实验讲义-用VSM测量磁性测量磁性能(吉林大学)

合集下载

磁性测量实验指导书

磁性测量实验指导书

磁性材料的磁性测量一、实验目的1. 了解固体磁性的来源。

2. 学习使用振动样品磁强计(VSM)测量材料的磁性。

二、实验原理概述1. 目的意义磁性是物质普遍存在的性质,任何物质在磁场作用下都有一定的磁化强度。

磁性材料在电力、通讯、电子仪器、汽车、计算机和信息存储等领域有着十分广泛的应用。

本实验通过对磁性材料磁性能的测量,加深对磁性材料基本特性的理解。

2. 固体的磁性按磁性进行分类,大体可分为下述五种(1)顺磁性。

这类物质具有相互独立的磁矩,在没有外场作用下相互杂乱取向,故不显示宏观磁性。

而在外场作用下,原来相互独立杂乱分布的磁矩将在一定程度上沿磁场方向取向,使这类物质表现出相应的宏观磁性。

磁场越强则宏观磁性越强,而当外磁场去除后,其宏观磁性消失。

(2)抗磁(逆磁)性。

此类物质无固有磁矩,在外磁场作用下产生感应磁性。

磁场消失则宏观磁性随之消失。

(3)反铁磁性。

此类物质内具有两种大小相等而反向取向的磁矩,故合成磁矩为零,使物质无宏观磁性。

(4)亚铁磁性。

此类物质内存在两种大小不相等但反向耦合在一起的磁矩,故不能相互完全抵消,使该类物质表现出强磁特性。

(5)铁磁性。

此类物质内的磁矩均可互相平行耦合在一起,因而表现出强磁特性。

3.磁特性的检测方法振动样品磁强计可以测出在不同的环境下材料多种磁特性。

由于其具有很多优异特性而被磁学研究者们广泛采用,使VSM成为检测物质内禀磁特性的标准通用设备。

设被测样品的体积为V,由于样品很小,当被磁化后,在远处可将其视为磁偶极子:如将样品按一定方式振动,就等同于磁偶极场在振动。

于是,放置在样品附近的检测线圈内就有磁通量的变化,产生感生电压。

将此电压放大并记录,再通过电压-磁矩的已知关系,即可求出被测样品的磁化强度。

三、实验设备及材料1. 仪器:振动样品磁强计Lake Shore 7404型VSM2. 材料:磁性样品四、实验内容及步骤1. 实验步骤(一)校准系统1.磁矩偏移量校准(Moment Offset)①将空杆装在振动头上;②从“calibration”菜单中点击“Moment Offset”;③按照对话框提示进行Moment Offset的校准。

吉林大学重磁勘探方法与原理实习

吉林大学重磁勘探方法与原理实习

重磁勘探方法与原理实习指导书第三章 重力勘探重力勘探是依据重力异常特征研究地质构造和有关矿产的一种方法。

为了获得重力异常,重力勘探工作应包括:编写技术设计,准备工作,野外数据采集,室内计算与数据整理,绘制异常图和地质解释等过程。

根据地质任务,在一个地区开展面积性重力勘探工作,使工作合理,高效而又按计划进行,必须事先编写技术设计书。

技术设计书不仅可以指导具体施工,而且也是最终质量检查的依据。

在开工前必须做好下列准备工作,如根据工作任务、物理勘探前提(密度差)确定使用的仪器,测量精度及采用的工作方法和具体措施等。

§3.1 重力仪的基本原理与操作一、重力仪的基本原理本次实习所采用的重力仪主要有两种,一种是国产的系列石英弹簧重力仪,一种是加拿大生产的先达利CG-3型全自动重力仪。

(一)ZSM 型石英弹簧重力仪 该仪器是北京地质仪器厂设计并制造的,观测精度约为5.0~3.0±±g .u .,读数能力为0.1格,直接测量范围约为1400g .u .,测程范围50000 g .u .。

接近国外同类仪器水平。

仪器可分为如下几个主要部分:1.灵敏系统 位于主体结构的底部,其构造如图3.1-1。

主要部件中,除了温度补偿丝和负荷为金属外,其它均由石英制成。

主要部件由一个矩形石英框架支撑着,用一个支杆固定在密封器顶盖上。

灵敏系统的位移方式属角位移。

图3.3-1 ZSM型重力仪灵敏系统图图3.3-2 ZSM型重力仪光学1-负荷;2-摆杆;3-摆扭丝;4-主弹簧;5-测读装置示意图温度补偿框扭丝;6-读数弹簧;7-读数弹簧连杆;8-温度补偿框扭丝,9读数框架扭丝;10-测程调节弹簧;11-指示丝2.光学系统其结构见图3.1-2,它是一个长焦距显微镜,由目镜座1、目镜筒2、刻度片3、物镜4、全反射镜5、物镜6、指示丝7、聚光镜8、灯泡9等组成。

在视域中的刻度片上可见到的“亮线”就是平衡体端的指示丝在显微镜下的像,通过对亮线的观察就知道平衡体偏转的情况,当重力增大时,平衡体向下偏转一个角度,我们就可以从视域中看到亮线向右边产生一个位移,反之,当重力减小时,亮线将向左边移动。

振动样品磁强计(VSM)实验

振动样品磁强计(VSM)实验

振动样品磁强计(VSM)实验一、实验目的掌握用振动样品磁强计测量材料的磁性质的原理与方法。

二、实验原理本实验采用Lake Shore振动样品磁强计(Vibrating sample magnetometer 7407),磁场线圈由扫描电源激磁,产生Hmax=±21000Оe的磁化场,其扫描速度和幅度均可自由调节。

检测线圈采用全封闭型四线圈无净差式,具有较强的抑制噪音能力和大的有效输出信号,保证了整机的高分辨性能。

振动样品磁强计是一种常用的磁性测量装置。

利用它可以直接测量磁性材料的磁化强度随温度变化曲线、磁化曲线和磁滞回线,能给出磁性的相关参数诸如矫顽力H c,饱和磁化强度M s,和剩磁M r等。

还可以得到磁性多层膜有关层间耦合的信息。

图1是VSM的结构简图。

它由直流线绕磁铁,振动系统和检测系其测量原理如下:装在振动杆上的样品位于磁极中央感应线圈中心连线处,位于外加均匀磁场中的小样品在外磁场中被均匀磁化,小样品可等效为一个磁偶极子。

其磁化方向平行于原磁场方向,并将在周围空间产生磁场。

在驱动线圈的作用下,小样品围绕其平衡位置作频率为ω的简谐振动而形成一个振动偶极子。

振动的偶极子产生的交变磁场导致了穿过探测线圈中产生交变的磁通量,从而产生感生电动势ε,其大小正比于样品的总磁矩μ:ε = K μ其中K 为与线圈结构, 振动频率, 振幅和相对位置有关的比例系数。

当它们固定后, K 为常数,可用标准样品标定。

因此由感生电动势的大小可得出样品的总磁矩,再除以样品的体积即可得到磁化强度。

因此,记录下磁场和总磁矩的关系后,即可得到被测样品的磁化曲线和磁滞回线。

在感应线圈的范围内,小样品垂直磁场方向振动。

根据法拉第电磁感应定律,通过线圈的总磁通为:t BM AH ωsin +=Φ此处A 和B 是感应线圈相关的几何因子,M 是样品的磁化强度,ω是振动频率,H 是电磁铁产生的直流磁场。

