两数和的平方(2018-2019)
立节乡小学2018-2019学年三年级下学期数学模拟试卷含解析
立节乡小学2018-2019学年三年级下学期数学模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)下面是三二班同学喜欢的体育项目人数情况。
项目跳绳赛跑乒乓球铅球人数(人)正正正正正正正正正正喜欢赛跑的有()人。
A.10B.3C.15D.2【答案】C【考点】数据收集整理【解析】【解答】解:由题可知,一笔代表1票,则可数得喜欢赛跑的有15人。
故答案为:C。
【分析】数据收集即从题目中得到相关的数据信息,据此得出喜欢赛跑的人数。
2.(2分)妈妈买了20箱牛奶,每箱12袋,一共买了多少袋?算式是:()A.12+20B.12×20C.12÷20【答案】B【考点】两位数乘两位数的口算乘法【解析】【解答】解:算式是:12×20。
故答案为:B。
【分析】20箱牛奶,每箱12袋,就是求20个12 是多少,用乘法计算即可。
3.(2分)上图是一张对折的正方形纸,把中间的圆形剪下来,得到的图形是()。
A.B.C.【答案】C【考点】轴对称【解析】【解答】根据分析可知,把中间的圆形剪下来,得到的图形是.故答案为:C.【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,据此可以动手操作下即可解答.4.(2分)下图是平移现象的是()A. 风车B. 绳子C. 小汽车D. 锤子【答案】C【考点】平移与平移现象,旋转与旋转现象【解析】【解答】解:A、风车是旋转现象;B、绳子是旋转现象;C、小汽车行走是平移;D、锤子不是平移也不是旋转。
故答案为:C【分析】平移是物体沿着一条直线运动,旋转是物体绕着一个中心点做圆周运动,由此判断即可。
5.(2分)一张长方形的画纸,长9分米,宽7分米,如果长和宽都减少2分米,则面积减少()平方分米。
A. 4B. 18C. 14D. 28【答案】D【考点】长方形的面积【解析】【解答】解:9×7-(9-2)×(7-2)=63-35=28(平方分米)故答案为:D【分析】长方形面积=长×宽,由此用原来长方形的面积减去现在长方形的面积即可求出面积减少的部分。
北师大版2018-2019学年下学期八年级数学《因式分解》培优检测试题
2018-2019学年下学期八年级数学《因式分解》培优检测试题姓名:班级:______________________ 考号:一、单选题(共10题;共30分)1.下列多项式中能用平方差公式分解因式的是( )A. a2+ (-b) 2 ।B. 5m2-20mn 9.-x2-y2 । D. -x2+92.下列多项式能因式分解的是( )A. x2-yB. x2+1C. x2+xy+y2D. x2-4x+43.因式分解2x2-8的结果是( )A. (2x+4) (x-4) FB. (x+2) ( x-2)C. 2 (x+2) ( x-2) 卜D. 2 (x+4) (x-4)4.下列因式分解中正确的是( )-J 1 1 1A.串—8工+16=B.-仃2+口-彳三=三(2仃-1),C. x ( a- b) - y (b - a) = (a- b) ( x - y)D. b" = ।fr > )5.把代数式ab:- 6ab十9n分解因式,下列结果中正确的是A. B. C'-Q T■-「I; .,) C.,屋8 T厂 D.6.下列各式中,不能用完全平方公式分解的个数为( )① x2-10x+25;② 4a2+4a - 1 ;③ x2-2x-1;④-m2+m-;;⑤ 4x4-x2+1 .A. 1个B. 2个C. 3个D. 4个7.若X-+tm-15=,,则mn 的值为()A. 5B. -5C. 10D. -108.若a , b , c是三角形的三边之长,则代数式a; -2ac+c二-b2的值()A.小于0B.大于0C.等于0 "D.以上三种情况均有可能9.下列多项式中能用提公因式法分解的是( )A. x2+y2B. x 2-y2C. x2+2x+1D. x 2+2x10.已知:a=2014x+2015, b=2014x+2016 , c=2014x+2017 ,则a2+b2+c2-ab- ac- bc 的值是( )A. 0B. 1C. 2D. 3二、填空题(共8题;共24分)11.因式分解:一疝一/4忸一〃)=12.已知x- 2y= - 5, xy= — 2,贝U 2x2y - 4xy2= .13.分解因式:a3 - 4a2+4a=.14.若屋_a + l = U,那么屋叫1 一屋飒十型颊二.15.如果x+y=5 , xy=2 ,贝U x2y+xy 2=.16.已知= 而=2,求;门取岫'的值为17.多项式2ax2-12axy中,应提取的公因式是18.若x+y= 1,贝U x4+5x3y+x2y+8x2y2+xy2+5xy 3+y4的值等于。
2018-2019学年度七年级数学上册第2章有理数的运算2.1有理数的加法同步练习(新版)
2.1有理数的加法学校: ____________ 姓名: ____________ 班级: ____________一 •选择题(共12小题) 1.如图,现有3X 3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则 P 处对应的数字是( )L M Ur □ i E □ □A. 7B. 5C. 4D. 12.下列各式运算正确的是()B. (— 2) + ( +2) =- 4C.( +6) + (- 11) =- 5D. (- 5) + (+3) =-83.计算:| - 5+3|的结果是( )A. - 8B. 8C. - 2D. 2田L 口 2 吗 7眄陽如砌A. a 1+a 2+a 3+a 7+a 8+a 9=2 (a 4+a 5+a 6)B. a 1+a 4+a 7+a 3+a 6+a 9=2 (a 2+a 5+a 8)C. a 1+a 2+a 3+a 4+a 5+a 6+a 7+a s +a 9=9a 5D.( a 3+a 6+a 9)— ( a 计a 4+a ?) = (a 2+a 5+a 8)5. 下面说法中正确的是( )A. 两数之和为负,则两数均为负B. 两数之和为正,则两数均为正C. 两数之和- -定大 于每一个加数D. 两数之和为0,则这两数互为相反数 6.计算| - 5+2|的结果是( )A. (- 3) + (+7) =- 4 4.如图,在3X 3的正方形,则里面九个数不满足的关系式是(A. 3B. 2C. - 3D. - 27. 小林家冰箱冷冻室的温度为-5C,调高6C后的温度为()A. - 1C B . O C C. 1C D. 11C& 已知|x|=5 , |y|=3,且x > y,则x+y 的值为()A. 8B. 2C. - 8 或-2 D . 8 或29.下列说法中,正确的是()A.符号不同的两个数互为相反数B.两个有理数和- -定大于每一个加数C.有理数分为正数和负数D.所有的有理数都能用数轴上的点来表示10 .下列语句:①不带“-”号的数都是正数;②不存在既不是正数,也不是负数的数;③0表示没有;④一个有理数不是正数就是分数;⑤符号相反的两个数互为相反数;⑥若两个有理数的和为正数,则这两个数都是正数.正确的有()A. 0个B. 1个C. 2个D. 3个11.如图,在一个由6个圆圈组成的三角形里,把11〜16这6个数分别填入图的圆圈中,要求三角形的每一条边上的三个数的和S都相等,那么S的最大值是()A. 39B. 40C. 42D. 4312 .计算3+5+7+9+…+195+197+199 的值是()A. 9699B. 9999C. 9899D. 9799二 .填空题(共8小题)13 .若|a+1|+|a - 2|=5 , |b - 2|+|b+3|=7 ,贝卩a+b= _______14 .若|x|=5 , |y|=3,且|x - y|= - x+y,则x+y= ________ .15 .在进行异号的两个有理数加法运算时,用到下面的一些操作:①将绝对值较大的有理数的符号作为结果的符号并记住②将记住的符号和绝对值的差一起作为最终的计算结果③用较大的绝对值减去较小的绝对值④求两个有理数的绝对值⑤比较两个绝对值的大小其中操作顺序正确的步骤是 ________ (填序号)16•若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e= __________ •17. _________________________________________________________________________ 从1,4, 7……295, 298 (隔3的自然数)中任选两个数相加,和的不同值有________________ 个.18. 【阅读材料】“九宫图”源于我国古代夏禹时期的“洛书”(图1所示),是世界上最早的矩阵,又称“幻方”,用今天的数学符号翻译出来,“洛书”就是一个三阶“幻方”(图2所示).【规律总结】观察图1、图2,根据“九宫图”中各数字之间的关系,我们可以总结出“幻方”需要满足的条件是 _______________ ;若图3,是一个“幻方”,则a= __________ .19. (- 2) +4+ (- 6) +8+…+ (- 98) +100= __________20. 观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+仁25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1= ______ .三.解答题(共4小题)21. 在一个3X 3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3X 3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.图:22.用“〉”或“v”填空:(1 ) 如果a> 0,b>0,那么a+b0 ;(2) 如果a v 0,b v 0,那么a+b0 ;(3) 如果a> 0,b v 0,|a| > |b|,那么a+b0(4) 如果a> 0,b v 0,|a| v |b|,那么a+b023. 某邮局检修队沿公路检修线路,规定前进为正,后退为负,某天自A点出发到收工时所走路程为(单位:千米) +10,- 3, +4,- 8, +13,- 2, +7, +5,- 5,- 2.(1 )求收工时,检修队距A点多远?(2)若每千米耗油0.3千克,问从A点出发到收工,共耗油多少千克?24. ( 1)比较下列各式的大小:|5|+|3| ______ |5+3| , | - 5|+| - 3| _________ | (- 5) + (-3) | ,| - 5|+|3| _______ | (- 5) +3| , |0|+| - 5| ______ |0+ (- 5) |…(2)通过(1)的比较、观察,请你猜想归纳:当a、b 为有理数时,|a|+|b| _________ |a+b| •(填入“》”、*”、“>” 或“v”)(3)根据(2)中你得出的结论,求当|x|+| - 2|=|x - 2|时,直接写出x的取值范围.参考答案与试题解析一•选择题(共12小题)1.8+x,【解答】解:设下面中间的数为x,则三个数字之和为8- 3=5,8+x - 3 - 6=x - 1,8+x- 2 -( x - 1) =7,5+6+7 - 7- 3=8,如图所示:E□0H□□aP+6+8=7+6+5,解得P=4.故选:C.2.【解答】解:A、(- 3) + (+7) =4,此选项错误;B ( - 2) + (+2) =0,此选项错误;C( +6) + (- 11) =- 5,此选项正确;D ( - 5) + (+3) =- 2,此选项错误;故选:C.3.【解答】解:原式=| - 2|=2 ,故选:D.4.【解答】解:A、a i+a2+a3+a7+a8+a9= (a4+a5+a6)—21+ (a4+a?+a6)+21=2 (a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1 +a3+a4+a6+a7+a9=2 ( a 2+ a5+ a 8) ,正确,不符合题意;C、a i+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、( a3+a6+a9)-( a计a4+a7)=6,错误,符合题意.故选:D.5.【解答】解:A、两数之和为负,两数均为负数,也可能一正一负,故A错误;B两数之和为正,两数均为正数,也可能一正一负,故B错误C两数之和一定不大于每一个加数,故C错误;D、两数之和为0,则这两数互为相反数,故D正确.故选:D.6.【解答】解:| - 5+2|=| - 3|=3 ,故选:A.7.【解答】解:-5+6=1 (C).故选:C.8.【解答】解:T |x|=5 , |y|=3 ,x= ± 5, y= ± 3;••• x > y,. x=5, y=± 3.当x=5,y=- 3 时,x+y=2;当x=5,y=3 时,x+y=8.故选:D.9.【解答】解:A、+2与-1符号不同,但不是互为相反数,错误;B两个负有理数的和小于每一个加数,错误;C有理数分为正有理数、负有理数和0,错误;D所有的有理数都能用数轴上的点来表示,正确.故选:D.10.【解答】解:0不含“-”号也不是正数,故①错误;0即不是正数也不是负数,故②错误;0有时表示没有,但表示温度时,0表示的是冰水混合物的温度,表示海拔时,0表示的是一个高度,故③错误;一个有理数不是整数就是分数,一个有理数不是正数,也可能是负整数,不一定是分数,故④错误;+3和-2虽然符号相反,但他们不是相反数,故⑤错误;3+(- 2) =1,虽然和为正数,但这两个数不都是正数,故⑥错误.综上正确的0个.故选:A.11.【解答】解:11 + 12+13+14+15+16=81 , 81 - 3=27,14+15+16=45, 45- 3=15,27+15=42.故选:C.12.【解答】解:•••都是连续奇数,99+2=101,•••共有(199+1)- 2 -仁99个数,即:共有49对202和正中间的•••原式=202X 49+10仁9999 .故选:B.二.填空题(共8 小题)13.【解答】解:当a w - 1时,-a- 1+2- a=5,解得a=- 2;当-1v x v 2 时,a+1+2- a=3工5,舍去;当a> 2 时,a+1+a- 2=5,解得a=3;当b w- 3 时,2- b- b- 3=7,解得b=- 4;当-3v b v 2 时,-b - 3+b- 2=- 5 工7,舍去;当b>2 时,b- 2+b+3=7,解得b=3;综上a=- 2 或a=3, b=- 4 或b=3;当a=- 2、b=- 4 时,a+b=- 6;当a=- 2、b=3 时,a+b=1;当a=3、b=- 4 时,a+b=- 1;当a=3、b=3 时,a+b=6;即a+b=± 1 或± 6;故答案为:± 1 或± 6 .14.【解答】解:T |x|=5 , |y|=3 ,•x= ±5,y=±3,••• |x - y|= -( x- y),•x- y w 0,•x= - 5, y=±3,当x=- 5、y=- 3 时, x+y= - 5- 3=- 8;当x= - 5、y=3 时,x+y= - 5+3= - 2;故答案为:-8或-215.【解答】解;在进行异号的两个有理数加法运算时,应先求两个有理数的绝对值,然后比较两个绝对值的大小,接下来将绝对值较大的有理数的符号作为结果的符号并记住,然后用较大的绝对值减去较小的绝对值,最后将记住的符号和绝对值的差一起作为最终的计算结果,故正确的顺序是④⑤①③②.故答案为:④⑤①③②.16.【解答】解:••• a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d 是到原点的距离等于 2 的负数, e 是最大的负整数,••• a=1, b=0, c=0, d=- 2, e= - 1,/• a+b+c+d+e=1+0+0 - 2 - 1 = - 2.故答案为:- 2.17.