二次函数的应用 教学设计
二次函数教案(优秀5篇)
二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。
二次函数教学设计(精选6篇)
二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。
鲁教版数学九年级上册3.6《二次函数的应用》教学设计
鲁教版数学九年级上册3.6《二次函数的应用》教学设计一. 教材分析《二次函数的应用》是鲁教版数学九年级上册3.6节的内容,这部分内容是在学生已经掌握了二次函数的图像和性质的基础上进行学习的。
教材通过实例引入二次函数的应用,让学生了解二次函数在实际生活中的应用,培养学生的数学应用意识。
教材内容主要包括两个方面:一是二次函数在几何中的应用,二是二次函数在实际生活中的应用。
二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。
但是,对于二次函数在实际生活中的应用,可能还比较陌生。
因此,在教学过程中,需要通过实例让学生了解二次函数在实际生活中的应用,并培养学生的数学应用意识。
三. 教学目标1.知识与技能:理解二次函数在几何中的应用,掌握二次函数在实际生活中的应用。
2.过程与方法:通过实例分析,培养学生的数学应用意识,提高学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学思维。
四. 教学重难点1.重点:二次函数在几何中的应用,二次函数在实际生活中的应用。
2.难点:二次函数在实际生活中的应用,如何将实际问题转化为二次函数问题。
五. 教学方法采用实例教学法,通过具体的实例让学生了解二次函数在实际生活中的应用,培养学生的数学应用意识。
同时,采用问题驱动法,引导学生主动探究二次函数的应用,提高学生解决实际问题的能力。
六. 教学准备1.教师准备:准备好相关的实例,制作好PPT。
2.学生准备:预习相关内容,准备好笔记本。
七. 教学过程1.导入(5分钟)通过一个简单的实例,让学生了解二次函数在几何中的应用。
例如,抛物线的定义及性质,让学生初步感受二次函数的应用。
2.呈现(15分钟)呈现一个实际问题,让学生尝试用二次函数来解决。
例如,一个农场想要建一个最大的矩形鸡舍,鸡舍的一边靠墙,另外两边的长度分别为6米和4米,问如何建鸡舍才能使鸡舍的面积最大?3.操练(15分钟)学生分组讨论,尝试将实际问题转化为二次函数问题,并求解。
《二次函数》教案8篇(二次函数应用教案设计)
《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
二次函数应用教学设计与反思
二次函数的应用教学设计1.教学重点经历探究最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值。
2.教学难点能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大(小)面积问题。
六、教学过程教师活动学生活动设计意图(一)检查预习预习范围:P46-47预习要点1、分别写出二次函数的一般式、顶点式、交点式时顶点坐标,并说明何时取得最大值。
2、几何图形的几个面积公式是怎么样的?预习检测学生完成预习作业并积极发言进行展示。
通过预习作业的检查,检查学生对二次函数基本知识的认知,温习最值与表达式之间的关系,培养学生的预习习惯。
(二)合作探究活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上。
(1)设矩形的一边AB=xm,那么AD边的长度如何表示?在老师的引导下,学生围绕“导学案”进行探究学习,以解决问题的方式开展自主学习交流,教师适时加以点拨,开展师生互动。
接着通过变式练习,引导学生逐步思考,小组交流探讨,最后再进行归纳总结。
以问题步步展开的方式进行设问,由易到难逐步引导学生。
通过亲身体会数学变式问题的趣味性,扩展思考空间,并将本节课又掀起了一层波澜,问题变得更为开放,思维被更加活跃,充分体会用二次函数解(2)设矩形的面积为ym2,当x取何值时,y的值最大?最大值是多少?活动2:思考交流变式一:如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上如果设矩形的一边AD=xcm,矩形的面积为ycm2,当x取何值时,y的值最大?最大值是多少?变式二:如图,在一个直角三角形的内部作一个矩形PBCD,其中点P和点D分别在两直角边上,BC在斜边上.问:矩形的一边BC取何值时,矩形的面积最大? 最大值是多少?活动3:探究归纳如何运用二次函数求实际问题中的最大值或最小值?先恰当选设,再将所求的问题用关系式表达出来,然后利决一些实际问题的过程是一个数学建模的过程。
初中数学《二次函数的应用》教案
初中数学?二次函数的应用?教案2.3二次函数的应用教学目标设计1.知识与技能:通过本节学习 ,稳固二次函数y=ax2+bx+c〔a0〕的图象与性质 ,理解顶点与最值的关系 ,会用顶点的性质求解最值问题。