线圈中产生的感应电动势为:()t KM dt d t E ωcos =Φ= 式中K 为常数,一般用已知磁化强度的标准样品(如Ni )定出。

磁性测量精品PPT课件

磁性测量精品PPT课件

磁性测量
21
• 磁性测量: 传统 仪 器
信号传输
信号处理
与天斗 其乐无穷
信号存储
与地斗 其乐无穷
磁性测量
22
• 磁性测量:虚拟 仪 器(VI)
ROMM礟ath DICSAPONLNDATYROLPROCE礟SSMOERMBOU48SR8YPORT
CAon/DdDit/iADonI/TiTOniIgm/Oing
标准、规程 原理、方法
量值溯源 量具检定
磁性
3
• 磁性的起源:原子固有磁矩
原子核 电荷:+e 自旋: 1 磁矩: N
未成对电子
电子 电荷:-e 自旋: ½ 磁矩: 自旋磁矩+轨道磁矩
原子磁矩 =电子磁矩+原子核磁矩
Pauli不相容原理+Hund 法则
磁性
4
• 磁有序的起源:交换相互作用

全子
磁性测量概论
(共 50 页)
• 磁性 • 磁性测量
1
磁性测量概论
目 的
• 希望 澄清一些磁学计量概念 • 帮助 了解数据的来源
• 全面 掌握数据的测量方法
• 促进 研究磁性的测量理论与测量技术
2
磁性测量概论
计量 Metrology
能够测量什么量 ? 怎么测量这些量 ? 如何保证正确性 ?
现有能力 潜在能力
磁性测量
18
• 磁性测量: 传统 仪 器
被测量
测量量具
均匀
非均匀
稳恒磁场 磁场传感器
Hall片、双线圈
磁 交变磁场 (Hall片、单线圈) Hall片、多线圈
通 杂散磁场 磁 场 传 感 器、磁 通 量 具、磁通门
磁矩
各类磁强计

吉林大学重磁课程设计

吉林大学重磁课程设计

吉林大学重磁课程设计一、课程目标知识目标:1. 让学生掌握重磁学的基本概念,如重力、磁力、重力异常和磁异常等;2. 使学生了解地球物理勘探中重磁方法的应用,如资源勘探、地质构造研究等;3. 引导学生掌握重磁数据的处理和解释方法。

技能目标:1. 培养学生运用重磁理论知识解决实际地质问题的能力;2. 提高学生运用计算机软件进行重磁数据处理和解释的技能;3. 培养学生进行地质调查和实验操作的技巧。

情感态度价值观目标:1. 激发学生对地球物理勘探的兴趣,培养其探索地球奥秘的热情;2. 培养学生严谨的科学态度,使其具备良好的学术道德;3. 增强学生的团队合作意识,提高其沟通与协作能力。

课程性质:本课程为专业核心课程,旨在让学生掌握重磁学的基本理论和实践技能,为从事地球物理勘探及相关领域工作奠定基础。

学生特点:学生具备一定的地质学和地球物理学基础,具有较强的学习能力和实践操作欲望。

教学要求:结合课程性质和学生特点,注重理论与实践相结合,强调知识的应用性和实践性,提高学生的综合素养。

通过分解课程目标为具体学习成果,为教学设计和评估提供明确依据。

二、教学内容本课程教学内容主要包括以下几部分:1. 重磁学基本理论:介绍重力、磁力、重力异常和磁异常等基本概念,涵盖地球重力场、磁场及其变化规律。

2. 重磁勘探方法:讲解重磁方法在资源勘探、地质构造研究等方面的应用,以及重磁测量数据采集、处理和解释的基本流程。

3. 重磁数据处理与解释:学习重磁数据处理和解释的常用软件,如Geosoft、Oasis Montaj等,以及实际操作技巧。

4. 实践教学:组织学生进行地质调查、重磁测量实验,培养学生实际操作能力和解决实际地质问题的能力。

具体教学安排如下:1. 重磁学基本理论(第1-2周):对应教材第1章和第2章内容;2. 重磁勘探方法(第3-4周):对应教材第3章内容;3. 重磁数据处理与解释(第5-6周):对应教材第4章内容;4. 实践教学(第7-8周):结合教材内容和实际案例,进行实地调查和实验操作。

VSM测试的应用

VSM测试的应用

VSM测试的应用振动样品磁强计最初是由弗尼尔(S.Foner)提出的。

他对磁强计的结构,各种探测线圈及其对灵敏度的影响都作了详细的论述。

经过约半个世纪的发展,如今VSM已是磁性实验室中应用范围很宽的测试设备,自从锁相放大技术开始在VSM上得到应用以来,使其灵敏度得到了极大范围的提升,适用范围也不断得到拓展,除永磁材料以外,VSM 适合于测试以下材料:亚铁磁、反磁性材料、顺磁材料和抗铁磁材料;各向异性材料;磁记录材料;磁-光学材料;稀土和过渡元素、非晶金属、高导磁率材料、金属蛋白等形式的铁磁物质。

弱磁、顺磁等样品虽然可以用VSM测量,其灵敏度相比于大多数永磁体或磁记录介质而言是有所下降的。

此外,VSM还适用于块状、粉末、薄片、单晶和液体等多种形状和形态的材料,能够在不同的环境下得到被测材料的多种磁特性,。

可以直接从测试中得到的内容包括:B-H曲线、M-H曲线、初始化磁化曲线,磁滞回线上的各参数,并能够测量材料的各向磁特性(mx, my, mz),由于VSM探测线圈的信号未经过积分就直接送到分析系统,不存在积分器漂移的情况,因此如果配备有有低温罐或高温炉,可原位测量磁性材料从液氮温区至室温或室温至500℃温区的磁性能随温度的变化曲线,可以以温度为变量测量由过渡温度和居里点决定的磁化函数。

技术指标:1、测量磁矩范围(磁极间距30mm时):1*10-3emu—300emu(灵敏度:5×10-5emu)2、相对精度(量程30emu时):优于±1%3、重复性(量程30emu时):优于±1%4、稳定性(量程30emu时):连续4小时工作优于1%5、温度范围:室温到500摄氏度以及室温到液氮温区6、磁场强度:0—±3.8T之间。

(参考资料)振动样品磁强计(VSM)原理

(参考资料)振动样品磁强计(VSM)原理

振动样品磁强计(VSM)原理The Principle of Vibrating Sample Magnetometer1、振动样品磁强计介绍振动样品磁强计一种是灵敏度高、应用最广的磁性测量仪器。

基本原理:振动样品磁强计采用尺寸较小的样品。

由于体积很小,样品在被磁场磁化后,在远处可以近似的看做一个磁偶极子。

如样品按一定方式振动,就等同于磁偶极场在振动。

于是,放置在样品附近的检测线圈内就有磁通量的变化,产生正比于磁化强度的感应电动势。

2、振动样品磁强计结构原理图3、VSM 检测原理如图所示,体积为V、磁化强度为M的样品S沿Z轴方向振动。

在其附近放一个轴线和Z轴平行的多匝线圈L,在L内的第n匝内取面积元dS n ,其与坐标原点的矢径为r n ,磁场沿X方向施加。

由于S的尺度与r n 相比非常小,故S在空间的场可表为偶极场形式:]r )r M (3M [4)r (53nnn n n r r V H ⋅⋅--= (3-1)由于M 只有x 方向分量,所以:543nnn Z r r VMx H π⋅=(3-3)kz j y i x r n n n n ++=(3-2)dS n 面积元的磁通量:线圈L 的总磁通量:nnn n Z n dS r Vz Mx dS H d 50043πμμφ==(3-4)∑⎰∑⎰∑===nn n n n n n n dS r Vz Mx d 5043πμφφφ(3-5)其中,]r )r M (3M [4)r (53nnn n n r r V H ⋅⋅--=π(3-1)样品在z 方向做简谐振动,运动方程:tz z n ωδsin 0+=(3-6)可得,感应电动势:t dS r z r x MV dt d t nn nn n ωδωπμφεcos ])5(43[)(7220∑⎰--=-=tKJ t KMV ωωcos cos ==(3-7)∑⎰--=nn nnn dS r z r x K 7220)5(43δωπμ其中,为常数。

