) 答:此船在静水中每小时行4千米。
/ 14 *例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。水流的速度是每小时多少千米? 解:此船在逆水中的速度是: 12÷4=3(千米/小时) 因为逆水速度=船速-水速,所以水速=船速-逆水速度,即: 4-3=1(千米/小时) 答:水流速度是每小时1千米。 *例3一只船,顺水每小时行20千米,逆水每小时行12千米。这只船在静水中的速度和水流的速度各是多少? 解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是: (20+12)÷2=16(千米/小时) 因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是: (20-12)÷2=4(千米/小时) 答略。 *例4某船在静水中每小时行18千米,水流速度是每小时2千米。此船从甲地逆水航行到乙地需要15小时。求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时? 解:此船逆水航行的速度是: 18-2=16(千米/小时) 甲乙两地的路程是: 16×15=240(千米) 此船顺水航行的速度是: 18+2=20(千米/小时) 此船从乙地回到甲地需要的时间是: 240÷20=12(小时) 答略。 *例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。已知水速为每小时3千米。此船从乙港返回甲港需要多少小时? 解:此船顺水的速度是: 15+3=18(千米/小时) 甲乙两港之间的路程是: 18×8=144(千米) 此船逆水航行的速度是: 15-3=12(千米/小时) 此船从乙港返回甲港需要的时间是: 144÷12=12(小时) 综合算式: (15+3)×8÷(15-3) =144÷12 =12(小时) 答略。
/ 14 *例6 甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时? 解:顺水而行的时间是: 144÷(20+4)=6(小时) 逆水而行的时间是: 144÷(20-4)=9(小时) 答略。 *例7一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。一只船在河中间顺流而下,6.5小时行驶260千米。求这只船沿岸边返回原地需要多少小时? 解:此船顺流而下的速度是: 260÷6.5=40(千米/小时) 此船在静水中的速度是: 40-8=32(千米/小时) 此船沿岸边逆水而行的速度是: 32-6=26(千米/小时) 此船沿岸边返回原地需要的时间是: 260÷26=10(小时) 综合

算式: 260÷(260÷6.5-8-6) =260÷(40-8-6) =260÷26 =10(小时) 答略。 *例8一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时。顺水行150千米需要多少小时? 解:此船逆水航行的速度是: 120000÷24=5000(米/小时) 此船在静水中航行的速度是: 5000+2500=7500(米/小时) 此船顺水航行的速度是: 7500+2500=10000(米/小时) 顺水航行150千米需要的时间是: 150000÷10000=15(小时) 综合算式: 150000÷(120000÷24+2500×2) =150000÷(5000+5000) =150000÷10000 =15(小时) 答略。
/ 14 *例9一只轮船在208千米长的水路中航行。顺水用8小时,逆水用13小时。求船在静水中的速度及水流的速度。 解:此船顺水航行的速度是: 208÷8=26(千米/小时) 此船逆水航行的速度是: 208÷13=16(千米/小时) 由公式船速=(顺水速度+逆水速度)÷2,可求出此船在静水中的速度是: (26+16)÷2=21(千米/小时) 由公式水速=(顺水速度-逆水速度)÷2,可求出水流的速度是: (26-16)÷2=5(千米/小时) 答略。 *例10 A、B两个码头相距180千米。甲船逆水行全程用18小时,乙船逆水行全程用15小时。甲船顺水行全程用10小时。乙船顺水行全程用几小时? 解:甲船逆水航行的速度是: 180÷18=10(千米/小时) 甲船顺水航行的速度是: 180÷10=18(千米/小时) 根据水速=(顺水速度-逆水速度)÷2,求出水流速度: (18-10)÷2=4(千米/小时) 乙船逆水航行的速度是: 180÷15=12(千米/小时) 乙船顺水航行的速度是: 12+4×2=20(千米/小时) 乙船顺水行全程要用的时间是: 180÷20=9(小时) 综合算式: 180÷[180÷15+(180÷10-180÷18)÷2×3] =180÷[12+(18-10)÷2×2] =180÷[12+8] =180÷20 =9(小时) 巩固练习: 11、光明号渔船顺水而下行200千米要10小时,逆水而上行120千米也要10小时.那么,在静水中航行320千米需要多少小时? 解析: 顺水速度:200÷10=20(千米/时), 逆水速度:120÷10=12(千米/时), 静水速度:(20+12)÷2=16(千米/时), 该船在静水中航行320千米需320÷16=20(小时).
/ 14 12,甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,3小时后相遇.已知水流速度是4千米/时.求:相遇时甲、乙两船航行的距离相差多少千米? 解析: 在两船的船速相同的情况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船的逆水速度=船速-水速,故:速度差 (船速-水速) -(船速-水速)=2×水速,即:每小时甲船比乙船多走4×2=8(千米).3小时的距离

