输电线路转角杆塔中心位移通式的应用

合集下载

浅谈小转角直线杆塔在电网中的应用

浅谈小转角直线杆塔在电网中的应用
成 本 约 为耐 张杆 的 6 O %。 ( 2) 减 少施 工 量 . 加快施工进度。在 2 2 0 k V 以及 以上 的 线
优 势也 就 会 越 大 。 对 这 类 的杆 塔 进 行 研 究和 开 发 , 能够 确 保 输 电 线路 中 的杆 塔 型 式 变得 更 完备 ,输 电 线 路 工 程 相 关 设 计 也
【 文献标识码 】 B
【 文章编号 】 1 0 0 6 — 4 2 2 2 ( 2 0 1 4 ) 2 0 ~ 0 1 3 3 — 0 2
小 转 角 直 线 杆 塔 具 有 较 多的 优 点 .但ห้องสมุดไป่ตู้是 在 设 计 以及 施 工
架 空 输 电线 路 的 路 径 宜 沿公 路 、 铁 路 以及 河道 等 , 充 分 使
的安全性、 经济性与可靠性 , 在连续小转角段 , 推荐应 用小转角直线杆塔。本 文首 先介绍了小转角直线杆塔 的特 点 , 然后对其应用意义进行介
绍, 最 后 具 体 阐述 了其 在 电网 中 的 具 体 应 用 。
【 关键 词 】 小转角直线杆塔 ; 电网 ; 应用
【 中图分类号 】 T M 7 5 4
用现 有 的 交通 条 件 , 方便 施 工 和 运 行 , 符 合 城 镇 规 划 。 所 以会 和 运 行 过 程 中存 在 很 多 问题 , 要 进 行 改 进 与 提 升 。 比如 。 在 进
常 常 出现 连 续 小转 角的 情 况 。因此 , 小 转 角 直线 杆 塔 具 有 较 大 行 带 电作 业 的 时候 . 侧 向拉 力较 大 . 给 安 装 以及 调 换 金 具 串造 的应 用 空 间 。 在 架 空 线路 的 定位 设 计 时要 充 分 认 知 其 特 点 , 在 成 了较 大 的施 工 难 度 。所 以 。 在 正 常 施 工 的 时候 . 要 利 用 绝 缘

110kV输电线路规划设计中路径选择及杆塔定位

110kV输电线路规划设计中路径选择及杆塔定位

110kV输电线路规划设计中路径选择及杆塔定位发表时间:2017-03-09T16:41:04.013Z 来源:《电力设备》2017年第1期作者:黄响亮[导读] 110kV输电线路作为我国电力系统的重要组成部分,在保证我国居民及工业用电上发挥着重要的作用。

一.优化杆塔设计方案对于110kV输电线路正常工作的重要性新时期,杆塔作为输电线路工程中的主要支撑,它的性能能否得到充分发挥,将直接影响输电线路的服务功能和经济效益。

在电力线路建设项目中,杆塔的建造成本约占1/3的项目投资总成本,很大程度上决定了杆塔的合理选择,对110kV输电线路工作的重要性,杆塔的优化设计方案。

在杆塔基础的设计过程中,设计人员应结合110kV输电线路的实际需求和手柄的设计过程进行了详细的阐述,以确保在设计杆塔的正常使用,满足工程施工要求。

杆塔的设计优化过程中,应做好以下几个方面:1.积极研发新塔型,设计过程中应结合工程施工的具体要求设计新塔型;2. 110kV输电线路杆塔的规划,需要充分考虑自然环境的影响,根据不同地貌进行不同设计安排3.控制杆塔制造模式,在倡导节能减排的背景下,加强杆塔的成本控制,尽量避免浪费和消耗现象的产生。

以上三个方面,客观地说明杆塔的优化设计对110kV输电线路正常运行的重要性。

二.110KV输电线路设计中的路径选择110kV输电线路的路径选择是一个非常重要的过程,输电线路路径选择的合理与否将直接影响施工难度和施工成本,本文主要从路径选择的类型和影响因素方面分析的,并对路径选择和主要影响因素进行了深入的分析。

1.路径的选择类型在110kV传输线的设计过程中,有两种路径选择类型,即野外的路径选择和图上的路径选择。

首先,进行图上路径选择,根据地形要求和工程要求,设计多套的路径结构方案,并进行实地考察,充分考虑,确定合适的路径方案。

第二,野外路径的选择。

首先,收集当地的地质资料,并进行实地调查。

经过大量考究,确定了合适的施工方案。

架空输电线路基础名词及解释

架空输电线路基础名词及解释

架空输电线路基础名词及解释一、架空输电线路的组成:架空输电线路主要由导线、避雷线、绝缘子(串)、线路金具、杆塔、基础、接地装置几部分组成,部分杆塔还有拉线。

1、导线:悬挂在杆塔上,用于传导电流、输送电能的设备。

它通过绝缘子串悬挂在杆塔上。

2、避雷线:避雷线又称架空地线,悬挂于导线之上。

它的作用是防止雷击架空导线,并在架空导线受到雷击时起分流作用,对导线起耦合和屏蔽的作用,降低导线上的感应过电压。

3、绝缘子:用来支持或悬挂导线和避雷线,保证导线与杆塔间不发生闪络,保证避雷线与杆塔间的绝缘.4、线路金具:线路金具是输电线路所用金属部件的总称。

它是用于悬挂、固定、保护、接续架空线或绝缘子以及在拉线杆塔的结构上用于连接拉线的金属器件。

线路金具可以分为线夹、连结金具、接续金具、保护金具、拉线金具等。

5、杆塔:杆塔用来支撑架空线路导线和架空地线及其他附件,并使导线与导线之间、导线和架空地线之间保持一定的安全距离,并保证导线对地面和交叉跨越物之间有足够的安全距离。