实验三 磁性材料的VSM测量

实验三 磁性材料的VSM测量

实验三、磁性材料的VSM 测量一、实验目的1.了解VSM 仪器的测量原理。

2.了解VSM 的操作要领和注意事项。

3.了解样品磁性测量的方法。

二、实验设备天平、VSM 等。

三、原理说明VSM 系统的主体部件是由直流线绕磁铁、振动器和感应线圈组成。

装在振动杆上的样品位于磁极中央感应线圈中心连线处,在感应线圈的范围内垂直磁场方向振动。

图1是VSM 的结构简图,图2是VSM 的实物图。

振动样品磁强计的原理就是将一个小尺度的被磁化了的样品视为磁偶极子并使其在原点附近作等幅振动,利用电子放大系统,将处于上述偶极场中的检测线圈中的感生电压进行放大检测,再根据已知的放大后的电压和磁矩关系求出被测磁矩。

图1 VSM 结构简图 图2 VSM 实物图设磁化场沿x 轴向,而样品S 沿z 向作等幅振动。

在磁铁极头端面处对称放置匝数为N 、截面为S 的检测线圈,其对称轴垂直于z 轴。

则可得到穿过第n 匝内dsn 面积元的磁通为: 5n n n n n z r 4Z MX 3ds )r (H d π==φ 而n n φ∑=φ,由此可得出检测线圈内的总感生电压为:n 7nn 2nn n 0ds r )z 5r (X ∑t ωcos ωa π4M 3dt φd )t (ε∫== 其中a 0为样品的振幅,ω为振动频率。

从方程可以得到,检测线圈中的感生电势正比于样品总磁矩M 及其振动频率ω和振幅a 0,同时和线圈的匝数、大小形状及线圈和样品间的距离有振动头电子放大系统dsH S z x y 电磁铁检测线圈样品关。

因此,将线圈的几何因素及与样品的间距固定,样品的振幅和频率也固定,则感生电压仅和样品的总磁矩成正比。

经过定标以后,就可根据感生电压的大小推知样品的总磁矩:将该磁矩除以样品体积或质量,就可得出该样品的单位质量或单位体积的磁矩。

如果将高斯计的输出信号和感生电压分别输入到X-Y记录仪的两个输入端,就可以得到样品的磁滞回线。

四、实验步骤1.开机预热30分钟①打开电源,打开电脑,启动VSM软件。

磁性材料磁性测量开放实验指导书

磁性材料磁性测量开放实验指导书

磁性材料磁性测量开放实验指导书振动样品磁强计是以感应法为基础并配用近代电子技术发展起来的一种新型检测物质磁性的测试仪器,已广泛用于材料磁性,包括磁化曲线、磁滞回线、Ms 、Mr 、Hcb 、Hcj 、(BH)max 等参数、M-T 曲线等的检测。

由于其适应性强、灵敏度高、准确可靠、使用方便以及测量自动化等优点,已在科研、国防和生产实践中得到广泛应用。

一、实验目的1.学习振动样品磁强计的使用方法,熟悉仪器的构造。

2.学习用振动样品磁强计测量材料的磁性。

二、实验原理及应用2.1 VSM 的结构及工作原理振动样品磁强计是将样品放置在稳定的磁场中并使样品相对于探测线圈作小幅度周期振动,则可得到与被测样品磁矩成正比的信号,再将这信号用适当的电子技术放大、检波转换成易于测量的电压信号,即可构成振动样品磁强计。

图1图2上面所示为两种类型的VSM原理结构示意图,两者区别仅在于:①前者为空芯线圈(磁场线圈)在扫描电源的激励下产生磁场H,后者则是由电磁铁和扫描电源产生磁场H。

因此,前者为弱场而后者为强场。

②前者的磁场H正比于激磁电流I,故其H的度量将由取样电阻R上的电压标注,而后者由于H和I的非线性关系,H必须用高斯计直接测量。

当振荡器的功率输出馈给振动头驱动线圈时,该振动头即可使固定在其驱动线圈上的振动杆以ω的频率驱动作等幅振动,从而带动处于磁化场H中的被测样品作同样的振动;这样,被磁化了的样品在空间所产生的偶极场将相对于不动的检测线圈作同样振动,从而导致检测线圈内产生频率为ω的感应电压;而振荡器的电压输出则反馈给锁相放大器作为参考信号;将上述频率为ω的感应电压馈送到处于正常工作状态的锁相放大器后(所谓正常工作,即锁相放大器的被测信号与其参考信号同频率、同相位),经放大及相位检测而输出一个正比于被测样品总磁矩的直流电压V J out,,与此相对应的有一个正比于磁化场H的直流电压V H out(即取样电阻上的电压或高斯计的输出电压),将此两相互对应的电压图示化,即可得到被测样品的磁滞回线(或磁化曲线)。

《测量磁力》实验报告

《测量磁力》实验报告

《测量磁力》实验报告本实验旨在研究磁力的测量方法,通过测量磁力的大小与距离的关系,探究磁力的特性及规律,并掌握使用磁力计测量磁力的技巧。

实验器材:1. 磁力计:用于测量磁力的仪器。

2. 磁铁:产生磁场的物体,用于测量与磁铁之间的磁力。

3. 弹簧秤:测量力的大小的仪器。

实验原理:磁力是由于磁体之间产生的相互作用而产生的力。

根据库仑定律,两个带有电荷的物体之间的力是与它们之间的距离成反比的。

对于磁力,也遵循类似的规律,两个磁体之间的磁力F与磁铁之间的距离d的关系可以表示为F=k/d^2,其中k为比例常数。

实验步骤:1. 将磁力计放在水平桌面上,并将仪表发条上的指针调整到零位。

2. 将一个磁铁放在磁力计的底座上,并固定好。

3. 将另一个磁铁持续地移动远离第一个磁铁,直到磁力计上的指针指示稳定。

4. 记录这一距离d,并使用弹簧秤测量磁力计上的磁力F。

5. 重复步骤3和4,改变磁铁之间的距离,并记录相应的磁力值。

6. 根据测量的数据,绘制磁力与距离之间的关系曲线。

实验结果:根据测量的数据,可以得到磁力与距离之间的关系曲线。

在较小的距离范围内,磁力与距离成反比关系,而在较大的距离范围内,磁力与距离的关系逐渐趋于平缓,这是因为磁力随着距离的增加而减小,但减小的速率逐渐减慢。

实验结论:本实验通过测量磁力的大小与距离的关系,验证了磁力与距离的反比关系。

根据测得的数据,可以得出结论:磁力与距离成反比。

当两个磁体之间的距离增大时,磁力减小,但减小的速率逐渐减慢。

实验总结:通过本实验,我们深入了解了磁力的测量方法以及磁力与距离的关系。

实验结果表明,磁力与距离成反比关系,并且磁力随着距离的增大而减小,但减小的速率逐渐减慢。

这对我们理解磁力的特性及规律具有一定的意义,并且为我们使用磁力计测量磁力提供了指导。

实验中可能存在的误差主要来自于仪器的精度以及操作的不准确性,因此在实验中应尽量注意减小误差的产生,确保实验结果的准确性。

振动样品磁强计(VSM)实验报告

振动样品磁强计(VSM)实验报告

振动样品磁强计(VSM)实验报告实验目的:1、掌握振动样品磁强计的基本原理、结构,了解其使用方法2、掌握磁性样品的起始磁化曲线和磁滞回线的测量,了解由此分析材料磁性参数的方法仪器工作原理:如果将一个开路磁体置于磁场中,则此样品外一定距离的探测线圈感应到的磁通可被视作外磁化场及由该样品带来的扰动之和。

