有色金属冶金学—贵金属冶金
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高压解析法:用NaCN1% 和 NaOH 1%溶液, 在160 ℃和0.35MPa的压力下,解析2~9小时。
美国矿务局的波特发明
南非英美公司法(A.R.R.L法) :在解吸柱中采用0.5~1
%个炭体积的热(93~110℃)10% NaOH溶液(或5%NaCN+2%NaOH 溶液)接触2~6小时,然后用5~ 7个炭体积的热水洗脱,洗脱液流速为每 小时三个炭体积,总的解吸时间为9~20小时,其优点类似于高压解吸法, 但需多路液流设备,增加了系统的复杂性。
有色金属冶金学—贵金属冶金
有色金属冶金学—贵金属冶金
B、金泥处理。火法工艺处理:酸溶、焙 烧、熔炼。
有色金属冶金学—贵金属冶金
5.3.2 非氰浸金方法
氰化法缺点:污染环境、浸出速度慢、对 含铜、砷和锑的金矿用氰化法很困难。 主要方法:硫脲法、硫代硫酸钠法、水 氯化法、溴化物法。 5.4 生物法处理难处理金矿 难处理金矿的概念: 用常规方法难以达到有效提取的金矿石。
(1) 搅拌浸出法: 搅拌氰化是将矿石或精矿经细磨浓缩后在搅 拌浸出槽中进行氰化浸出。 工艺流程见图。 搅拌浸出优点:反应速度快、提取率高。 搅拌浸出工序:磨矿、浓缩、浸出。 通常粒度范围是-0.074mm,液固比(1.5~1): 1, 氰化物的质量分数为0.01~0.1%或0.02~0.05%, CaO质量分数0.01~0.03%,充气下搅拌24小 时以上, 金溶解率大于95%.
有色金属冶金学—贵金属冶金
空气机械联合搅拌浸出槽 装有空气提升器和机械耙。优点:动力消 耗少、容积大,用于大型氰化厂。 (2)固液分离 浸出后的矿浆由含金溶液(贵液)和固体 残渣组成,实现固液分离用倾析法和过 滤法。
倾析法在浓缩机中进行;过滤法在 真空过滤机中进行。 堆浸与就地浸出
有色金属冶金学—贵金属冶金
有色金属冶金学—贵金属冶金
(2)锌置换法 在氰化物溶液中,锌的标准电位为 -1.2V而金为-0.68V,反应式为:
2Au(CN)2- + Zn = 2Au + Zn(CN)42K = 1.0 ×1023
A、锌置换操作。 锌丝置换法:把锌丝放在沉淀箱中,让含金液 流经沉淀箱,发生置换反应。每产生1克金消 耗锌4~20克。 锌粉置换法: 锌粉比表面积大,效率比锌丝高得 多。
有色金属冶金学—贵金属冶金
金走向
有色金属冶金学—贵金属冶金
E、炭再生。
酸洗和加热活化。
酸洗法是采用稀盐酸或稀硝酸(浓 度一般为5%)在室温下洗涤解 吸炭,作业常在单独的搅拌槽中 进行,此时可除去碳酸钙和大部 分贱金属络合物,酸洗后的炭须 用碱液中和及用清水洗涤,然后 才能将其送去进行热活化再生。
有色金属冶金学—贵金属冶金
A 预筛。目的是除去矿浆中的杂质,通常 筛上是木屑。
B 吸附。来自浸出的矿浆连续经过几个串 联的吸附槽,用活性炭吸附矿浆中的金。 影响吸附效率的因素有:每吨矿浆中炭 的浓度、吸附槽数目、炭移动的相对速 度、矿浆在吸附段的停留时间和炭的载 金量等。 通常每升矿浆加炭40克,吸附槽4~7个, 吸附率99%以上。
碳质金矿
已经溶解的金被碳吸附,提取不出来
黏土质金矿
氰化浸出的矿浆过滤性差,已经溶解的金及氰化物明显地被泥质矿物吸附
含铁金矿
金粒表面生成氢氧化铁膜,使金溶解难以进行
金矿难处理程度分类
浸出率/%
难处理程度
95~100
易浸
80~95
轻度难浸
50~80
中度难浸
0~50
高度难浸
有色金属冶金学—贵金属冶金
5.4.2 细菌氧化-氰化浸出
按浸出与吸附的组合方式不同分为炭浆 法和炭浸法。炭浆法是先氰化后吸附而 炭浸法是浸出与吸附同时进行。 炭浆工艺由预筛、氰化浸出、吸附、解 析、电解(或电积)和炭再生作业组成。 炭浆法与锌置换法相比,炭浆法取消了 固液分离与加锌分离,直接用炭吸附氰 化浸出液。
