弧长公式、扇形面积公式及其应用(含经典习题)

合集下载

弧长与扇形面积经典习题(有难度)

弧长与扇形面积经典习题(有难度)

弧长与扇形面积练习题1. 一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB. 4πC.3πD.2π2. 如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cmB.35cm C.8cm D.53cm3.如图,是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是()A.60° B.90° C.120° D.180°12cm 6cm7.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B’,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π8.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC= 6cm,点P是母线BC上一点,且PC=23 BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.(64π+)cm B.5cm C.35cm D.7cm9.如图,半径为1的小圆在半径为 9 的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为()A . 17πB . 32πC . 49πD . 80π10. 如图,AB切⊙O于点B,OA=23,AB=3,弦BC∥OA,则劣弧⌒BC的弧长为().A.33πB.32πC.πD.32π11. 在半径为4π的圆中,45°的圆心角所对的弧长等于.12. 已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m,半圆的直径为4m,则圆心O所经过的路线长是 m。

(结果用π表示)13.如图,圆锥的底面半径OB为10cm,它的展开图扇形的半径AB为30cm,则这个扇形的圆心角a的度数为____________.14. 如图,点A、B、C在直径为32的⊙O上,∠BAC=45º,则图中阴影的面积等于______________,(结果中保留π).2、如果一条弧长等于l,它的半径等于R,这条弧所对的圆心角增加1o,则它的弧长增加()A.lnB.180RπC.180lRπD.360l3、已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的面积为()A、18πcm2B、36πcm2C、12πcm2D、9πcm24、圆的半径增加一倍,那么圆的面积增加到()A、1倍B、2倍C、3倍D、4倍5、一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A、1.5cmB、7.5cmC、1.5cm或7.5cmD、3cm或15cm8、扇形的周长为16,圆心角为360πo,则扇形的面积是()A.16 B.32 C.64 D.16π10、如图,AC是⊙O的直径,BD是⊙O的弦,EC∥AB交⊙O于E,则图中与12∠BOC相等的角共有()A、2个B、3个C、4个D、5个15、如图,将三角尺ABC(其中∠B=60°,∠C=90°,AB=6)绕点B按顺时针转动一个角度到A1BC1的位置,使得点A、B、C1在同一条直线上,点A所经过的路程是()A、2πB、4πC、8πD、12π16、如图,圆锥的轴截面是边长为6cm 的正三角形ABC ,P 是母线AC 的中点.则在圆锥的侧面上从B 点到P 点的最短路线的长为( )13、如图,扇形OAB 的圆心角为90o,且半径为R ,分别以OA ,OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么P 和Q 的大小关系是()A.P Q = B.P Q > C.P Q <D.无法确定17、如图,在足球比赛场上,甲、乙两名队员互相配合向对方球门MN 进攻,当甲带球冲到A 点时,乙已跟随冲到B 点。

辅导讲义:弧长和扇形的面积、圆锥的侧面积和全面积

辅导讲义:弧长和扇形的面积、圆锥的侧面积和全面积

辅导:弧长和扇形的面积、圆锥的侧面积和全面积一、弧长和扇形的面积:『活动一』因为360°的圆心角所对弧长就是圆周长C =2πR ,所以1°的圆心角所对的弧长是 .这样,在半径为R 的圆中,n °的圆心角所对的弧长l = . 『活动二』类比弧长的计算公式可知:在半径为R 的圆中,圆心角为n °的扇形面积的计算公式为:S = . 『活动三』扇形面积的另一个计算公式比较扇形面积计算公式与弧长计算公式,可以发现:可以将扇形面积的计算公式:S =360nπR 2化为S =180R n ·21R ,从面可得扇形面积的另一计算公式:S = . 二、圆锥的侧面积和全面积:1.圆锥的基本概念: 的线段SA 、SA 1……叫做圆锥的母线,的线段叫做圆锥的高.2.圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系:将圆锥的侧面沿母线l 剪开,展开成平面图形,可以得到一个扇形,设圆锥的底面半径为r ,这个扇形的半径等于 ,扇形弧长等于 . 3.圆锥侧面积计算公式圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长, 这样,S 圆锥侧=S 扇形=21·2πr · l = πrl 4.圆锥全面积计算公式S 圆锥全=S 圆锥侧+S 圆锥底面= πr l +πr 2=πr (l +r )三、例题讲解:例1、(2011•德州,11,4分)母线长为2,底面圆的半径为1的圆锥的侧面积为 . 例2、(2011年山东省东营市,21,9分)如图,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,BD 平分∠ABC ,∠BAD =120°,四边形ABCD 的周长为15.A1(1)求此圆的半径;(2)求图中阴影部分的面积.例3、(2010广东,14,6分)如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1. (1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).y x-3 O 12312 3 -3-2 -1-1 -2 -4 -5 -6A BCDEF(第3题)O四、同步练习:1、(2012北海,11,3分)如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为: ( )A .10πB .10C .10πD .π2、(2012北海,12,3分)如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了:( )A .2周B .3周C .4周D .5周3、(2012湖北咸宁,7,3分)如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( ).A .-3π2B .-32π3C .-32π2D .-322π34、(2012四川内江,8,3分)如图2,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分图形的面积为( )A .4πB .2πC .πD .2π35、(2012·湖南省张家界市·14题·3分)已知圆锥的底面直径和母线长都是10cm ,则圆锥的侧面积为________.6、(2012·哈尔滨,题号16分值 3)一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是 .ABD CO图2ABC 第1题图A OD第2题图 第9题第11题7、(2012江苏省淮安市,17,3分)若圆锥的底面半径为2cm ,母线长为5cm ,则此圆锥的侧面积为 cm 2.8、(2012四川达州,11,3分)已知圆锥的底面半径为4,母线长为6,则它的侧面积是 .(不取近似值)9、(2012年广西玉林市,16,3)如图,矩形OABC 内接于扇形MON ,当CN =CO 时,∠NMB10、(2012广安中考试题第15题,3分)如图6,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90o,∠A =30o,若△RtABC 由现在的位置向右无滑动地翻转,当点A 第3次落在直线上l 时,点A 所经过的路线的长为________________(结果用含л的式子表示).11、(2011•丹东,14,3分)如图,将半径为3cm 的圆形纸片剪掉三分之一,余下部分围成一个圆锥的侧面,则这个圆锥的高是 .12、(2012贵州贵阳,23,10分)如图,在⊙O 中,直径AB =2,CA 切⊙O 于A ,BC 交⊙O 于D ,若∠C =45°,则(1)BD 的长是 ;(5分) (2)求阴影部分的面积. (5分)第12题图AC13、(2012浙江省义乌市,20,8分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°. (1)求∠ABC 的度数; (2)求证:AE 是⊙O 的切线; (3)当BC =4时,求劣弧AC 的长.14、(2012年吉林省,第23题、7分.)如图,在扇形OAB 中,∠AOB =90°,半径OA =6.将扇形OAB 沿过点B 的直线折叠.点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,求整个阴影部分的周长和面积.O BCDE15、(2011甘肃兰州,25,9分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连结AD、CD.(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C、D;②⊙D的半径= (结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.参考答案例1、考点:圆锥的计算。

弧长与扇形面积公式

弧长与扇形面积公式

弧长与扇形面积公式一、弧长公式1.弧长的定义弧长是指一个圆弧所对应的圆心角所对应的圆的一部分的长度。

在圆形轨迹上,圆心角的度数与弧长成一定的比例关系。

2.弧长公式的推导首先,我们知道,在一个完整的圆中,圆心角为360度或2π弧度。

因此,一个占满整个圆周四分之一的圆弧所对应的圆心角为90度或π/2弧度。

假设一个圆的半径为r,其中一个圆弧所对应的圆心角为θ度或θ弧度,由此可得圆弧的长度为圆周的四分之一长度:长度=θ/360×2πr或长度=θ/2π×2πr通过简化上述公式,我们可以得到弧长的常用公式:长度=θ×πr/180或长度=θ×r其中,θ以度数表示时,圆弧长度使用第一个公式。

θ以弧度表示时,圆弧长度使用第二个公式。

这是弧长与圆心角的常用关系公式。

3.弧长公式的应用弧长公式是在解决圆弧上的问题时常用到的。

例如,在射击运动中,构成射击靶心边界的圆可能会被划分成不同的区域,每个区域都具有不同的分值。

当子弹击中圆的其中一点时,子弹沿弧线的走过弧长可以换算成对应的分数。

另一个应用实例是在机械制造过程中。

当需要切割或加工一个圆弧时,工人可以使用弧长公式确定刀具运动的距离。

这样,他们就能够更准确地进行切割和加工。

1.扇形面积的定义扇形是圆周上两个半径所夹的圆弧以及这两个半径所对应的圆心角组成的图形。

扇形面积是指由圆心、半径、圆弧组成的图形所围成的面积。

2.扇形面积公式的推导事实上,一个扇形可以想象成是一个半径为r的圆被一个圆心角为θ度或θ弧度的扇形切割下来而得到的。

那么,这个扇形的面积就可以看作是底边长为r,高为r的一个三角形(底边就是圆弧的长度)与这个扇形之间的差值。

通过计算底边长为r,高为r的三角形的面积,我们可以得到扇形的面积。

三角形的面积= 1/2 × r × r × sin(θ) = (r^2 × sin(θ))/2所以,扇形的面积= (r^2 × θ × sin(θ))/2其中,θ以度数表示时,扇形面积使用第一个公式。