6、杆塔基础:杆塔基础的作用是支撑杆塔,传受杆塔所受荷载至大地.它将杆塔固定于地下,以保证杆塔不发生倾斜、下沉、上拔及倒塌。

7、接地装置:由接地体和接地引下线组成,其作用主要是将雷电流引入大地,保证线路具有一定的耐雷水平.8、拉线:用来平衡杆塔的横向横向荷载和导线张力,减少杆塔根部的弯矩。

它用来加强杆塔的强度,承担外部荷载的作用力,以减少杆塔的材料消耗量,降低杆塔的造价。

二、常见的线路金具类别1、线夹:线夹用来握持架空线.(1)悬垂线夹:与悬垂绝缘子串相配合使用的线夹.悬垂线夹的用途是:把导线悬挂、固定在直线杆悬式绝缘子串上,选用U型螺丝结构。

(2)耐张线夹:与耐张绝缘子串相配合使用的线夹。

螺栓型耐张线夹的用途是:把导线固定在耐张、转角、终端杆的悬式绝缘子串上,选用倒装式结构,其优点是尺寸大小、重量轻、配件少、握力大。

2、连接金具:所谓连接金具是用来连接导线与绝缘子,或是连接绝缘子与杆塔横担的金具。

[基础课堂]架空输电线路杆塔中心桩位移计算应用

[基础课堂]架空输电线路杆塔中心桩位移计算应用

[基础课堂]架空输电线路杆塔中心桩位移计算应用1. 前言一般情况下,输电线路杆塔的中心就在线路的杆位中心桩上,但当线路走向发生变化,线路走向就有转角,此时,为避免与之中相邻的直线杆塔受到角度荷载的作用,转角上用的转角杆塔中心的位置应保证其中相导线在线路的中心线上,就需要将线路转角杆塔中心的位置通向转角内侧(横担宽与长短横担引起)或外侧(中相挂点偏移)的转角的角平分线上移动(下列的位移方向都指转角的角平分线上),这样杆塔中心位置与线路杆位中心桩在转角的角平分线上有一定的距离,这距离就是大家称的杆塔中心位移。

在架空输电线路设计和施工分坑测量中,经常会遇到和解决杆塔设计中心桩的位移问题。

导致中心桩位移的原因有多种多样,主要有转角杆塔横担有宽度,且一些转角杆塔为长短横担,中线挂线点不在横担中间、多是外角长内角短;转角塔中线偏挂等。

今天小编就针对此根据相关书籍及论文阐述的计算方法与大家讨论分享。

2. 耐张转角塔中心位移耐张型杆塔除支承导线和架空地线的垂直荷载和风荷载外,还承受顺线路张力的杆塔。

导线和架空地线在耐张型杆塔处开断,且被定位于导线和架空地线呈直线的线段中,用来减小线路沿纵向的连续档的长度,以便于线路施工和维修,并控制线路沿纵向杆塔可能发生串倒的范围。

耐张型杆塔分耐张直线杆塔、耐张转角杆塔及终端杆塔。

一般耐张直线杆塔两侧横担等长,一般不需要中心桩位移,部分因为中相导线挂至塔身主材时需要考虑位移,其他耐张型杆塔也存在此情况;耐张转角杆塔转角较小时横担一般等长,较大时一般为长短头横担,所以转角大时一般需要考虑位移;纯粹的终端塔一般为等长横担,但部分终端塔兼大转角的杆塔会采用长短头横担,故大部分时候需要考虑位移。

下面就针对各种情况进行简单介绍。

2.1 等长横担中心桩位移等长横担中相挂点右两种情况,一种中相挂点在两边导线中间,如门型电杆、重冰区采用的酒杯型耐张转角塔,挂在干字型中间的耐张转角塔,此时需考虑的位移是由于杆塔横担处存在宽带,导致挂线点不在线路的设计中线点上,只有将中心桩向内侧位移后,才能使杆塔的中心线和边线都恢复到线路的设计中心线上;另外一种是中相挂点不在两边导线中间,挂在塔身主材上,主要是干字型塔,此时需考虑将中相挂在主材上偏离设计中心点的位移,同时本情况也需要考虑杆塔横担处存在宽带引起的位移,与第一情况一致,故我们将两者情况可以合并一起考虑,当中相挂点在两边导线中间时偏移值为0,在主材上我们考虑一偏移值b,因为现在的塔型一般为正方形,该值一般为中相横担两挂点之间的一半。

中心桩为什么要位移

中心桩为什么要位移

通常情况下,输电线路杆塔的中心就在线路的杆位中心桩上。

但当线路发生转角时,转角耐张杆的中心就要在线路转角的位置向转角内侧移动,使杆塔中心位置与线路杆位中心在转角的角平分线上有一定的距离,即业内所称的杆塔中心位移。

这是因为输电线路在转角时,转角耐张杆带电部位与杆身之间的间隙会发生变化。

如图一所示,当线路没有转角时(图一中a),外角边导线的跳线(红色部分)与杆塔的距离是L1,当发生转角时(图一中b),外角边导线和中间导线的跳线与杆身的距离将变成L2,很明显,后者的距离小于前者(内角边导线跳线的L2会加大)。