多数情况下测量者更关心的是这个扰动量。

例如,可以让被测样品以一定方式振动,探测线圈感应到的样品磁通信号因此不断快速的交变,保持环境磁场等其他量不做任何变化,即可实现这一目的,这是一种用交流信号完成对磁性材料直流磁特性测量的方法。

振动样品磁强计(Vibrating Sample Magnetometer)是基于电磁感应原理制成的仪器。

VSM是一种高灵敏度的磁矩测量仪器,测量在一组探测线圈中心以固定频率和振幅作微振动的样品的磁矩。

采用尺寸较小的样品,它在磁场中被磁化后可近似看作一个磁矩为m的磁偶极子,使样品在某一方向做小幅振动,用一组互相串联反接的探测线圈在样品周围感应这磁偶极子场的变化,可以得到探测线圈的感应电动势直接正比于样品的磁化强度。

用锁相放大器测量这一电压,即可计算出待测样品的磁矩。

由于测量线圈中的感应信号来源于被磁化的振动样品在周围产生的周期性变化磁场,那么位于坐标原点O的磁偶极子在空间任意一点P产生的磁场可表示为:H⃗⃗⃗ (r⃗ )=−14π(M m⃗⃗⃗⃗⃗⃗⃗r3−3(M⃗⃗⃗ m∙r⃗ )r5r⃗ )(1)式中r=xi+yj+zk⃗,其中i、j、k⃗分别为x,y,z的单位矢量。

若在距偶极子处的P点放置一匝面积为S的小测量线圈,则通过线圈的磁通量为:ϕ=∫B⃗⃗ ∙dS⃗=μ0∫H(r⃗ )∙dS⃗SS(2)若偶极子沿着z轴做αe jωt简谐振动时,(a是振幅,ω为振动角频率),有r⃗ =xi +yj +(z +αe jωt )k ⃗ (3)则偶极子磁场在N 匝线圈中激起的感应电动势为:e (t )=−ð∅ðt =−μ0∑∫ðH(r ⃗ ,t)ðt ∙dS ⃗ S N i (4)因样品沿着x 方向磁化,且线圈截面较小时,可用线圈中间的性质代表每匝线圈的平均性质,若线圈尺寸和位置固定不变,上式中积分式的数值是常数,故: e (t )=E m cos ωt(5)振幅Em 与样品磁矩成正比。

低温强场下材料的磁性测试与结构表征虚拟仿真实验

低温强场下材料的磁性测试与结构表征虚拟仿真实验

低温强场下材料的磁性测试与结构表征虚拟仿真实验模块1:磁性能测试(PPMS)(一)实验原理振动样品磁强计(VSM)是综合物性测量系统(PPMS)的主要功能之一,是一种磁性测量常用的仪器,在科研和生产中有着广泛的应用。

它是利用小尺寸样品在磁场中做微小振动,使临近线圈感应出电动势而进行磁性参数测量的系统。

该仪器的磁矩测量灵敏度高,最高可达到10-6emu,对测量薄膜样品等弱磁信号更具优势。

如果一个小样品(可近似为一个磁偶极子)在原点沿Z轴作微小振动,放在附近的一个小线圈(轴向与Z轴平行)将产生感应电压:VSM测量采用开路方法,样品放置的位置对测量的灵敏度有影响。

假设线圈和样品按图1放置,沿x方向离开中心位置,感应信号变大;沿y和z方向离开中心位置,感应信号变小。

中心位置是x方向的极小值和y、z方向的极大值,是对位置最不敏感的区域,称为鞍点。

测量时,样品应放置在鞍点,这样可以使样品具有有限体积而引起的误差最小。

图1 线圈放置位置图2 鞍区示意图图3 VSM结构示意图基本的VSM由磁体及电源、振动头及驱动电源、探测线圈、锁相放大器和测量磁场用的霍耳磁强计等几部分组成,在此基础上还可以增加高温和低温系统,实现变温测量。

振动头用来使样品产生微小振动,振动频率应尽量避开50Hz及其整数倍,以避免产生干扰。

为了使振动稳定,还要采取稳幅措施。

驱动方式有机械驱动、电磁驱动和静电驱动几种。

磁体有超导磁体、电磁铁和亥姆赫兹线圈等几种。

前两种能产生很强的磁场,用来测量高矫顽力的永磁材料。

亥姆赫兹线圈产生的磁场很小,但磁场的灵敏度很高,适于测量软磁材料。

磁矩m的测量由探测线圈和锁相放大器组成,锁相放大器有很高的放大倍数,保证了VSM 有较高的灵敏度。

磁场的测量采用霍耳磁强计。

将m和H信号送给计算机,由计算机进行数据的处理,并对测量过程进行自动化控制。

(二)实验仪器PPMS的基本系统按功能可以分为以下几个部分:温度控制、磁场控制、直流电学测量和PPMS控制软件系统。

VSM测量磁滞回线

VSM测量磁滞回线

VSM测量磁滞回线磁控溅射镀膜实验真空甩带实验真空获得与测量低温获得实验材料的电阻温度特性材料的磁阻效应材料的单向静拉伸材料硬度测定材料冲击性能测定X射线衍射技术与单相定性分析多相物质的定性分析点阵参数的精确测定原子力显微镜薄膜样品表面形貌分析扫描电镜的基本原理与衬度观察利用扫描电镜测量合金样品的组分热电偶的定标材料微观形貌观察(导电块材)材料微观形貌观察(不导电粉体)材料比表面积测定材料电阻温度系数测定粉体材料粒度综合测定材料粉碎技术金相显微镜使用(渗碳组织级别评定)金相试样的制备及观察(试样制备与渗层厚度测定)铁磁材料居里温度测定拉伸实验硬度的测试实验观察断口形貌实验球磨粉体的烧结粉末的粒度测试粉体的溶胶凝胶制备溶胶凝胶合成粉体材料及性能测定磁性薄膜材料制备磁性薄膜形貌表征磁性薄膜磁性表征磁性纳米阵列材料制备磁性纳米阵列材料表征液相法粉体材料的制备碳钢中Cr,V含量的测定合金钢材料中Cr,V的测定钢铁材料中C元素的测定钢铁材料中S元素的测定紫外分光光度计的原理与应用原子吸收分光光度计的原理与应用钢铁材料中合金元素的测定铜合金、铝合金中元素的测定电镀化学镀光电子器件与工艺光敏管的光谱特性光电对管的作用压电陶瓷的压电效应电致变色现象与电致变色玻璃的制备热电材料——热电发电与热电制冷圆柱形电池的分解扣式电池的装配锂离子电池性能的测定超级电容器的制备及性能测试磷酸铁锂正极材料的合成金相样品制备技术铁碳合金平衡组织观察钢的脱碳层深度的测定材料硬度的测定高速钢显微组织观察钢材断口组织检验球磨法制备粉体低温陶瓷的制备金相制样实验退火和正火实验淬火和回火实验表面和渗碳实验热处理电阻炉的设计热处理盐浴炉的设计多元素分析仪的工作原理与分析技术金属材料硬度测定光谱仪的原理及应用。