扇形弧长与面积公式之应用

扇形弧长与面积公式之应用

扇形弧长与面积公式之应用作者:车树勤来源:《中学课程辅导高考版·学生版》2011年第11期应用弧长公式l=αr和扇形面积公式S=12αr2来解决实际问题,这既充分体现了弧度制在运算上的优越性,又能帮助我们加深对弧度制概念的理解.下面对弧度制下的扇形问题加以例析.一、求扇形的圆心角例1 已知扇形的周长为10 cm,面积为4 cm2,求扇形圆心角的弧度数.分析:利用周长和面积列出两个方程,可求出半径,进而得到圆心角的弧度数.解:设扇形圆心角的弧度数为θ(0则l+2r=10 ①,12lr=4 ②将①代入②得r2-5r+4=0,解得r1=1,r2=4.当r=1时,l=8(cm),此时θ=8rad>2πrad,舍去;当r=4时,l=2(cm),此时θ=24=12rad.点评:本题主要考查弧度的概念及应用,考查弧度制下的弧长公式和扇形面积公式的应用.在使用公式l=|α|r和S=12lr时,圆心角的单位必须是弧度.如果是用角度表示的,则应先换算成弧度,再代入公式.二、求弧长与面积例2 2rad的圆心角所对的弦长为2 cm,则这个圆心角所对的弧长是多少?这个圆心角所夹扇形面积是多少?分析:过圆心作弦的垂线,构造出一个直角三角形可求出扇形的半径,则可用弧长公式和扇形面积公式求解.解:设弦AB=2 cm,过O做OD⊥AB于D,则D为AB的中点.∴AD=12AB=1 cm,∠AOD=12∠AOB=1rad,∴扇形半径OA=1sin1,由弧长公式l=|α|r=2×1sin1(cm)=2 sin1(cm),由扇形面积公式S=12lr=12×2sin1×1sin1=1sin21(cm2).点评:解决扇形问题要注意三角形一些性质的应用,建立等式关系,进而求解.三、求扇形面积的最大值例3 已知一个扇形的周长等于20 cm,当这个扇形的圆心角取何值时,它有最大面积,最大面积是多少?分析:本题考查以弧度制为背景的函数最值问题,必须引入自变量建立目标函数,利用函数知识解决.解:设扇形的弧长为l cm,半径为r cm,扇形中心角为α,由已知条件,得l+2r=20,即l=20-2r,∴扇形的面积为:S=12αr2=12lr=12(20-2r)r=-r2+10r=-(r-5)2+25.∴当r=5时,S最大,此时l=10,∴当这个扇形的圆心角α=lr=2时,它有最大面积,最大面积是25 cm2.点评:本题是利用扇形面积公式建立二次函数,进而求二次函数的最值.此题是扇形周长一定时,求扇形的面积的最大值.建立目标函数时,自变量的选取与解题的繁简有很大的关系,要分析题意,恰当设元.(作者:车树勤,江苏省连云港市锦屏高级中学)。

【高中数学考点精讲】考点二 扇形的弧长及面积公式的应用

【高中数学考点精讲】考点二 扇形的弧长及面积公式的应用

考点二扇形的弧长及面积公式的应用(一)弧长的有关计算16.(2022·上海·华东师范大学第一附属中学高一期末)已知一扇形的弧所对的圆心角为,半径,则扇形的弧长为___________.【解析】由弧长公式可得,弧长为.故答案为:.17.(2022·天津天津·高一期末)已知扇形的周长为15cm,圆心角为3rad,则此扇形的弧长为()A.3cm B.6cm C.9cm D.12cm【解析】设扇形弧长为l cm,半径为r cm,则,即且,解得:(cm),故此扇形的弧长为9cm.故选:C18.(2022·浙江·杭州高级中学高一期末)如果2弧度的圆心角所对的弦长为4,那么这个圆心角所对的弧长为()A.B. C.D.【解析】设半径为,所以.所以,所以弧长.故选:A.19.(2022·湖南永州·高一期末)“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出人怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以有“怀袖雅物”的别号.当折扇所在扇形的圆心角为时,折扇的外观看上去是比较美观的,则此时折扇所在扇形的弦长与弧长之比为()A.B.C. D.【解析】设扇形的弧长为,半径为,如图,取的中点圆心角为,则所以弦又弧长所以弦长与弧长之比为故选:C20.(2022·江苏南通·高一期末)《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则掷铁饼者双手之间的距离约为()A.1.012米B.1.768米C.2.043米D.2.945米【解析】由题得:弓所在的弧长为:;所以其所对的圆心角;两手之间的距离.故选:B.(二)扇形面积的有关计算21.(2022·全国·高一课时练习)半径为2cm,圆心角为1rad的扇形的面积为()A.B.C.D.【解析】扇形的弧长,则扇形的面积.故选:D.22.(2022·湖南邵阳·高一期末)已知扇形的周长为16cm,圆心角的弧度数为,则其面积为______cm2.【解析】设扇形半径为,弧长为,圆心角弧度数为,则,解得,∴(cm2).故答案为:16.23.(2022·全国·高一课时练习)玉雕在我国历史悠久,拥有深厚的文化底蕴,数千年来始终以其独特的内涵与魅力深深吸引着世人.某扇形玉雕壁画尺寸(单位:cm)如图所示,则该玉雕壁画的扇面面积约为()A.B.C.D.【解析】易知该扇形玉雕壁画可看作由一个大扇形剪去一个小扇形得到,设大、小扇形所在圆的半径分别为,,相同的圆心角为,则,得,又因为,所以,,该扇形玉雕壁画面积().故选:D.24.(2022·河南安阳·高一期末)如图,扇环ABCD中,弧,弧,,则扇环ABCD的面积__________.【解析】设,因为弧,弧,,所以,,所以,,又扇形的面积为,扇形的面积为,所以扇环ABCD的面积.故答案为:3(三)扇形中的最值问题25.(2022·山西省长治市第二中学校高一期末)已知扇形的周长为30.(1)若该扇形的半径为10,求该扇形的圆心角,弧长及面积;(2)求该扇形面积的最大值及此时扇形的半径.【解析】(1)由题知扇形的半径,扇形的周长为30,∴,∴,,.(2)设扇形的圆心角,弧长,半径为,则,∴,∴当且仅当,即取等号,所以该扇形面积的最大值为,此时扇形的半径为.26.(2022·河北张家口·高一期末)已知扇形的圆心角是,半径为,弧长为.(1)若,,求扇形的弧长;(2)若扇形的周长为,当扇形的圆心角为多少弧度时,这个扇形的面积最大,并求出此时扇形面积的最大值.【解析】(1),扇形的弧长;(2)扇形的周长,,扇形面积,则当,,即当时,扇形面积最大值.27.(2022·全国·高一)某地政府部门欲做一个“践行核心价值观”的宣传牌,该宣传牌形状是如图所示的扇形环面(由扇形挖去扇形后构成的).已知米,米,线段、线段与弧、弧的长度之和为米,圆心角为弧度.(1)求关于的函数解析式;(2)记该宣传牌的面积为,试问取何值时,的值最大?并求出最大值.【解析】(1)根据题意,弧的长度为米,弧的长度米,,.(2)依据题意,可知,化简得:,,当,.∴当时,y的值最大,且最大值为.(四)扇形弧长公式与面积公式的应用28.(2022·陕西省商洛中学高一期末)一个扇形的半径为3,圆心角为,且周长为8,则()A.B.C.D.【解析】设扇形的弧长为l,则,则故选:B.29.(2022·上海市松江二中高一期末)已知扇形的圆心角为,扇形的弧长为,则该扇形所在圆的半径为___________.【解析】扇形的圆心角为,为,设半径为r,由弧长公式可得:,解得:.故答案为:430.(2022·黑龙江·哈师大附中高一开学考试)一个扇形的弧长为6π,面积为27π,则此扇形的圆心角为____________度.【解析】设扇形的半径为,圆心角为,依题意可得,解得;故答案为:31.(2022·江西·赣州市赣县第三中学高一阶段练习)已知一扇形的圆心角为,半径为,弧长为.(1)已知扇形的周长为,面积是,求扇形的圆心角;(2)若扇形周长为,当扇形的圆心角为多少弧度时,这个扇形的面积最大?并求此扇形的最大面积.【解析】(1)由题意得,解得(舍去),.所以扇形圆心角.(2)由已知得,.所以,所以当时,取得最大值25,,解得.当扇形的圆心角为多少弧度时,这个扇形的面积最大为25.。

扇形关于弧度面积和弧长公式

扇形关于弧度面积和弧长公式

扇形关于弧度面积和弧长公式
一、扇形的弧长公式。

1. 定义。

- 在圆中,圆心角所对的弧长与半径和圆心角的大小有关。

2. 公式推导(以弧度制为基础)
- 设圆的半径为r,圆心角为α(弧度制)。

- 整个圆的周长C = 2π r,整个圆的圆心角是2π弧度。

- 那么对于圆心角为α弧度的扇形,弧长l与整个圆周长的比例等于圆心角α与2π的比例。

- 即(l)/(2π r)=(α)/(2π),所以弧长l = rα。

二、扇形的面积公式。

1. 方法一:与弧长的关系推导。

- 由弧长公式l = rα。

- 我们可以把扇形看作是一个三角形的变形(把弧长l看作底,半径r看作高)。

- 根据三角形面积公式S=(1)/(2)×底×高,对于扇形,其面积S=(1)/(2)lr,又因为l = rα,所以S=(1)/(2)r× rα=(1)/(2)r^2α。

2. 方法二:与圆面积的比例关系推导。

- 圆的面积S_圆=π r^2,其圆心角为2π弧度。

- 设扇形圆心角为α弧度,扇形面积S与圆面积S_圆的比例等于扇形圆心角α与2π的比例。

- 即(S)/(π r^2)=(α)/(2π),所以S=(1)/(2)r^2α。

《弧长及扇形面积》练习题(含答案)

《弧长及扇形面积》练习题(含答案)

ED6题CBAC 71()题B AC 72()题B ACE D 8题BAEC D10题BA《弧长及扇形面积》练习题1.如图是排水管的横截面,此管道的半径为54㎝,水面以上部分的弓形的弧长为30π㎝,则这段弓形弧所对的圆心角度数为 。

2.阴影部分是某广告标志,已知两弧所在圆的半径为20cm 和10cm,∠AOB=120°,则S 阴= .3.某种商标图案如图所示(阴影部分),已知菱形ABCD 的边长为4,∠A=60°,是以A 为圆心,AB 长为半径的弧,是以B 为圆心,BC 长为半径的弧,则该商标图案的面积为 。

4.如图,四边形OABC 为菱形,点B ,C 在以O 为圆心的上,若OA=3,∠1=∠2,则S 扇形OEF = 。

5.如图,⊙O 2与⊙O 3外切于点C,⊙O 1分别与⊙O 2、⊙O 3内切于A 、B,若⊙O 1的半径为6,⊙O 2、⊙O 3的半径为2,则图中阴影部分的周界长为 ,阴影部分的面积为 。

6.如图,△ABC 中,∠C=90°,AB=12㎝,∠ABC=60°,将△ABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边上的点D 处,则AC 边扫过的图形(阴影部分) 的面积为 。

7.如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,①若⊙C 与AB 相切,则图中阴影部分的面积为 。

②若⊙O 与三角形的三边都相切,则图中阴影部分的面积为 。

8.如图,Rt △ABC 中,∠C=90°,∠A=30°,BC=4,分别以A 、B 为圆心,AC 、BC 长为半径画弧交AB 于D 、E ,则阴影部分的面积为 。