能力训练要求1、能够分析实际问题中变量之间的二次函数关系 ,并运用二次函数的知识求出实际问题的最大〔小〕值开展学生解决问题的能力 , 学会用建模的思想去解决其它和函数有关应用问题。
2、通过观察图象 ,理解顶点的特殊性 ,会把实际问题中的最值转化为二次函数的最值问题 ,通过动手动脑 ,提高分析解决问题的能力 ,并体会一般与特殊的关系 ,培养数形结合思想 ,函数思想。
情感与价值观要求1、在进行探索的活动过程中开展学生的探究意识 ,逐步养成合作交流的习惯。
2、培养学生学以致用的习惯 ,体会体会数学在生活中广泛的应用价值 ,激发学生学习数学的兴趣、增强自信心。
教学方法设计由于本节课是应用问题 ,重在通过学习总结解决问题的方法 ,故而本节课以“启发探究式〞为主线开展教学活动 ,解决问题以学生动手动脑探究为主 ,必要时加以小组合作讨论 ,充分调动学生学习积极性和主动性 ,突出学生的主体地位 ,到达“不但使学生学会 ,而且使学生会学〞的目的。
为了提高课堂效率 ,展示学生的学习效果 ,适当地辅以电脑多媒体技术。
教学过程导学提纲设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一 ,它生活背景丰富 ,学生比拟感兴趣 ,对九年级学生来说 ,在学习了一次函数和二次函数图象与性质以后 ,对函数的思想已有初步认识 ,对分析问题的方法已会初步模仿 ,能识别图象的增减性和最值 ,但在变量超过两个的实际问题中 ,还不能熟练地应用知识解决问题 ,而面积问题学生易于理解和接受 ,故而在这儿作此调整 ,为求解最大利润等问题奠定根底。
从而进一步培养学生利用所学知识构建数学模型 ,解决实际问题的能力 ,这也符合新课标中知识与技能呈螺旋式上升的规律。
浙教版九年级上册 1.4.2 二次函数的应用 教学设计
《1.4.2二次函数的应用》教学设计一、教学目标(1)情感态度与价值观目标发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值. (2)能力目标会综合运用二次函数和其他数学知识解决如有关距离、利润等的函数最值问题. (3)知识目标继续经历利用二次函数解决实际最值问题的过程. 二、教学重点利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题. 三、教学难点将现实问题的数学化,情景比较复杂. 四、教学方法自主探究、合作交流,采用多媒体问题引领 五、教学过程设计 问题引入,回顾旧知问题1:利用函数解决实际问题的基本思想方法?【设计意图】借助一次函数的实际应用,回忆函数解决实际问题的基本思想方法.问题2:求函数的最值问题,应注意什么? 图中所示的二次函数图象的解析式为:13822++=x x y⑴若-3≤ x ≤3,该函数的最大值、最小值分别为( )、( ). ⑵又若0≤ x ≤3,该函数的最大值、最小值分别为( )、( ). 预设:归纳出二次函数取最值时应考虑自变量的范围.【设计意图】通过辨析两个例子,归纳出二次函数取最值时应考虑自变量的范围. 问题2:如何求下列函数的最小值?y x x 2=2+4+5预设:体会问题的本质是求二次函数的最小值. 【设计意图】本问题是二次函数的优化模型的深入研究和发展,使学生进一步感受二次函数是探索自然现象、社会现象的重要工具.例1如图,B船位于A船正东26km处,现在A、B两船同时出发,A船以12 km/h的速度朝正北方向行驶,B船以5km/h的速度朝正西方向行驶,何时两船相距最近?最近距离是多少?预设:【设计意图】由实际问题先提炼几何图形,并类比问题3采用化归方法求二次函数最小值.例2 某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日销售量减少40瓶;当售价为每瓶12元时,日均销售量为400瓶,问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元?预设:等量关系单件利润=售价-进价;总利润=单件利润×销售数量列表分析如下:单价单利数量降价前123400降价后X x-91360-80xy=(x-9)(1360-80x)=-80x²+2080x-12240-ba2=13,在x10≤≤14的范围内.所以当x=13时,maxy=1280元.【设计意图】感受列表格的优势,并经历二次函数求最值应先确定自变量的取值范围.练1某大棚内种植西红柿,其单位面积的产量与这个单位面积种植的株树构成一种函数关系,每平方米种植4株时,平均单株产量为2kg ,以同样的栽培条件,每平方米种植的株树每增加1株,单株产量减少 kg ,问:每平方米种植多少株时,能获得最大的产量?最大产量为多少?预设:列表分析如下:x x x y x x x 2-4⎛⎫⎛⎫=2-=3-=-+3 ⎪ ⎪444⎝⎭⎝⎭ ()x 21=--6+94(x >0,且x 为正整数) ∴ 当x =6时,获得最大产量,最大产量为9kg .练2 上午8点,某台风中心在A 城正南方向的200km 处,以25km /h 的速度向A 城移动,此时有一辆卡车从A 城以100km /h 的速度向正西方向行驶,问何时这辆卡车与台风中心的距离最近?当距离最近时台风中心与这辆卡车分别位于何处? 题目分析:设经过的时间为t (h ) ,卡车与台风中心的 距离CB 为s (km ) .则AC =100t ,AB =200-25t.s ==(t >0)∴当t 8=17时,s 有最小值,即在8:28,台风中心与卡车分别离A 城约188km 和47km . 小结新课,梳理新知。