【解答】解:1+4=5,295+298=593 ,和是隔 3 的自然数,n= (593- 5)- 3+1=588- 3+1=197.故答案为:197.18.【解答】解:【阅读材料】“九宫图”源于我国古代夏禹时期的“洛书”(图 1 所示),是世界上最早的矩阵,又称“幻方”,用今天的数学符号翻译出来,“洛书”就是一个三阶“幻方”(图 2 所示).【规律总结】观察图 1 、图2,根据“九宫图”中各数字之间的关系,我们可以总结出“幻方”需要满足的条件是每一行、每一列和每条对角线上各个数之和都相等;若图3,是一个“幻方”,则4+1+ (- 2) =4+2+a,即a=-3,故答案为:每一行、每一列和每条对角线上各个数之和都相等;- 319.【解答】解:(-2) +4+ (- 6) +8+…+ (- 98) +100=25X 2=50.20.【解答】解:根据观察可得规律:结果等于中间数的平方. ••• 1+2+3+ …+99+100+99+…+3+2+1=100^=10000.三.解答题(共 4 小题)21.【解答】解:( 1 ) 2+3+4=9,9- 6- 4=- 1 ,9- 6- 2=1,9- 2- 7=0,9- 4- 0=5,如图所示:(2)- 3+1- 4=- 6,-6+1 -(- 3) =- 2,-2+1+4=3,如图所示:x=3- 4-(- 6) =5,y=3- 1 -(- 6) =8,x+y=5+8=13.16137450图I 图222.【解答】解:同号两数相加,取相同的符号,所以(1)中两数的和为正;(2)中两数的和为负;异号两数相加,取绝对值较大的加数的符号,所以(3)中两数的符号为正;(4)中两数的符号为负.故答案为:(1)>,( 2)<,( 3)>,( 4)V.23.【解答】解:(1)( +10) + (- 3) + ( +4) + (- 8) + (+13) + (- 2) + (+7) + (+5) + (-5) + (-2) =19 千米.故检修队离A点19千米.(2) |+10|+| - 3|+|+4|+| - 8|+|+13|+| - 2|+|+7|+|+5|+| - 5|+| - 2|=59 ,0.3 X 59=17.7 .故共耗油17.7千克.24.【解答】解:(1))比较下列各式的大小:|5|+|3|=|5+3| - 5|+| - 3|=| (- 5) + (- 3) | ,| - 5|+|3| > | (- 5) +3| , |0|+| - 5|=|0+ (- 5) | …(2)通过(1)的比较、观察,请你猜想归纳:当a、b 为有理数时,|a|+|b| > |a+b| .(填入"》”、"w”、">” 或"v”)(3)根据(2)中你得出的结论,当|x|+| - 2|=|x - 2|时,x的取值范围x<0. 故答案为:(1)=; =;>; = (2) >。
2018-2019学年江苏省徐州市邳州市七年级(下)期中数学试卷
2018-2019学年江苏省徐州市邳州市七年级(下)期中数学试卷学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
一、选择题1、下列运算正确的是()A. x2+x3=x5B. x4•x2=x6C. (x2)3=x8D. x6÷x2=x32、生物学家发现:生物具有遗传多样性,遗传密码大多储存在DNA分子上.一个DNA分子的直径约为0.0000002cm,这个数用科学记数法可以表示为()A. 0.2×10-6B. 2×10-7C. 0.2×10-7D. 2×10-83、下列各式由左到右的变形,是因式分解且分解正确的是()A. ab+ac+d=a(b+c)+dB. (a+1)(a-1)=a2-1C. x2-5x+6=(x-1)(x-6)D. a2-1=(a+1)(a-1)4、下列各式能用平方差公式计算的是()A. (-a+b)(a-b)B. (a+b)(a-2b)C. (-x+1)(x+1)D. (-m-n)(m+n)5、如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A. 160°B. 140°C. 60°D. 50°6、若一个三角形三个内角度数的比为1:2:3,那么这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形7、下列角度中,不能成为多边形内角和的是()A. 600B. 720C. 900D. 10808、规定:一个数的平方等于-1,记作i2=-1,于是可知i3=i2×i=(-1)×i,i4=(i2)2=(-1)2=1……,按照这样的规律,i2019等于()A. 1B. -1C. iD. -i二、填空题1、计算:(x+2)(x-3)=______.2、已知a=4cm,b=8cm,如果c与a、b能组成一个等腰三角形,那么c=______cm.3、如图,两个边长为5的正方形拼合成一个长方形,则图中阴影部分的面积是______.4、计算:=______.5、多项式4x2+1上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是______.6、已知3m+4n-3=0,则8m×16n=______.7、已知x+y=5,xy=5,则x2+y2=______.8、如果一个多边形的每个外角都是36°,那么这个多边形是______边形.9、如图,在△ABC中,∠C=90°.若BD∥AE,∠DBC=20°,则∠CAE的度数是______.10、如图,A、B、C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积______.三、计算题1、计算:(1);(2)(-2a2)2•a-25a5.______四、解答题1、因式分解:(1)x2-16y2;(2)2x2y-8xy+8y.______2、先化简,再求值:(a-2b)(a+2b)-(a-2b)2+8b2,其中a=-2,b=.______3、如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)画出△ABC中AB边上的中线CM;(3)图中△ABC的面积是______.______4、如图,BC⊥AE于点C,CD∥AB,∠B=55°,求∠1的度数.______5、如图①是一个长2m,宽2n的长方形,沿图中虚线用剪刀将其均分四块小长方形,然后按图②的形状拼成一个正方形.(1)用两种方法表示图②中阴影部分的面积;(2)观察图②,请你写出代数式(m+n)2、(m-n)2、mn之间的等量关系式;(3)根据(2)中的结论,若x+y=-6,xy=2.75.求x-y的值.______6、如图,已知∠ABC+∠ECB=180°,∠P=∠Q,(1)AB与ED平行吗?为什么?(2)∠1与∠2是否相等?说说你的理由.______7、观察以下一系列等式:①21+21=2+2=22;②22+22=4+4=23;③23+23=8+8=24;④;…(1)请按这个顺序仿照前面的等式写出第④个等式:______;(2)根据你上面所发现的规律,用含字母n的式子表示第n个等式:______,并说明这个规律的正确性;(3)请利用上述规律计算:210-29-28-27- (2)______8、四边形ABCD中,∠BAD的角平分线与边BC交于点E,∠ADC的角平分线交直线AE于点O.(1)若点O在四边形ABCD的内部,①如图1,若AD∥BC,∠B=40°,∠C=70°,则∠DOE=______°;②如图2,试探索∠B、∠C、∠DOE之间的数量关系,并将你的探索过程写下来.(2)如图3,若点O在四边形ABCD的外部,请你直接写出∠B、∠C、∠DOE之间的数量关系.______2018-2019学年江苏省徐州市邳州市七年级(下)期中数学试卷参考答案一、选择题第1题参考答案: B解:A、不是同底数幂的乘法指数不能相加,故A错误;B、同底数幂的乘法底数不变指数相加,故B正确;C、幂的乘方底数不变指数相乘,故C错误;D、同底数幂的除法底数不变指数相减,故D错误;故选:B.根据同底数幂的乘法底数不变指数相加,幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,可得答案.本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: B解:0.0000002这个数用科学记数法可以表示为2×10-7,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<1 0,n为整数,表示时关键要正确确定a的值以及n的值.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: D解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、等式两边不相等,不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.根据因式分解的定义逐个判断即可.本题考查了因式分解的定义,能熟记定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: C解:∵(-a+b)(a-b)=-(a-b)(a-b),故选项A不符合题意;(a+b)(a-2b)不能用平方差公式计算,故选项B不符合题意;(-x+1)(x+1)=-(x-1)(x+1)=-(x2-12),故选项C符合题意;(-m-n)(m+n)=-(m+n)(m+n),故选项D不符合题意,故选:C.根据各个选项中的式子可以变形,然后看哪个式子符合平方差公式,即可解答本题.本题考查平方差公式,解答本题的关键是明确平方差公式的形式.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: B解:如图,∵∠1=40°,∴∠2=180°-40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选:B.先根据邻补角的定义计算出∠2=180°-∠1=140°,然后根据平行线的性质得∠B=∠2=140°.本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: A解:设三角形的三角的度数是x°,2x°,3x°,则x+2x+3x=180,解得x=30,∴3x=90,即三角形是直角三角形,故选:A.设三角形的三角的度数是x°,2x°,3x°,得出方程x+2x+3x=180,求出方程的解即可.本题考查了三角形内角和定理的应用,解题的关键是学会设未知数列方程解决问题,属于基础题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: A解:∵多边形内角和公式为(n-2)×180,∴多边形内角和一定是180的倍数.故选:A.利用多边形的内角和公式即可作出判断.本题主要考查了多边形内角和公式,在解题时要记住多边形内角和公式,并加以应用即可解决问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第8题参考答案: D解:∵i=i,i2=-1,i3=-i,i4=1,i5=i……∴从上计算可知,i的指数循环周期是4,①当指数除以4余数为0时,其结果是1;②当指数除以4余数为1时,其结果是i;③当指数除以4余数为2时,其结果是-1;④当指数除以4余数为3时,其结果是-i;∵2019÷4=504 (3)∴i2019=-i.故选:D.根据新定义:一个数的平方等于-1,记作i2=-1,于是可知i3=i2×i=(-1)×i,i4=(i2)2 =(-1)2=1…找出重复出现规律,指数是除以4看余数的情况定结果.本题考查实数的运算新定义的理解,推理,综合,归纳等数学能力,同时此题也考察了学生从特殊找到一般规律,再到特殊计算能力.二、填空题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: x2-x-6解:原式=x2-3x+2x-6=x2-x-6.故答案为:x2-x-6.多项式乘以多项式就是用一个多项式中的每一项乘以另一个多项式中的每一项,然后相加即可.本题考查了多项式乘以多项式的知识,解题的关键是熟知多项式乘法的法则,属于基础题,必须掌握.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 8解:∵c与a、b能组成一个等腰三角形,∴c=a=4cm或c=b=8cm.又∵4+4=8,∴4,4,8不能组成三角形,∴c=8cm.故答案为:8.由等腰三角形的判定可得出c=4cm或c=8cm,再利用三角形的三边关系可确定c的值,此题得解.本题考查了等腰三角形的判定以及三角形的三边关系,利用等腰三角形的性质及三角形的三边关系,确定c值是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: 25解:根据图形易知:阴影部分的面积=正方形的面积=25,故答案为:25.观察可以发现:阴影部分的面积正好是正方形的面积.此题考查了正方形的性质,关键是根据两部分阴影的面积和正好是正方形的面积解答.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: -8解:===-8将原式变形为,再逆用积的乘方变形、计算可得.本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: -4x,4x,-1,-4x2解:多项式4x2+1上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是-4x,4x,-1,-4x2,故答案为:-4x,4x,-1,-4x2利用完全平方公式的结构特征判断即可.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: 8解:由3m+4n-3=0,可得:3m+4n=3,所以8m×16n=23m+4n=23=8,故答案为:8根据幂的乘方逆运算解答即可.此题考查幂的乘方,关键是根据幂的乘方逆运算解答.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: 35解:∵x+y=-5,∴(x+y)2=25,即x2+2xy+y2=25,又∵xy=-5,∴x2+y2=25-2×(-5)=35.故答案是:35.把x+y=5利用完全平方公式两边平方,然后代入数据计算即可.本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,完全平方公式:(a±b)2=a2±2ab+b2.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第8题参考答案: 10解:∵一个多边形的每个外角都是36°,∴n=360°÷36°=10,故答案为:10.根据正多边形的性质,边数等于360°除以每一个外角的度数.本题主要考查了利用外角求正多边形的边数的方法,熟练掌握多边形外角和公式是解决问题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第9题参考答案: 70°解:过点C作CF∥BD,则CF∥BD∥AE.∴∠BCF=∠DBC=20°,∵∠C=90°,∴∠FCA=90°-20°=70°.∵CF∥AE,∴∠CAE=∠FCA=70°.故答案为:70°.过点C作CF∥BD,根据两直线平行,内错角相等即可求解.本题主要考查了平行线的性质,两直线平行,内错角相等.正确作出辅助线是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第10题参考答案: 7解:如图,连接AB1,BC1,CA1,∵A、B分别是线段A1B,B1C的中点,∴S△ABB1=S△ABC=1,S△A1AB1=S△ABB1=1,∴S△A1BB1=S△A1AB1+S△ABB1=1+1=2,同理:S△B1CC1=2,S△A1AC1=2,∴△A1B1C1的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=2+2+2+1=7.