当这个距离过小时,线路绝缘强度减小,在送电后就会发生接地闪络。

为加大转角杆外角边导线和中线跳线对杆身的距离,通常是将横担向外角方向移动一定距离,将杆塔的横担外角侧加长,内角侧缩短,如图二(L)所示。

此时横担的中心C 与杆塔的中心O就将不在一条中心线上,如果此时组立杆塔仍将杆塔中心放在线路转角中心桩的位置上,则导线在挂线后就要向外角偏离线路中心(绿色与兰色),这会使与之相邻的直线杆上悬垂绝经子串向线路外侧倾斜,减小了风偏距离,严重时会使直线杆对地绝缘间隙不足。

为此要将转角耐张杆的中心向内角做适当的位移,以使挂线后导线(绿)走向与线路中心(兰)重合。

在计算出杆塔的位移量后,现场分坑操作时,在线路转角的角平分线上从线路中心桩向内角侧量出位移量后,该点就是杆的中心。

如图二,就是将B点移到O的位置,也就是将杆塔向内角移动,使其中心O点向内角移动OB的距离到O1(红色)处。

这里不是移动线路的中心桩,而是移动杆塔的中心,线路中心桩是不能随意移动的。

杆塔中心位移量S(OB)由两部分组成:S1:线路转角和横担上同相导线悬挂耳板孔间距引起的位移;S2:杆塔中心和横担中心距离引起的位移。

浅谈电力线路杆塔中心桩位移

浅谈电力线路杆塔中心桩位移

浅谈电力线路杆塔中心桩位移摘要:在输电线路施工复测分坑测量中,在设计提供的杆塔明细表中某些杆塔中心桩向内角或外角移动一定距离,其移动距离简称为位移值。

导致中心桩位移的原因有多种多样,一般是转角塔横担有宽度;且某些转角塔是长短横担,中线挂线点不在横担中间、多是外角长内角短;转角塔中线偏挂等。

故杆塔中心桩须在内角平分线上位移一段距离。

关键词:线路,杆塔,中心桩,位移Abstract: in the transmission line construction reeated measure points in the measurement of pit, the tower in design provides list in some tower center to inside or outside of mobile distance, its mobile distance is referred to as “displacement value. The cause of the displacement in center pile has varied, general is the corner tower bear have width; And some corner tower is the length of the bear, the center line hang line point is not among the bear, is outside, long an internal Angle short; Corner tower line partial hang, etc. It must be produced center tower pile share some distance from the online displacement.Keywords: line, tower, the center pile, displacement0 前言在实际施工中,转角杆塔种类繁多:如单回路耐张转角杆塔、双回路耐张转角杆塔、三联耐张转角杆塔、双回变单回分歧塔、带小转角直线塔、直线换位杆塔相邻等都会有位移。

关于杆塔中心桩位移计算通式的探讨

关于杆塔中心桩位移计算通式的探讨

2 转 角 耐 张 杆 塔 的 中心桩 位 移 计 算
根 据 工 程 上 的使 用 情 况 ,线 路 桩 位 移 计 算 可 分 为 两 类 ,转 角 耐 张 杆 塔 和 直 线 小 转 角 。 直 线 小 转 角 的杆 塔 中 心桩 位 移 计 算 较 为 简单 ,就 是考 虑在 年 平 均运 行 应 力 条件 ( 长期 荷 载 ) 计 算 直 线 悬 垂 串 的横 向偏 移 值 ( 相 下 三 相等 ) ,该偏 移 值就 是 直线 小 转 角 线 路 桩 向外 角 侧 的 位 移 值 。 以下 着 重 研 究 转 角 耐 张 杆 塔 的位 移计算 。 由 于 线 路 所 使 用 的杆 塔 结 构 型 式很 多 , 但 对 于 导 线 挂 点 来 说 只 有 两 种 ,一 种 是 三 相
维普资讯
20 07年第 1 期
Z JANG L CT I P HE I E E R C OW ER
浙 江 电 力
61
关于杆塔 中心桩 位移计算通式的探讨
I v si a i n o r u a f r Diplc m e to l-o r S Ce t r Pe n e tg to n Fo m l o s a e n fPo e t we ’ n e g
+了

() 1
面 的投Байду номын сангаас影 连线 的 中心 与线 路 中心桩 重合 。
式 中 :d——边 相挂 点杆 塔 中心桩 位移 值 ,正
维普资讯
6 2
线 路 中心线
浙 江 电 力
20 年第 1 07 期
横 担 长度 ; |一 s 对 应 于 相 邻直 线杆 塔 的 中相 横 担 长度 ,正 负取值 同上 ;

输电线路杆塔中心位移计算

输电线路杆塔中心位移计算

输电线路转角杆塔中心位移通式的应用1. 输电线路转角杆塔中心位移的定义:输电线路转角杆塔中心位移,是指转角杆塔的中心桩,自线路中心桩,沿线路内角的平分线方向移动一定的距离,作为杆塔的中心桩。

它是杆塔基础施工的依据。

2. 输电线路转角杆塔中心位移的意义:输电线路转角杆塔中心位移后,能较好的消除或减小与之相邻的直线杆塔因三相导线偏移而产生的横向合力,并兼顾相邻直线杆塔绝缘子串的倾斜角,使之满足在各种气象条件下导线对杆塔结构的电气安全净距。

3. 计算公式: 32θcos32θ62θ3322112ES tg C tg C L L d +++=——(1) (1)式中d ——自线路中心桩,沿线路内角的平分线方向移动一定的距离,正值向内角侧位移,负值向外角侧位移(m );2L ——转角杆塔外角侧横担的导线挂点至杆塔中心的距离(m ); 1L ——转角杆塔内角侧横担的导线挂点至杆塔中心的距离(m );——线路转角度数;1C ——转角杆塔边相导线横担两个挂线点间水平距离(m ); 2C ——转角杆塔中相导线两个挂线点间水平距离(m );2S ——与转角杆塔相邻的直线杆塔中相导线挂线点至直线塔中心距离,横担伸展方向位于转角塔内角侧时取正,反之取负值。