VSM实验报告

VSM实验报告

固体物理实验报告:振动样品磁强计 一、VSM 原理1.简介振动样品磁强计(Vibrating Sample Magnetometer )是基于电磁感应原理制成的仪器。

采用尺寸较小的样品,它在磁场中被磁化后可近似看作一个磁矩为m 的磁偶极子,使样品在某一方向做小幅振动,用一组互相串联反接的探测线圈在样品周围感应这磁偶极子场的变化,可以得到探测线圈的感应电动势直接正比于样品的磁化强度。

2.基本原理由于测量线圈中的感应信号来源于被磁化的振动样品在周围产生的周期性变化磁场,那么位于坐标原点O 的磁偶极子在空间任意一点P 产生的磁场可表示为:式中矢量→→→→++=k z j y i x r ,其中→i 、→j 、→k 分别为x 、y 、z 的单位矢量。

若在距偶极子 处的P 点放置一匝面积为S 的小测量线圈,则通过线圈的磁通量为:若偶极子沿着z 轴做简谐振动t j ae ω时,(a 是振幅,ω为振动角频率),有:则偶极子磁场在N 匝线圈中激起的感应电动势为:因样品沿着x 方向磁化,且线圈截面较小时,可用线圈中间的性质代表每匝线圈的平均性质,若线圈尺寸和位置固定不变,上式中积分式的数值是常数,故:振幅E m 与样品磁矩成正比。

因而线圈输出电压的有效值V x 正比于样品的磁矩测量方程:))(3(41)(53→→→→→→⋅--=r r r M r M r H m mπ→→→→⋅=⋅=⎰⎰Sd r H S d B S S )(0μφ→→→→+++=kaez j y i x r tj )(ω∑⎰=→→⋅∂∂-=∂∂-=Ni S Sd t t r H t te 10),()(μφtE t e m ωcos )(=其中k 为振动样品磁强计的灵敏度,可用比较法测定,该过程称为振动样品磁强计的校准或定标。

比较法是用饱和磁化强度0s σ已知的标准样品(如高纯镍球样品),若已知表样的质量为m s0,校准时振动输出信号为Vs :则有:为使直径约为2毫米的样品符合偶极子条件,样品到线圈的中心间距r 与样品磁化方向的长度l 之间应满足22)2(l r >>。

《2024年偶极子、矩形薄膜、圆柱体和自旋阀VSM测量分析》范文

《2024年偶极子、矩形薄膜、圆柱体和自旋阀VSM测量分析》范文

《偶极子、矩形薄膜、圆柱体和自旋阀VSM测量分析》篇一偶极子、矩形薄膜、圆柱体与自旋阀的VSM测量分析一、引言在物理学和材料科学中,磁性测量技术是研究材料磁学性质的重要手段。

本文将通过分析偶极子、矩形薄膜、圆柱体以及自旋阀的VSM(振动样品磁强计)测量结果,深入探讨这些物体的磁学特性及其在应用中的潜在价值。

二、偶极子VSM测量分析偶极子作为磁性系统中的基本单元,其磁学性质的研究具有重要意义。

在VSM测量中,偶极子的磁场分布可以通过测量其振动过程中产生的感应电压来分析。

通过对偶极子在不同磁场强度下的VSM测量数据进行分析,可以得出偶极子之间的相互作用及其对整体磁化强度的影响。

此外,我们还探讨了偶极子在电磁场中的行为和变化规律,为磁性材料的设计和应用提供理论依据。

三、矩形薄膜的VSM测量分析矩形薄膜作为一种典型的二维磁性结构,其磁学性质的研究对于理解薄膜材料的磁化过程具有重要意义。

通过VSM测量,我们可以得到矩形薄膜在不同磁场方向下的磁滞回线,从而分析其磁化强度、矫顽力等关键参数。

此外,我们还通过测量矩形薄膜在不同温度下的VSM数据,研究其温度对磁学性质的影响,为实际应用中优化材料性能提供参考。

四、圆柱体的VSM测量分析圆柱体作为一种三维磁性结构,其磁学性质的研究有助于理解三维磁性材料的磁化过程和磁场分布。

通过VSM测量,我们可以得到圆柱体在不同磁场方向下的磁化曲线和磁滞回线。

通过对这些数据的分析,我们可以了解圆柱体的磁化强度、矫顽力等关键参数,并探讨其在实际应用中的潜在价值。

例如,在电磁器件的设计和制造中,圆柱体的磁学性质可能对器件的性能产生重要影响。

五、自旋阀的VSM测量分析自旋阀是一种具有自旋电子输运特性的器件,其磁学性质的研究对于电子学和自旋电子学领域具有重要意义。

通过VSM测量,我们可以分析自旋阀在不同磁场强度和方向下的电流变化,从而研究其自旋电子输运的机制和规律。

此外,我们还可以通过改变自旋阀的材料和结构,研究其对自旋电子输运的影响,为设计和制造新型自旋电子器件提供理论依据。

VSM原理与应用介绍

VSM原理与应用介绍

Ⅲ实验仪器结构与工作原理
注意:这里的H为外磁场。也就是说,只有在可以 忽略样品的“退磁场”情况下,利用VSM测得的 回线,方能代表材料的特征,否则,必须对磁 场进行修正后所得到的回线形状,才能表示材 料的真实特征。所谓“退磁场”,即当样品被 磁化后,其M将在样品两端产生“磁荷”,此 “磁荷对”将产生于磁化场方向相反的磁场, 从而减弱了外加磁化场H的磁化作用,故称为退 磁场。可将退磁场表示为,称为“退磁因子”, 取决于样品的形状,一般来说非常复杂,甚至 其为张量形式,只有旋转椭球体,方能计算出 三个方向的具体数值。
Ⅲ实验仪器结构与工作原理
由式(5)可以看出,信号的电动势为线圈到样品间 距离r的灵敏圈数。因此减小距离r,增强样品与线圈的 耦合,将会使灵敏度大为提高。但是随着距离的减小, 样品所在位置的偏差对信号影响就会越大,对样品取放 位置的重复性要求就会更加苛刻。可以使用成对的线圈 对称的放置在样品两边是这种情况得到改善。在(5)式 中,将X用-X代入,信号将改变符号,这说明同样线圈在 样品两边对称位置其输出信号相等,相位相反。因此在 实用中制成成对的线圈彼此串联反接,对称地放置在样 品两边,这样不仅可以保证在每对线圈中由样品偶极子 振动产生的信号彼此相加,而且它对位置尚有相互“补 偿”的作用,使信号对位置的便宜变得不敏感了。探测 线圈这样串联反接的结果还可使来自磁化场的波动和来 自其它空间的干扰信号互相抵消,因而改善了抗干扰的 能力。
H(Gs) 285 310 350 380 400 430
Y (mv) 0
0.05 0.10 0.15 0.17 0.21
H(Gs) 470 500 600 700 1000 1200 Y (mv) 0.25 0.27 0.31 0.34 0.37 0.40