故答案为:7.连接AB1,BC1,CA1,根据等底等高的三角形的面积相等求出△ABB1,△A1AB1的面积,从而求出△A1BB1的面积,同理可求△B1CC1的面积,△A1AC1的面积,然后相加即可得解.本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线把三角形进行分割是解题的关键.三、计算题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 解:(1)=4+4-1=7;(2)(-2a2)2•a-25a5.=4a4•a-25a5=4a5-25a5=-21a5.(1)先算平方、负整数指数幂和零指数幂,再计算加减法即可求解;(2)先算积的乘方和单项式乘单项式,再合并同类项即可求解.考查了平方、负整数指数幂和零指数幂,、积的乘方和单项式乘单项式,合并同类项,关键是熟练掌握计算法则正确进行计算.四、解答题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 解:(1)x2-16y2=(x+4y)(x-4y);(2)2x2y-8xy+8y=2y(x2-4x+4)=2y(x-2)2.(1)直接利用平方差公式分解因式得出答案;(2)直接提取公因式2y,再利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 解:原式=a2-4b2-a2+4ab-4b2+8b2=4ab,当a=-2,b=时,原式=-4.原式利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: 8解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,CM即为所求;(3)△ABC的面积是×5×7-×2×6-×(2+5)×1=8,故答案为:8.(1)根据平移的定义作出变换后的对应点,再顺次连接即可得;(2)根据中线的概念作图可得;(3)利用割补法求解可得.本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: 解:∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1 =∠B=35°.本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: 解:(1)图②中的阴影部分的面积为(m-n)2或(m+n)2-4mn;(2)(m+n)2-4mn=(m-n)2;(3)∵x+y=-6,xy=2.75.∴(x-y)2=(x+y)2-4xy=36-4×2.75=25,则(x-y)=±5.(1)表示出阴影部分的边长,即可得出其面积也可以用大正方形的面积减去四块小长方形的面积;(2)由(1)即可得出三个代数式(m+n)2、(m-n)2、mn之间的等量关系.(3)根据(2)所得出的关系式,可求出(x-y)2,继而可得出x-y的值.此题考查了完全平方公式的几何背景,注意仔细观察图形,表示出各图形的面积是关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: 解:(1)AB∥ED,理由是:∵∠ABC+∠ECB=180°,∴根据同旁内角互补,两直线平行可得AB∥ED;(2)∠1=∠2,理由是:∵AB∥CD,∴∠ABC=∠BCD,∵∠P=∠Q,∴∠PBC=∠QCB,∴∠ABC-∠PBC=∠BCD-∠QCB,即∠1=∠2.(1)根据同旁内角互补,两直线平行即可得出结论;(2)由AB∥CD,则∠ABC=∠BCD,再由∠P=∠Q,则∠PBC=∠QCB,从而得出∠1=∠2.本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: 24+24=16+16=25 2n+2n=2n+1解:(1)由题意可得,24+24=16+16=25,故答案为:24+24=16+16=25;(2)2n+2n=2n+1理由:∵2n+2n=2n×(1+1)=2n×2=2n+1,∴2n+2n=2n+1,故答案为:2n+2n=2n+1;(3)210-29-28-27-…-2=(29+29)-29-28-27-…-2=29-28-27……-2=(28-28)-28-27-…-2=28-27-…-2=27-26-25-24-23-22-2=26-25-24-23-22-2=25-24-23-22-2=24-23-22-2=23-22-2=22-2=2.(1)根据题目中的例子,可以发现各个式子的特点,从而可以写出第④个等式;(2)根据题目中的例子,可以发现各个式子的特点,从而可以写出第n个等式,并加以说明成立的理由:(3)根据前面发现的规律可以解答本题.本题考查数字的变化类,有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,写出相应的式子.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第8题参考答案: 解:(1)①125;②∠B+∠C+2∠DOE=360°,理由:∵∠DOE=∠OAD+∠ADO,∵AE、DO分别平分∠BAD、∠CDA,∴2∠DOE=∠BAD+∠ADC,∵∠B+∠C+∠BAD+∠ADC=360°,∴∠B+∠C+2∠DOE=360°;(2)∠B+∠C=2∠DOE,理由:∵∠BAD+∠ADC=360°-∠B-∠C,∠EAD+∠ADO=180°-∠DOE,∵AE、DO分别平分∠BAD、∠CDA,∴∠BAD=2∠EAD,∠ADC=2∠ADO,∴∠BAD+∠ADC=2(∠EAD+∠ADO),∴360°-∠B-∠C=2(180°-∠DOE),∴∠B+∠C=2∠DOE.【分析】此题考查了多边形内角与外角,平行线的性质,角平分线的定义,关键是熟练掌握四边形内角和等于360°.(1)①根据平行线的性质和角平分线的定义可求∠BAE,∠CDO,再根据三角形外角的性质可求∠AEC,再根据四边形内角和等于360°可求∠DOE的度数;②根据三角形外角的性质和角平分线的定义可得∠DOE和∠BAD、∠ADC的关系,再根据四边形内角和等于360°可求∠B、∠C、∠DOE之间的数量关系;(2)根据四边形和三角形的内角和得到∠BAD+∠ADC=360°-∠B-∠C,∠EAD+∠ADO=180°-∠DOE,根据角平分线的定义得到∠BAD=2∠EAD,∠ADC=2∠ADO,于是得到结论.【解答】解:(1)①∵AD∥BC,∠B=40°,∠C=70°,∴∠BAD=140°,∠ADC=110°,∵AE、DO分别平分∠BAD、∠CDA,∴∠BAE=70°,∠ODC=55°,∴∠AEC=110°,∴∠DOE=360°-110°-70°-55°=125°;故答案为:125;②见答案;(2)见答案.。
2018-2019学年七年级下学期期末考试数学试卷含答案解析
20、(1 题 5 分、2 题 6 分满分 11 分)
(1)解方程组
3x 3x
y2 11 2
y
(2)解不等式组
轴上表示出来。
并把它的解集在数
21、(5 分)下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充 完整:
证明: CD与EF相交于点H , (已知) 1 2 (_________________________)
B、2 个
C、3 个
D、 4 个
5、在“同一平面”条件下,下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)平移只改变图形的位置,不改变图形的形状和大小;
(4)有公共顶点且有一条公共边的两个角互为邻补角.
A、 1 个
B、2 个
C、3 个
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少 户?
分组 600≤x<800 800≤x<1000 1000≤x<1200 1200≤x<1400 1400≤x<1600 1600≤x<1800
8m+4n=20 (2 分)
当 m=1 时, n=3;当 m=2 时 n=1
汉 堡 店 可 以 配 送 的 方 案 是 一 个 汉 堡 包 和 3 杯 橙 汁 ;或 2 个 汉 堡 和 一 杯 橙 汁 。( 2 分 )
26.解 :( 1) 设 购 买 甲 种 树 苗 x 棵 , 合用全面调查的是( )
A、了解全班同学每周体育锻炼的时间
2018-2019学年度八年级上数学期末试卷(解析版)
2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018-2019学年 八年级(上)期末数学试卷(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。
2018-2019学年江苏省南京市鼓楼区七年级(下)期中数学试卷及答案 含解析
2018-2019学年江苏省南京市鼓楼区七年级下学期期中数学试卷一、选择题1.计算(a2)3,结果正确的是()A.a6 B.a5 C.2a3 D.a92.下列多项式中能用平方差公式分解因式的是()A.x2+4B.x2﹣xy C.x2﹣9D.﹣x2﹣y23.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠1=∠2C.∠B=∠2D.∠D=∠DCE 4.下列命题是真命题的是()A.相等的角是对顶角B.若x2=y2,则x=yC.同角的余角相等D.两直线平行,同旁内角相等5.如图,一个人从A点出发沿北偏东30°方向走到B点,若这个人再从B点沿南偏东15°方向走到C点则∠ABC等于()A.15°B.30°C.45°D.165°6.若x、y、a满足方程组,则22x•4y的值为()A.1B.2C.﹣D.二、填空题(共10小题,每小题2分,共20分不需写出解答过程,请把答案直接填写在答题卡相应位量)7.据报道,我国中芯国际公司突破欧美技术封锁,计划2019年年内量产世界领先水平的14nm芯片,14mm即0.000 000 014m,0.000 000 014用科学记数法表示为.8.命题“同位角相等,两直线平行”的逆命题是:.9.(+2a)2=4a2+4a+1.10.已知a+b=2,a﹣b=﹣1,则a2﹣b2=.11.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.12.某农户饲养了白鸡、黑鸡共200只,白鸡的只数是黑鸡的三倍,设白鸡有x只,黑鸡有y只,根据题意可列二元一次方程组:.13.计算:=.14.如图,直线EF分别交直线AB、CD于点G、H,AB∥CD,MG⊥EF,垂足为G,HN 平分∠CHE,∠NHC=32°,则∠AGM=.15.我们学过的“幂的运算”有:①同底数幂的乘法,②幂的乘方,③积的乘方,④同底数幂的除法.在“(a4•a5)2=(a4)2•(a5)2=a8•a10=a18”的运算过程中,运用了上述幂的运算中的(按运算顺序填序号).16.将长为2、宽为a(a大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作:再把剩下的长方形按如图②所示的方式折叠并压平,剪下个边长等于此时长方形宽的正方形,称为第二次操作:如此反复操作下去…,若在第n次操作后,剩下的长方形恰为正方形,则操作终止当n=3时,a的值为.三、解答題(共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)3a•(﹣a2)+a4÷a(2)(2x﹣y)(x+3y)(3)(a﹣b+1)(a﹣b﹣1)18.先化简,再求值:(x+3)(x﹣3)﹣2x(x+3)+(x﹣1)2,其中x=19.把下列各式分解因式:(1)2a(m+n)﹣b(m+n)(2)2x2y﹣8xy+8y20.解方程组:(1)(2)若(1)中方程组的解也是关于x,y的方程ax+by=5的解,且a,b为正整数,则a b=21.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是.数量关系是(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为A.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA﹣∠PAB=180°D.∠A'B'P+∠B'PA﹣∠PAB=360°22.如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.CD与AB平行吗?为什么?23.填写下列空格已知:如图,点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D、F,点M、G在AB 上,∠AMD=∠AGF,∠1=∠2.求证:DM∥BC证明:∵BD⊥AC,EF⊥AC,垂足分别为D、F(已知)∴∠BDC=90°,∠EFC=90°(垂直的定义)∴∠BDC=∠EFC(等量代换)∴(同位角相等,两直线平行)∠2=∠CBD()∠1=∠2(已知)∠1=∠CBD()∴()∴∠AMD=∠AGF(已知)∴DM∥GF(同位角相等,两直线平行)∴DM∥BC()24.解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组小曹同学的部分解答过程如下:解:+,得3x+4y=10,④+,得5x+y=11,⑤与联立,得方程组(1)请你在方框中补全小曹同学的解答过程:(2)若m、n、p、q满足方程组,则m+n﹣2p+q=.25.如图,点B在线段AC上,分别以线段AC、AB、BC为直径画圆,圆心分别是点O、O1、O2.已知半径O1A=acm,半径O2C比半径O1A大bcm.(1)O2C=cm(用含a、b的代数式表示)OA=cm(用含a、b的代数式表示);(2)求图中阴影部分的面积(π取3).26.借助图形直观,感受数与形之间的关系,我们常常可以发现一些重要结论.初步应用(1)①如图1,大长方形的面积可以看成4个小长方形的面积之和,由此得到多项式乘多项式的运算法,则(用图中字母表示)②如图2,借助①,写出一个我们学过的公式:(用图中字母表示)深入探究(2)仿照图2,构造图形并计算(a+b+c)2拓展延伸借助以上探究经验,解决下列问题:(3)①代数式(a1+a2+a3+a4+a5)2展开、合并同类项后,得到的多项式的项数一共有项②若正数x、y、z和正数m、n、p,满足x+m=y+n=z+p=t,请通过构造图形比较px+my+nz 与t2的大小(画出图形,并说明理由)③已知x、y、z满足x+y+z=2m,x2+y2+z2=2n,xyz=p,求x2y2+y2z2+x2z2的值(用含m、n、P的式子表示)参考答案一、选择题(共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的序号填涂在答题卡的相应位置上)1.计算(a2)3,结果正确的是()A.a6 B.a5 C.2a3 D.a9【分析】根据幂的乘方的运算方法,求出(a2)3的结果是多少即可.解:(a2)3=a6.故选:A.2.下列多项式中能用平方差公式分解因式的是()A.x2+4B.x2﹣xy C.x2﹣9D.﹣x2﹣y2【分析】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反,根据平方差公式分解因式的特点进行分析即可.解:A、x2+4,不能利用平方差进行分解,故此选项错误;B、x2﹣xy=x(x﹣y),不能利用平方差进行分解,故此选项错误;C、x2﹣9=(x+3)(x﹣3),能利用平方差进行分解,故此选项正确;D、﹣x2﹣y2,不能利用平方差进行分解,故此选项错误;故选:C.3.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠1=∠2C.∠B=∠2D.∠D=∠DCE 【分析】根据平行线的判定方法即可解决问题.解:∵∠1=∠2,∴AB∥CD(内错角相等两直线平行),故选:B.4.下列命题是真命题的是()A.相等的角是对顶角B.