两侧相邻直线杆塔中相横担长度及方向不一致时,按(2)式2S ='2212''2211S l l l S l l l +++(m )——(2)计算; (2)式中S 2'——对应相邻档距1l 的直线杆塔的中相横担长度;2S "——对应相邻档距2l 直线杆塔的中相横担长度;2S 横担伸展方向位于转角塔内角侧时取正,反之外角侧取负值。

E ——转角杆塔中相导线挂点至杆塔中心的偏挂距离(m )。

位于内角侧时取正值,反之取负值。

4. 计算公式在工程中的应用:海兴华鑫矿业35kV 线路工程为单回路铁塔工程,耐张塔导线为三角形型排列,中相线挂在塔身的挂线板上;直线塔导线排列为上字型。

耐张转角塔中心桩位移计算

耐张转角塔中心桩位移计算

耐张转角塔中心桩位移计算中心桩位移计算的目的送电线路利用直线杆塔换位及线路转角时,为使换位杆受力最小及转角杆塔的中相导线仍在线路中心线上,以免其邻近的直线杆塔承受额外的角度荷载,一般采取将换位杆和转角杆塔中心桩位移的措施(如果设计在杆塔设计上考虑了,不需要位移的,则应在设计说明中给予明确)。

在一般情况下。

线路中心桩就是杆塔中心桩,基础分坑以该桩为基准。

但是,需要位移的线路中心桩,其杆塔位移中心桩是由线路中心桩滑横线路方向移动一定距离再钉立。

各种杆塔型式的中心桩位移值应由设计单位提供。

---摘自李庆林编著的《架空送电线路施工手册》。

当线路转角时,为避免与之相邻的直线杆塔受到角度荷载的作用,应保证转角杆塔的中相导线在线路中心线上;当利用直线杆塔换位时。

应使换位杆塔所受的横向荷载最小。

因此需要考虑转角杆塔和换位杆塔的中心位移问题。

---摘自孟遂民编著的《架空输电线路设计2000版》。

意思表达都是一样的,位移的目的,就是减少临近直线塔承受额外荷载(要是两端都是耐张塔,连续耐张,那么该基塔就没有必要位移了)。

措施就是将杆塔中心桩沿着角平分线移动一定的距离,使得中相导线投影与线路中心线投影重合。

比较简单粗暴。

中心桩位移示意图其计算公式下面我们先来看看,位移之前是什么情况。

小编画了一张示意图:在位移之前,铁塔的中心桩与线路的中心桩是重合的,由于挂点位置和转角度数的影响,此时中相导线投影与线路中心线投影不重合,目前交流线路工程单回路中相挂点位置主要有两种,一种是靠塔身一边(转角内侧),还有一种是位于塔身正中间。