9.如图,矩形ABCD 中,AB=2,BC=2 3 ,以BC 中点E 为圆心,作 切AD 于点H ,与AB 、CD交于M 、N ,则阴影部分的面积为 。

10.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE ,则五个扇形的面积之和为 。

九年级上册数学《圆》弧长和扇形面积 知识点整理

九年级上册数学《圆》弧长和扇形面积 知识点整理

弧长和扇形面积有疑问的题目请发在“51加速度学习网”上,让我们来为你解答51加速度学习网 整理一、本节学习指导本节中我们巩固几个公式,都比较复杂,我们需要用心记忆。

对于弦切角定理,切割线定理一定要先理解,总结中都有配图说明,希望能借此帮助大家理解。

二、知识要点1、弧长公式n °的圆心角所对的弧长l 的计算公式为180rn l π=2、扇形面积公式lR R n S 213602==π扇,其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长。

3、圆锥的侧面积rl r l S ππ=∙=221,其中l 是圆锥的母线长,r 是圆锥的地面半径。

4、弦切角定理弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角。

弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。

如下图,切线AB 和弦AC 的夹角∠2等于弧AC 所对的圆周角,即:∠BAC=∠ADC5、切割线定理PA 为⊙O 切线,PBC 为⊙O 割线, 则PC PB PA ∙=2(2004•宿迁)如图,OA 和OB 是⊙O 的半径,并且OA⊥OB,P 是OA 上任一点,BP 的延长线交⊙O 于点Q ,过点Q 的⊙O 的切线交OA 延长线于点R .(Ⅰ)求证:RP=RQ ; (Ⅱ)若OP=PA=1,试求PQ 的长解:(1)证明:连接OQ∵RQ 是⊙O 的切线,∴∠OQB+∠BQR=90°∵OA ⊥OB , ∴∠OPB+∠B=90°又∵OB=OQ , ∴∠OQB=∠B∴∠PQR=∠BPO=∠RPQ ∴RP=RQ(2)作直径AC ∵OP=PA=1 ∴PC=3 由勾股定理,得BP=22125+=由相交弦定理,得PQ•PB=PA•PC 即PQ×5=1×3∴PQ=355例:三、经验之谈:上面这个例题是对弦切角的运用,也考察了同学们的综合解题能力。

这种题涉及的知识点很广,因此需要我们大量的经验,平时一定要多练习。

人教版九年级数学上册课件:24.4弧长和扇形面积(共19张PPT)

人教版九年级数学上册课件:24.4弧长和扇形面积(共19张PPT)


1353π6×0 152=375π(cm2).
9
能力提升
11.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分.图2中, 图形的相关数据:半径OA=2 cm,∠AOB=120°,则图2的周长为 83π ________cm.(结果保留π)
10
12.如图,在△ABC中,AC=4,将△ABC绕点C逆时针旋 转30°得到△FGC,则图43中π 阴影部分的面积为________.
第二十四章 圆
弧长和扇形面积
第一课时
知识展示
知识点 1 弧长公式 n°的圆心角所对的弧长 l 的计算公式为 l=n1π8R0 ,其中 R 为半径. 核心提示:在弧长公式中,已知 l、n、R 中的任意两个量,都可以求出第三个 量. 知识点 2 扇形的定义 由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.
分析:先用扇形OAB的面积-三角形OAB的面积求出上面空白部分面积,再用扇形OCD的面积-三角形OCD的面积-上面空白部分的面
积7.,如即图可,求5分出.别阴以影【五部边分黑形的A龙面BC积D江.E的顶哈点尔为圆滨心,中以1考为半】径作一五个个圆,扇则图形中的阴影弧部分长的面是积之1和1为π__c___m___.,半径是18
2
知识点 3 扇形面积公式 (1)n°圆心角的扇形面积公式:S 扇形=n3π6R02 ,其中 R 为半径. (2)弧长为 l 的扇形面积公式:S 扇形=12lR,其中 R 为半径. 【典例】如图,半径为 12 的圆中,两圆心角∠AOB=60°、∠COD=120°,连接 AB、CD,求图中阴影部分的面积.
cm,则此扇形的圆心角是__________度. 71.2.如如图图,,分在别△以AB五C中边,形AACB=CD4E,的将顶△点AB为C圆绕心点,C逆以时11为针1半旋0 径转作30五°得个到圆△,FG则C,图则中图阴中影阴部影分部的分面的积面之积和为为________________.. 一列火车以6每.小时【28 江km的苏速度泰经州过10中秒通考过弯】道.如那么图弯,道所分对的别圆心以角为正___三_____角__度形.(π的取3.3个顶点为圆心, 98..一已段知铁扇边路形弯所长道在成圆为圆半弧 径半形为,4径,圆弧弧画长的为弧半6径π,,是则2三扇km形.段面积弧为_围_____成____.的图形称为莱洛三角形.若正三角 分 积析,:即先 可用 求形扇 出形 阴边影OA部长B的分面为的积面6-积三.c角m形,OAB则的面该积求莱出上洛面三空白角部分形6面π积的,再周用扇长形为OCD_的_面__积_-__三_角c形mOC. D的面积-上面空白部分的面

《弧长和扇形面积的计算》PPT课件下载(第1课时)

《弧长和扇形面积的计算》PPT课件下载(第1课时)

n
180l BC
180 25
143.
πr 3.1410
所以∠BOC约为143° .
总结
扇形的面积公式有两个,若已知圆心角的度数和 半径,则用S扇形=n3π6r02 ;若已知扇形的弧长和半径, 则用S扇形=12 lR(l是扇形的弧长).
1 若扇形的面积为3π,圆心角为60°,则该扇形的半径为( D )
= 120π 0.62 - 1 AB OD
360
2
=0.12π- 1 0.6 3 0.3 2
0.22(m2).
1. 弧长公式为 l n • πr nπr .
180 180
2.
扇形的面积计算公式为
S扇形
nπr 2 360
.
3. 弧长和扇形面积都和圆心角n°,半径r有关系,
因此l和S之间也有一定的关系,列式表示为:
O
垂足为D,交AB于点C,连接AC .
∵OC=0.6 m,DC=0.3 m,
O
∴OD=OC-DC=0.3(m). ∴OD=DC .
A
D
B
图1
又AD⊥DC, ∴AD是线段OC的垂直平分线 .
C
∴AC=AO=OC . 从而∠AOD=60°,∠AOB=120°. 图2
有水部分的面积 S =S扇形OAB -S OAB
A.π
B.2π
C.4π
D.6π
3 如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=
4,则 BC 的长为( B )
A. 10 π
3
C. 5 π
9
B. 10 π
9
D. 5 π
18
知识点 2 扇形面积公式
半径为r的⊙O,面积为πr2,圆心角为360°. 按下表的圆心角,计算所

弧长及扇形的面积(基础篇)(专项练习)

弧长及扇形的面积(基础篇)(专项练习)