差为8×3=24(千米). 13、一只船在河里航行,顺流而下每小时行18千米.已知这只船下行2小时恰好与上行3小时所行的路程相等.求船速和水速. 解析:这只船的逆水速度为: 18×2÷3=12(千米/时); 船速为:(18+12)÷2=15(千米/时); 水流速度为:18-15=3(千米/时) 14、甲乙两港相距360千米,一艘轮船往返两港需35小时,逆水航行比顺水航行多花了5小时,现在有一艘机帆船,静水中速度是每小时12千米,这艘机帆船往返两港需要多少小时? 解析: 轮船逆水航行的时间为355220 (小时), 顺水航行的时间为20515(小时), 轮船逆流速度为3602018(千米/时), 顺流速度为3601524(千米/时), 水速为241823(千米/时), 所以机帆船往返两港需要的时间为 36012336012364(小时) 5,轮船用同一速度往返于两码头之间,它顺流而下行了8个小时,逆流而上行了10小时,如果水流速度是每小时3千米,两码头之间的距离是多少千米? 解析:方法一:由题意可知, (船速+3) ×8=(船速-3) ×10, 可得船速(8×3+3×10)÷2=27千米/时,两码头之间的距离为(27+3)×8=240(千米). 方法二:由于轮船顺水航行和逆水航行的路程相同,它们用的时间比为8:10,那么时间小的速度大,因此顺水速度和逆水速度比就是10:8(由于五年级学生还没学习反比例,此处教师可以渗透比例思想,为以后学习用比例解行程问题做些铺垫),设顺水速度为10份,逆水速度
/ 14 为8份,则水流速度为(108)21份恰好是3千米/时,所以顺水速度是10330(千米/时),所以两码头间的距离为308240(千米). 16,一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求这两个港口之间的距离. 解析:6×4+6×7=66千米 静水速度:66÷(7-4)=22千米/时 (22+6) ×4=112(千米) 17、轮船用同一速度往返于两码头之间,在相同时间内如果它顺流而下能行10千米,如果逆流而上能行8千米,如果水流速度是每小时3千米,求顺水、逆水速度 ,解析:由题意知顺水速度与逆水速度比为10:8,设顺水速度为10份,逆水速度为8份,则水流速度为 (10-8)÷2=1份恰好是3千米/时, 所以顺水速度是10×3=30(千米/时), 逆水速度为8×3=24(千米/时) 8,甲、乙两船分别从A港顺水而下至480千米外的B港,静水中甲船每小时行56千米,乙船每小时行40千米,水速为每小时8千米,乙船出发后1.5小时,甲船才出发,到B港后返回与乙迎面相遇,此处距A港多少千米? 解析:甲船顺水行驶全程需要:480(568)7.5(小时),乙船顺水行驶全程需要:480(408)10(小时).甲船到达B港时,乙船行驶1.57.59(小时),还有1小时的路程(48千米)①,即乙船与甲船的相遇路