位移之后,示意图如下:如上图所示,将转角杆塔中心沿着角平分线位移一定距离S1之后,中相导线竖直方向的投影与线路中心线投影就重合了,也就达到了我们想要达到的目的。

那么S1如何计算呢?不难。

我们需要掌握几个数据:横担前后侧挂点间距C、铁塔中心至中相挂点中心的平行距离S,转角度数α,这三个数据图纸上都有。

S1=S-S2,而S2我们可以通过C和角α/2计算出来。

铁塔:输电线路铁塔基础知识

铁塔:输电线路铁塔基础知识

铁塔:输电线路铁塔基础知识铁塔是高压输电线路中不可或缺的重要部分,它支撑着输电线路的导线和绝缘子,保证了输电线路的稳定运行。

本文将介绍铁塔的基础知识,包括铁塔的类型、结构、工艺以及使用注意事项。

铁塔的类型根据其结构形式和用途,铁塔可分为以下几种类型:1.直线塔:也称吊灯塔,其特点是形状简单、高度较高,用于支撑输电线路在平原或沙漠等地形平缓处使用。

2.角塔:也称转角塔或终端塔,用于输电线路方向变更处的支撑。

3.中间塔:位于输电线路的中间,用于分段支撑导线和绝缘子。

4.终端塔:用于接入电源或负载处,其结构和中间塔相似。

铁塔的结构铁塔主要由塔筒、平台、支架和地线组成。

1.塔筒:也称塔身,是铁塔的主体,主要用于支撑输电线路的导线和绝缘子。

2.平台:位于塔筒上部或中部,用于维修绝缘子。

3.支架:位于塔筒下部,主要用于支撑地线,保证电流安全通过地面。

4.地线:放置在支架上,与地面相连接,主要用于保护输电线路及其周围环境。

铁塔的工艺铁塔的制造工艺主要分为以下几个步骤:1.材料准备:根据设计要求,选用合适的材料进行加工。

2.焊接:采用电弧焊接或气体保护焊接技术将各种零部件进行连接,形成塔身。

3.热处理:对已焊接的塔身进行调质或正火处理,提高其耐腐蚀性和抗拉强度。

4.喷涂:对经过热处理的塔身进行喷涂,以防止腐蚀和氧化。

铁塔的制造工艺对塔的质量和稳定性有着至关重要的影响,一般来说,制造工艺越精细,铁塔的使用寿命就越长。

铁塔的注意事项1.铁塔的维护和检修要遵循相关规定,不得擅自操作。

2.铁塔在使用过程中应定期对其进行检查和维修,以保证其结构稳定性。

3.在选址和施工时,应考虑地形、地质等因素,确保铁塔的抗风稳定性和地震安全性。

4.根据铁塔的用途和要求,选用适当的材料进行制造和加工。

5.铁塔在使用过程中,应注意防止盗窃和损坏。

综上所述,铁塔是输电线路的核心组成部分,选择适当的铁塔类型和合理的施工方式,对于保障输电线路的安全稳定运行具有重要作用。

对杆塔中心桩位移计算通式的探讨

对杆塔中心桩位移计算通式的探讨
际 施 工 分坑 测 量 中 , 需 要 进 行 转 角 杆 塔
1 —1
S = S 。 + s : = 争 t a n

( 4)
s 2 =
( 2 )
设计中心桩 的位移计算。 本文以引起转 角杆塔 设计 中心桩位移的不同因素 , 分 式 中: 1 . 长横 担 长 度 ; l 短 横 担长
计算结果 , 当S > O向转角内角侧 位 移; S < O向转角外 角侧位移 。通过工 程
实际的检验 , 该通式能较好地 解决杆塔 别计算最 终提 出关 于杆塔 中心桩位移 度 。 中心桩位移值 的问题 , 使 相邻 相直线杆 三、 转角杆塔中相挂 点偏 离中点引 的计算 通式 。 塔 的 横 向受 力最 小 , 能更 有 效 保证 电 气 横 担 宽 度 对 中 心桩 位 移 的 影 响 起 的 线 路设 计 中心 桩 的 位 移 提高了线路 杆塔 对 于等 长横担且转 角度 数小 的转 装置的绝缘 安全距离 , 两边线横担等长 的转角杆塔 , 由于 抵御风险的能力。 中相挂线点移至塔身主材上引 杆塔横担存 在宽度 , 致使挂线点 不在线 角杆塔 , ( 作者单位 : 甘肃送 变电工程公 司) 的计 路 的设 计 中心线上 ,只有通 过理论计 起 的杆 塔 设计 中心 桩 的位 移 s 见( 3 ) 式。 算, 向内角侧 位移后 , 才能使 杆塔 的中 算 ,
s 1 , 便可克服由横担宽度对两边相和 中 相产生的影响 , 使 中心桩恢复到线路 中
心线 上 。
二、 长短横担对中心桩位移的影响 对于转角度数较大 的转角塔 , 由于 考虑到转 角塔在挂线后 , 外 角侧边导合考虑以上因素的影响 , 在 实 际复测分坑 中 , 如上 图所示 , 位 移值

刍议110kV输电线路规划设计中杆塔定位及路径选择

刍议110kV输电线路规划设计中杆塔定位及路径选择

刍议110kV输电线路规划设计中杆塔定位及路径选择摘要:目前,我国电力行业在不断发展和进步,人们对电力的需求也在不断提升。

为了保障供电的安全性和稳定性,要合理设计和规划110KV输电线路。

在实际设计的过程中,杆塔定位和路径选择是最重要的内容之一,本文就此进行了相关的阐述和分析。

关键词:110kV输电线路;规划设计;杆塔定位现如今,我国经济和社会在不断的进步与发展,人们的生活水平在逐步提升,生活中对电力的需求也在不断加大,不论是家用电器,还是照明、娱乐,都需要电能的支撑。

所以,我国要加强电力工程的发展和建设。

其中110kV输电线路是十分重要的组成部分,可以为我国居民生活和工业生产提供足够的电力。

在110kV输电线路规划和设计的过程中,杆塔定位和路径选择起着决定性的作用。

所以,必须要采取合理有效的技术方案,确保规划设计的合理性,保障工程施工的效率和质量。

一、110kV输电线路规划设计中的杆塔定位1.室内杆塔定位在我国电力系统中,110kV输电线路发挥着十分重要的作用,而杆塔定位则是输电线路规划设计中不可或缺环节。

杆塔位置选择是否合理与线路整体施工质量、难度、造价等有直接关系。

在室内杆塔定位方面,要按照施工图纸的设计要求进行定位,保障输电线路设计的安全合理,同时提升后期线路建设的经济效益。

在室内杆塔定位的过程中,要先确认导线和地面的距离,保障二者的安全性。

如果在夏季,温度较高,线路则会受热膨胀;冬天气温较低,线路则会冷缩。

不论是哪一种情况,线路和地面的距离都会发生变化,为了确保设计的合理性,应该综合考虑各种特殊情况,确保定位方式可以满足最大弧度要求。

输电线路的施工环境比较复杂,为了明确安全可靠的导线距离,在室内杆塔定位的过程中,可以采用两种方式,一种是转角方式,另一种是终端方式[1]。

在计算好杆塔的直线位置之后,要控制导线的安全距离,为运维人员的检修工作提供更多便利,避免计算误差的出现。

此外,在应力计算的过程中,要对K值大小进行分析。

架空输电线路杆塔位移计算资料

架空输电线路杆塔位移计算资料

架空输电线路转角杆塔中心位移计算的研究与探讨刘仁臣(西南石油大学,四川成都市新都区,610500)摘要:在架空输电线路施工中,我们经常遇到由于部分转角(耐张)杆塔横担宽度和不等长横担引起的线路中心桩与杆塔中心桩存在位移的问题。

如何正确计算出位移值,使杆塔受力最小及杆塔两边线仍与线路中心线对应,以免邻近转角(直线)杆塔承受额外的角度荷载,对保证架空输电线路长期稳定安全地运行,具有十分重要和长远的意义。