专题2.12 弧长及扇形的面积(基础篇)(专项练习)一、单选题1.已知扇形的半径为6,圆心角为20°,则扇形的面积为( )A .6πB .3πC .πD .2π2.如图,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC ,OC ,若AB =6,∠A =30°,则BC 的长为( )A .6πB .2πC .32πD .π 3.若扇形的圆心角为90︒,弧长为3π,则该扇形的半径为( )A B .6 C .12 D .4.如果一弧长是其所在圆周长的118,那么这条弧长所对的圆心角为( ) A .15度 B .16度 C .20度 D .24度 5.如图是边长为1的正方形组成的网格,△ABC 的顶点都在格点上,将△ABC 绕点C 逆时针旋转60°,则顶点B 所经过的路径长为( )A B C .2π3 D 6.如图,Rt △ABC 中,∠ACB =90°,AC=BC=2,在以AB 的中点O 为坐标原点、AB 所在直线为x 轴建立的平面直角坐标系中,将△ABC 绕点B 顺时针旋转,使点A 旋转至y 轴正半轴上的A′处,则图中阴影部分面积为( )A .-2B .C .D .-27.如图,在扇形OAB 中,∠90AOB =︒,2OA =,则阴影部分的面积是( )A .2B .πC .2πD .π2-8.如图,正方形ABCD 中,分别以B ,D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的面积为( )A .221π4a a -B .221π2a a -C .2211π42a a -D .2211π22a a - 9.如图,在边长为6的正方形ABCD 中,以BC 为直径画半圆,则阴影部分的面积是( )A .9B .6C .3D .1210.如图,一扇形纸扇完全打开后,外侧两条竹条AB 、AC 的夹角为120°,AB 长为30cm ,AD =10cm ,贴纸部分的面积为( )A .8003πcm 2B .5003πcm 2C .800πcm 2D .500πcm 2二、填空题11.已知扇形的圆心角的度数是120˚,半径为9,则此扇形弧长是______.12.在活动课上,“雄鹰组”用含30°角的直角三角尺设计风车.如图,∠C =90°,∠ABC =30°,AC =2,将直角三角尺绕点A 逆时针旋转得到△AB ′C ′,使点C ′落在AB 边上,以此方法做下去……则B 点通过一次旋转至B ′所经过的路径长为 _____.(结果保留π)13.如图,A 与x 轴相切,与y 轴相交于点()0,1B ,()0,3C .(1)A 的半径r =______;(2)扇形BAC 的面积为______.14.如图,将△ABC 绕点C 顺时针旋转120°得到△A 'B 'C ,已知AC =3,BC =2,则AA '=__________;线段AB 扫过的图形(阴影部分)的面积为__________.15.如图.在矩形ABCD 中,AB =6,BC =4,以点B 为圆心,BC 的长度为半径画孤,交AB 于点E ;以点A 为圆心,AE 的长度为半径画弧,交AD 于点F .则图中阴影部分的面积为______.(结果保留π)16.如图,用一个半径为6 cm的定滑轮拉动重物上升,滑轮旋转了120︒,假设绳索粗细不计,且与轮滑之间没有滑动,则重物上升了_________cm.(结果保留π)17.如图,线段AB与AC是⊙O的两条弦,且AB=AC,∠ABC=75°,BC=4,则图中阴影部分的面积是_____.18.如图,在矩形ABCD中,22==,将线段AB绕点A按逆时针方向旋转,使得AB BC点B落在边CD上的点B'处,线段AB扫过的面积为___________.三、解答题19.如图,点A,B,C在直径为2的⊙O上,∠BAC=45°.(1) 求弧BC的长度;(2) 求图中阴影部分的面积.(结果中保留π)l cm,弧CD的20.如图,在⊙O中,AB、CD是两条弦,⊙O的半径长为rcm,弧AB的长度为1长度为2l cm(温馨提醒:弧的度数相等,弧的长度相等,弧相等,有联系也有区别) 当1l=2l时,求证:AB=CD21.如图,△ABC中,∠C=90°.(1) 将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1;(不写画法,保留画图痕迹)(2) 若AB=10,BC=6,求在旋转过程中,点C运动的路径长.22.如图,一根5m长的绳子,一端拴在柱子上,另一端拴着一只羊(羊只能在草地上活动),请画出羊的活动区域.23.如图Rt△ABC中,∠C=90°,AD平分∠BAC,AD交BC于点D,点E在AB上,以AE 为直径的⊙O经过点D.(1) 求证:直线BC是⊙O的切线.(2) 若AC=6,∠B=30°,求图中阴影部分的面积.24.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC 与⊙O 的位置关系,并说明理由;(2)若FCCE =1.求图中阴影部分的面积(结果保留π).参考答案1.D 【分析】根据扇形的面积公式2360n r S π=即可得. 解:扇形的半径为6,圆心角为20︒,∴扇形的面积为22062360ππ⨯=, 故选:D .【点拨】本题考查了扇形的面积,熟记公式是解题关键.2.D【分析】先根据圆周角定理求出∠BOC =2∠A =60°,求出半径OB ,再根据弧长公式求出答案即可.解:∵直径AB =6,∴半径OB =3,∵圆周角∠A =30°,∴圆心角∠BOC =2∠A =60°,∴BC 的长是603180π⨯=π, 故选:D .【点拨】本题考查了弧长公式和圆周角定理,能熟记弧长公式是解此题的关键,注意:半径为r ,圆心角为n °的弧的长度是180n r π. 3.B 【分析】根据弧长公式180n r l π=可以求得该扇形的半径的长度.解:根据弧长的公式180n r l π=,知 180180390l r n πππ⨯===6, 即该扇形的半径为6.故选:B .【点拨】本题考查了弧长的计算.解题时,主要是根据弧长公式列出关于半径r 的方程,通过解方程即可求得r 的值.4.C【分析】根据弧长公式和圆的周长公式的关系即可得出答案 解:∵一弧长是其所在圆周长的118, ∴1=2r 18018n r ππ⨯ ∴=20n∴这条弧长所对的圆心角为20故选:C 【点拨】本题考查了弧长的计算,掌握弧长公式180n r l π=是解题的关键. 5.B【分析】先根据勾股定理计算出BC B 所经过的路径为弧,根据旋转的性质得弧所对的圆心角为60°,然后根据弧长公式求解.解:BC所以顶点B 所经过的路径长=. 故选:B .【点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了弧长公式.6.C解:试题分析:阴影部分的面积等于扇形ABA′的面积+Rt △A′C′B 的面积-Rt △ABC 的面积-扇形BCC′的面积.考点:面积的计算.7.D【分析】利用阴影部分的面积等于扇形面积减去AOB 的面积即可求解.解:=AOB OAB S S S -阴影扇形213602n r AO OB π=- =29021223602π-⨯⨯ 2π=-故选D【点拨】本题主要考查扇形面积和三角形面积,掌握扇形面积公式是解题的关键. 8.B【分析】由图可知,树叶形图案的面积是两个圆心角为90°,且半径为a 的扇形的面积与正方形的面积的差,可据此求出树叶形图案的面积.解:树叶形图案的面积为:2222扇形正方形901223602ABCD a S S a a a ππ⨯-=⨯-=- . 故选:B .【点拨】本题利用了扇形的面积公式,正方形的面积公式求解,得出树叶形图案的面积等于扇形正方形2ABCD S S - 是解题的关键.9.A【分析】设AC 与半圆交于点E ,半圆的圆心为O ,连接BE ,OE ,证明BE =CE ,得到弓形BE 的面积=弓形CE 的面积,则11=6663=922ABE ABC BCE S S S S ==-⨯⨯-⨯⨯△△阴影. 解:设AC 与半圆交于点E ,半圆的圆心为O ,连接BE ,OE ,∵四边形ABCD 是正方形,∴∠OCE =45°,∵OE =OC ,∴∠OEC =∠OCE =45°,∴∠EOC =90°,∴OE 垂直平分BC ,∴BE =CE ,∴弓形BE 的面积=弓形CE 的面积,∴11=6663=922ABE ABC BCE S S S S ==-⨯⨯-⨯⨯△△阴影, 故选A .【点拨】本题主要考查了求不规则图形的面积,正方形的性质,等腰直角三角形的性质,圆的性质,熟知相关知识是解题的关键.10.A【分析】贴纸部分的面积为大扇形面积减去小扇形面积,根据扇形面积公式解答. 解:贴纸部分的面积为2212030120108003603603-=πππ⨯⨯(cm 2), 故选:A .【点拨】本题考查扇形的面积,是基础考点,掌握相关知识是解题关键.11.6π【分析】根据扇形的弧长公式计算即可.解:∵圆心角的度数是120˚,半径为9, ∴扇形的弧长为:12096180ππ⨯⨯=. 故答案为:6π. 【点拨】本题考查扇形的弧长公式,解题关键是熟练掌握弧长公式180n r l π⨯=. 12.43π 【分析】根据题意,点B 所经过的路径是圆弧,根据直角三角形30°角所对的边等于斜边的一半,易知AB =4,结合旋转的性质可知∠BAB ′=∠BAC =60°,,最后求出圆弧的长度即可.解:∵∠C =90°,∠ABC =30°,AC =2,∴AB =2AC =4,∠BAC =60°,由旋转的性质得,∠BAB ′=∠BAC =60°,∴B 点通过一次旋转至B ′所经过的路径长为60?441803ππ=, 故答案为:43π. 【点拨】本题主要考查了直角三角形30°角所对的边等于斜边的一半,旋转的性质,以及圆弧的求法,熟练地掌握相关内容是解题的关键.13. 2; 23π##23π【分析】作AF⊥BC,假设⊙A与x轴相切于E点,连接AE,做BD⊥AE,利用垂径定理的内容得出BF=CF,进而得出AD与半径的关系,从而得出△ABC为等边三角形,然后计算半径,再利用扇形面积公式求出即可.