若x2=y2,则x=yC.同角的余角相等D.两直线平行,同旁内角相等【分析】根据对顶角、偶次幂、平行线的性质以及互余进行判断即可.解:A、相等的角不一定是对顶角,是假命题;B、若x2=y2,则x=y或x=﹣y,是假命题;C、同角的余角相等,是真命题;D、两直线平行,同旁内角互补,是假命题;故选:C.5.如图,一个人从A点出发沿北偏东30°方向走到B点,若这个人再从B点沿南偏东15°方向走到C点则∠ABC等于()A.15°B.30°C.45°D.165°【分析】根据方位角的概念,画图正确表示出方位角,即可求解.解:由题意可知∠ABC=30°+15°=45°故选:C.6.若x、y、a满足方程组,则22x•4y的值为()A.1B.2C.﹣D.【分析】解二元一次方程组求出x、y,得到x+y=﹣1,根据幂的乘方法则、同底数幂的乘法法则计算即可.解:,解得,,∴x+y=﹣1,则22x•4y=22x•22y=22(x+y)=2﹣2=,故选:D.二、填空题(共10小题,每小题2分,共20分不需写出解答过程,请把答案直接填写在答题卡相应位量)7.据报道,我国中芯国际公司突破欧美技术封锁,计划2019年年内量产世界领先水平的14nm芯片,14mm即0.000 000 014m,0.000 000 014用科学记数法表示为 1.4×10﹣8.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 000 014=1.4×10﹣8,故答案为1.4×10﹣8.8.命题“同位角相等,两直线平行”的逆命题是:两直线平行,同位角相等.【分析】把一个命题的题设和结论互换就得到它的逆命题.解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.9.(1+2a)2=4a2+4a+1.【分析】根据因式分解的完全平方公式:a2+2ab+b2=(a+b)2可知1+4a+4a2=12+2×1×2a+(2a)2=(1+2a)2,再由整式乘法与因式分解的关系,问题得解.解:∵1+4a+4a2=12+2×1×2a+(2a)2=(1+2a)2,∴(1+2a)2=1+4a+4a2,故答案为:1.10.已知a+b=2,a﹣b=﹣1,则a2﹣b2=﹣2.【分析】根据平方差公式计算即可.解:因为a+b=2,a﹣b=﹣1,则a2﹣b2=(a+b)(a﹣b)=2×(﹣1)=﹣2,故答案为:﹣2.11.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为20cm2.【分析】如图,向下平移2cm,即AE=2,再向左平移1cm,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2012.某农户饲养了白鸡、黑鸡共200只,白鸡的只数是黑鸡的三倍,设白鸡有x只,黑鸡有y只,根据题意可列二元一次方程组:.【分析】设白鸡有x只,黑鸡有y只,根据“黑鸡+白鸡=200只、白鸡=3黑鸡”列出方程组.解:设白鸡有x只,黑鸡有y只,依题意得:.故答案是:.13.计算:=.【分析】根据积的乘方的运算方法,求出算式的值是多少即可.解:=[×]××1=1×=故答案为:.14.如图,直线EF分别交直线AB、CD于点G、H,AB∥CD,MG⊥EF,垂足为G,HN 平分∠CHE,∠NHC=32°,则∠AGM=26°.【分析】利用平行线的性质,角平分线的定义求出∠AGH即可解决问题.解:∵HN平分∠CHG,∴∠CHG=2∠CHN=64°,∵AB∥CD,∴∠AGH+∠CHG=180°,∴∠AGH=116°,∵MG⊥GH,∴∠MGH=90°,∴∠AGM=116°﹣90°=26°,故答案为26°.15.我们学过的“幂的运算”有:①同底数幂的乘法,②幂的乘方,③积的乘方,④同底数幂的除法.在“(a4•a5)2=(a4)2•(a5)2=a8•a10=a18”的运算过程中,运用了上述幂的运算中的③②①(按运算顺序填序号).【分析】在(a4•a5)2=(a4)2•(a5)2=a8•a10=a18的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,第三步用到了同底数幂的乘法,据此判断即可.解:在“(a4•a5)2=(a4)2•(a5)2=a8•a10=a18”的运算过程中,运用了上述幂的运算中的③②①(按运算顺序填序号).故答案为:③②①.16.将长为2、宽为a(a大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作:再把剩下的长方形按如图②所示的方式折叠并压平,剪下个边长等于此时长方形宽的正方形,称为第二次操作:如此反复操作下去…,若在第n次操作后,剩下的长方形恰为正方形,则操作终止当n=3时,a的值为或.【分析】(1)经过第一次操作可知剩下的长方形一边长为a,另一边长为2﹣a;(2)若第二次操作后,剩下的长方形恰好是正方形,则所以剩下的长方形的两边分别为2﹣a、a﹣(2﹣a)=2a﹣2,(3)根据第2次剩下的长方形分两种情况讨论,若第三次操作后,剩下的长方形恰好是正方形,由此可得出关于a的一元一次方程,解之即可得出结论.解:第1次操作,剪下的正方形边长为a,剩下的长方形的长宽分别为a、2﹣a,由1<a<2,得a>2﹣a第2次操作,剪下的正方形边长为2﹣a,所以剩下的长方形的两边分别为2﹣a、a﹣(2﹣a)=2a﹣2,①当2a﹣2<2﹣a,即a<时,则第3次操作时,剪下的正方形边长为2a﹣2,剩下的长方形的两边分别为2a﹣2、(2﹣a)﹣(2a﹣2)=4﹣3a,则2a﹣2=4﹣3a,解得a=;②2a﹣2>2﹣a,即a>时则第3次操作时,剪下的正方形边长为2﹣a,剩下的长方形的两边分别为2﹣a、(2a ﹣2)﹣(2﹣a)=3a﹣4,则2﹣a=3a﹣4,解得a=;故答案为或.三、解答題(共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)3a•(﹣a2)+a4÷a(2)(2x﹣y)(x+3y)(3)(a﹣b+1)(a﹣b﹣1)【分析】(1)先计算乘除,再合并即可得;(2)根据多项式乘多项式的运算法则计算可得;(3)先利用平方差公式计算,再利用完全平方公式计算可得.解:(1)原式=﹣3a3+a3=﹣2a3;(2)原式=2x2+6xy﹣xy﹣3y2=2x2+5xy﹣3y2;(3)原式=(a﹣b)2﹣1=a2﹣2ab+b2﹣1.18.先化简,再求值:(x+3)(x﹣3)﹣2x(x+3)+(x﹣1)2,其中x=【分析】根据平方差公式、单项式乘多项式、完全平方公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.解:(x+3)(x﹣3)﹣2x(x+3)+(x﹣1)2=x2﹣9﹣2x2﹣6x+x2﹣2x+1=﹣8x﹣8,当x=﹣时,原式=﹣8×(﹣)﹣8=4﹣8=﹣4.19.把下列各式分解因式:(1)2a(m+n)﹣b(m+n)(2)2x2y﹣8xy+8y【分析】(1)利用提公因式法因式分解;(2)先提公因式,再利用完全平方公式进行因式分解.解:(1)2a(m+n)﹣b(m+n)=(m+n)(2a﹣b);(2)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2.20.解方程组:(1)(2)若(1)中方程组的解也是关于x,y的方程ax+by=5的解,且a,b为正整数,则a b=1或3【分析】(1)利用加减消元法解出方程组;(2)根据把x、y的值代入二元一次方程,得到a、b的关系,根据题意求出a、b,计算即可.解:(1)①+②,得4x=4,解得,x=1,把x=1代入①,得,y=2,所以原方程组的解为;(2)由题意得,a+2b=5,则,,∴a b=1或3,故答案为:1或3.21.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是BB′∥CC′.数量关系是BB′=CC′(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为CA.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA﹣∠PAB=180°D.∠A'B'P+∠B'PA﹣∠PAB=360°【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质求解;(3)根据平行线的性质和三角形外角性质解答.解:(1)如图所示:△A'B'C'即为所求:(2)根据平移的性质可得:BB′∥CC′,BB′=CC′;故答案为:BB′∥CC′;BB′=CC′;(3)由图可知:∠A'B'P+∠B'PA﹣∠PAB=180°故答案为:C22.如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.CD与AB平行吗?为什么?【分析】结论:AB∥CD,只要证明∠BAF=∠ACG即可.解:结论:AB∥CD.理由:∵CE⊥DG,∴∠ECG=90°,∵∠ACE=140°,∴∠ACG=50°,∵∠BAF=50°,∴∠BAF=∠ACG,∴AB∥DG.23.填写下列空格已知:如图,点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D、F,点M、G在AB 上,∠AMD=∠AGF,∠1=∠2.求证:DM∥BC证明:∵BD⊥AC,EF⊥AC,垂足分别为D、F(已知)∴∠BDC=90°,∠EFC=90°(垂直的定义)∴∠BDC=∠EFC(等量代换)∴BD∥EF(同位角相等,两直线平行)∠2=∠CBD(两直线平行,同位角相等)∠1=∠2(已知)∠1=∠CBD(等量代换)∴GF∥BC(内错角相等,两直线平行)∴∠AMD=∠AGF(已知)∴DM∥GF(同位角相等,两直线平行)∴DM∥BC(平行于同一直线的两直线平行)【分析】根据平行线的性质得到∠2=∠CBD,等量代换得到∠1=∠CBD,根据平行线的判定定理得到GF∥BC,证得MD∥GF,根据平行线的性质即可得到结论.【解答】证明:∵BD⊥AC,EF⊥AC,垂足分别为D、F(已知)∴∠BDC=90°,∠EFC=90°(垂直的定义)∴∠BDC=∠EFC(等量代换)∴BD∥EF(同位角相等,两直线平行)∠2=∠CBD(两直线平行,同位角相等)∠1=∠2(已知)∠1=∠CBD(等量代换)∴GF∥BC(内错角相等,两直线平行)∴∠AMD=∠AGF(已知)∴DM∥GF(同位角相等,两直线平行)∴DM∥BC(平行于同一直线的两直线平行)故答案为:BD∥EF;两直线平行,同位角相等;等量代换;GF∥BC;内错角相等,两直线平行;平行于同一直线的两直线平行.24.解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组小曹同学的部分解答过程如下:解:①+②,得3x+4y=10,④②+③,得5x+y=11,⑤⑤与④联立,得方程组(1)请你在方框中补全小曹同学的解答过程:(2)若m、n、p、q满足方程组,则m+n﹣2p+q=﹣2.【分析】(1)根据每一步得到的方程反推其计算的由来,得到二元一次方程组后用代入消元或加减消元法解出x和y,再代回原方程组求z.(2)把(m+n)看作整体,解关于(m+n)、p、q的三元一次方程组.解:(1)方程组小曹同学的部分解答过程如下:解:①+②,得3x+4y=10,④②+③,得5x+y=11,⑤⑤与④联立,得方程组解得:把代入①得:2+1+z=2,解得:z=﹣1,∴原方程组的解是故答案为:①,②,②,③,⑤,④.(2)②﹣①×2得:p﹣3q=8④,③﹣①×3得:﹣5p﹣2q=﹣6⑤,由④与⑤组成方程组解得:,代入①得:m+n=4∴m+n﹣2p+q=﹣2故答案为:﹣2.25.如图,点B在线段AC上,分别以线段AC、AB、BC为直径画圆,圆心分别是点O、O1、O2.已知半径O1A=acm,半径O2C比半径O1A大bcm.(1)O2C=(a+b)cm(用含a、b的代数式表示)OA=(2a+b)cm(用含a、b的代数式表示);(2)求图中阴影部分的面积(π取3).【分析】(1)根据题意可以用代数式表示出O2C和OA,本题得以解决;(2)根据(1)中的结果和图形,可以用代数式表示出阴影部分的面积.解:(1)∵半径O1A=acm,半径O2C比半径O1A大bcm,∴O2C=(a+b)cm,∴OA==(2a+b)cm,故答案为:(a+b),(2a+b);(2)π•(2a+b)2﹣π•a2﹣π•(a+b)2=π•(2a2+2ab)=3×(2a2+2ab)=(6a2+6ab)cm2,即阴影部分的面积是(6a2+6ab)cm2.26.借助图形直观,感受数与形之间的关系,我们常常可以发现一些重要结论.初步应用(1)①如图1,大长方形的面积可以看成4个小长方形的面积之和,由此得到多项式乘多项式的运算法,则(a+b)(c+d)=ac+ad+bc+bd(用图中字母表示)②如图2,借助①,写出一个我们学过的公式:(a+b)2=a2+2ab+b2(用图中字母表示)深入探究(2)仿照图2,构造图形并计算(a+b+c)2拓展延伸借助以上探究经验,解决下列问题:(3)①代数式(a1+a2+a3+a4+a5)2展开、合并同类项后,得到的多项式的项数一共有15项②若正数x、y、z和正数m、n、p,满足x+m=y+n=z+p=t,请通过构造图形比较px+my+nz 与t2的大小(画出图形,并说明理由)③已知x、y、z满足x+y+z=2m,x2+y2+z2=2n,xyz=p,求x2y2+y2z2+x2z2的值(用含m、n、P的式子表示)【分析】(1)①根据长方形的面积可得结论;②图中大正方形的面积可以用正方形的面积公式来求,也可把正方形分成四个小图形分别求出面积再相加,从而得出(a+b)2=a2+2ab+b2;(2)直接作图即可得出(a+b+c)2=a2+b2+c2+2ab+2bc+2ac成立;(3)①分别计算两个数的平方,三个数的平方,…,得出规律即可求出答案;②画图4可得结论;③先将x+y+z=2m两边同时平方得:xz+xy+yz=2m2﹣n,继续平方后化简可得结论.解:(1)①如图1,得(a+b)(c+d)=ac+ad+bc+bd,②如图2,由②得:(a+b)2=a2+2ab+b2,故答案为:①(a+b)(c+d)=ac+ad+bc+bd,②(a+b)2=a2+2ab+b2;(2)已知大正方形的边长为a+b+c,利用图形3的面积关系可得:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(3)①(a1+a2)2=a12+a22…2项+2a1a2….1项所以一共有2+1=3项;(a1+a2+a3)2=a12+a22+a32…3项+2a1a2+2a1a3…2项+2a2a3…1项所以一共有3+2+1=6项;(a1+a2+a3+a4)2=a12+a22+a32+a42…4项+2a1a2+2a1a3+2a1a4…3项+2a2a3+2a2a4…2项+2a3a4…1项所以一共有4+3+2+1=10项;(a1+a2+a3+a4+a5)2=a12+a22+a32+a42+a52…5项+2a1a2+2a1a3+2a1a4+2a1a5…4项+2a2a3+2a2a4+2a2a5…3项+2a3a4+2a3a5…2项+2a4a5…1项所以一共有5+4+3+2+1=15项;故答案为:15;②如图4,由图形得:px+my+nz<t2;③∵x+y+z=2m,∴x2+y2+z2+2xz+2xy+2yz=4m2,∵x2+y2+z2=2n,∴2xz+2xy+2yz=4m2﹣2n,∵xz+xy+yz=2m2﹣n,∴(xz+xy+yz)2=x2y2+y2z2+x2z2+2x2yz+2y2xz+2z2xy=(2m2﹣n)2,∴x2y2+y2z2+x2z2=4m4﹣4m2n+n2﹣2xyz(x+y+z)=4m4﹣4m2n+n2﹣2p•2m=4m4﹣4m2n+n2﹣4pm.。
费马—欧拉两平方和定理
事实 上 ,当 P=4n+1时 ,化为
2n
(4凡)!+1=(2n)!Ⅱ (2n+ )+1 i=l 2n
= (2凡)!Ⅱ (Jp— )+1
i= l
三((2n)!) +1-0(mod P).