有色金属冶金学—贵金属冶金
金走向
碳பைடு நூலகம்循 环
有色金属冶金学—贵金属冶金
C、解析。 常压解析法:在85℃的常压下,用 NaCl和 NaOH各1%的溶液从载金炭上解析金,适用小 规模生产。1952年美国扎德拉发明的著名方法。 酒精解析法:在80 ℃和常压下,用NaCN0.1% 和 NaOH1%溶液,再加入体积分数为20%的 酒精作解析液。美国矿务局的海宁发明的方法
热活化再生是为了较彻底地除去不 能被解吸和酸洗除去的被吸附的 无机物及有机物杂质,多数金选 厂是定期地将酸洗、碱中和及水 洗涤后的解吸炭送入间接加热的 回转窑中在隔绝空气的条件下加 热至650℃,恒温30分钟,然后 在空气中冷却或用水进行骤冷。
有色金属冶金学—贵金属冶金
贵液提金的方法
(1)电解。解析液是 一种纯净的金、银氰 化物溶液。金的质量 浓度300~ 600g/m3, 解析液通过若干个装 有数对阴、阳极的电 解槽,电流密度 8~15A/ m2,槽压 2.5~3.5V, 金的沉积 99%以上。
有色金属冶金学—贵金属冶金
洗水 有色金属冶金学—贵金属冶金
浸出设备主要有三种类型:
机械搅拌浸出槽 采用螺旋桨、叶轮
和涡轮搅拌装置搅拌。 优点:搅拌均匀而强 烈,缺点:动力消耗 大。
有色金属冶金学—贵金属冶金
空气搅拌浸出槽 利用压缩空气搅拌矿 浆,在槽内装有各种 类型的空气提升装置。 优点:设备构造简单、 费用低、便于操作、 适于连续工作。缺点: 附加空气压缩设备。
有色金属冶金学—贵金属冶金
5.4.1 难处理金矿的基本特征
难处理金矿的类型
矿石种类
难处理的原因
微粒浸染状金矿石 金呈微粒分布在石英脉石或硫化物中,磨矿困难,难于使金充分暴露而氰化
含铜金矿
氰化物消耗高,在金粒表面形成二次膜,阻碍溶解,氰化物溶液疲劳快
含锑金矿
在金粒表面生成致密的薄膜,明显减慢金的溶解速度
堆浸与 就地浸 出
有色金属冶金学—贵金属冶金
5.3.1.3 金的回收
从氰化物溶液中回收金的方法有活性炭 吸附、锌置换、离子交换树脂吸附、电 沉积和萃取法。
有色金属冶金学—贵金属冶金
(1)活性炭吸附法 活性炭吸附法采用活性炭作吸附剂。密实的
含碳物质,如煤、椰壳、果核等在适宜的氧化气氛及800~1000℃下煅 烧活化制得。具有很大比表面积、多孔结构的吸附剂 。
美国矿务局的波特发明
南非英美公司法(A.R.R.L法) :在解吸柱中采用0.5~1
%个炭体积的热(93~110℃)10% NaOH溶液(或5%NaCN+2%NaOH 溶液)接触2~6小时,然后用5~ 7个炭体积的热水洗脱,洗脱液流速为每 小时三个炭体积,总的解吸时间为9~20小时,其优点类似于高压解吸法, 但需多路液流设备,增加了系统的复杂性。
有色金属冶金学—贵金属冶金
有色金属冶金学—贵金属冶金
B、金泥处理。火法工艺处理:酸溶、焙 烧、熔炼。
有色金属冶金学—贵金属冶金
5.3.2 非氰浸金方法
氰化法缺点:污染环境、浸出速度慢、对 含铜、砷和锑的金矿用氰化法很困难。 主要方法:硫脲法、硫代硫酸钠法、水 氯化法、溴化物法。 5.4 生物法处理难处理金矿 难处理金矿的概念: 用常规方法难以达到有效提取的金矿石。
(1) 搅拌浸出法: 搅拌氰化是将矿石或精矿经细磨浓缩后在搅 拌浸出槽中进行氰化浸出。 工艺流程见图。 搅拌浸出优点:反应速度快、提取率高。 搅拌浸出工序:磨矿、浓缩、浸出。 通常粒度范围是-0.074mm,液固比(1.5~1): 1, 氰化物的质量分数为0.01~0.1%或0.02~0.05%, CaO质量分数0.01~0.03%,充气下搅拌24小 时以上, 金溶解率大于95%.