关键词:等长横担不等长横担位移计算转角杆塔0 引言在架空输电线路施工过程中,杆塔基础分坑及基础分坑时转角杆塔位移计算是我们经常遇到的问题。

在胜利油田这样的平原地区,地势一般较平坦,很少出现丘陵及起伏较大的施工地段,因此,以等高塔腿为多。

在线路施工当中,一般情况下,线路中心桩就是杆塔的中心桩,基础分坑以该中心桩为准进行。

但有的转角杆塔、耐张杆塔,为使杆塔受力最小及杆塔两边线仍与线路中心线对应,以免邻近转角(直线)杆塔承受额外的角度荷载,必须考虑杆塔的中心位移问题。

本文根据日常工作中遇到的实际问题,在110kV架空线路砼电杆基础分坑中的位移计算及角钢塔位移计算两个方面予以归纳和探讨,希望和有兴趣的读者互相探讨。

一、110kV砼电杆转角杆位移的计算下面以胜利油田胜利工程设计咨询有限责任公司设计定型图电-8701(110kV输电线路杆型图)及其杆型配件图电-8702为例计算位移大小。

1、不等长宽横担转角杆的基础分坑位移计算(图二)有位移转角杆位移计算示意图以上图示为110kV J60°-18型砼电杆杆型示意图和横担示意图。

其位移由两部分组成,一是横担宽度引起的,另外一个是由于横担不等长引起的。

(1)、由于转角杆横担宽度的影响,使转角杆中心位置与原转角桩产生位移,其位移距离为∆S1=2tg 2D θ 其中 D ―――横担宽度和绝缘子串拉板长之和,单位米θ―――线路转角 ,单位度(2)由于横担不等长引起的位移:不等长宽横担为内角横担短,外角长,其位移距离为:∆S2=()b a 21- 其中,a ―――长横担长 米b ―――短横担长 米因此,在实际分坑中,110kV J60°-18型电杆由原转角桩向转角杆中心位置产生的位移为S=∆S1+∆S2=2tg 2D θ+()b a 21- 因在实际施工中,110kV J60°-18杆型a =3.2m,b=1.7m ,D=0.698m , θ大小为30°~60°之间,以60°为例则其位移S =2698.0tg 260︒+()1.73.221-=0.951m 在实际施工中,110kV 转角30度型砼电杆(J30°)也是不等长宽横担的转角杆,位移计算方法应与转角60度杆型相同.二、角钢转角塔的计算目前,受城市规划的影响,许多新建或改建线路往往不再使用砼电杆,砼电杆拉线多,占地面积大,且极容易被盗,虽然因此角钢塔和薄壁离心钢管塔等塔型虽然建设初期投资大,但从线路的长期稳定运行方面讲,经济效益远远大于砼电杆线路。

架空输电线路杆塔位移计算资料

架空输电线路杆塔位移计算资料

架空输电线路转角杆塔中心位移计算的研究与探讨刘仁臣(西南石油大学,四川成都市新都区,610500)摘要:在架空输电线路施工中,我们经常遇到由于部分转角(耐张)杆塔横担宽度和不等长横担引起的线路中心桩与杆塔中心桩存在位移的问题。

如何正确计算出位移值,使杆塔受力最小及杆塔两边线仍与线路中心线对应,以免邻近转角(直线)杆塔承受额外的角度荷载,对保证架空输电线路长期稳定安全地运行,具有十分重要和长远的意义。

关键词:等长横担不等长横担位移计算转角杆塔0 引言在架空输电线路施工过程中,杆塔基础分坑及基础分坑时转角杆塔位移计算是我们经常遇到的问题。

在胜利油田这样的平原地区,地势一般较平坦,很少出现丘陵及起伏较大的施工地段,因此,以等高塔腿为多。

在线路施工当中,一般情况下,线路中心桩就是杆塔的中心桩,基础分坑以该中心桩为准进行。

但有的转角杆塔、耐张杆塔,为使杆塔受力最小及杆塔两边线仍与线路中心线对应,以免邻近转角(直线)杆塔承受额外的角度荷载,必须考虑杆塔的中心位移问题。

本文根据日常工作中遇到的实际问题,在110kV架空线路砼电杆基础分坑中的位移计算及角钢塔位移计算两个方面予以归纳和探讨,希望和有兴趣的读者互相探讨。

一、110kV砼电杆转角杆位移的计算下面以胜利油田胜利工程设计咨询有限责任公司设计定型图电-8701(110kV输电线路杆型图)及其杆型配件图电-8702为例计算位移大小。

1、不等长宽横担转角杆的基础分坑位移计算(图二)有位移转角杆位移计算示意图以上图示为110kV J60°-18型砼电杆杆型示意图和横担示意图。

其位移由两部分组成,一是横担宽度引起的,另外一个是由于横担不等长引起的。

(1)、由于转角杆横担宽度的影响,使转角杆中心位置与原转角桩产生位移,其位移距离为∆S1=2tg 2D θ 其中 D ―――横担宽度和绝缘子串拉板长之和,单位米θ―――线路转角 ,单位度(2)由于横担不等长引起的位移:不等长宽横担为内角横担短,外角长,其位移距离为:∆S2=()b a 21- 其中,a ―――长横担长 米b ―――短横担长 米因此,在实际分坑中,110kV J60°-18型电杆由原转角桩向转角杆中心位置产生的位移为S=∆S1+∆S2=2tg 2D θ+()b a 21- 因在实际施工中,110kV J60°-18杆型a =3.2m,b=1.7m ,D=0.698m , θ大小为30°~60°之间,以60°为例则其位移S =2698.0tg 260︒+()1.73.221-=0.951m 在实际施工中,110kV 转角30度型砼电杆(J30°)也是不等长宽横担的转角杆,位移计算方法应与转角60度杆型相同.二、角钢转角塔的计算目前,受城市规划的影响,许多新建或改建线路往往不再使用砼电杆,砼电杆拉线多,占地面积大,且极容易被盗,虽然因此角钢塔和薄壁离心钢管塔等塔型虽然建设初期投资大,但从线路的长期稳定运行方面讲,经济效益远远大于砼电杆线路。