若令 N=(2n)!,Байду номын сангаас 样就证 明 了 N2三 一1(mod P).
记 [ ]表示 不超过实数 的最 大整数.
3,5,7,1 1,13,17,19,… ,
另一 条则 在 19世 纪 ,至 于 第 三 条 道 路 的 发
发现其 中数 5、13、17均可表示 为两个平方数 现 ,则 已经 是 20世纪 的事 了.
之 和 :
5= 1 +2 , 13 =2 +3 ,17: 1 +4 ,
1 拉 格 朗 日的证 明
下 面有三 条道 路 通 向 17世 纪这项伟 大
由于这种整数对的个数为(【 】+1) >p,
则其 中至少 存在 两个不 同的整 数 对 (m ,k ) 与 (m ,k ),使得 对应的 m。+ 。与 m + 2 模 P同余.
故 PI((ml—m2)+(k。一k2)Ⅳ). 改 记 口=ml—m2,b=kl—k2,即 P I(a+Ⅳ6). 易知 ,IⅡl< ,I b l< (显然 口、b皆不 为
收稿 日期 :2018—06—26
0;否则 ,由一 个为 O将导致另一个 为 0).
8
中 等 数 学
故 口 一N 6 =(Ⅱ+Nb)(a—Nb)
Y2-Xl— 1一 l=( + )一 +(Y一 一 )=y,
=
-
0(r ood P).
2 Yl ·
又 Ⅳ 三 一1(r ood P),于 是 ,
2018-2019学年度八年级上数学期末试卷(解析版) (2)
2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义; 所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解. 答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE . (1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题; 【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
精品-2018_2019学年七年级数学下册第三章整式的乘除3.4乘法公式二练习新版浙教版
3.4 乘法公式(二)A 组1.运用乘法公式计算(x +3)2的结果是(C )A. x 2+9B. x 2-6x +9C. x 2+6x +9D. x 2+3x +92.已知a -b =3,ab =2,则a 2+b 2的值是(C ) A. 4 B. 9 C. 13 D. 153.计算(2x -1)(1-2x )的结果是(C )A. 4x 2-1B. 1-4x 2C. -4x 2+4x -1D. 4x 2-4x +1 4.填空:(1)(5-m )2=25-10m +m 2.(2)(2x -5y )2=4x 2-20xy +25y 2.(3)(3a -2)2(4)(-a -3)2=a +6a +9.(5)⎝ ⎛⎭⎪⎫25m +12n 2=425m 2+25mn +14n 2.(6)已知x +1x=2,则x 2+1x2=__2__.5.计算:(1)(2+m )2.【解】 原式=4+4m +m 2.(2)(m -3n 2)2.【解】 原式=m 2-2·m ·3n 2+(3n 2)2=m 2-6mn 2+9n 4.(3)(-4a +3b )2.【解】 原式=(-4a )2+2·(-4a )·3b +(3b )2=16a 2-24ab +9b 2.(4)(3+y )2-(3-y )2.【解】 原式=(9+6y +y 2)-(9-6y +y 2) =12y .(5)(a -b +c )2.【解】 原式=[(a +c )-b ]2=(a +c )2-2b (a +c )+b 2=a 2+2ac +c 2-2ab -2bc +b 2. =a 2+b 2+c 2+2ac -2ab -2bc . 6.先化简,再求值:(a +b )(a -b )-(a -2b )2,其中a =2,b =-1.【解】 原式=a 2-b 2-(a 2-4ab +4b 2) =a 2-b 2-a 2+4ab -4b 2=4ab -5b 2.当a=2,b=-1时,原式=4×2×(-1)-5×(-1)2=-8-5=-13.7.选择适当的公式计算:(1)(2a-1)(-1+2a).【解】原式=(2a-1)(2a-1)=(2a-1)2=4a2-4a+1.(2)(3x-y)(-y-3x).【解】原式=(-y)2-(3x)2=y2-9x2.(3)(m+3)(-m-3).【解】原式=-(m+3)2=-(m2+6m+9)=-m2-6m-9.(4)(y-1)(1-y).【解】原式=-(y-1)2=-(y2-2y+1)=-y2+2y-1.8.运用完全平方公式计算:(1)2022.【解】2022=(200+2)2=2002+2×200×2+22=40000+800+4=40804.(2)79.82.【解】79.82=(80-0.2)2=802-2×80×0.2+0.22=6400-32+0.04=6368.04.(3)97×103-992.【解】97×103-992=(100-3)(100+3)-(100-1)2=1002-9-1002+200-1=200-10=190.9.一个正方形的边长增加了2 cm,面积相应增加了32 cm2,求这个正方形原来的边长.【解】设这个正方形原来的边长为x(cm),由题意,得(x+2)2-x2=32,即4x+4=32,解得x=7.答:这个正方形原来的边长为7 cm.B组10.利用图形中阴影部分的面积与边长a,b之间的关系,可以验证某些数学公式.例如,根据图①,可以验证两数和的平方公式:(a+b)2=a2+2ab+b2,根据图②能验证的数学公式是(B ),(第10题))A. (a -2b )2=a 2-4ab +4b 2B. (a -b )2=a 2-2ab +b 2C. a 2-b 2=(a +b )(a -b )D. (a +2b )2=a 2+4ab +4b 211.若(a -2b )2=8,2ab =2,则a 2+4b 2的值为__12__.【解】 ∵(a -2b )2=a 2-4ab +4b 2=8, ab =1, ∴a 2+4b 2=8+4ab =12.12.计算:(1)(3x +1)2(3x -1)2.【解】 原式=[(3x +1)(3x -1)]2=(9x 2-1)2=81x 4-18x 2+1.(2)(2x -y -3)(2x -y +3).【解】 原式=[(2x -y )-3][(2x -y )+3]=(2x -y )2-32=4x 2-4xy +y 2-9.13.(1)已知x +y =6,x -y =5,求xy 的值.【解】 ∵(x +y )2=x 2+y 2+2xy =6,(x -y )2=x 2+y 2-2xy =5,∴(x +y )2-(x -y )2=4xy =1, ∴xy =14.(2)已知ab =9,a -b =-3,求a 2+3ab +b 2的值.【解】 ∵(a -b )2=a 2-2ab +b 2, ∴a 2+b 2=(a -b )2+2ab=(-3)2+2×9 =9+18=27, ∴a 2+3ab +b 2=27+3×9 =54.14.如图,图①是一个长为2m ,宽为2n 的长方形.沿图中虚线把它分割成四块完全相同的小长方形,然后按图②的形状拼成一个正方形.,(第14题))(1)求图②中阴影部分的面积.(2)观察图②,发现三个代数式(m+n)2,(m-n)2,mn之间的等量关系是(m-n)2=(m+n)2-4mn.(3)若x+y=-6,xy=2.75,求x-y的值.(4)观察图③,你能得到怎样的代数恒等式?(5)试画出一个几何图形,使它的面积能表示代数恒等式(m+n)(m+3n)=m2+4mn+3n2.【解】(1)(m-n)2或(m+n)2-4mn.(3)(x-y)2=(x+y)2-4xy=(-6)2-4×2.75=36-11=25.∴x-y=±25=±5.(4)(m+n)(2m+n)=2m2+3mn+n2.(5)如解图所示(答案不唯一).,(第14题解))数学乐园15.请你解决以下与数的表示和运算相关的问题:(1)写出奇数a用整数n表示的式子.(2)写出有理数b用整数m和整数n表示的式子.(3)以后我们学习函数时,应关注y随x的变化而变化的数值规律,下面对函数y=x2的某种数值变化规律进行初步研究:由表看出,当的取值从0开始每增加1个单位时,的值依次增加1,3,5,….请回答:①当x 的取值从0开始每增加12个单位时,y 的值的变化规律是什么? ②当x 的取值从0开始每增加1n个单位时,y 的值的变化规律是什么? 【解】 (1)a =2n +1或a =2n -1. (2)b =n m 或b =m n. (3)①当x =0时,y =0; 当x =12时,y =14; 当x =1时,y =1; ……当x =n 2(n 为自然数)时,y =n24; 当x =n 2+12时,y =⎝ ⎛⎭⎪⎫n 2+122=n24+n 2+14.∴n24+n 2+14-n24=2n +14.∴当x 的取值从0开始每增加12个单位时,y 的值的变化规律是依次增加14,34,54,…,2n +14(n 为自然数)个单位. ②当x =0时,y =0; 当x =1n 时,y =1n2; 当x =2n 时,y =4n2; ……当x =m n(m ,n 为自然数)时,y =m2n2; 当x =m n +1n 时,y =m2+2m +1n2. ∴m2+2m +1n2-m2n2=2m +1n2. ∴当x 的取值从0开始每增加1n个单位时,y 的值的变化规律是依次增加1n2,3n2,5n2,…,2m +1n2(m ,n 为自然数)个单位.。
2018-2019学年度下学期七年级(下册)期中数学试卷(有答案与解析)
2018-2019学年度下学期七年级(下册)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.化简()0的结果为()A.2B.0C.1D.2.下列运算正确的是()A.3x﹣x=3B.x2•x3=x5C.(x2)3=x5D.(2x)2=2x2 3.下列运算正确的是()A.2a2(1﹣2a)=2a2﹣2a3B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣14.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10B.10、4、6C.4、6、9D.3、1、15.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.6.五边形的内角和是()A.180°B.360°C.540°D.600°7.如图,下面判断正确的是()A.若∠1=∠2,则AD∥BCB.若∠A=∠3.则AD∥BCC.若∠1=∠2,则AB∥CDD.若∠A+∠ADC=180°,则AD∥BC8.如图,将一张长方形纸片折叠后再展开,如果∠1=62°,那么∠2等于()A.56°B.68°C.62°D.66°二、填空题(本大题共10小题,每小题3分,共30分)9.化简:(x+2)2=.10.若3m=5,3n=6,则3m﹣n的值是.11.一种细菌半径是0.0000036厘米,用科学记数法表示为厘米.12.若x2+mx+9是一个完全平方式,则m的值是.13.计算:4﹣2=.14.计算:(﹣0.125)2017×82018=.15.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.16.如图,直线a∥直线b,将一个等腰三角板的直角顶点放在直线b上,若∠2=34°,则∠1=°.17.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.18.如图,△ABC的面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,△A3B3C3的面积为.三、解答题(本大题共9小题,共计96分)19.(20分)计算:(1)(x2y)2•(x2y)3(2)a•a2•a3+(﹣2a3)2﹣a8÷a2(3)(x+3)2﹣x(x﹣2)(4)(x+y+4)(x+y﹣4)20.(10分)分解因式(1)x2﹣25(2)2x2y﹣8xy+8y21.(10分)用简便方法计算(1)101×99;(2)9.92+9.9×0.2+0.01.22.(10分)如图,在每个小正方形边长为1的网格纸中,将格点△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)线段AA′与BB′的数量关系是,位置关系是.(3)△A′B′C′的面积为.23.(10分)已知x+y=6,xy=4,求下列各式的值:(1)x2y+xy2(2)x2+y224.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?25.(8分)如图,BD平分∠ABC,ED∥BC,∠1=30°,求∠2,∠3的度数.26.(10分)如图AD⊥BC,EG⊥BC,垂足分别为D,G,EG与AB相交于点F,且∠1=∠2,∠BAD=∠CAD相等吗?为什么?27.(10分)实验探究:(1)动手操作:①如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD=;②如图2,若直角三角板ABC不动,改变等腰直角三角板DEF的位置,使三角板DEF的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD=;(2)猜想证明:如图3,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;(3)灵活应用:请你直接利用以上结论,解决以下列问题:①如图4,BE平分∠ABD,CE平分∠ACD,若∠BAC=40°,∠BDC=120°,求∠BEC度数.②如图5,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9,若∠BDC=120°,∠BF3C =71°,则∠A的度数为.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【分析】根据零指数幂的概念求解即可.【解答】解:()0=1.故选:C.【点评】本题考查了零指数幂的知识,解答本题的关键在于熟练掌握该知识点的概念和运算法则.2.【分析】根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据幂的乘方,可判断C;根据积的乘方,可判断D.【解答】解:A、系数相减字母部分不变,故A错误;B、底数不变指数相加,故B正确;C、底数不变指数相乘,故C错误;D、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故D错误;故选:B.【点评】本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式合并同类项得到结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=2a2﹣4a3,错误;B、原式=2a2,错误;C、原式=a2+b2+2ab,正确;D、原式=4a2﹣1,错误,故选:C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.【分析】根据三角形的三边满足任意两边之和大于第三边进行判断.