解:作AF⊥BC,假设⊙A与x轴相切于E点,连接AE,BD⊥AE,假设AE=x,图象与y轴相交于点B(0,1)、C(0,3),∴OB=DE=1,AD=x-1,∵AC=AB,AF⊥BC,∴BF=CF=1,∴AD=BF=1=x-1,解得:x=2,∴AB=BC=AC=2,△ABC为等边三角形,∴∠BAC=60°,∴扇形BAC的面积=26022=360ππ⨯⨯,故答案为:2;23π.【点拨】此题主要考查了等边三角形的判定方法以及扇形的面积求法等知识,利用已知得出BF=AD是解决问题的关键.14.2π53π##53π【分析】根据弧长公式可求得AA'的长;根据图形可以得出AB扫过的图形的面积=S扇形ACA′+S△ABC-S扇形BCB′-S△A′B′C,由旋转的性质就可以得出S△ABC=S△A′B′C就可以得出AB扫过的图形的面积=S扇形ACA′-S扇形BCB′求出其值即可.解:∵△ABC绕点C旋转120°得到△A′B′C,∴△ABC≌△A′B′C,∴S△ABC=S△A′B′C,∠BCB′=∠ACA′=120°.∴AA'的长为:1203180π⨯=2π;∵AB 扫过的图形的面积=S 扇形ACA ′+S △ABC -S 扇形BCB ′-S △A ′B ′C ,∴AB 扫过的图形的面积=S 扇形ACA ′-S 扇形BCB ′,∴AB 扫过的图形的面积= 221203120253603603πππ⋅⋅⋅-=. 故答案为:2π;53π. 【点拨】本题考查了旋转的性质的运用,全等三角形的性质的运用,弧长公式以及扇形的面积公式的运用,解答时根据旋转的性质求解是关键.15.245π-##-5π+24【分析】利用分割法求解即可.解:在矩形ABCD 中AB =6,BC =4,∴BE =BC =4,∴AE =AB -BE =6-4=2,∴S 阴=S 矩形ABCD -S 扇形AEF -S 扇形BEC =6×4-22902904360360ππ⨯⨯- =24-5π,故答案为:24-5π.【点拨】本题考查扇形的面积,矩形的面积,明确S 阴=S 矩形ABCD -S 扇形AEF -S 扇形BEC 是解题的关键.16.4π【分析】利用题意得到重物上升的高度为定滑轮中120°所对应的弧长,然后根据弧长公式计算即可.解:根据题意,重物的高度为12064180ππ⨯⨯=(cm ). 故答案为:4π. 【点拨】本题考查了弧长公式:180n R l π⋅⋅=(弧长为l ,圆心角度数为n ,圆的半径为R ). 17.883π+ 【分析】如图,连接OA ,OB ,OC ,延长AO 交BC 于点H .根据S 阴=S △ABC ﹣S △OBC +S 扇形OBC ,求解即可.解:如图,连接OA ,OB ,OC ,延长AO 交BC 于点H .∵AB =AC ,∴∠ABC =∠ACB =75°,∴∠BAC =30°,∴∠BOC =2∠BAC =60°,∵OB =OC ,∴△OBC 是等边三角形,∴OB =OC =BC =4,∴OA =4,∵AB =AC ,∴AB AC =,∴AO ⊥BC ,∴BH =CH =2,∴OH =∴AH∴S △ABC 12=•BC •AH 12=⨯4×(S △OBC 142=⨯=S 扇形OBC 260483603ππ⋅== ∴S 阴=S △ABC ﹣S △OBC + S 扇形OBC =883π+. 故答案为:883π+. 【点拨】本题主要考查了垂径定理,求扇形面积,圆周角定理,等边三角形的判定和性质,根据题意得到S 阴=S △ABC ﹣S △OBC + S 扇形OBC 是解题的关键.18.π3##13π 【分析】由旋转的性质可得'2,AB AB ==由锐角三角函数可求'60,DAB ∠=︒从而得出'30,BAB ∠=︒由扇形面积公式即可求解.解:22,AB BC ==1,BC ∴=∵矩形ABCD 中,1,90,AD BC D DAB ∴==∠=∠=︒由旋转可知AB AB '=,∵22AB BC ==,∴'2,AB AB ==''1cos ,2AD DAB AB ∠== '60,DAB ∴∠=︒'30,BAB ∴∠=︒∴线段AB 扫过的面积2302.3603ππ︒⨯⨯==︒ 故答案为:.3π【点拨】本题主要考查了旋转的性质,矩形的性质,扇形面积公式,锐角三角函数等知识,灵活运用这些性质解决问题是解此题的关键.19.(1)2π(2)142π- 【分析】(1)连接OB ,OC .根据∠BOC =2∠A ,∠A =45°,可得∠BOC =90°,根据⊙O 的直径为2,可得OB =OC =1,即利用弧长公式即可求解答案;(2)根据∠BOC =90°,可知△BOC 是直角三角形,根据OB =OC =1,即可求出△BOC 的面积和扇形OBC 的面积,再根据S 阴=S 扇形OBC ﹣S △OBC 即可求解.解:(1)如图,连接OB ,OC .∵∠BOC =2∠A ,∠A =45°,∴∠BOC =90°,∵⊙O 的直径为2,∴OB =OC =1, ∴9023602BC ππ=⨯⨯=; (2)∵∠BOC =90°,∴△BOC 是直角三角形,∵⊙O 的直径为2,∴OB =OC =1,∴△BOC 的面积为11111222OBC S OB OC =⨯⨯=⨯⨯=△, ∵22909013603604OBC S r πππ=⨯=⨯⨯=扇形, 即S 阴=S 扇形OBC ﹣S △OBC =142π-. 【点拨】本题考查了圆周角定理、弧长公式、扇形面积公式等知识,掌握圆周角定理证明出∠BOC =90°是解答本题的关键. 20.见分析【分析】利用弧长公式得出圆心角相等,再利用圆心角,弧,弦之间的关系即可证明. 解:令∠AOB=α,∠COD=β.∵1l =2l∴12180180r r απβπ=∵AB 和CD 在同圆中,r 1=r 2∴α=β∴AB=CD【点拨】本题主要考查弧长公式及圆心角,弧,弦之间的关系,掌握圆心角,弧,弦之间的关系是解题的关键.21.(1)见分析(2)4π【分析】(1)根据要求作出图形即可;(2)根据勾股定理知AC =8,再根据弧长公式计算可得.(1)解:点C 绕点A 顺时针旋转90°得点C 1,点B 绕点A 顺时针旋转90°得点B 1,连结AB 1,B 1C 1,AC 1如图,△AB 1C 1为所画三角形;;(2)解:在ABC 中,∵∠C =90°,AB =10,BC =6,∴AC 8.∵ABC 绕点A 顺时针旋转90︒得到11AB C △,∴11890AC AC CAC ==∠=︒,.∴点C 运动的路径长为:9084180ππ⋅⋅=. 【点拨】本题主要考查作图-旋转变换,解题的关键是熟练掌握旋转变换的定义和性质及弧长公式.22.见分析【分析】根据题意画出两个扇形即可得到羊的活动区域.解:如图,以点O 为圆心,5m 长的绳子为半径画弧交草地左边界于点A ,交OD 的延长线于点B ,再以D 为圆心,DB 长为半径画弧交草地的右边界于点C ,则扇形AOB 和扇形BDC 部分即为羊的活动区域.【点拨】本题考查了作图﹣应用与设计作图、扇形面积,根据题意画扇形是解决本题的关键.23.(1)见分析(2)阴影部分的面积为163π 【分析】(1)连接OD ,由AD 平分∠BAC ,可知∠OAD =∠CAD ,易证∠ODA =∠OAD ,所以∠ODA =∠CAD ,所以OD ∥AD ,由于∠C =90°,所以∠ODB =90°,从而可证直线BC 是⊙O 的切线;(2)根据含30度角的直角三角形性质可求出AB 的长度,然后求出∠AOD 的度数,然后根据扇形的面积公式即可求出答案.(1)证明:连接OD ,∵AD 平分∠BAC ,∴∠OAD =∠CAD ,∵OA =OD ,∴∠ODA =∠OAD ,∴∠ODA =∠CAD ,∴OD ∥AC ,∵∠C =90°,∴∠ODB =90°,∴OD ⊥BC ,∴直线BC 是⊙O 的切线;(2)解:由∠B =30°,∠C =90°,∠ODB =90°,得:AB =2AC =12,OB =2OD ,∠AOD =120°,∠DAC =30°,∵OA =OD ,∴OB =2OA ,∴OA =OD =4,由∠DAC =30°,得DC∴S 阴影=S 扇形OAD -S △OAD=21201443602π⨯-⨯⨯=163π 【点拨】本题考查圆的综合问题,涉及角平分线的性质,平行线的判定与性质,含30度角的直角三角形的性质,扇形面积公式等,需要学生灵活运用所学知识.24.(1)AC 与⊙O 的相切,理由见分析(2)3π【分析】(1)根据圆的半径相等以及CF CA =,等边对等角可得D OAD ∠=∠,CAF CFA ∠=∠,根据对顶角相等可得CFA OFD ∠=∠,结合已知OD ⊥BC ,进而根据等量代换可得90CAF OAF ∠+∠=︒,即可证明AC 与⊙O 的相切;(2)过A 作AM BC ⊥于M ,设==OA OE r ,在Rt CAO 中,根据勾股定理求得r ,进而证明30C ∠=︒,求得扇形AOB 的圆心角为120︒,进而根据含30度角的直角三角形的性质求得AM ,进而求得AOB 的面积,根据扇形面积减去AOB 的面积,即可求得阴影部分面积.解:(1)AC 与⊙O 的相切,理由如下,AO DO =,D OAD ∴∠=∠,CF CA =,CAF CFA ∴∠=∠,又CFA OFD ∠=∠,CAF OFD ∴∠=∠,OD ⊥BC ,90OFD ODF ∴∠+∠=︒,90CAF OAF ∴∠+∠=︒,OA AC ∴⊥,OA 是半径,AC ∴是O 的切线,∴ AC 与⊙O 的相切;(2)过A 作AM BC ⊥于M ,如图,设==OA OE r ,3,1FC CE ==,在Rt CAO 中,1AO r AC FC OC OE EC r ====+=+,222AO AC OC +=,()2221r r ∴+=+, 解得1r =,2OC OE EC ∴=+=,12AO OC ∴=, 30C ∴∠=︒,60AOC ∴∠=︒,180120AOB AOC ∴∠=-∠=︒,在Rt CAM 中,1122AM AC FC ===11122AOB S OB AM ∴=⋅⋅=⨯=△, S ∴扇形AOB 12013603ππ=⨯=,S ∴阴影部分AOB S S =-△扇形AOB 3π= 【点拨】本题考查了圆的切线的判定,求扇形面积,掌握切线的判定和扇形面积公式是解题的关键.。