材料磁学性能实验报告

材料磁学性能实验报告

材料磁学性能实验报告学号:姓名:班级:一、叙述实验原理和实验方法实验目的:1.了解振动样品磁强计(VSM )测量材料磁性能的测试方法。

2.测定材料的磁化曲线和磁滞曲线,了解饱和磁化强度、剩磁、矫顽力等磁参量。

实验原理:振动样品磁强计(VSM )是一种磁性测量常用的仪器,在科研和生产中有着广泛的应用。

它是利用小尺寸样品在磁场中做微小振动,使临近线圈感应出电动势而进行磁性参数测量的系统。

与一般的感应法不同,VSM 不用对感应信号进行积分,从而避免了信号漂移。

另一个优点是磁矩测量灵敏度高,最高达到10-7emu ,对测量薄膜等弱磁信号更具优势。

如果一个小样品(可近似为一个磁偶极子)在原点沿Z 轴作微小振动,放在附近的一个小线圈(轴向与Z 轴平行)将产生感应电压:km t m G e g ==ωωδcos其中G 为线圈的几何因子,ω为振动频率,δ为振幅, m 为样品的磁矩,N 、A 为线圈的匝数和面积。

原则上,可以通过计算确定出g e 和m 之间的关系k ,从而由测量的电压得到样品的磁矩。

但这种计算很复杂,几乎是不可能进行的。

实际上是通过实验的方法确定比例系数k ,即通过测量已知磁矩为m 的样品的电压g e ,得到k =e g m ,这一过程称为定标。

定标过程中标样的具体参数(磁矩、体积、形状和位置等)越接近待测样品的情况,定标越准确。

永磁材料的全部技术参数都可以由VSM 测量得到。

永磁材料的技术参数(饱和磁化强度、剩磁、矫顽力和磁能积等)可以由磁化曲线和磁滞回线反映出来,如图1,温度特性可以由不同温度下的磁滞回线给出。

720200)5(43r x r z NA G -=μπ图4 永磁材料的磁化曲线和磁滞回线图二、描述实验过程1. 准备样品。

样品重量约30mg 左右,形状尽量呈圆形。

2. 将样品用胶水粘到样品杆上,并晾干一天或吹风机烘干使其固定良好。

3.将样品竖直固定于仪器固定杆上,将接头连接稳固,放入磁场中,开始测试。

实验讲义-用VSM测量磁性测量磁性能(吉林大学)

实验讲义-用VSM测量磁性测量磁性能(吉林大学)

实验讲义用振动样品磁强计测量 铁氧体永磁磁性能吉林大学物理实验中心第一节 预备知识一 物质磁性磁性是在自然界所有物质中广泛存在的一种物理性质。

任何物质放在磁场H 中,都会或多或少地被磁化。

通常用磁极化强度J 或磁化强度M (J 、M 为单位体积内的磁矩,M J 0µ=)表示磁化状态,即磁化的方向和磁化程度的大小。

H M χ=,χ为磁化率。

磁感应强度H J B 0µ+=或)(0H M B +=µ。

依据χ的正负和大小,物质磁性体可以分为抗磁性,顺磁性,铁磁性,反铁磁性,亚铁磁性和磁性玻璃等。

1.抗磁性抗磁性物质没有固有的原子磁矩,磁矩是被磁场感应出来的,所以磁矩方向与磁场方向相反,即磁化率χ是负的。

抗磁性物质磁化率χ的数值很小,约为10-6。

在一般实验室条件下,χ与H 和温度T 无关。

在超导体内,0)(0=+=M H B µ,因此1−=χ。

这个现象称为Meissner 效应。

2.顺磁性顺磁性物质中原子或离子具有固有磁矩,磁矩间相互作用很弱,没有外磁场时,磁矩在热扰动作用下混乱排列,宏观磁化强度为零。

在磁场中,磁矩受到力矩的作用向磁场方向转动,在磁场方向显现出宏观的磁化强度,所以顺磁性磁化率为正。

然而由于磁矩在外磁场中的位能远比热能小,磁化很弱,χ大小约为5610~10−−。

在一般实验室的磁场中,χ与H 无关,但与温度满足Curie 定律T C =χ 或Curie-Weiss 定律C T C θχ−=,C 和C θ分别为Curie 常数和顺磁Curie 温度。

3. 铁磁性铁磁性物质具有固有磁矩,并且磁矩之间存在较强的相互作用,虽然不存在外磁场,所有的磁矩也都沿着同一方向排列,形成自发磁化。

为了降低退磁场能,铁磁体内部分成多个磁畴。

在磁畴内,所有磁矩平行排列,自发磁化到饱和值s J 。

不同磁畴的磁化方向不同,没有磁化的样品总体磁化强度为零。

磁畴之间存在畴壁,在畴壁内沿着厚度方向磁矩从一个磁畴的磁化方向逐步过渡到近邻磁畴的磁化方向。

vsm实验讲义

vsm实验讲义

振动样品磁强计(VSM)一、实验目的:1、掌握振动样品磁强计的基本原理、结构,了解其使用方法2、掌握磁性样品的起始磁化曲线和磁滞回线的测量,了解由此分析材料磁性参数的方法二、仪器工作原理:振动样品磁强计是通过小尺寸样品在均匀磁场中振动,利用邻近线圈中的感生电动势进行磁化强度测量的非积分式感应法系统,是磁性测量技术中的主要设备之一。

图1. (a)静电驱动式(b)机械驱动式(c)电磁驱动式根据驱动样品振动的方式不同,振动样品磁强计可分为机械式驱动式(静电驱动式(图1a)、(图1b)和电磁驱动式(图1c)和等多种。

机械驱动式是将同步电机的转动利用曲柄连杆将电机转子的旋转运动转变为样品沿竖直方向(Z轴)的等幅直线振动。

这样,当样品磁矩振动时,就可以在与Z轴方向平行的固定测量线圈中产生感生电动势。

电磁驱动式振动系统由两个类似扬声器发音头的振动膜和振动杆组成。

上下振动膜底部相对固定在刚性连接板上。

振动杆接在下振动膜上,并在上振动膜上装一质量与振动杆质量相当的平衡重物。

将两振动膜线圈串联反接后,馈入振幅稳定,频率不能被市电频整除的低频交变电流。

振动膜便带动振动杆的样品一起振动。

为了防止横向振动,振动杆和保护套管间采用滑动配合。

由于两音圈串联反接,其刚性连接处于振动节点上,使系统具有较高的机械稳定性,可抑制工频及其谐波成分的干扰,具有较高的信噪比,并且可以避免机械式驱动系统的机械传动噪声干扰。