九年级数学上册《二次函数的应用》教案、教学设计
-通过动画展示二次函数图像的平移、伸缩等变换,使学生直观地感受图像的性质。
3.设计具有梯度的问题,引导学生逐步深入地掌握二次函数的知识。
-从简单的二次函数图像识别,到求解实际问题中的二次函数,逐步提高问题的难度。
4.采用小组合作、讨论交流的学习方式,促进学生之间的思维碰撞,共同解决难题。
5.学会运用二次函数的知识,解决生活中的实际问题,提高数学应用能力。
(二)过程与方法
在本章节的学习过程中,学生将通过以下方法培养数学思维与解决问题的能力:
1.通过小组合作、讨论交流,培养学生的合作意识和团队精神。
2.利用数形结合的方法,引导学生观察、分析二次函数的图像,培养学生直观想象和逻辑推理能力。
5.反思与总结:
-请同学们在作业本上写下本节课的学习心得,包括对二次函数的理解、学习过程中的困惑以及解题方法的总结。
-教师在批改作业时,应及时给予反馈,鼓励学生持续反思,不断提高。
4.通过小组合作,培养学生互相尊重、团结协作的品质,增强集体荣誉感。
5.引导学生认识到数学知识在实际生活中的重要性,培养学生的社会责任感和使命感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了线性方程、不等式等知识,对于函数的概念也有初步的理解。在此基础上,学生对二次函数的学习将面临以下挑战:
-完成课后作业中的基础题,旨在让学生通过实际操作,加深对二次函数图像特征的理解。
2.提高作业:
-选做课本第chapter页的提高题,涉及二次函数在实际问题中的应用,如最值问题、面积计算等,以提升学生解决问题的能力。
-设计一道综合性的应用题,要求学生运用本节课所学知识,结合生活实际,解决实际问题。
数学《二次函数》优秀教案(精选8篇)
数学《二次函数》优秀教案数学《二次函数》优秀教案(精选8篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。
优秀的教案都具备一些什么特点呢?下面是小编收集整理的数学《二次函数》优秀教案,仅供参考,欢迎大家阅读。
数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根。
2、进一步发展估算能力。
(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。
(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。
教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、能够利用二次函数的图象求一元二次方程的近似根。
教学难点利用二次函数的图象求一元二次方程的近似根。
教学方法学生合作交流学习法。
教具准备投影片三张第一张:(记作§2.8.2A)第二张:(记作§2.8.2B)第三张:(记作§2.8.2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可。
但是在图象上我们很难准确地求出方程的解,所以要进行估算。
本节课我们将学习利用二次函数的图象估计一元二次方程的根。
数学《二次函数》优秀教案篇2一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
2.了解二次函数关系式,会确定二次函数关系式中各项的系数。
《二次函数的应用》教案
《二次函数的应用》教案1教学目标知识与技能1.会利用二次函数的性质解决抛物线型实际问题.2.使学生体验建模思想、数形结合思想.3.培养学生分析实际问题、解决实际问题的能力.数学思考与问题解决经历构建平面直角坐标系解决抛物线型实际问题的过程,在此过程中培养建模思想,共同探究实际问题的解决方法.情感与态度在共同的探究过程中增强用数学的意识,发展应用观点.重点难点重点:建立平面直角坐标系解决抛物线型实际问题.难点:建立函数模型.教学设计导入新课通过多媒体展示生活中的抛物线图片,如喷出的水柱,投出的篮球运动路线,桥拱等.提问:这些图像的形状有什么共同特点?探究新知出示教材第41页例1.问题1:对于例题,你联想到用什么数学知识去解决?答:二次函数.问题2:求篮球运动员出手时的髙度是多少,应用二次函数知识解决时应该求什么?答:求该点的纵坐标.问题3:求坐标的前提是什么?答:在平面直角坐标系中.问题4:对于本题又该怎样解决?答:先建立平面直角坐标系,求出抛物线的表达式,再求篮球运动员出手点的纵坐标.师:同学们回答得非常正确,下面就请同学们独立思考,然后小组讨论,看哪种建坐标系的方法简单可行,并把解题步骤写在练习本上.