程.甲船逆水与乙船顺水速度相等,故相遇时在相遇路程的中点处②,即距离B港24千米处,此处距离A港48024456(千米). 注意:①关键是求甲船到达B港后乙离B港还有多少距离②解决①后,要观察两船速度关系,马上豁然开朗。这正是此题巧妙之处,如果不找两船速度关系也能解决问题,但只是繁琐而已,奥数特点就是体现四两拨千斤中的巧劲 1,某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间? 分析 要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
/ 14 解: 从甲地到乙地,顺水速度:15+3=18(千米/小时), 甲乙两地路程:18×8=144(千米), 从乙地到甲地的逆水速度:15—3=12(千米/小时), 返回时逆行用的时间:144÷12=12(小时)。 答:从乙地返回甲地需要12小时。 2,小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间? 分析 此题是水中追及问题,已知路程差是2千米,船在顺水中的速度是船速+水速.水壶飘流的速度只等于水速,所以速度差=船顺水速度-水壶飘流的速度=(船速+水速)-水速=船速. 解:路程差÷船速=追及时间 2÷4=0.5(小时)。 答:他们二人追回水壶需用0.5小时。 3, 甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船? 解:①相遇时用的时间 336÷(24+32) =336÷56 =6(小时)。 ②追及用的时间(不论两船同向逆流而上还是顺流而下): 336÷(32—24)=42(小时)。 答:两船6小时相遇;乙船追上甲船需要42小时。 4,有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。 这题条件中有行驶的路程和行驶的时间,这样可分别算出船在逆流时的行驶速度和顺流时的行驶速度,再根据和差问题就可以算出船速和水速。列式为 逆流速:120÷10=12(千米/时) 顺流速:120÷6=12(千米/时) 船速:(20+12)÷2=16(千米/时) 水速:(20—12)÷2=4(千米/时) 答:船速是每小时行16千米,水速是每小时行4千米。 5,轮船以同一速度往返于两码头之间。它顺流而下,行了8小时;逆流而上,行了10小时。
/ 14 如果水流速度是每小时3千米,求两码头之间的距离。 在同一线段图上做下列

游动性示意图36-1演示: 图36——1逆流顺流108AB 因为水流速度是每小时3千米,所以顺流比逆流每小时快6千米。如果怒六时也行8小时,则只能到A地。那么A、B的距离就是顺流比逆流8小时多行的航程,即6×8=48千米。而这段航程又正好是逆流2小时所行的。由此得出逆流时的速度。列算式为 (3+3)×8÷(10—8)×10=240(千米) 答:两码头之间相距240千米。 6,汽船每小时行30千米,在长176千米的河中逆流航行要11小时到达,返回需几小时? 依据船逆流在176千米的河中所需航行时间是11小时,可以求出逆流的速度。返回原地是顺流而行,用行驶路程除以顺流速度,可求出返回所需的时间。 逆流速:176÷11=16(千米/时) 所需时间:176÷[30+(30—16)]=4(小时) 答:返回原地需4小时。 7,有甲、乙两船,甲船和漂流物同时由河西向东而行,乙船也同时从河东向西而行。甲船行4小时后与漂流物相距100千米,乙船行12小时后与漂流物相遇,两船的划速相同,河长多少千米? 漂流物和水同速,甲船是划速和水速的和,甲船4小时后,距漂流物100千米,即每小时行100÷4=25(千米)。乙船12小时后与漂流物相遇,所受的阻力和漂流物的速度等于划速。这样,即可算出河长。列算式为 船速:100÷4=25(千米/时) 河长:25×12=300(千米) 答:河长300千米。 课后作业: 1,一艘轮船从河的上游甲港顺流到达下游的丙港,然后调头逆流向上到达中游的乙港,共用了12小时。已知这条轮船的顺流速度是逆流速度的2倍,水流速度是每小时2千米,从甲港到乙港相距18千米。则甲、丙两港间的距离为( )
/ 14 A.44千米 B.48千米 C.30千米 D.36千米 【答案】A。解析:顺流速度-逆流速度=2×水流速度,又顺流速度=2×逆流速度,可知顺流速度=4×水流速度=8千米/时,逆流速度=2×水流速度=4千米/时。设甲、丙两港间距离为X千米,可列方程X÷8+(X-18)÷4=12 解得X=44。 2.一艘轮船在两码头之间航行。如果顺水航行需8小时,如果逆水航行需11小时。已知水速为每小时3千米,那么两码头之间的距离是多少千米? A.180 B.185 C.190 D.176 【答案】D。解析:设全程为s,那么顺水速度为 ,逆水速度为 ,由(顺水速度-逆水速度)/2=水速,知道 - =6,得出s=176。 3, 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。此船在静水中的速度是多少?(适于高年级程度) 解:此船的顺水速度是: 25÷5=5(千米/小时) 因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。 5-1