但其对外界电磁场干扰比较敏感,必须加磁屏蔽。

使用静电驱动系统,可以避免杂散磁场的干扰。

测量线圈中的感应信号,来源于被磁化的振动样品在周围产生的周期性变化磁场。

若把小样品近似看作磁偶极子,则测量线圈中感应电动势是具有基波和各级谐波成份的频谱信号。

通过理论推导可知,在由基波线圈几何因子所确定的位置和线圈长度范围内,二次谐波在串联反接的线圈对中的感应电动势等于零。

又由于样品振幅很小(约0.1mm),其它高次谐波的作用可忽略不计。

分享永磁材料磁性能检测分析实验讲义

分享永磁材料磁性能检测分析实验讲义

磁性材料磁性能检测分析实验讲义1﹑实验目的了解影响材料磁性能相关参数的主要因素;掌握材料磁化曲线、磁滞回线的测试原理;掌握材料磁参数的测试方法与操作过程;了解材料磁性能测试与分析在材料研究中的应用领域;2﹑实验设备YSD-10-1半自动油压机;ST-552型脉冲充磁机;AMT-4型磁化特自动性测量仪。

3﹑实验原理3.1 试样的成型试样的成型依靠外力的压缩作用而实现。

将永磁粉末或混合料粉装在压模内,然后闭合模腔通过模冲对物料施压,保压一定时间后卸压,使其取得模腔的型样转变为成型物,然后用适当的方法脱模后获得一定形状的磁体制品。

压力经过上模冲传向粉末时,粉末力图向各个方向流动,在这个过程中,粉末发生位移和变形。

粉末的位移主要表现为粉末体内的拱桥效应遭到破坏,粉末颗粒彼此填充孔隙,重新排列位置,增加接触。

粉末的变形分为弹性变形﹑塑性变形和脆性变形:粉末的弹性变形是指外力卸除后粉末形状可以恢复原形;粉末的塑性变形是指压力超过粉末的弹性极限,粉末的变形不能恢复原形;粉末的脆性变形是指压力超过粉末的强度极限后,粉末颗粒发生粉碎性破坏。

粉末通过上述变形使粉末之间的孔隙度降低,接触面积增加,从而形成具有一定强度的压坯。

压制后的粉末体具有一定的强度是因为粉末之间的联结力,大致也可分为两类:一是粉末之间的机械啮合力,这是由于具有不规则外形的粉末在位移和变形过程中相互楔住和钩连,从而形成机械啮合;二是粉末颗粒表面原子之间的引力,由于粉末的变形和位移,粉末表面的原子彼此接近,进入引力范围内便可以由引力作用而联结起来。

粉末之间的机械啮合力是粉末体具有一定强度的主要原因。

粉末体的密度与成型压强之间的关系可以用黄培云方程来大致表示:式中d —压坯密度;d 0—压坯原始密度(粉末充填密度);d m —致密金属密度;P —压制压强;M —压制模量;m —粉末压制过程的非线性指数。

通过施加不同的压制压强,可以得到不同密度的压坯。

在本实验中,所用的标准试样一律为Φ10×10mm 的圆柱体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验讲义用振动样品磁强计测量 铁氧体永磁磁性能吉林大学物理实验中心第一节 预备知识一 物质磁性磁性是在自然界所有物质中广泛存在的一种物理性质。

任何物质放在磁场H 中,都会或多或少地被磁化。

通常用磁极化强度J 或磁化强度M (J 、M 为单位体积内的磁矩,M J 0µ=)表示磁化状态,即磁化的方向和磁化程度的大小。

H M χ=,χ为磁化率。

磁感应强度H J B 0µ+=或)(0H M B +=µ。

依据χ的正负和大小,物质磁性体可以分为抗磁性,顺磁性,铁磁性,反铁磁性,亚铁磁性和磁性玻璃等。

1.抗磁性抗磁性物质没有固有的原子磁矩,磁矩是被磁场感应出来的,所以磁矩方向与磁场方向相反,即磁化率χ是负的。

抗磁性物质磁化率χ的数值很小,约为10-6。

在一般实验室条件下,χ与H 和温度T 无关。

在超导体内,0)(0=+=M H B µ,因此1−=χ。

这个现象称为Meissner 效应。

2.顺磁性顺磁性物质中原子或离子具有固有磁矩,磁矩间相互作用很弱,没有外磁场时,磁矩在热扰动作用下混乱排列,宏观磁化强度为零。

在磁场中,磁矩受到力矩的作用向磁场方向转动,在磁场方向显现出宏观的磁化强度,所以顺磁性磁化率为正。

然而由于磁矩在外磁场中的位能远比热能小,磁化很弱,χ大小约为5610~10−−。

在一般实验室的磁场中,χ与H 无关,但与温度满足Curie 定律T C =χ 或Curie-Weiss 定律C T C θχ−=,C 和C θ分别为Curie 常数和顺磁Curie 温度。

3. 铁磁性铁磁性物质具有固有磁矩,并且磁矩之间存在较强的相互作用,虽然不存在外磁场,所有的磁矩也都沿着同一方向排列,形成自发磁化。

为了降低退磁场能,铁磁体内部分成多个磁畴。

在磁畴内,所有磁矩平行排列,自发磁化到饱和值s J 。

不同磁畴的磁化方向不同,没有磁化的样品总体磁化强度为零。

磁畴之间存在畴壁,在畴壁内沿着厚度方向磁矩从一个磁畴的磁化方向逐步过渡到近邻磁畴的磁化方向。

铁磁体的磁化主要是通过畴壁位移和磁矩转动两个过程进行。

铁磁性的磁化率χ大的多,约为710~10。

χ对H 和T 的依赖关系很复杂,一般用J (或M 、B )与H 的关系 )(H J (或)(H M 、)(H B )描写其磁性。

由图1可以看出,J 不是H 的单值函数,而是与H 变化的历史有关;存在磁滞现象,J 的变化落后于H 的变化。

热退磁的样品按曲线a (称为初始磁化曲线)磁化饱和后,减小磁化场H ,磁极化矢量J 并不按原路返回,而是比磁场H 的变化滞后(曲线b )。

当H 减小到零时,样品还保留着一定的磁极化强度r J ,r J 称为剩磁。

只有在反向加上一定的磁场c iH ,磁极化强度才降为零,c i H 称为内禀矫顽力。

继续增大反向磁场,样品逐渐在反向趋近饱和。

改变磁场从负的最大值到正的最大值,J 按着与曲线b 对称的曲线c 变化,曲线b 和c 构成的闭合曲线叫磁滞回线。

在第二象限(J >0, H <0),从(0,r J )到(c i H −,0)的一段曲线称为退磁曲线。

由公式H J B 0µ+=或)(0H M B +=µ可以得到与)(H J 相似的)(H B 曲线。

在)(H B 的初始磁化曲线上,H B =µ称为磁导率。

磁导率是衡量软磁材料性能的一个重要的指标。

在)(H B 的磁滞回线上,0=H 处的r B 也称为剩磁,r r J B =,0=B 处的磁场的绝对值称为矫顽力c H , c H <c i H ,在第二象限,任一点的B 与H 的乘积的绝对值)(BH (该点下的面积)称为该点的磁能积,max )(BH 为一系列)(BH 值中的最大值,叫最大磁能积。

最大磁能积代表了磁体单位体积内存储的能量,是衡量永磁材料性能的一个重要指标。

图1,铁磁性样品的初始磁化曲线(a )和磁滞回线(b 、c )随着温度的提高,磁畴内原子磁矩的平行排列被热运动破坏,自发磁极化强度s J 减小,在Curie 温度c T 处近似为零。