初中数学 圆的弧长及扇形面积公式 (含答案)

初中数学 圆的弧长及扇形面积公式 (含答案)

弧长及扇形面积第一部分 知识梳理(一)、圆的弧长及扇形面积公式在半径为R 的圆中,n °的圆心角所对的弧长为C 1,以n °为圆心角的扇形面积为S 1弧长公式 : 弧长C 1=180n R π 扇形面积公式: S 1=2360n R π=12C 1R注意:计算不规则图形的面积时,要转化成规则图形的面积进行计算。

(二)、圆锥的侧面积:注意:圆锥的侧面展开图是一个扇形 其中:(1)h 是圆锥的高,r 是底面半径;(2)l 是圆锥的母线,其长为侧面展开后所得扇形的半径R ;(3)圆锥的侧面展开图是半径等于 l ,弧长等于圆锥底面 周长C 的扇形.即: ①l =R ②180n Rπ=2πr ③h 2+r 2=l 2圆锥的侧面积 S 侧面积= πrl圆锥的全面积 S 全面积= πrl +πr 2第二部分 中考链接一、有关弧长计算 (一)、选择题1、(2018•淄博)如图,⊙O 的直径AB=6,若∠BAC=50°,则劣弧AC 的长为( )A 、2π B. 83π C 34π D. 43π1题图2题图 3题图 4题图 5题图2、(2018•黄石)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD=30°,BO=4,则的长为( )A .23πB .43πC .2πD .83π3、(2018•沈阳)如图,正方形ABCD 内接于O ,AB=2,则的长是( )A .πB .πC .2πD .π4、(2018•陵城区二模)一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路径长度为( )A .B .C .4D .2+5、(2018•明光市二模)如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧的长是( )A .B .C .D .6、(2019青岛)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.π B.2π C.2π D.4π6题图 7题图 8题图7、(2019烟台)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π8、(2019泰安)如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为()A.πB.πC.2πD.3π(二)、填空题1、(2018•潍坊)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是..1题图 3题图 4题图5题图8题图2、(2018•连云港)一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为cm.3、(2018•永州)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.4、(2018•盐城)如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).5、(2018常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是.6、(2018•温州)已知扇形的弧长为2π,圆心角为60°,则它的半径为..7、(2018•白银)如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.8.(2019泰州)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为cm.(三)、解答题1.(2018•湖州)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.二、、有关扇形面积计算(一)、选择题1、(2018•德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2 D.2πm21题图2题图 3题图4题图2、(2018•广安)如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣3、(2018•成都)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π4、(2018•绵阳)如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5)πm2B.40πm2C.(30+5)πm2D.55πm25.(2018•十堰)如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是()A.12π+18B.12π+36C.6D.66、(2018•山西)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣85题图6题图7题图8题图7、(2018•广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2 D.28、(2018•威海)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π9题图10题图11题图12题图13题图9、(2019枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣12π10、(2019临沂)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π11、(2019宿迁)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.63﹣πB.63﹣2πC.63+πD.63+2π12. (2019四川南充)如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()A. 6π B. 33π C. 23π D. 2π13.(2019四川资阳)如图,直径为2cm的圆在直线l上滚动一周,则圆所扫过的图形面积为()A. 5πB. 6πC. 20πD. 24π(二)、填空题1、(2018青岛)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是.1题图2题图3题图4题图2、(2018•安顺)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.3、(2018•荆门)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O 交BC于点E,则阴影部分的面积为.4、(2018•重庆)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)5、(2018•重庆)如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是(结果保留π).5题图6题图8题图9题图10题图6.(2018•香坊区)如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为.7、(2018•哈尔滨)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.8、(2019日照)如图,已知动点A 在函数4(0y x x=>)的图象上,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,延长CA 交以A 为圆心AB 长为半径的圆弧于点E ,延长BA 交以A 为圆心AC 长为半径的圆弧于点F ,直线EF 分别交x 轴、y 轴于点M 、N ,当NF =4EM 时,图中阴影部分的面积等于 .9、(2019泰安)如图,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB于点D ,若OA =3,则阴影都分的面积为 .10、(2019德州)如图,O 为Rt △ABC 直角边AC 上一点,以OC 为半径的⊙O 与斜边AB 相切于点D ,交OA 于点E ,已知BC =,AC =3.则图中阴影部分的面积是 .11、(2019无锡市)如图,在△ABC 中,AC :BC :AB =5:12:13,⊙O 在△ABC 内自由移动,若⊙O 的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为 . A BABCOOCOOI HF GED11题图 12题图 12、(2019四川内江)如图,在平行四边形ABCD 中,AB <AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为 . (三)、解答题1、(2019东营)如图,AB 是⊙O 的直径,点D 是AB 延长线上的一点,点C 在⊙O 上,且AC =CD ,∠ACD =120°.(1)求证:CD 是⊙O 的切线,(2)若⊙O 的半径为3,求图中阴影部分的面积.2、(2019无锡市)一次函数b kx y +=的图像与x 轴的负半轴相交于点A ,与y 轴的正半轴相交于点B ,且sin ∠ABO 3OAB 的外接圆的圆心M 的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.xy M BAO3.(2019·武汉)已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E ,分别交AM 、BN于D 、C 两点(1) 如图1,求证:AB 2=4AD ·BC(2) 如图2,连接OE 并延长交AM 于点F ,连接CF .若∠ADE =2∠OFC ,AD =1,求图中阴影部分的面积ODEMF EMO图1 图2 4.(2019·衡阳)如图,点A 、B 、C 在半径为8的⊙O 上,过点B 作BD ∥AC ,交OA 延长线于点D ,连接BC ,且∠BCA =∠OAC =30°.(1)求证:BD 是⊙O 的切线;(2)求图中阴影部分的面积.DAOCB三、圆锥(一)、选择题2、(2018•自贡)已知圆锥的侧面积是8πcm 2,若圆锥底面半径为R (cm ),母线长为l (cm ),则R 关于l 的函数图象大致是( )A .B .C .D .3、(2018•遵义)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为( )A.60πB.65πC.78πD.120π4、(2018•遂宁)已知圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,则该扇形的面积是()A.4πB.8πC.12πD.16π5、(2018•东阳市模拟)已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.30πcm2B.50πcm2C.60πcm2D.3πcm26、(2019东营)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3 D.3(二)、填空题1、(2018烟台)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON 的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=.1题图2题图3题图7题图8题图2、(2018徐州)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为.3、(2018•郴州)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)4、(2018•聊城)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.5、(2018•黑龙江)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.6、(2018•扬州)用半径为10cm ,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.7、(2018•苏州)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D 均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则12rr的值为8、(2019聊城)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm),计算这个圆锥侧面展开图圆心角的度数为.9.(2019无锡市)已知圆锥的母线成为5cm,侧面积为15πcm 2,则这个圆锥的底面圆半径为cm .答案与提示:一、弧长计算(一)、选择题1、D2、D3、A4、B5、B6、B7、D8、C1、解:如图,连接CO,∵∠BAC=50°,AO=CO=3,∴∠ACO=50°,∴∠AOC=80°,∴劣弧AC的长为=,故选:D.1题图2题图3题图6题图8题图2、解:连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.3、解:连接OA、OB,∵正方形ABCD内接于O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,∴的长为=π,故选:A.4、BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×12014=1803ππ⨯故选B.5、连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧长为6011= 1803ππ⨯.6、解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.7、解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D.8、解:连接OA.OB,作OC⊥AB于C,由题意得,OC=OA,∴∠OAC=30°,∵OA=OB,∴∠OBA=∠OAC=30°,∴∠AOB=120°,∴的长==2π,故选:C.(二)、填空题1、201923π2、2π3、24π4、83π5、26、67、πa8、6π1、解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.2、1203=2 180ππ⨯3、解:∵点A(1,1),∴OA==,点A在第一象限的角平分线上,∵以点O为旋转中心,将点A逆时针旋转到点B的位置,∴∠AOB=45°,∴的长为=.故答案为.4、解:由图1得:的长+的长=的长 ∵半径OA=2cm ,∠AOB=120°则图2的周长为:=故答案为:.5、连接OB.OC ,由∠BAC=60°得∠BOC=120°,1204=1803r ππ⨯ 得:r=26、解:设半径为r ,60=2180rππ⨯,解得:r=6,故答案为:6 7、解:如图.∵△ABC 是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a , ∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa .故答案为πa .(三)、解答题1、证明:(1)∵AB 是⊙O 的直径,∴∠ADB=90°, ∵OC ∥BD ,∴∠AEO=∠ADB=90°,即OC ⊥AD ,∴AE=ED ; (2)∵OC ⊥AD ,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.二、有关扇形面积计算1、A2、C3、C4、A5、C6、A7、D8、C9、C 10、A 11、A 12、A 13、A 1、解:连接AC ,∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°, ∴AC 为直径,即AC=2m ,AB=BC ,∵AB 2+BC 2=22,∴AB=BC=m ,∴阴影部分的面积是=(m 2),故选:A .2、解:连接OB 和AC 交于点D ,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC 是菱形,∴OB ⊥AC ,OD=OB=1, 在Rt △COD 中利用勾股定理可知:CD==,AC=2CD=2,∵sin ∠COD==,∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =OB ×AC=×2×2=2,S 扇形AOC ==,则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =π﹣2,故选:C .1题图 2题图 5题图 7题图 8题图3、解:∵在□ABCD 中,∠B=60°,⊙C 的半径为3,∴∠C=120°, ∴图中阴影部分的面积是:=3π,故选:C .4、解:设底面圆的半径为R ,则πR 2=25π,解得R=5, 圆锥的母线长==,所以圆锥的侧面积=•2π•5•=5π;圆柱的侧面积=2π•5•3=30π,所以需要毛毡的面积=(30π+5π)m 2.故选:A .5、解:如图,连接OD ,AD ,∵点C 为OA 的中点,∴OC=OA=OD , ∵CD ⊥OA ,∴∠CDO=30°,∠DOC=60°,∴△ADO 为等边三角形,OD=OA=12,OC=CA=6,∴CD=,6,∴S 扇形AOD ==24π,∴S 阴影=S 扇形AOB ﹣S 扇形COE ﹣(S 扇形AOD ﹣S △COD )=﹣﹣(24π﹣×6×6)=18+6π.故选:C .6、解:利用对称性可知:阴影部分的面积=扇形AEF 的面积﹣△ABD 的面积=﹣×4×2=4π﹣4,故选:A . 7、解:过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°, ∵AD ⊥BC ,∴BD=CD=1,AD=BD=, ∴△ABC 的面积为=,S 扇形BAC ==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D .8、解:作FH ⊥BC 于H ,连接FH ,如图,∵点E 为BC 的中点,点F 为半圆的中点,∴BE=CE=CH=FH=6, 226+125Rt △ABE ≌△EHF ,∴∠AEB=∠EFH , 而∠EFH+∠FEH=90°,∴∠AEB+∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S正方形ABCD +S半圆﹣S△ABE﹣S△AEF=12×12+12•π•62﹣12×12×6﹣12•65×65 =18+18π.故选:C.9、解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,故选:C.10、解:∵=,∴AB=AC,∵∠ACB=75°,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,作AD⊥BC,∵AB=AC,∴BD=CD,∴AD经过圆心O,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+π,故选:A.12.连接OA、OB,则S阴=S扇形OAB=2606360π⨯=6π故选A13、圆所扫过的图形面积=长方形的面积+圆的面积=2π×2+π=5π二、填空题1、734-23π2、4π3、40π4、14π5、43π﹣36、8﹣2π7、6﹣π8、3 9、6π10、2.5π 11、34π 12、 13、25 14、233π+解:∵∠B=90°,∠C=30°,∴∠A=60°,∵OA=OF,∴△AOF是等边三角形,∴∠COF=120°,∵OA=2,∴扇形OGF的面积为:=∵OA为半径的圆与CB相切于点E,∴∠OEC=90°,∴OC=2OE=4,∴AC=OC+OA=6,∴AB=AC=3,∴由勾股定理可知:BC=3∴△ABC的面积为:×3×3=∵△OAF的面积为:×2×=,∴阴影部分面积为:﹣﹣π=﹣π故答案为:﹣π1题图 3题图 8题图2、解:∵∠BOC=60°,△B′OC′是△BOC 绕圆心O 逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O ,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°, ∵AB=2cm ,∴OB=1cm ,OC′=,∴B′C′=,∴S 扇形B′OB ==π,S 扇形C′OC ==,∴阴影部分面积=S 扇形B′OB +S △B′C′O ﹣S △BCO ﹣S 扇形C′OC =S 扇形B′OB ﹣S 扇形C′OC =π﹣=π;3、解:连接OE 、AE ,∵AB 是⊙O 的直径,∴∠AEB=90°,∵四边形ABCD 是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE ,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S 阴影=S 扇形OBE ﹣S △BOE ,=﹣×,=﹣,=﹣,4、解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π,故答案为8﹣2π.5、解:∵矩形ABCD ,∴AD=2,∴S 阴影=S 矩形﹣S 四分之一圆=2×3﹣π×22=6﹣π,6、解:∵在⊙O 上,∠ACB=40°,∴∠AOB=2∠ACB=80°, ∴此扇形的半径为:=3.故答案为:3.7、解:设扇形的半径为Rcm ,∵扇形的圆心角为135°,弧长为3πcm , ∴=3π,解得:R=4,所以此扇形的面积为=6π(cm 2),故答案为:6π.8.解:作DF ⊥y 轴于点D ,EG ⊥x 轴于G ,∴△GEM ∽△DNF ,∵NF =4EM ,∴==4,设GM =t ,则DF =4t ,∴A (4t ,),由AC =AF ,AE =AB ,∴AF =4t ,AE =,EG =, ∵△AEF ∽△GME ,∴AF :EG =AE :GM ,即4t :=:t ,即4t 2=,∴t 2=,图中阴影部分的面积=+=2π+π=2.5π,11、解:连接OC ,作CH ⊥OB 于H ,∵∠AOB =90°,∠B =30°,∴∠OAB =60°,AB =2OA =6, 由勾股定理得,OB ==3,∵OA =OC ,∠OAB =60°,∴△AOC 为等边三角形,∴∠AOC =60°,∴∠COB =30°, ∴CO =CB ,CH =OC =, ∴阴影都分的面积=﹣×3×3×+×3×﹣=π,故答案为:π.11题图12题图 13题图解:在Rt △ABC 中,∵BC =,AC =3.∴AB ==2,∵BC ⊥OC ,∴BC 是圆的切线,∵⊙O 与斜边AB 相切于点D ,∴BD =BC ,∴AD =AB ﹣BD =2﹣=,在Rt △ABC 中,∵sinA ===,∴∠A =30°,∵⊙O 与斜边AB 相切于点D ,∴OD ⊥AB ,∴∠AOD =90°﹣∠A =60°, ∵=tanA =tan30°,∴=,∴OD =1,∴S 阴影==.故答案是:.13、如图,圆心O 在△ABC 内所能到达的区域是△O 1O 2O 3,∵△O 1O 2O 3三边向外扩大1得到△ACB ,∴它的三边之比也是5∶12∶13, ∵△O 1O 2O 3的面积=103,∴O 1O 2=53,O 2O 3=4,O 1O 3=133,连接AO 1 与CO 2,并延长相交于I ,过I 作ID ⊥AC 于D ,交O 1O 2于E ,过I 作IG ⊥BC 于G 交O 3O 2于F ,则I 是Rt △ABC 与Rt△O 1O 2O 3的公共内心,四边形IEO 2F 四边形IDCG 都是正方形,∴IE =IF = 1223122313O O O O O O O O O O ⨯++ =23,ED =1,∴ID =IE +ED =53,设△ACB 的三边分别为5m 、12m 、13m ,则有ID =AC BC AC BC AB ⨯++=2m =53,解得m =56,△ABC 的周长=30m =25.14、连接OE,则S 阴=S 扇形OEC +S △OED =260212123336023ππ⨯+⨯⨯=(三)、解答题 1、(1)证明:连接OC .∵AC =CD ,∠ACD =120°∴∠A =∠D =30°.∵OA =OC ,∴∠ACO =∠A =30°.∴∠OCD =∠ACD ﹣∠ACO =90°.即OC ⊥CD ,∴CD 是⊙O 的切线. (2)解:∵∠A =30°,∴∠COB =2∠A =60°.∴S 扇形BOC =,在Rt △OCD 中,CD =OC ,∴,∴,∴图中阴影部分的面积为.2、作MN ⊥OB,垂足为N,连接OM,则MN=12OA=3,OA=6 ,A(-6,0)由sin ∠ABO 3则∠A=60°tan ∠BAO=OBOA∴3 ∴B (0,3)设直线AB:y=kx+b,将A,B 点的坐标代入得:3,b=3∴3x+3 S 阴=S 扇形MAO -S △MAO 2120(23)1634332ππ⨯-⨯-3、证明:(1)如图1,连接OD ,OC ,OE .∵AD ,BC ,CD 是⊙O 的切线, ∴OA ⊥AD ,OB ⊥BC ,OE ⊥CD ,AD =ED ,BC =EC ,∠ODE =12∠ADC ,∠OCE =12∠BCD ∴AD //BC ,∴∠ODE +∠OCE =12(∠ADC +∠BCD )=90°, ∵∠ODE +∠DOE =90°,∴∠DOE =∠OCE . 又∵∠OED =∠CEO =90°,∴△ODE ∽△COE .∴OE ECED OE=,OE 2=ED ·EC ∴4OE 2=4AD ·BC ,∴AB 2=4AD ·BC (2)解:如图2,由(1)知∠ADE =∠BOE ,∵∠ADE =2∠OFC ,∠BOE =∠2COF ,∴∠COF =∠OFC ,∴△COF 等腰三角形。