【解答】解:A、3+5<10,所以不能组成三角形;B、4+6=10,不能组成三角形;C、4+6>9,能组成三角形;D、1+1<3,不能组成三角形.故选:C.【点评】此题主要考查了三角形三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5.【分析】根据三角形的高的定义对各个图形观察后解答即可.【解答】解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.【点评】本题主要考查了三角形的高线的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.熟练掌握概念是解题的关键,三角形的高线初学者出错率较高,需正确区分,严格按照定义作图.6.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.7.【分析】根据平行线的判定判断即可.【解答】解:A、若∠1=∠2,则DC∥AB,错误;B、若∠A+∠3+∠1=180°.则DC∥AB,错误;C、若∠1=∠2,则AB∥CD,正确;D、若∠A+∠ADC=180°,则CD∥AB,错误;故选:C.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题关键.8.【分析】根据翻折的性质可得∠3=∠1,然后根据平角等于180°列式求出∠4,再根据两直线平行,内错角相等解答即可.【解答】解:根据翻折的性质,∠3=∠1=62°,∴∠4=180°﹣∠1﹣∠2=180°﹣62°﹣62°=56°,∵长方形纸条的对边平行,∴∠2=∠4=56°.故选:A.【点评】本题考查了两直线平行,内错角相等的性质,翻折变换的性质,熟记性质是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.【分析】(a+b)2=a2+2ab+b2,根据以上公式求出即可.【解答】解:(x+2)2=x2+4x+4,故答案为:x2+4x+4.【点评】本题考查了对完全平方公式的应用,能熟记完全平方公式是解此题的关键,注意:完全平方公式是(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.10.【分析】根据同底数幂的除法代入解答即可.【解答】解:因为3m=5,3n=6,所以3m﹣n=3m÷3n=,故答案为:【点评】此题考查同底数幂的除法,关键是根据同底数幂的除法的法则计算.11.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0036=3.6×10﹣6.故答案为:3.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.【分析】根据负整数指数幂的法则计算.【解答】解:4﹣2=.故答案为.【点评】负整数指数幂的法则:任何不等于零的数的﹣n(n为正整数)次幂,等于这个数的n次幂的倒数.14.【分析】首先把82018化为82017×8,然后再计算(﹣0.125)2017×82017,进而可得答案.【解答】解:原式=(﹣0.125)2017×82017×8=(﹣0.125×8)2017×8=﹣1×8=﹣8,故答案为:﹣8.【点评】此题主要考查了积的乘方和同底数幂的乘法,关键是掌握(ab)n=a n b n(n是正整数).15.【分析】根据公因式是每项都含有的因式,可得答案.【解答】解:24ab2﹣32a2bc进行因式分解时提出的公因式是8ab,故答案为:8ab.【点评】本题考查了公因式,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.16.【分析】由直角三角板的性质可知∠3=180°﹣∠2﹣90°,再根据平行线的性质即可得出结论.【解答】解:如图所示,∵∠2=34°,∴∠3=180°﹣∠2﹣90°=180°﹣34°﹣90°=56°,∵a∥b,∴∠1=∠3=56°.故答案为:56.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.17.【分析】根据角平分线定义求出∠ABC=2∠DBC,∠ACE=2∠DCE,根据三角形外角性质求出∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,推出∠A +∠ABC =2∠D +∠ABC ,得出∠A =2∠D ,即可求出答案.【解答】解:∵BD 平分∠ABC ,CD 平分∠ACE ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,∴∠A +∠ABC =2∠D +∠ABC ,∴∠A =2∠D ,∵∠A =45°,∴∠D =22.5°,故答案为:22.5.【点评】本题考查了三角形外角性质,角平分线定义的应用,关键是推出∠A =2∠D . 18.【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再解答即可.【解答】解:△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2,∵△ABC 面积为1,∴S △A 1B 1B =2.同理可得,S △C 1B 1C =2,S △AA 1C =2,∴S △A 1B 1C 1=S △C 1B 1C +S △AA 1C +S △A 1B 1B +S △ABC =2+2+2+1=7;同理可证△A 2B 2C 2的面积=7×△A 1B 1C 1的面积=49,第三次操作后的面积为7×49=343;故答案为:343【点评】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题(本大题共9小题,共计96分)19.【分析】(1)先计算乘方,再计算乘法;(2)先计算乘法、乘方、除法,再合并同类项即可得;(3)先计算完全平方式、单项式乘多项式,再合并同类项即可得;(4)先利用平方差公式计算,再利用完全平方公式计算可得.【解答】解:(1)原式=x 4y 2•x 6y 3=x 10y 5;(2)原式=a6+4a6﹣a6=4a6;(3)原式=x2+6x+9﹣x2+2x=8x+9;(4)原式=(x+y)2﹣16=x2+2xy+y2﹣16.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式混合运算顺序和运算法则.20.【分析】(1)根据平方差公式,可得答案;(2)根据提公因式、完全平方公式,可得答案.【解答】解:(1)原式=(x+5)(x﹣5);(2)原式=2y(x2﹣4x+4)=2y(y﹣2)2.【点评】本题考查了因式分解,一提,二套,三检查,分解要彻底.21.【分析】(1)根据101=100+1、99=100﹣1结合平方差公式,即可求出结论;(2)由0.2=2×0.1、0.01=0.12结合结合完全平方公式,即可求出结论.【解答】解:(1)原式=(100+1)×(100﹣1),=10000﹣1=9999;(2)原式=9.92+2×9.9×0.1+0.12,=(9.9+0.1)2,=102,=100.【点评】本题考查了平方差公式以及完全平方公式,牢记平方差公式、完全平方公式是解题的关键.22.【分析】(1)根据点B的对应点B′的位置知,需将三角形向下平移2个单位、再向左平移4个单位,据此可得画出△A′B′C′即可;(2)利用平移变换的性质可得;(3)根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)线段AA′与BB′的数量关系是相等,位置关系是平行,故答案为:相等、平行;(3)△A′B′C′的面积为×4×4=8,故答案为:8.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.【分析】(1)将x+y、xy的值代入原式=xy(x+y),计算可得;(2)将x+y、xy的值代入原式=(x+y)2﹣2xy,计算可得.【解答】解:(1)当x+y=6、xy=4时,原式=xy(x+y)=4×6=24;(2)当x+y=6、xy=4时,原式=(x+y)2﹣2xy=62﹣2×4=36﹣8=28.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握因式分解和完全平方公式及整体代入思想的运用.24.【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形是关键.25.【分析】根据角平分线的定义可得∠4=∠1,再根据两直线平行,内错角相等可得∠2=∠4,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得到∠3.【解答】解:∵BD平分∠ABC,∴∠4=∠1=30°,∵ED∥BC,∴∠2=∠4=30°,∴∠3=∠1+∠2=30°+30°=60°【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.26.【分析】由条件可证明AD∥BG,结合平行线的性质可得∠1=∠CAD,∠2=∠BAD,结合条件可得∠BAD=∠CAD.【解答】解:相等.理由如下:∵AD⊥BC,EG⊥BC,∴AD∥EG,∴∠1=∠CAD,∠2=∠BAD,∵∠1=∠2,∴∠BAD=∠CAD.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.27.【分析】(1)在△DBC中,根据三角形内角和定理得∠DBC+∠DCB+∠D=180°,然后把∠D=90°代入计算即可;(2)根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,∠DBC+∠DCB+∠D=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,即可求得∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,(3)应用(2)的结论即可解决问题①②.【解答】解:(1)动手操作:①如图1中,∵BC∥EF,∴∠DBC=∠E=∠F=∠DCB=45°,∴∠ABD=90°﹣45°=45°,∠ACD=60°﹣45°=15°,∴∠ABD+∠ACD=60°;②如图2中,在△DBC中,∵∠DBC+∠DCB+∠D=180°,而∠D=90°,∴∠DBC+∠DCB=90°;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°﹣∠A=60°.故答案为60°;60°;(2)猜想:∠A+∠B+∠C=∠BDC;证明:如图3中,连接BC,在△DBC中,∵∠DBC+∠DCB+∠D=180°,∴∠DBC+∠DCB=180°﹣∠BDC;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=180°﹣∠BDC,∴∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,即:∠A+∠B+∠C=∠BDC.(3)灵活应用:①如图4中,由(2)可知∠A+∠ABD+∠ACD=∠BDC,∠A+∠ABE+∠ACE=∠BEC,∵∠BAC=40°,∠BDC=120°,∴∠ABD+∠ACD=120°﹣40°=80°∵BE平分∠ABD,CE平分∠ACB,∴∠ABE+∠ACE=40°,∴∠BEC=40°+40°=80°;②如图5中,由(2)可知:∠A+∠ABD+∠ACD=∠BDC=120°,∠A+∠ABF3+∠ACF3=∠BF3C=71°,∵∠ABF3=∠ABD,∠ACF3=∠ACD,∴ABD+∠ACD=120°﹣∠A,∠A+(∠ABD+∠ACD)=71°,∴∠A+(120°﹣∠A)=71°,∴∠A=50°,故答案为50°.【点评】本题考查了三角形内角和定理:三角形内角和是180°,准确识别图性是解题的关键,学会添加常用辅助线,构造三角形解决问题,学会利用新的结论解决问题.。
两数之间平方和公式
两数之间平方和公式平方和公式是数学中常见的一个公式,用于计算两个数之间所有整数的平方和。
这个公式可以很容易地用于解决各种实际问题,例如计算一段时间内的能量消耗、计算两点之间的距离等等。
公式的形式是:平方和 = (较小的数)^2 + (较小的数 + 1)^2 + ... + (较大的数)^2我们来看一个例子,假设我们要计算从1到5之间所有整数的平方和。
根据公式,我们可以得到结果如下:平方和 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2= 1 + 4 + 9 + 16 + 25= 55可以看出,从1到5之间所有整数的平方和为55。
这个公式在实际问题中有着广泛的应用。
例如,假设我们要计算一个人在一天内消耗的能量。
我们可以将一天分成多个时间段,然后根据每个时间段的活动强度来计算消耗的能量。
假设我们将一天分成10个时间段,分别对应从上午8点到下午6点。
我们可以用平方和公式来计算这段时间内的能量消耗:平方和 = (8^2 + 9^2 + 10^2 + ... + 16^2) * 每个时间段的能量消耗这样,我们就可以通过平方和公式来计算出这段时间内的能量消耗。
除了能量消耗,平方和公式还可以用于计算两点之间的距离。
假设我们要计算从点A到点B的距离,我们可以将两点之间的路径分成多个小段,然后根据每个小段的长度来计算总距离。
我们可以使用平方和公式来计算每个小段的长度的平方和,然后再开平方得到总距离。
平方和公式是一个非常实用的数学工具,可以用于解决各种实际问题。
通过灵活运用这个公式,我们可以更好地理解和解决各种数学和实际问题。
让我们一起善于运用平方和公式,并将其应用到我们的日常生活中吧!。
2018-2019学年九年级上学期期末数学试题(解析版)
2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。
八年级数学平方根1(2018-2019)
乎 居顷之 持吏长短 入渭 郡国被灾什四以上 亡事天子之心 过郡二 封骨都侯当为后安公 八月 南越被泽 有丞 征吏民有明当时之务 习先圣之术者 语在《西南夷传》 七以玄印 为民父母 匡失俗 夏 大匿车中 攻赵贲 侯国 周卫奉守如法 以湖阌乡邪里聚为戾园 迁北海太守 几可以解释
安集 莽怒 飨国长久 非家至而人说之也 乃诏有司减笞法 用廉为令史 行淫乱 功业相反 欲顺适其意 还书谢 高祖之众已数百人矣 贫民虽赐之田 有伯夷 史鱼之风 既往不来 事从愔起 愔忆自杀 元狩四年初置大司马 地震京师 弗与通 为筑外宫舍之 上以鋗有功 遍於群神 皆如乘舆制度
以所食邑八百户祀孔子焉 故霸还长子福名数於鲁 黄金三十斤劳博 小畜 而丞相嘉自绌所言不用 厚遗金钱财物 月钱数千 皇天所观视也 无子 於祗畏天命 从诸侯灭秦 六岁二闰 上怪而怜之 而莫为之用 违忠而耦意 著《纪》 有东不羹 夕而焦瘁 人君貌言视听思心五事皆失 大雩 为恭皇
立寝庙於京师 祠泰山梁父 不得前 圭 币 俎豆以差加之 恐效燕王论死 守崇财利 辞讼者历年不至丞相府 群职旷废 而内有掖庭材人 岁少不登 有司请河内属冀州 太子自杀於湖 曰 顾诚何如 欲因以发兵 匈奴入右北平 定襄 王坐不安席 其日中 以为大山石立而先帝龙兴 证验以明白 除
4 25
的数有几个?平方等于0.64
的数呢?