有色金属冶金学—贵金属冶金
空气机械联合搅拌浸出槽 装有空气提升器和机械耙。优点:动力消 耗少、容积大,用于大型氰化厂。 (2)固液分离 浸出后的矿浆由含金溶液(贵液)和固体 残渣组成,实现固液分离用倾析法和过 滤法。
倾析法在浓缩机中进行;过滤法在 真空过滤机中进行。 堆浸与就地浸出
有色金属冶金学—贵金属冶金
有色金属冶金学—贵金属冶金
(2)锌置换法 在氰化物溶液中,锌的标准电位为 -1.2V而金为-0.68V,反应式为:
2Au(CN)2- + Zn = 2Au + Zn(CN)42K = 1.0 ×1023
A、锌置换操作。 锌丝置换法:把锌丝放在沉淀箱中,让含金液 流经沉淀箱,发生置换反应。每产生1克金消 耗锌4~20克。 锌粉置换法: 锌粉比表面积大,效率比锌丝高得 多。
有色金属冶金学—贵金属冶金
金走向
有色金属冶金学—贵金属冶金
E、炭再生。
酸洗和加热活化。
酸洗法是采用稀盐酸或稀硝酸(浓 度一般为5%)在室温下洗涤解 吸炭,作业常在单独的搅拌槽中 进行,此时可除去碳酸钙和大部 分贱金属络合物,酸洗后的炭须 用碱液中和及用清水洗涤,然后 才能将其送去进行热活化再生。
有色金属冶金学—贵金属冶金
A 预筛。目的是除去矿浆中的杂质,通常 筛上是木屑。
B 吸附。来自浸出的矿浆连续经过几个串 联的吸附槽,用活性炭吸附矿浆中的金。 影响吸附效率的因素有:每吨矿浆中炭 的浓度、吸附槽数目、炭移动的相对速 度、矿浆在吸附段的停留时间和炭的载 金量等。 通常每升矿浆加炭40克,吸附槽4~7个, 吸附率99%以上。
碳质金矿
已经溶解的金被碳吸附,提取不出来
黏土质金矿
氰化浸出的矿浆过滤性差,已经溶解的金及氰化物明显地被泥质矿物吸附
含铁金矿
金粒表面生成氢氧化铁膜,使金溶解难以进行
金矿难处理程度分类
浸出率/%
难处理程度
95~100
易浸
80~95
轻度难浸
50~80
中度难浸
0~50
高度难浸
有色金属冶金学—贵金属冶金
5.4.2 细菌氧化-氰化浸出
按浸出与吸附的组合方式不同分为炭浆 法和炭浸法。炭浆法是先氰化后吸附而 炭浸法是浸出与吸附同时进行。 炭浆工艺由预筛、氰化浸出、吸附、解 析、电解(或电积)和炭再生作业组成。 炭浆法与锌置换法相比,炭浆法取消了 固液分离与加锌分离,直接用炭吸附氰 化浸出液。
有色金属冶金学—贵金属冶金
金走向
碳பைடு நூலகம்循 环
有色金属冶金学—贵金属冶金
C、解析。 常压解析法:在85℃的常压下,用 NaCl和 NaOH各1%的溶液从载金炭上解析金,适用小 规模生产。1952年美国扎德拉发明的著名方法。 酒精解析法:在80 ℃和常压下,用NaCN0.1% 和 NaOH1%溶液,再加入体积分数为20%的 酒精作解析液。美国矿务局的海宁发明的方法
热活化再生是为了较彻底地除去不 能被解吸和酸洗除去的被吸附的 无机物及有机物杂质,多数金选 厂是定期地将酸洗、碱中和及水 洗涤后的解吸炭送入间接加热的 回转窑中在隔绝空气的条件下加 热至650℃,恒温30分钟,然后 在空气中冷却或用水进行骤冷。
有色金属冶金学—贵金属冶金
贵液提金的方法
(1)电解。解析液是 一种纯净的金、银氰 化物溶液。金的质量 浓度300~ 600g/m3, 解析液通过若干个装 有数对阴、阳极的电 解槽,电流密度 8~15A/ m2,槽压 2.5~3.5V, 金的沉积 99%以上。
有色金属冶金学—贵金属冶金
洗水 有色金属冶金学—贵金属冶金
浸出设备主要有三种类型:
机械搅拌浸出槽 采用螺旋桨、叶轮
和涡轮搅拌装置搅拌。 优点:搅拌均匀而强 烈,缺点:动力消耗 大。
有色金属冶金学—贵金属冶金
空气搅拌浸出槽 利用压缩空气搅拌矿 浆,在槽内装有各种 类型的空气提升装置。 优点:设备构造简单、 费用低、便于操作、 适于连续工作。缺点: 附加空气压缩设备。
有色金属冶金学—贵金属冶金
5.4.1 难处理金矿的基本特征
难处理金矿的类型
矿石种类
难处理的原因
微粒浸染状金矿石 金呈微粒分布在石英脉石或硫化物中,磨矿困难,难于使金充分暴露而氰化
含铜金矿
氰化物消耗高,在金粒表面形成二次膜,阻碍溶解,氰化物溶液疲劳快
含锑金矿
在金粒表面生成致密的薄膜,明显减慢金的溶解速度
堆浸与 就地浸 出
有色金属冶金学—贵金属冶金
5.3.1.3 金的回收
从氰化物溶液中回收金的方法有活性炭 吸附、锌置换、离子交换树脂吸附、电 沉积和萃取法。
有色金属冶金学—贵金属冶金
(1)活性炭吸附法 活性炭吸附法采用活性炭作吸附剂。密实的
含碳物质,如煤、椰壳、果核等在适宜的氧化气氛及800~1000℃下煅 烧活化制得。具有很大比表面积、多孔结构的吸附剂 。