电力线路杆塔按用途分为哪几种型式

电力线路杆塔按用途分为哪几种型式

The flowers are not to bloom, but to bloom more brilliantly.勤学乐施天天向上(页眉可删)
电力线路杆塔按用途分为哪几种型

杆塔按用途分为以下7种。

(1)直线杆塔:用于支持导线,绝缘子,金属重量,承受侧面风压。

直线杆塔的数量约占全部杆数量的80%以上,通常用符号Z表示。

(2)跨越杆塔:用于特殊设施或与公路,铁路,河流,电力,弱电线路相互交叉跨越,并保证交叉跨越距离符合设计规程的要求。

用符号K表示跨越杆塔。

(3)耐张杆塔:用于承受导线水平张力,以便施工与检修,并在断线,倒杆的情况下限制事故范围。

用符号N表示耐张杆塔。

(4)转角杆塔:用于线路转角地点,分直线转角和耐张转角2种。

用符号J表示转角杆塔。

(5)T接杆塔:用于线路分支点,用符号T表示。

(6)终端杆塔:用于线路起点或受电端的线路终点,它的一侧要承受线路侧耐张段的导线拉力。

用符号D表示终端杆塔。

(7)换位杆塔:中性点直接接地的电力网中,当长度超过100km时,为了使各相电感,电容相等,减少对邻近平行通讯线路的干扰,以平衡不对称电流,而设置的换位杆塔。

换位杆干塔用符号H表示。

对线路施工中杆塔中心位移的探讨

对线路施工中杆塔中心位移的探讨

摘要:配电变压器烧毁的原因分析关键词:配电变压器烧毁原因分析过电压1过电压(1)遭受雷击。

配电变压器的高、低压线路大多数由架空线引入,由于地处山区林地,受雷击的机率较高,所以在每年的雷雨季节,遭受雷击损坏的配电变压器比例占大修的30%以上。

(2)系统发生铁磁谐振。

农村10kV配电线路有形成过电压的条件,在系统谐振过电压时,变压器一次电流激增,此时除了造成变压器一次侧熔断器熔断外,还将损坏变压器绕组。

个别情况下,还会引起变压器的套管发生闪络或爆炸。

2绝缘损坏(1)低压线路的短路故障和负荷的急剧增加,使变压器的电流超过额定电流的几十倍,这时的绕组受到很大的电磁力矩影响而发生移位、变形。

由于电流的剧增,使温度迅速升高,导致绝缘加快老化。

(2)绕组绝缘受潮。

这是因绝缘油质不佳或油面降低所造成的。

一是变压器绝缘油在储存、运输或运行维护中,不慎使水分、杂质或其他油污混入油中,使绝缘强度大幅度降低。

二是制造时绕组里层浸漆不透、干燥不彻底、绕组引线接头焊接不良,绝缘不完整导致匝间、层间短路。

三是油面降低使绝缘油与空气接触面增大,加速空气中水分进入油内也会降低其绝缘强度,当绝缘降低到一定值时会发生短路。

3分接开关(1)变压器渗油,使分接开关裸露在空气中,绝缘受潮后性能下降,导致放电短路,损坏变压器。

(2)油温过高。

变压器中的油主要是对绕组起绝缘、散热和防潮的作用。

变压器中的油温过高,将直接影响变压器的正常运行和使用寿命。

(3)分接开关的质量差,结构不合理,压力不够,接触不可靠,外部字轮位置与内部实际位置不完全一致,引起星形动触头位置不完全接触,错位的动、静触头使两抽头之间的绝缘距离变小,并在两抽头之间的电势作用下发生短路或对地放电,短路电流很快就把抽头线匝烧坏,甚至导致整个绕组损坏。

4渗油渗油是变压器最常见的外表异常现象,由于变压器本体内充满了油,各连接部位处夹有胶珠、胶垫以防渗漏,变压器经过长时间的运行会使胶珠、胶垫老化龟裂从而引起渗油。

架空送电线路施工中杆塔设计中心桩位移的计算方法

架空送电线路施工中杆塔设计中心桩位移的计算方法
———电力生产管理信息系统. 北京 :中国电力出版社 ,1995 3 王卓朴. 建设项目信息管理. 北京 :水利电力出版社 ,北京 :1998 4 张步达 ,杨慧 ,石京民 ,等. Power Builder 数据窗口技术详解. 北
京 :电子工业出版社 , 2000 5 Willia m B . Heys . Sp ecial Edition Usi ng Power B uilder 6. 北京 :
计中心桩的位移 S3 的计算 ,见 (3) 式 。
S3
=
b 2
(3)
将 b = 1 491 mm 代入 (3) 式得 :中相挂线点移
至塔身主材上引起将该塔设计中心桩向外角位移
S3 = 745. 5 m m : 3. 1. 2 横担宽度引起的杆塔设计中心桩的位移计 算 ,仍采用 ( 1) 式 。将 b = 1 491 m m ,α = 30°代入 (1) 式得 :横担宽度引起该塔的设计中心桩向内角侧 位移 S1 = 199. 76 m m 。
当海底电缆从盘架内拉出以后 , 从船头入水槽 处入水 ,每间隔 1. 5 m 垫充气轮胎 1 只 。由于充气 轮胎及海底电缆将在沟槽内停留较长的时间 (施工 实用 5 天) ,为防止轮胎倾覆而造成海底电缆沉入水 底 ,要求每只轮胎均用耐水麻绳绑扎 。
施工时 ,为防止“血吸虫”(经多年防治 , 已很少 见) 对施工人员的伤害 , 轮胎绑扎只在水面上进行 , 其绑扎的速度考虑到人的舒适程度 , 以 2 只/ mi n 为 宜 (安排 2 个绑扎点 ,绑扎速度为 1 只/ mi n) 。
Ji Weijun
(Shaa nxi Pr ovi ncial Sha ngluo Power Supply B ureau , Sha ngluo Cit y , Shaa nxi Pr ovi nce , 726000)

