弧长公式、扇形面积公式及其应用(含经典习题)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弧长公式、扇形面积公式及其应用(含经典习题)
【本讲教育信息】
一. 教学内容:
弧长及扇形的面积
圆锥的侧面积
二. 教学要求
1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。
2、了解圆锥的侧面积公式,并会应用公式解决问题。
三. 重点及难点
重点:
1、弧长的公式、扇形面积公式及其应用。
2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。
难点:
1、弧长公式、扇形面积公式的推导。
2、圆锥的侧面积、全面积的计算。
[知识要点]
知识点1、弧长公式
因为360°的圆心角所对的弧长就是圆周长C
=2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的
弧长l的计算公式:,
说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧
长l时,不要错写成。
(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。
知识点2、扇形的面积
如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形
面积是,由此得圆心角为n°的扇形面积的计
算公式是。
又因为扇形的弧长,扇形面积
,所以又得到扇形面积的另一个计
算公式:。
知识点3、弓形的面积
(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。
(2)弓形的周长=弦长+弧长
(3)弓形的面积
知识点4、圆锥的侧面积
圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积
说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。
(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。
知识点5、圆柱的侧面积
圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,若圆柱的底面半径为r,高为h,则圆柱的侧面积,圆柱的全面积
知识小结:
圆锥与圆柱的比较
【典型例题】
例 1. (2003.辽宁)如图所示,在同心圆中,两圆的半径分别为2,1,∠AOB=120°,则阴影部分的面积是()
A. B. C. D.
例2. (2003.福州)如图所示,已知扇形AOB 的圆心角为直角,正方形OCDE内接于扇形AOB,点C,E,D分别在OA,OB及AB弧上,过点A作AF⊥ED交ED的延长线于F,垂足为F,如果正方形的边长为1,那么阴影部分的面积为()
例3. 如图所示,直角梯形ABCD中,∠B=90°,AD∥BC,AB=2,BC=7,AD=3,以BC为轴把直角梯形ABCD旋转一周,求所得几何体的表面积。
例4. (2003.宁波)已知扇形的圆心角为120°,面积为300平方厘米
(1)求扇形的弧长。
(2)若把此扇形卷成一个圆锥,则这个圆锥的轴截面面积是多少?
。
模拟练习题
一、选择题
1. 若一个扇形的圆心角是45°,面积为2л,则这个扇形的半径是()
A. 4
B. 2
C. 47л
D. 2л
2. 扇形的圆心角是60°,则扇形的面积是所在图面积的()
A. B. C. D.
3. 扇形的面积等于其半径的平方,则扇形的圆
心角是()
A. 90°
B.
C.
D.180°
4. 两同心圆的圆心是O,大圆的半径是以OA,OB分别交小圆于点M,N.已知大圆半径是小圆半径的3倍,则扇形OAB的面积是扇形OMN 的面积的()
A. 2倍
B. 3倍
C. 6倍
D. 9倍
5. 半圆O的直径为6cm,∠BAC=30°,则阴影部分的面积是()
A. B.
C. D.
6 用一个半径长为6cm 的半圆围成一个圆锥的侧面,则此圆锥的底面半径为()
A. 2cm
B. 3cm
C. 4cm
D. 6cm
7. 圆锥的全面积和侧面积之比是3 :2,这个圆锥的轴截面的顶角是()
A. 30°
B. 60°
C. 90°
D. 120°
8. 已知两个母线相等的圆锥的侧面展开图恰好能拼成一个圆,且它们的侧面积之比为1∶2,则它们的高之比为()
A. 2:1
B. 3:2
C. 2:
D. 5:
9. 如图,在△ABC中,∠C =Rt∠,AC > BC,若以AC为底面圆半径,BC为高的圆锥的侧面积为S1,以BC为底面圆半径,AC为高的圆锥的侧面积为S2,则()
A. S1=S2
B. S1 > S2
C. S1 < S2
D. S1、S2的大小关系不确定
二、填空题
1. 扇形的弧长是12лcm,其圆心角是90°,则扇形的半径是cm ,扇形的面积是cm
2.
2. 扇形的半径是一个圆的半径的3倍,且扇形面积等于圆面积,则扇形的圆心角是.
3. 已知扇形面积是12cm2,半径为8cm,则扇形周长为.
4 在△ABC中,AB=3,AC=4,∠A=90°,把Rt△ABC绕直线AC旋转一周得到一个圆锥,其全面积为S1;把Rt△ABC绕AB旋转一周得到另一个圆锥,其全面积为S2,则S1:S2=。
5. 一个圆柱形容器的底面直径为2cm,要用一块圆心角为240°的扇形铁板做一个圆锥形的盖子,做成的盖子要能盖住圆柱形容器,这个扇形的半径至少要有cm。
6. 如图,扇形AOB的圆心角为60°,半径为6cm,C,D分别是的三等分点,则阴影部分的面积是。
7. 如图正方形的边长为2,分别以正方形的两个对角顶点为圆心,以2为半径画弧,则阴影部分面积为。