弧长公式、扇形面积公式及其应用(含经典习题)

弧长公式、扇形面积公式及其应用(含经典习题)

弧长公式、扇形面积公式及其应用(含经典习题)说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。

(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。

知识点2、扇形的面积如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。

又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。

知识点3、弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。

(2)弓形的周长=弦长+弧长(3)弓形的面积图示面积知识点4、圆锥的侧面积圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。

(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。

知识点5、圆柱的侧面积圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,若圆柱的底面半径为r,高为h,则圆柱的侧面积,圆柱的全面积知识小结:圆锥与圆柱的比较名称圆锥圆柱图形图形的形成过程由一个直角三角形旋转得到的,如Rt△SOA绕直线SO旋转一周。

由一个矩形旋转得到的,如矩形ABCD绕直线AB旋转一周。

图形的组成一个底面和一个侧面两个底面和一个侧面侧面展开图的特征扇形矩形面积计算方法【典型例题】例 1. (2003.辽宁)如图所示,在同心圆中,两圆的半径分别为2,1,∠AOB=120°,则阴影部分的面积是()A. B. C. D.例2. (2003.福州)如图所示,已知扇形AOB 的圆心角为直角,正方形OCDE内接于扇形AOB,点C,E,D分别在OA,OB及AB弧上,过点A作AF⊥ED交ED的延长线于F,垂足为F,如果正方形的边长为1,那么阴影部分的面积为()例3. 如图所示,直角梯形ABCD中,∠B=90°,AD∥BC,AB=2,BC=7,AD=3,以BC为轴把直角梯形ABCD旋转一周,求所得几何体的表面积。

24.4弧长和扇形面积 知识点分类练习(无答案)2024-2025学年九年级上册数学人教版

24.4弧长和扇形面积 知识点分类练习(无答案)2024-2025学年九年级上册数学人教版

24.4弧长和扇形面积同步练习2024-2025学年九年级上册数学人教版第1课时 弧长和扇形面积知识点 1 弧长公式及其应用1.在半径为3 的圆中,90°的圆心角所对的弧长是 ( ) A. 92 B.9π C.32π D. 142. 如图24-4-1,AB 是⊙O 的直径,C 是⊙O 上一点,连接 AC,OC.若AB=6,∠A=30°,则BC 的长为 ( ) A.6π B.2π C. 32 D.π3. 如图24-4-2,四个全等三角形拼成一个风车图形.若AB=2,则当风车转动90°时,点 B 的运动路径的长度为 ( ) A.π B.2π C.3π D.4π4.如图 24-4-3,四边形 ABCD 是⊙O 的内接四边形,∠B=58°,∠ACD=40°.若⊙O 的半径为5,则DC 的长为 ( ) A. 133 B.109π C.π D. 125. 如图24-4-4,正方形 ABCD 的边长是 √2,将对角线 AC 绕点 A 顺时针旋转∠CAD 的度数,点C 旋转后的对应点为E ,则CÊ的长是 (结果保留π). 6. 如图24-4-5,传送带的一个转动轮的半径为18 cm ,转动轮转 n °,传送带上的物品 A 被传 送 12π cm, 则 n =7. 如图24-4-6,将△ABC 绕点 B 顺时针旋转60°得到△DBE,点 C 的对应点 E 恰好落在AB 的延长线上,连接AD.(1)求证:BC∥AD;(2)若AB=4,BC=1,求 A,C两点旋转所经过的路径长之和.知识点 2 扇形的面积公式及其应用8. 在半径为6 cm的圆中,圆心角为 60°的扇形的面积是 .9.已知扇形的半径为6,面积为 6π,则扇形圆心角的度数为 .10. 若扇形的弧长为2πcm,面积为4πcm²,则此扇形的半径为 .11. 如图24-4-7,将边长为6 的正方形铁丝框ABCD变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形 ADB的面积为 .12. 如图24-4-8所示的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶̂上,∠BAC=22.5°,则BC的长为 .点上,且点 B,C在AD13. 如图24-4-9,将四边形 ABCD 绕顶点 A 顺时针旋转 45°至四边形 AB'C'D'的位置.若AB =16 cm,则图中阴影部分的面积为14. 如图24-4-10,AB 是⊙O的直径,C,D 是⊙O上的点,OC∥BD,交AD于点 E,连接BC. (1)求证:AE=ED;̂的长.(2)若AB=10,∠CBD=36°,求AC15.如图 24-4-11,点 A,B,C 在⊙O 上,∠ABC=60°,直线AD ∥BC,AB=AD,点O 在 BD 上. (1)判断直线AD 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为6,求图中阴影部分的面积.16. 如图 24-4-12,六边形ABCDEF 是正六边形,曲线FA ₁B ₁C ₁D ₁E ₁F ₁ …叫做“正六边形的渐开线”, FA 1̂,A 1B 1̂,B 1C 1̂, C 1D 1̂,D 1E 1̂,E 1F 1̂,的圆心依次按A ,B ,C ,·D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线FA ₁B ₁C ₁D ₁E ₁F ₁的长是 .第2课时 圆锥的侧面积和全面积知识点 圆锥的侧面积以及全面积1. 若圆锥的母线长为4,底面圆的半径为2,则圆锥的侧面展开图(扇形)的弧长是 ,圆锥的侧面积. S 侧=¯,,圆锥的全面积 S 全=¯.2.如图 24-4-13,圆锥底面圆的半径AB=4,母线长AC=12,则这个圆锥的侧面积为 ( ) A.16π B.24π C.48π D.96π3. 如图 24-4-14,圆锥的底面圆半径r=6,高h=8,则圆锥的侧面积是 ( )A.15πB.30πC.45πD.60π4. 已知圆锥的母线长为3,底面圆半径为1,则圆锥侧面展开图的圆心角为 ( )A.30°B.60°C.120°D.150°5. 有一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝处忽略不计).若圆锥的底面圆的直径是80 cm,则这块扇形铁皮的半径是 ( )A.24 cmB.48 cmC.96 cmD.192 cm6.用一个圆心角为 90°,半径为8的扇形作一个圆锥的侧面,则这个圆锥的底面圆的直径是( )A.6B.5C.4D.37. 如图 24-4-15,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长 l 为 cm.8. 如图24-4-16,有一块半径为1m,圆心角为90°的扇形铁皮,要把它围成一个圆锥的侧面(接缝处忽略不计),那么这个圆锥的高为 m.9. 圆锥的底面圆周长为6πcm,高为4 cm,则该圆锥的全面积是,侧面展开图的圆心角是 .10. 如果圆锥的底面圆的周长是20π,侧面展开后所得的扇形的圆心角为120°,求该圆锥的侧面积和全面积.11. 若一个圆锥的侧面积是底面圆的面积的2倍,则该圆锥侧面展开图的圆心角的度数是( )A.120°B.180°C.240°D.300°12. 若要用一个底面圆直径为10,高为12的实心圆柱体,制作一个底面圆半径和高分别与圆柱底面圆半径和高相同的圆锥,则该圆锥的侧面积为 ( )A.60πB.65πC.78πD.120π13. 如图24-4-17 所示,圆锥的底面圆半径为5,母线长为20,一只蜘蛛从底面圆周上一点A 出发沿圆锥的侧面爬行一周后回到点 A 的最短路程是 ( )A.8B.10√2C.15 √2D.20√214. 如图24-4-18所示,将半径为3cm的圆形纸片沿 AB 折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为 ( )A.2√2cmB.√2cmC. √10 cmD.2√10cm15. 如图24-4-19 所示,在矩形纸片ABCD 中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD 后,分别裁出扇形BAF和半径最大的圆,恰好分别能作为一个圆锥的侧面和底面,则AB 的长为 ( )A.3.5cmB.4 cmC.4.5cmD. 5cm16. 如图 24-4-20,在扇形 OAB 中,圆心角为240°,点 A 与点 B 的距离为2 √3.若扇形OAB 恰好是一个圆锥的侧面展开图,则该圆锥的底面圆半径为 .17. 如图24-4-21,8×8的正方形网格纸上有扇形OAB 和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面圆半径为r₁;用扇形OCD 围成另一个圆锥的侧面,记这个圆锥的底面圆半径为r₂,则r1r2=¯.18.如图24-4-22,在半径为√2的圆形纸片中,剪一个圆心角为 90°的最大扇形(阴影部分).(1)求这个扇形的面积;(2)若将此扇形围成一个无底的圆锥(不计接头),求此圆锥底面圆的半径.19. 如图24-4-23,一个圆锥的高为3 √3 cm,侧面展开图是半圆.求:(1)圆锥的母线长与底面圆的半径之比;(2)∠BAC的度数;(3)圆锥的侧面积(结果保留π).。