对线路施工中杆塔中心位移探讨

对线路施工中杆塔中心位移探讨

摘要:在线路施工当中,一般情况下,线路中心桩就是杆塔的中心桩,基础分坑以该中心桩为准进行。

但有的直线杆塔、转角杆塔、耐张杆塔,为使杆塔受力最小及杆塔两边线仍与线路中心线对应,以免邻近转角(直线)杆塔承受额外的角度荷载,因此在这时,应考虑杆塔的中心位移问题。

关键词:直线杆塔线路施工在线路施工当中,一般情况下,线路中心桩就是杆塔的中心桩,基础分坑以该中心桩为准进行。

但有的直线杆塔、转角杆塔、耐张杆塔,为使杆塔受力最小及杆塔两边线仍与线路中心线对应,以免邻近转角(直线)杆塔承受额外的角度荷载,因此在这时,应考虑杆塔的中心位移问题。

需要考虑中心位移的杆塔有如下几种类型:①直线换位杆塔;②直线耐张杆塔;③转角耐张杆塔;④直线转角杆塔(α<5°)。

由于农网线路大多辖踊騎接在电业局变电所或线路上,输电距离较短,按照《架空送电线路设计规程》的规定,可以不考虑线路的换位问题。

而直线转角小于5°的杆塔,工作中也较少接触。

因此,在下面的篇幅中仅对直线耐张杆塔及转角耐张杆塔的中心位移予以探讨,希望电力同行能从中获得一些有益的东西。

1直线耐张杆塔的中心位移当直线耐张杆塔横担中心与杆塔中心不重合时,说明该横担相对杆塔是不等长的,这时,杆塔中心应向短横担侧偏移,以使线路两边线仍与线路中心线对应。

偏移距离为横担中心与杆塔中心的距离。

例如66kV直线耐张杆横担60NA—1见图1。

图中,O-横担中心,O′-A型杆中心,因此,横担中心与A型杆中心的距离OO′为: 1820+980-2475=325mm则在实际浇桩过程中该A型杆线路中心应向短横担侧位移325mm。

而在60kV直线耐张塔中,只有7719铁塔的横担偏离中心,其余横担中心与塔中心全部重合,7719横担图如图2所示。

塔中心与横担中心的距离为:(2800-1300)/2=1500/2=750mm2转角耐张(终端)杆塔的中心位移转角耐张(终端)杆塔的中心位移,除考虑直线耐张杆塔的横担偏移外,还要考虑横担宽度(即横担两侧挂线点间的长度)引起的中心位移,如图3所示。

输电线路杆塔中心位移的精确计算方法

输电线路杆塔中心位移的精确计算方法

心位移计算方法,提出了线路杆塔中心桩位移 精确计算方法,可以对任意杆塔组合排布时的 中心位移进行精确计算。
1 影响杆塔中心位移的因素
导线偏离定位中心线主要受铁塔横担宽度、 铁塔导线挂点偏移和铁塔长短担的影响 [2-3],以 单回“上”字形转角塔为例说明。
1.1 横担宽度引起的位置偏移
图 1 中箭头方向为中心桩连线方向,导线
电网设计 输电线路杆塔中心位移的精确计算方法
DOI:10.13500/j.dlkcsj.issn1671-9913.2019.10.007
输电线路杆塔中心位移的
精确计算方法
洪立玮 1,尹 倩 2 (1. 国网冀北电力有限公司廊坊供电公司,河北 廊坊 065000 ;
2. 中国石油管道局工程有限公司设计分公司,河北 廊坊 065000)
* 收稿日期:2018-08-06 第一作者简介:洪立玮(1989- ),男,江苏南京人,硕士,工9年10月 第10期
电网设计 输电线路杆塔中心位移的精确计算方法
绝缘子串挂点在铁塔横担两侧,受横担宽度的
影响,导致挂点不在中心桩连线上,若想使挂
线点与中心线重合,需要向内角侧移动一段距 离 [4],即图中 ΔS1,设横担宽度为 b,线路转角 为 θ,则有 :
∆S1
=
b 2
×
tan(θ 2
)
(1)
式 (1) 中计算得到的偏移距离为正时表示 向内角侧移动。
1.3 铁塔长短担引起的中心位移
当线路转角较大时,铁塔外角侧横担相比 内角侧要更长,以满足外角侧导线挂点的绝缘 距离,这样导致内外角侧导线挂点与铁塔中心 距离不等,需要将铁塔向内角侧移动以抵偿由 横担长度不等造成的偏移,见图 3。
的某种或者多种因素组合综合影响的,如双回 大角度转角塔受横担宽度和长短担影响 ;单回 大转角“上”字形铁塔则受上述三种因素共同 影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档