学生思考、讨论,教师引导,巡回检査.学生建坐标系的方案有如下几种.教师让学生展示每种坐标系下的解题过程,充分发挥生的主体性,最后展示第一种方案的完整答案,并总结解题方法.巩固练习出示教材第42页“做一做”,让学生独立做出答案.教师巡回检査,搜寻发现的问题.展示学生答案,表扬学生的解题过程,在完整答案的基础上,点明个别学生出现的问题,以防学生以后再次犯错.课堂小结学生谈本节的收获.布置作业教材第4243莨习题A组、B组.《二次函数的应用》教案2教学目标知识与技能会利用二次函数解决实际应用的最值问题.数学思考与问题解决在经历探索实际问题中两个变量之间的函数关系的过程中培养数学建模思想.情感与态度在共同探究问题中增强用数学的意识,发展应用观点.重点难点重点:利用二次函数解决实际生活中的最值问题.难点:利用二次函数解决综合性的问题.教学设计一、导入新课如图所示,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场,你能算出四个矩形的总面积吗?二、自主探究,合作交流1.如上题:(例1)(1)设毎个小矩形垂直于墙的一边的长为x m,试用x表示小矩形的另一边的长.(2)设四个小矩形的总面积为ycm2,请写出用x表示y的函数表达式.(3)你能利用公式求出所得函数的图像的顶点坐标,并说出:y的最大值?(4)你能画出这个函数的图像并借助图像说出y的最大值吗?2.例2教材第44页例2.3.例3教材第44页例3.分析:设生产x档次的产品,则产品提髙了(x-1)个档次,每提髙一个档次,产品利润增加2元,提髙(x-1)个档次,产品利润增加2(x-1)元,那么产品销量就减少4(x-1)件,现在的销量就变为[80-40(x-1)]件.所求获得的利润是每件获得的利润乘销量.4.例4(教材第44页“做一做”)分析:开关转过的一个角度对应一个所用燃气量,这就相当于一个点的坐标.任选三个点的坐标设二次函数的一般式即可求解.5.课堂练习课本第45页练习.三、课堂小结本节课你有什么收获?有什么困惑?(1)求最值的方法;(2)应注意的问题.四、布置作业必做题:教材第45页习题A组第1,2题.选做题:教材第46页B组第1、2题.《二次函数的应用》教案3教学目标知识与技能1.进—步体会运用函数知识解决问题的步骤.2.能熟练运用二次函数和其他知识相结合解决数学综合性问题.数学思考与问题解决经历一元二次方程和函数关系问题的探究过程,学习用联系的观点看待问題的思考方法.情感与态度体会解决问题方法的多样性,形成合作交流的意识及独立思考的习惯.重点难点重点:运用二次函数和其他数学知识解决综合性问题.难点:熟练运用函数和其他数学知识解决综合性问题教学设计创设情境,引人新课前面我们已经学习了二次函数在现实生活中的应用:解决抛物线型的问题,解决最值问题,实际上现实生活中还有许许多多的问题要用二次函数的知识去解决.二次函数和其他知识相联系的问题更是比比皆是.请看下面的图片.出示图片:一个交通事故的现场.探究新知1.出示教材第46页“做一做”.同学们,现在请你作为一名交警,你能解决这两个问题吗?分析:对于s 甲=0.1x +0.01x 2,已知s 甲=12,求x 就是已知二次函数图像上点的纵坐标求横坐标的问题,这里的函数和实际问题联系起来,求出的坐标要进行取舍.解:(1)当s 甲=12m 时,12=0.1x +0.01x 2. 解这个方程得:X 1=-40(舍去),x 2=30.甲车的行驶速度是30km /h ,小于.40km /h .所以甲车不违章超速.(2)当纪s 乙=10m 时,10= 14x .∴x =40.当s 乙=12m 时,12= 1 4x .∴x =48.即乙车的行驶速度在40km /h<x<48k m /h 范围内,而乙车的限速为40km /h ,所以乙车违章超速.问题:在解决这个问题的时候,用到了什么方法?从这个事例当中,我们可以体会到,当二次函数:y =ax 2+b x +c 的某函数值y =m 时,就可以利用一元二次方程ax 2+b x +c =m 来求对应的值.这样,就把一元二次方程和二次函数联系起来了.2.出示教材第47页例4.本题的图形是三角形相似的一个基本图形,用三角形相似对应边成比例列出表达式是解决本题的第一步.BE AB=.=,即31-x∴x2-x+3解的x=,x=444416第(1)问能求出x的值,则表示CF的值可能等于3解法1:(1)假设CF=34,设BE=x,则EC=1-x.在正方形ABCD中,∠AEF=90°,∴∠BAE=∠CEF,∴△Rt ABE∽△Rt ECF.∴CF EC x1 4∴x2-x+3=0.4∵=(-1)2-4×1×34=-2<0,33=0无实根.因此假设CF=不成立.即CF的长不可能等于.444(2)结合(1),x(1-x)=316时,即16x2-16x+3=0.13133.∴当BE=或BE=时,均有CF=.12解法2.教材第47页.这是同学们讨论交流得出的两种解法,第一种是用方程来解决,要先假设CF=34,如果3,现在方程无解,说明不存在CF=;第44二种方法是二次函数和一元二次方程相结合来说明第(1)问中CF能否为34.从本例可以看出,一元二次方程与二次函数联系紧密,用二次函数可以更方便、更广泛地解决一些问题.课堂小结学习本节课后你的收获是什么?布置作业教材第48页A组题,第49页B组题.。