扇形圆形六年级综合练习题

扇形圆形六年级综合练习题

扇形圆形六年级综合练习题在一个充满学习和探索的六年级数学课堂中,扇形和圆形综合练习题成为了同学们解决问题的新挑战。

本文将通过一系列精心设计的练习题,让我们深入了解和应用扇形与圆形的相关知识,提升我们的数学能力。

【练习题一】1. 如图所示,一个半径为5cm的圆中,扇形部分的圆心角为60°。

求这个扇形圆弧的长度和面积。

【解析】解决这个问题,我们需要思考如何计算扇形的弧长和面积。

首先,我们可以使用以下公式来计算扇形的弧长和面积:- 扇形弧长公式:L = πrθ/180°- 扇形面积公式:A = πr^2θ/360°根据题目给出的信息,扇形的圆心角为60°,半径为5cm。

因此,根据公式,我们可以得出:- 扇形弧长:L = π * 5 * 60 / 180 = 5π cm- 扇形面积:A = π * 5^2 * 60 / 360 = 5π cm^2练习题一的答案是:扇形圆弧的长度为5π cm,面积为5π cm^2。

【练习题二】2. 如图所示,一个半径为8cm的圆中,扇形部分的圆心角为120°。

求这个扇形圆弧的长度和面积。

【解析】同样地,我们可以使用之前提到的公式来求解这道题目。

根据题目给出的信息,扇形的圆心角为120°,半径为8cm。

因此,根据公式,我们可以得出:- 扇形弧长:L = π * 8 * 120 / 180 = 32π/3 cm- 扇形面积:A = π * 8^2 * 120 / 360 = 64π/3 cm^2练习题二的答案是:扇形圆弧的长度为32π/3 cm,面积为64π/3cm^2。

【练习题三】3. 如图所示,一个半径为10cm的圆,被划分成三个相等的扇形。

求每个扇形的圆心角、弧长和面积。

【解析】这道题目要求我们计算等分圆的扇形的圆心角、弧长和面积。

根据题目给出的信息,半径为10cm,并且圆被分成三个相等的扇形。

因此,每个扇形的圆心角为360°/3 = 120°。

弧长的公式扇形面积公式

弧长的公式扇形面积公式

弧长的公式扇形面积公式圆是由一条曲线组成的,其每个点到圆心的距离都相等。

圆周是圆的边界,圆心是圆周的中心点。

弧是圆周上的一段曲线,它与圆周之间的距离叫做弧长。

弧长取决于圆的半径和弧的度数。

扇形是圆的一部分,由圆心、两条半径和夹角组成。

扇形的面积也取决于圆的半径和夹角。

接下来,我们将介绍弧长和扇形面积的计算公式。

在圆周上,以角度制表示的弧长公式如下:L=(θ/360)*2πr其中,L表示弧长,θ表示圆心角的度数,r表示圆的半径。

在圆周上,以弧度制表示的弧长公式如下:L=θr其中,L表示弧长,θ表示圆心角的弧度,r表示圆的半径。

扇形面积的公式:扇形的面积公式是圆的面积公式的一部分,它可以通过扇形的圆心角和半径计算得出。

S=(θ/360)*πr²其中,S表示扇形的面积,θ表示圆心角的度数,r表示圆的半径。

这个公式也可以通过扇形的圆心角的弧度来表示:S=(1/2)θr²其中,S表示扇形的面积,θ表示圆心角的弧度,r表示圆的半径。

需要注意的是,在使用这些公式时,要确保角度的单位与圆的半径的单位相匹配,以获得正确的结果。

如果半径的单位是米,那么面积的单位将是平方米,弧长的单位将是米。

例如,如果一个圆的半径为5米,它的圆心角度数为60度,我们可以使用弧长公式计算出弧长:L=(60/360)*2π*5=5.24米使用扇形面积公式,我们可以计算出扇形的面积:S=(60/360)*π*5²=13.09平方米这些公式可以在解决各种与圆相关的问题时发挥重要的作用,例如在几何学、物理学和工程学中。

在实际应用中,我们还可以使用这些公式来计算弯道上的路程、扇形的面积分布等。

此外,知道这些公式还有利于我们理解圆的特性和性质,在解决与圆相关的问题时提供指导。

总之,弧长和扇形面积的公式是圆相关的重要工具,它们可以帮助我们计算弧长和扇形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弧长公式、扇形面积公式及其应用(含经典习题)
【本讲教育信息】
一. 教学内容:
弧长及扇形的面积
圆锥的侧面积
二. 教学要求
1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。

2、了解圆锥的侧面积公式,并会应用公式解决问题。

三. 重点及难点
重点:
1、弧长的公式、扇形面积公式及其应用。

2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。

难点:
1、弧长公式、扇形面积公式的推导。

2、圆锥的侧面积、全面积的计算。

[知识要点]
知识点1、弧长公式
因为360°的圆心角所对的弧长就是圆周长C
=2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的
弧长l的计算公式:,
说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧
长l时,不要错写成。

(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。

知识点2、扇形的面积
如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形
面积是,由此得圆心角为n°的扇形面积的计
算公式是。

又因为扇形的弧长,扇形面积
,所以又得到扇形面积的另一个计
算公式:。

知识点3、弓形的面积
(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。

(2)弓形的周长=弦长+弧长
(3)弓形的面积
知识点4、圆锥的侧面积
圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积
说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。

(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。

知识点5、圆柱的侧面积
圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,若圆柱的底面半径为r,高为h,则圆柱的侧面积,圆柱的全面积
知识小结:
圆锥与圆柱的比较
【典型例题】
例 1. (2003.辽宁)如图所示,在同心圆中,两圆的半径分别为2,1,∠AOB=120°,则阴影部分的面积是()
A. B. C. D.
例2. (2003.福州)如图所示,已知扇形AOB 的圆心角为直角,正方形OCDE内接于扇形AOB,点C,E,D分别在OA,OB及AB弧上,过点A作AF⊥ED交ED的延长线于F,垂足为F,如果正方形的边长为1,那么阴影部分的面积为()
例3. 如图所示,直角梯形ABCD中,∠B=90°,AD∥BC,AB=2,BC=7,AD=3,以BC为轴把直角梯形ABCD旋转一周,求所得几何体的表面积。

例4. (2003.宁波)已知扇形的圆心角为120°,面积为300平方厘米
(1)求扇形的弧长。

(2)若把此扇形卷成一个圆锥,则这个圆锥的轴截面面积是多少?。

模拟练习题
一、选择题
1. 若一个扇形的圆心角是45°,面积为2л,则这个扇形的半径是()
A. 4
B. 2
C. 47л
D. 2л
2. 扇形的圆心角是60°,则扇形的面积是所在图面积的()
A. B. C. D.
3. 扇形的面积等于其半径的平方,则扇形的圆
心角是()
A. 90°
B.
C.
D.180°
4. 两同心圆的圆心是O,大圆的半径是以OA,OB分别交小圆于点M,N.已知大圆半径是小圆半径的3倍,则扇形OAB的面积是扇形OMN 的面积的()
A. 2倍
B. 3倍
C. 6倍
D. 9倍
5. 半圆O的直径为6cm,∠BAC=30°,则阴影部分的面积是()
A. B.
C. D.
6 用一个半径长为6cm 的半圆围成一个圆锥的侧面,则此圆锥的底面半径为()
A. 2cm
B. 3cm
C. 4cm
D. 6cm
7. 圆锥的全面积和侧面积之比是3 :2,这个圆锥的轴截面的顶角是()
A. 30°
B. 60°
C. 90°
D. 120°
8. 已知两个母线相等的圆锥的侧面展开图恰好能拼成一个圆,且它们的侧面积之比为1∶2,则它们的高之比为()
A. 2:1
B. 3:2
C. 2:
D. 5:
9. 如图,在△ABC中,∠C =Rt∠,AC > BC,若以AC为底面圆半径,BC为高的圆锥的侧面积为S1,以BC为底面圆半径,AC为高的圆锥的侧面积为S2,则()
A. S1=S2
B. S1 > S2
C. S1 < S2
D. S1、S2的大小关系不确定
二、填空题
1. 扇形的弧长是12лcm,其圆心角是90°,则扇形的半径是cm ,扇形的面积是cm
2.
2. 扇形的半径是一个圆的半径的3倍,且扇形面积等于圆面积,则扇形的圆心角是.
3. 已知扇形面积是12cm2,半径为8cm,则扇形周长为.
4 在△ABC中,AB=3,AC=4,∠A=90°,把Rt△ABC绕直线AC旋转一周得到一个圆锥,其全面积为S1;把Rt△ABC绕AB旋转一周得到另一个圆锥,其全面积为S2,则S1:S2=。

5. 一个圆柱形容器的底面直径为2cm,要用一块圆心角为240°的扇形铁板做一个圆锥形的盖子,做成的盖子要能盖住圆柱形容器,这个扇形的半径至少要有cm。

6. 如图,扇形AOB的圆心角为60°,半径为6cm,C,D分别是的三等分点,则阴影部分的面积是。

7. 如图正方形的边长为2,分别以正方形的两个对角顶点为圆心,以2为半径画弧,则阴影部分面积为。

三、计算题
1. 如图,在Rt△ABC中,AC=BC ,以A为圆心画弧,交AB于点D,交AC延长线于点
F,交BC于点E,若图中两个阴影部分的面积相等,求AC与AF的长度之比(л取3)。

2. 一个等边圆柱(轴截面是正方形的圆柱)的侧面积是S1,另一个圆锥的侧面积是S2,如果
圆锥和圆柱等底等高,求.。

相关文档
最新文档