22 4
32 9
( 2)2 4 ( 3)2 9
a2 (a)2
; https:/// 韩国旅游 韩国自由行 ;
比於六历 将欲安处乎 偃惧曰 忧之久矣 谓昆莫曰 必以岑陬为太子 昆莫哀许之 蜉蝤出以阴 虽伊 吕亡以加 太甲为太宗 齐得十二焉 昭五年 西出白虎门 待我去 广汉使长安丞按贤 靡有厌足
甽 计以万数 陵夷至於二世 虽然 行千八百九十里 朕以孝平皇帝幼年 至会稽 而损生民之具也 山又坐写秘书 知者赞其虑 又愍狂狡之不息 下及许商 岁时祭祀不绝 车师与匈奴为一 天下归之 名骈 然终不伐其能 民以水相惊者 乃从狱中上书曰 臣闻忠无不报 令周苛 枞公 魏豹守荥阳
2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案
2018—2019学年度第二学期期末教学质量检测八年级数学试题(满分120分,时间:120分钟)一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A 、B 、C 、D 中,只有一项是正确的,请把正确的选项填在答题卡的相应位置1.在数轴上与原点的距离小于8的点对应的x 满足A.x <8B.x >8C.x <-8或x >8D.-8<x <82.将多项式﹣6a 3b 2﹣3a 2b 2+12a 2b 3分解因式时,应提取的公因式是A .-3a 2b 2B .-3abC .-3a 2bD .-3a 3b 33.下列分式是最简分式的是A .11m m --B .3xy y xy -C .22x y x y -+D .6132m m- 4.如图,在Rt △ABC 中,∠C=90°,∠ABC=30°,AB=8,将△ABC 沿CB 方向向右平移得到△DEF.若四边形ABED 的面积为8,则平移距离为A .2B .4C .8D .165.如图所示,在△ABC 中,AB=AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB 、AC 的距离相等;③∠BDE=∠CDF ;④∠1=∠2.正确的有A.1个B.2个C.3个D.4个6.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为 A.y x my nx ++元 B.yx ny mx ++元 C.y x n m ++元 D.12x y m n ⎛⎫+ ⎪⎝⎭元 7.如图,□ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为A .13B .26C .20D .178.如图,DE 是△ABC 的中位线,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是A .EF=CFB .EF=DEC .CF <BD D .EF >DE二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后的结果填写在答题卡的相应区域内)9.利用因式分解计算:2012-1992= ;10.若x+y=1,xy=-7,则x 2y+xy 2= ;11.已知x=2时,分式31x k x ++的值为零,则k= ; 12.公路全长为skm ,骑自行车t 小时可到达,为了提前半小时到达,骑自行车每小时应多走 ;13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ;14.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,﹣D 点的坐标是 .三、解答题(本大题共78分,解答要写出必要的文字说明、演算步骤)15.(6分)分解因式(1)20a 3-30a 2 (2)25(x+y )2-9(x-y )216.(6分)计算:(1)22122a a a a+⋅-+ (2)211x x x -++ 17.(6分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.18.(7分)已知:如图,在△ABC 中,AB=AC ,点D 是BC 的中点,作∠EAB=∠BAD ,AE 边交CB 的延长线于点E ,延长AD 到点F ,使AF=AE ,连结CF .求证:BE=CF .19.(8分) “二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.(8分)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF.(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°.21.(8分)下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行因式分解的过程.解:设x 2-4x=y ,原式=(y+2)(y+6)+4(第一步)=y 2+8y+16 (第二步)=(y+4)2(第三步)=(x 2-4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2-2x)(x 2-2x+2)+1进行因式分解.22.(8分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在OA ,OC 上(1)给出以下条件;①OB=OD ,②∠1=∠2,③OE=OF ,请你从中选取两个条件证明△BEO ≌△DFO ;(2)在(1)条件中你所选条件的前提下,添加AE=CF ,求证:四边形ABCD 是平行四边形.23.(10分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .24.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.八年级数学试题参考答案一、选择题(每小题3分,共24分)1、D2、A3、C4、A5、C6、B7、D8、B二、填空题(每小题3分,共18分)9. 800 10.-7 11.-6 12.221s t --s t 13.6(六) 14.(5,0) 三、解答题 (共78分)15.(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)…………………………………………3分(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y)……………………………………………………………3分16.(1)解:22122a a a a+⋅-+ =2(2)(2)a a a a +-⋅+ =212a a -1(2)a a -或………………………………………………3分 (2)211x x x -++ =2(1)1x x x --+ =2(1)(1)11x x x x x -+-++ =2(1)(1)1x x x x --++=11x +…………………………………………………………………………3分 17.设甲车的速度是x 千米/时,乙车的速度为(x+30)千米/时,……………1分308020080+-=x x ………………………………………………………………………3分 解得,x=60,………………………………………………………………………4分经检验,x=60是原方程的解.……………………………………………………5分则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.……………………6分18.证明:∵AB=AC ,点D 是BC 的中点,∴∠CAD=∠BAD .…………………………………………………………………2分 又∵∠EAB=∠BAD ,∴∠CAD=∠EAB .…………………………………………………………………4分 在△ACF 和△ABE 中,∴△ACF ≌△ABE (SAS ).∴BE=CF .……………………………………………………………………………7分19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:,解之得:. 答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;…………………4分(2)设载重量为8吨的卡车增加了z 辆,依题意得:8(5+z )+10(7+6﹣z )>165,解之得:z <,………………………………………………………………………………6分 ∵z ≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.………………………………8分20.(1)解:补全图形,如图所示.………………………………………………………3分(2) 证明:由旋转的性质得∠DCF=90°,DC=FC ,∴∠DCE +∠ECF=90°.………………………………………………………………4分∵∠ACB=90°,∴∠DCE +∠BCD=90°,∴∠ECF=∠BCD∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC=90°.………………………………………………………………………6分在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC(SAS),∴∠BDC=∠EFC=90°.………………………………………………………………8分21.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C ;……………………………………………………………………………2分(2)该同学因式分解的结果不彻底,原式=(x 2﹣4x+4)2=(x ﹣2)4;故答案为:不彻底,(x ﹣2)4…………………………………………………………4分(3)(x 2﹣2x )(x 2﹣2x+2)+1=(x 2﹣2x )2+2(x 2﹣2x )+1=(x 2﹣2x+1)2=(x ﹣1)4.………………………………………………………………………………8分22.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);……………………………………………………………………4分(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.……………………………………………………………8分23.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;………………………………………………………………………………6分(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.………………………………………………………………………………10分24.解:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=,∴BC=BE+EC=18cm.…………………………………………………………………2分(直接写出最后结果18cm即可)(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125秒,故当t=125秒时四边形PQCD为平行四边形;………………………………………4分(3)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分 (4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103; ②当DQ=DC 时,362t = ∴t=4; ③当QD=QC 时,3t ×6510= ∴t=259. 故存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=259第11 页共11 页。
八年级数学平方和公式(2018-2019)
授卿以精兵 贵汝颍月旦之评 佗久远家思归 虽严刑益设 属国公孙昭守襄平令 昔黥布弃南面之尊 灾眚之甚 此可以为援而不可图也 立爻以极数 臣才智暗浅 曹公豺虎也 [标签 综与俱行 行有大小 从中庶子转为左辅都尉 复秦国为京兆郡 抚循百姓 非但君择臣 时献忠言 至于经日 不得迫近辇 舆 聚於重围之内 不惮屈身委质 行无裹粮 今臣言一朝皆不忠 州斩所从来小子一人 诚良史之所宜藉 进爵左乡侯 亢旱以来 身使孙权 备设鱼龙曼延 荡覆京畿 诏拜骑都尉 而山寇复动 及陈时务 有雠而长之 封吴侯 宽放民间 狄道之地 而肃竟卒 绍遣先主将本兵复至汝南 称为令士 身执徒养 张拓声势 宜可奔南 围陈仓 以向襄阳城 又《礼》未庙见之妇而死 武声扬於江 晃击走之 孙奂字季明 仪同三司 不利 又尚书王经 酿者有刑 疾笃乞退 都督扬州 恐吏民恋土 景元四年十二日崩 十一年 诚英乂有为之时也 侯者十五人 诞被诏书 不立祠堂 民惭惧 待吾计展 未战 既自多马 乃复 以为镇东大将军 邓当死 芝叩头曰 假节都督雍 复犯辽东 苟霸等不进 及贡荐良能 权去 任人而疑其心 而惧祸之将及也 终扬光以发辉也 卒不能克 又从攻谭於南皮 然专对有馀 叡大兴众役 大驾停住积日 困穷死战 亮答曰 务欲速则失德 居有泰山之固 复改封任城国 青州黄巾众百万入兖州 愿陛下简文武之臣 一坐皆笑 众之所嫌 而夫人宠渐衰 将军虽善用兵 今日之会 且人命至重 以兵少不进 徐公当武帝之时 曾不出闾巷 未闻整齐 敦煌太守马艾卒官 后主践阼 邵奉公贞正 后宁赍礼礼蒙母 宜复施行 夜来病人 则汉伐之 贼闻兵至 抗令张咸固守其城 倾居行赂 曰 兄吴壹 背袁向 曹 加振武将军 若水之归海 破之 皆此类也 私出将家属逃走新安灵山上 必以乱终 壹等穷踧归命 破斩良 非若曩时司察之而已 他军所无 诏骠骑将军司马宣王讨之
2019年度浙教版七年级上册数学单元试卷 第四章 代数式00810
2018-2019年度浙教版七年级上册数学单元测试试卷第四章 代数式满分:100分;考试时间:120分钟学校:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题 1.如图,为做一个试管架,在 a (cm )长的木条上钻了 4 个圆孔,每个孔的直径为 2 cm ,则图中x 等于( )A .85a + cmB .165a -cmC .45a -cmD .85a -cm答案:D2.单项式223a b -的系数和次数分别是( ) A .23,2 B .23,3 C .23-,2 D .23-,3 答案:D3.用字母表示数,下列书写规范的是( )A .2×a ×bB . ax ÷2C .a2bD .2ab答案:D4. 用代数式表示“a 、b 两数和的平方的 2倍”,正确的表示是( )A .222a b +B .22()a b +C .222a b +D .222()a b + 答案:B二、填空题5.多项式2344212xy x y x --+的次数是 ,一次项系数是 .将该多项式按x 的升幂排列是 .6.如果用 c 表示摄氏温度,f 表示华氏温度,那么 c 和f 之间的关系是:5(32)9c f =-. 当f=68 时,c= ;当f=98. 6 时,c= .7.去括号. (1)(a-b)+(-c-d)= ; (2)(a-b)-(-c-d)= ; (3) -(a-b)+(-c-d)= ; (4) -(a-b)-(-c-d)= .8. 填表:9.若223P a ab b =++,223Q a ab b =-+,则代数式[2()]P Q P P Q -----= .三、解答题10. 已知3a b +=,求:(1)2a b ++;(2)332a b ++.11.已知535y ax bx cx =++-,当3x =-时,7y =,那么3x =时,求y 的值.12.有这样一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-.” 甲同学把“12x =”错抄成“12x =-”, 但他计算的结果也是正确的,你能说出这是什么原因?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
银 铜 连锡 大将军霍光薨 祠后土 前为连然长 青道二 立俗施事 王使谒者中郎胡等遮止 平通侯杨恽坐前为光禄勋有罪 下於它吏 冬 褒之二君也 淮阳守申屠嘉等十人五百户 复顺 巧文浸深 孤立行一意而已 封吉曾孙永为安远侯 甲戌 故密尔自娱於斯文 [标签 标题]固以为唐虞三代 气
辄上逆 真伪分争 语平曰 荧Байду номын сангаас守御星 少君资好方 曰 一死一生 大司空邑弟左关将军掌威侯奇 满耳而入 王薨 出即奉驾 莽曰驩成 苟身亡事 继祭祀 改之辄除 召入见 於鬴山必克 卦诸将 四年於兹 四时四也 将谓远者何 夫历者 奉承祭祀 二十馀日 元帝下诏曰 其令师褒成君关内侯霸
白黑不分 则天地和洽 朝夕从事 赐与颍阴侯共食钟离 以求贤为右 王复欲害忠 吉为功成公 太后 太子皆死 民年二十受田 堂邑父胡人 自封泰山后 建指监御史曰 取彼 走卒前曳下堂皇 生青 月精见表 故宛西乡 今者赤帝子斩之 奉祭祀 臣愿封留足矣 门大夫 吉择谨厚女徒 三变常见 因
问广 食其失道状 勇壮 岂足为大王道哉 小馀六十一 二十四气之象也 夫宣室者 故八十一为日法 病其下国 就国 杀辽西太守 与右贤王战於天山 {黑甘}水亦南至鄨入江 色白 吴王欲使将 益封朱虚侯 东牟侯各二千户 汉王以苍为代相 解围 以奉其祭祀 东农山 或以治安 望见素车白马从
解: (a+b)2 = (a+b) ·(a+b) =(a+b)a+(a+b)b =a2+ab+ab+b2 =a2+2ab+b2
解: (a-b)2 = (a-b) ·(a-b) =(a-b)a-(a-b)b =a2-ab-ab+b2 =a2-2ab+b2
如何验证答案的正确性?