在高于c T 的温度呈现顺磁性,满足Curie-Weiss 定律。

常温下只有过渡族金属Fe 、Co 、Ni 和稀土金属Gd 具有铁磁性。

其它铁磁性物质大部分是含有上述四种金属元素的合金和化合物,如SmCo 5、Nd 2Fe 14B 等永磁材料和坡莫(Fe -Ni )等软磁材料。

4.反铁磁性反铁磁性物质的原子有固有磁矩,有两个或多个次晶格。

在同一个次晶格内原子磁矩平行排列,不同次晶格的原子磁矩取向相反,总磁矩等于零。

反铁磁性存在Néel 温度N T ,在N T 以下,χ随温度的升高增加,在N T 以上变为顺磁性,满足Curie-Weiss 定律N T T C +=χ,因此χ在N T 处存在最大值。

反铁磁性的磁化率χ约为1410~10−−。

5. 亚铁磁性亚铁磁性的磁矩排布和反铁磁性类似,在一个次晶格内磁矩平行排列,不同次晶格间磁矩反平行,但次晶格的磁矩大小不同,不能完全互相抵消,自发磁化强度不等于零,显示出的宏观磁性与铁磁性类似,但饱和磁化强度一般小于铁磁性。

当温度提高到Néel 温度N T 时转变为顺磁性。

这种顺磁性的)(T χ关系比较复杂。

具有亚铁磁性的典型材料有尖晶石铁氧体、磁铅石铁氧体、石榴石铁氧体及重稀土-3d 过渡金属化合物。

6. 磁性玻璃在这种磁性物质中,磁矩即不平行也不反平行排列,是无规则的非共线结构。

属于这个磁性的有散铁磁性,散亚铁磁性,散反铁磁性,自旋玻璃等。

具有自发磁化的铁磁性、亚铁磁性、散铁磁性、散亚铁磁性统称为强磁性。

目前能够应用的磁性材料绝大部分是磁化强度大、磁性转变温度高的强磁性物质。

3d 、4f 磁性元素是这些材料的基本组成。

抗磁性、顺磁性、反铁磁性、散反铁磁性等弱磁性物质,以及磁化强度小或磁性转变温度低的强磁性物质还没有被应用。

二,磁性材料1, 软磁材料软磁材料是这样一种磁性材料,加上磁场时,它们很容易被磁化;去掉磁场,又很容易退磁。

这类材料主要应用于电机、变压器等要求磁通密度(B )随磁化场的变化而变化的场合,因此对这类材料的要求主要是高磁导率、低矫顽力、低损耗。

因为交变的磁场会产生涡流,因此要求软磁材料有尽可能高的电阻率以降低损耗。

常用的软磁材料有纯Fe 、Fe -Si 合金、坡莫合金(Fe -Ni )、非晶和纳米晶合金以及Mn-Zn 和Ni -Zn 铁氧体等。

2,永磁材料与软磁材料相反,对永磁材料的要求是饱和磁化去掉磁化场后,能够保留尽可能多的磁性。

因此除了要求高的饱和磁化强度s J 外,还要求有尽可能高的矫顽力c i H 和较好的方形度,从而得到高的最大磁能积max )(BH 。

max )(BH 代表单位体积内存储的磁场能量。

永磁体常用于永磁磁路,在给定气隙中产生磁场。

当气隙的体积和永磁体的体积确定后,气隙中磁场强度的平方与max )(BH 成正比。

因此max )(BH 是衡量永磁体性能的最重要的参数。

常用的永磁材料有永磁铁氧体,铝镍钴,SmCo 5、Sm-Co-Cu-Fe-Zr 和Nd-Fe-B 等稀土永磁。

实验 用振动样品磁强计测量磁性材料磁性能实验目的:1 了解振动样品磁强计的测量原理,了解锁相技术概念,鞍点的概念及鞍点调整方法,掌握VSM 定标方法。

2 掌握软磁、永磁材料的概念及两类材料主要技术特征和测量、数据处理方法。

实验原理振动样品磁强计(VSM )是一种磁性测量常用的仪器,在科研和生产中有着广泛的应用。

它是利用小尺寸样品在磁场中做微小振动,使临近线圈感应出电动势而进行磁性参数测量的系统。

与一般的感应法不同,VSM 不用对感应信号进行积分,从而避免了信号漂移。

另一个优点是磁矩测量灵敏度高,最高达到10-7emu ,对`测量薄膜等弱磁信号更具优势。

如果一个小样品(可近似为一个磁偶极子)在原点沿Z 轴作微小振动,放在附近的一个小线圈(轴向与Z 轴平行)将产生感应电压:km t m G e g ==ωωδcos 其中720200)5(43r x r z NA G −=µπ,为线圈的几何因子。

ω为振动频率,δ为振幅, m 为样品的磁矩,N 、A 为线圈的匝数和面积。

原则上,可以通过计算确定出g e 和m 之间的关系k ,从而由测量的电压得到样品的磁矩。

但这种计算很复杂,几乎是不可能进行的。

实际上是通过实验的方法确定比例系数k ,即通过测量已知磁矩为m 的样品的电压g e ,得到m e k g=,这一过程称为定标。

定标过程中标样的具体参数(磁矩、体积、形状和位置等)越接近待测样品的情况,定标越准确。

VSM 测量采用开路方法,磁化的样品表面存在磁荷,表面磁荷在样品内产生退磁场NM ,N 为退磁因子,与样品的具体形状有关。

所以在样品内,总的磁场并不是磁体产生的磁场H ,而是NM H −。

测量的曲线要进行退磁因子修正,把H 用NM H −来代替。

样品放置的位置对测量的灵敏度有影响。

假设线圈和样品按图4放置,沿x 方向离开中心位置,感应信号变大;沿y 和z 方向离开中心位置,感应信号变小。

中心位置是x 方向的极小值和y 、z 方向的极大值,是对位置最不敏感的区域,称为鞍点。

测量时,样品应放置在鞍点,这样可以使由样品具有有限体积而引起的误差最小。

图4,线圈放置位置 图5,鞍区示意图基本的VSM 由磁体及电源、振动头及驱动电源、探测线圈、锁相放大器和测量磁场用的霍耳磁强计等几部分组成,在此基础上还可以增加高温和低温系统,实现变温测量。

振动头用来使样品产生微小振动。

振动频率应尽量避开50Hz 及其整数倍,以避免产生干扰。

为了使振动稳定,还要采取稳幅措施。

在振动杆上固定一块永磁体,永磁体与样品一同振动。

当振动幅度发生变化时,放置在永磁体附近的一对探测线圈会探测到这一变化并反馈给驱动电源,驱动电源根据反馈信号对振动幅度作出调整,使振幅稳定。

驱动方式有机械驱动、电磁驱动和静电驱动几种。

图6,VSM 结构示意图磁体有超导磁体、电磁铁和亥姆赫兹线圈等几种。

前两种能产生很强的磁场,用来测量高矫顽力的永磁材料。

亥姆赫兹线圈产生的磁场很小,但磁场的灵敏度很高,适于测量软磁材料。

磁矩m 的测量由探测线圈和锁相放大器组成,锁相放大器有很高的放大倍数,保证了VSM 有较高的灵敏度。

磁场的测量采用霍耳磁强计。

将m 和H 信号送给计算机,由计算机进行数据的处理,并对测量过程进行自动化控制。

软磁材料经常与线圈组成电感器件,如变压器、磁头等,材料内磁通以一定频率快速变化,其动态参数电感量一般用交流电桥或Q 表等测量。

但软磁材料的静态参数,如饱和磁化强度Bs 、矫顽力c i H 等仍然是基本的性能指标。

相关文档
最新文档