=4(千米/小时) 综合算式: 25÷5-1=4(千米/小时) 答:此船在静水中每小时行4千米。 4, 一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。水流的速度是每小时多少千米?(适于高年级程度) 解:此船在逆水中的速度是: 12÷4=3(千米/小时) 因为逆水速度=船速-水速,所以水速=船速-逆水速度,即: 4-3=1(千米/小时) 答:水流速度是每小时1千米。 5, 一只船,顺水每小时行20千米,逆水每小时行12千米。这只船在静水中的速度和水流的速度各是多少?(适于高年级程度) 解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是: (20+12)÷2=16(千米/小时)
/ 14 因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是: (20-12)÷2=4(千米/小时) 答略。 6,某船在静水中每小时行18千米,水流速度是每小时2千米。此船从甲地逆水航行到乙地需要15小时。求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?(适于高年级程度) 解:此船逆水航行的速度是: 18-2=16(千米/小时) 甲乙两地的路程是: 16×15=240(千米) 此船顺水航行的速度是: 18+2=20(千米/小时) 此船从乙地回到甲地需要的时间是: 240÷20=12(小时) 答略。 7, 某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。已知水速为每小时3千米。此船从乙港返回甲港需要多少小时?(适于高年级程度) 解:此船顺水的速度是: 15+3=18(千米/小时) 甲乙两港之间的路程是: 18×8=144(千米) 此船逆水航行的速度是: 15-3=12(千米/小时) 此船从乙港返回甲港需要的时间是: 144÷12=12(小时) 综合算式: (15+3)×8÷(15-3) =144÷12 =12(小时) 答略。 8, 甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?(适于高年级程度) 解:顺水而行的时间是: 144÷(20+4)=6(小时) 逆水而行的时间是: 144÷(20-4)=9(小时)
/ 14 答略。 9, 一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。一只船在河中间顺流而下,6.5小时行驶260千米。求这只船沿岸边返回原地需要多少小时?(适于高年级程度) 解:此船顺流而下的速度是: 260÷6.5=40(千米/小时) 此船在静水中的速度是: 40-8=32(千米/小时) 此船沿岸边逆水而行的速度是: 32-6=26(千米/小时) 此船沿

岸边返回原地需要的时间是: 260÷26=10(小时) 综合算式: 260÷(260÷6.5-8-6) =260÷(40-8-6) =260÷26 =10(小时) 答略。 10, 一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时。顺水行150千米需要多少小时?(适于高年级程度) 解:此船逆水航行的速度是: 120000÷24=5000(米/小时) 此船在静水中航行的速度是: 5000+2500=7500(米/小时) 此船顺水航行的速度是: 7500+2500=10000(米/小时) 顺水航行150千米需要的时间是: 150000÷10000=15(小时) 综合算式: 150000÷(120000÷24+2500×2) =150000÷(5000+5000) =150000÷10000 =15(小时) 答略。 11, 一只轮船在208千米长的水路中航行。顺水用8小时,逆水用13小时。求船在静水中的速度及水流的速度。(适于高年级程度) 解:此船顺水航行的速度是:
/ 14 208÷8=26(千米/小时) 此船逆水航行的速度是: 208÷13=16(千米/小时) 由公式船速=(顺水速度+逆水速度)÷2,可求出此船在静水中的速度是: (26+16)÷2=21(千米/小时) 由公式水速=(顺水速度-逆水速度)÷2,可求出水流的速度是: (26-16)÷2=5(千米/小时) 答略。 12, A、B两个码头相距180千米。甲船逆水行全程用18小时,乙船逆水行全程用15小时。甲船顺水行全程用10小时。乙船顺水行全程用几小时?(适于高年级程度) 解:甲船逆水航行的速度是: 180÷18=10(千米/小时) 甲船顺水航行的速度是: 180÷10=18(千米/小时) 根据水速=(顺水速度-逆水速度)÷2,求出水流速度: (18-10)÷2=4(千米/小时) 乙船逆水航行的速度是: 180÷15=12(千米/小时) 乙船顺水航行的速度是: 12+4×2=20(千米/小时) 乙船顺水行全程要用的时间是: 180÷20=9(小时) 综合算式: 180÷[180÷15+(180÷10-180÷18)÷2×3] =180÷[12+(18-10)÷2×2] =180÷[12+8]

相关文档
最新文档