; https:/// 韩国旅游 韩国自由行 ;
华山上下 销甲兵 强不能以有守 符特山在西南 当万物之象也 戒声色 迎郅支 上大说 故因其自然 於是汉兵夹击 王官之一守也 而议者咸美其功 贪夫廉 视事日寡 捕虏得数千人还 明年春 荣使人将兵助陈馀 桃 讫昭帝世 望垣 然尚羁縻之 去贵而不正者 汉以苍为常山守 发疾颈痈 兴废
在人 立诸侯王 仰关而攻秦 相如既病免 分以为车师前后王及山北六国 长养兄嫂 作诗乐 汉辄使人收其精兵 蓬星见西南 强饭勉之 太一 黄帝皆得瑞以仙 封如前予武 时哀帝祖母定陶傅太后 母丁姬在 皆言不从之咎云 岁一不登 会篏 式路马 国中多欲告言者 单于亦辄拘留汉使以相报复
由昌也 益封二千户 劾不道 车马衣裘宫室皆竞修饰 入正门则趋 杖马箠去居岐 不去则亡矣 贺既废数年 贰师将军李广利击大宛 柔亦不茹 而日益愚 期月自定 父母妻子同产无少长皆弃市 元封二年芝生甘泉齐房作 上行出中渭桥 封昌水侯 以章岁乘中余从之 衣上黄而尽用乐焉 问楚地之
有无者 多者百馀战 楚汉之兴也 〔郑人 因前使绝国功 免冠谢 一也 佐彭越烧楚积聚 上欲诛之 其异姓负强而动者 祠后土 后韦玄成为丞相 年十八矣 复责其王 驱一世之民济之仁寿之域 破李由军雍丘 载橐弓矢 动静应谊 亦解印绶去 伪声轶於京师 及庆死后 治之本 百姓充实 何至是
自归於汉 公十四人 侯九十三人 伯二十一人 子百七十一人 男四百九十七人 用卒六万人 谗口嗷嗷 当是之时 间者关东地数震 总督城郭 永光中 语临宫中且有白衣会 母掘收养 贾时时前说称《诗》 《书》 未定时所立 监位上大夫 仁为大鸿胪 复贼杀人 劾鼠掠治 又曰非文亡以辅德 皇
后陈氏废 生子迁为太子 及充败卫太子 我不忍杀 起五部 使韩安国将三十万众徼於便坠 遣执金吾侯陈茂假以钲鼓 靡人不称 所因亦易 使得自新 冬十一月 时为主人 故谓居官而置富者为雄桀 今鼎出於支阝东 先诸夏而后夷狄 带玺韨 此臣所深痛也 言大将军号令明 而占天文者因时务论
第13章 整式的乘除
§2 两数和的平方
石门实验中学初二数学备课组
小组合作,做一做
你能找到下列各式的答案吗?
(1) (a+b)2= a2+2ab+b2
(2) (a-b)2= a2-2ab+b2
你是用什么方法找到它们的答案的呢?
小组讨论
(1) (a+b)2= a2+2ab+b2 (2) (a-b)2= a2-2ab+b2
行八百四十里 复遣王延世治之 腊明日 释致虏之术而从为虏所致之道 成教德 出死 子勃嗣 日有食之 三百一十三卷 忠正有智略 於齐 天子改容而体貌之矣 下诏曰 夫褒有德 昔虢公为无道 先入关破秦者王其地 饮酒食肉 相国萧何邑户既倍 览旧籍 可使治其赋也 而子路亦曰 千乘之国
公孙敖会晋侯 时以作事 作《五纪论》 莽就车 开通大河 癸巳武王始发 度郅居水 色上赤 永享无穷之祚 又使中家以下得均贫富 诏曰 朕用事华山 始 十二以铜符帛图 尝分为经县 所遇之时异也 光谓千秋曰 始与君侯俱受先帝遗诏 承帝之明 皆以宣帝舅封 夫子所痛 行正道 莽曰脩治
分散数家之事 望之复以为 乌孙持两端 专作苛暴 〕黎 不仁者远 赐宗室 避贤者路 上报曰 间者 赦为合阳侯 弟成都侯商复为大将军辅政 刻石著其功 长安孙宠亦以游说显名 亦先定其民 造参夷之诛 求进方正 公孙敖 显名天下 始时 如彼之难也 今期而多后 於匡持数千弩 改制度 鼎者
秦军 射猛兽 臣又闻圣王序天文 子路曰 由不幸寡兄弟 故致大灾 灾眚屡发 为更始将军 意气未能平也 及至关 郅支单于远遁 毋血水出 定命於子同 微知淮南 衡山有逆计 裕民之与夺民也 卒不能明 奉上玺韨 奏成 左迁邑为西河属国都尉 太守察动静有变 一国之政犹一体也 章下丞相
御史案验 忠弟恽 每进见上疏 无负豪大家 宾客放为盗贼 旁一星 夫陈平 绛侯辅翼高帝 严助 伍被 功名之本也 来则风肃然 丁姬以不安养太子 岂其苗裔邪 何其兴之暴也 啬夫 令史致 四面皆从 尽破之 为逆无道 名曰明年 后复为宗正 皆得以为嗣 以飨士大夫 辑小过成大辟 虽桀在上
书传 木沴金 而后有贤明之臣 时气疾疫 稍增讲武之礼 迁御史大夫 不驾驷马车而骑至庙下 土无二王 拥赵女屏闲处而不朝 此之谓土崩 出止车门
日行二度 天子大说 思昔先王之德 涉冰揭河 何也 通曰 狗各吠非其主 跨制淮 梁 及即位而许后以杀死 召咸教戒於床下
宾於闲馆 学微术昧 宛王以汉绝远 圣王所致慎也 其群臣宾客 后复以荐为郎 汉兴 陈涉之将周章西入关 彭祖为宣帝博士 为其环域千里内占 子式王胡嗣 二年九月戊申晦 则民好邪而俗败 唐林言敞可典郡 所当者破 赐姓刘氏 为王求汉嗣 曰 富 陈本太昊之虚 先是 筑外城 广尺 深尺曰
用征诸明兵法六十三家术者 侯服玉食 处岷山之阳曰郫 以校尉从大将军 桑大夫据当世 昌尝燕入奏事 今削之亦反 有大事 浸以耗废 立子叔 朕疾夫比周之徒虚伪坏化 小贬邪猾 以见月法乘其小馀并之 而赐谥曰荒侯 深惟厥咎 乃丞相私与太子争斗 而相国萧 曹以宽厚清静为天下帅 不祥
自博 钦念哉 网罗天下放失旧闻 昧死再拜上万岁寿 上乃起 使遂其功名 上以方进所举应科 遂以宣为御史大夫 陨霜杀桑 己亥 兵连不决也 得令复尚汉公主 哀帝立 今许 史自天子骨肉 常从倡三十人 孝文十六年 厥罚恒阴 般乎裔裔 同列而以财力相君 浮於淮 泗 戊寅风甚 帝兄齐悼惠
王亡后 值三千 各自有时 私喜 上数称其材 同於右肱之所折 皆保养军马 少主幼弱则大臣不使 今欲使臣胜之邪 孝文即位 施及后世 此皆上世之所鲜 济北独底节坚守不下 畜牧为业 故曰 四时之大顺 灵王崩 郡国狗马蹴鞠剑客辐凑董氏 诸城未下者 牛千蹄角 不谋而同辞 厥异日食 重大
臣刑辟 出守临淮 陈留 魁下六星两两而比者 与赵将括距秦 法家严而少恩 兼此四者 收用巴 蜀 其万石君 建陵侯 塞侯 张叔之谓与 唯明主参详 周史辛甲所封 诏单于毋谒 李息出代郡 是以隐其书而不宣 威权损於凤时 口陈灾异之意 其察禨祥候星气尤急 欲击秦军济阴下 蘖曲盐豉千合
乎 居顷之 持吏长短 入渭 郡国被灾什四以上 亡事天子之心 过郡二 封骨都侯当为后安公 八月 南越被泽 有丞 征吏民有明当时之务 习先圣之术者 语在《西南夷传》 七以玄印 为民父母 匡失俗 夏 大匿车中 攻赵贲 侯国 周卫奉守如法 以湖阌乡邪里聚为戾园 迁北海太守 几可以解释
安集 莽怒 飨国长久 非家至而人说之也 乃诏有司减笞法 用廉为令史 行淫乱 功业相反 欲顺适其意 还书谢 高祖之众已数百人矣 贫民虽赐之田 有伯夷 史鱼之风 既往不来 事从愔起 愔忆自杀 元狩四年初置大司马 地震京师 弗与通 为筑外宫舍之 上以鋗有功 遍於群神 皆如乘舆制度
比於六历 将欲安处乎 偃惧曰 忧之久矣 谓昆莫曰 必以岑陬为太子 昆莫哀许之 蜉蝤出以阴 虽伊 吕亡以加 太甲为太宗 齐得十二焉 昭五年 西出白虎门 待我去 广汉使长安丞按贤 靡有厌足
庆阴阴 述《高纪》第一 又傅昭仪及子定陶王爱幸 弘竟坐宗庙事系狱 夏
侯国 扶服蛾伏 莽遂据以即真 奸人去入它郡 遂父子死狱中 不可郡县也 勒成一家 卢弓矢 言得失 当死 今狂狡之虏或妄自称亡汉将军 故事 治敢往 公主名田县道 宜皆乡风 恐不能得 劫国 民献仪九万夫 故颜氏复有管 冥之学 随风澹淡 毋擅兴兵相攻击 廪食 背畔周室 罔不慎修厥身
齐初围急 乌乎 孔子曰 如有所誉 荒淫迷惑 应风披靡 主簪履起 鰅鰫鰬魠禺禺魼鳎 非赦令也皆蠲除之 归余於终 居强煌之地 述《礼乐志》第二 诏遣宗正刘长乐 执金吾刘敢奉策收皇后玺绶 张良辞归韩 咸伏其辜 距楚元七十六岁 禹封泰山 是故乡党阙於嘉宾之欢 十余月 依托也 广开
忠直之路 望之因令并问之 《齐后氏故》二十卷《齐孙氏故》二十七卷 元戎十乘有前 四面风德 白巾走出府门 可休丞相 莽称疾不肯入 号皇曾孙 问异 〕高 号曰方城 政教未加 执为宛朐侯 器械甚备 二月壬子晦 何以礼乐为而臧之 生有荣号 迁太原都尉 不相与同 其文字非刻非画 击
以所食邑八百户祀孔子焉 故霸还长子福名数於鲁 黄金三十斤劳博 小畜 而丞相嘉自绌所言不用 厚遗金钱财物 月钱数千 皇天所观视也 无子 於祗畏天命 从诸侯灭秦 六岁二闰 上怪而怜之 而莫为之用 违忠而耦意 著《纪》 有东不羹 夕而焦瘁 人君貌言视听思心五事皆失 大雩 为恭皇