《二次函数的应用2》教学设计
《二次函数的应用2》教学设计
一、教学内容及内容解析
分析实际变量中的二次函数的关系,运用二次函数求出最大(小)值问题.二、教学目标
1.知识与技能:经历探索销售中最大利润等问题的过程,体会用二次函数解决最优化问题的过程,并感受数学的应用价值.
2.过程与方法:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.
3.情感、态度与价值观:经历销售中最大利润问题的探究过程,发展学生运用数学知识解决实际问题的能力,培养不怕困难的品质,发展合作意识和科学精神.三、教学问题诊断分析
根据教学目标确定重难点如下:
重点:探索销售中最大利润问题,能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力.
难点:能正确理解题意,找准数量关系,运用二次函数的知识解决实际问题.四、教学过程设计(脚本)。
初中数学二次函数教案(5篇)
初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。
进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
最新-二次函数数学教案(优秀11篇)二次函数教案
二次函数数学教案(优秀11篇) 二次函数教案作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么大家知道正规的教案是怎么写的吗?它山之石可以攻玉,本页是爱岗敬业的小编小月月给大家整理的二次函数数学教案【优秀11篇】,希望对大家有所帮助。
《1.1二次函数》教学设计篇一【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式。
2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围。
【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系。
【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识。
【教学重点】二次函数的概念。
【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程。
一、情境导入,初步认识1.教材p2“动脑筋”中的两个问题:矩形植物园的面积s(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是s=-2x2+100x,(0x50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-1+6000,(0x1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数。
2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有。
二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项。
注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出。
《1.1二次函数》教学设计篇二二次函数的教学设计马玉宝教学内容:人教版九年义务教育初中第三册第108页教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
二次函数的应用优秀教案
二次函数的应用【课时安排】2课时【第一课时】【教学目标】(一)教学知识点。
能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值。
(二)能力训练要求。
1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力。
2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力。
(三)情感与价值观要求。
1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值。
2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格。
3.进一步体会数学与人类社会的密切联系,了解数学的价值。
增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力。
【教学重点】1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值。
2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题。
【教学难点】能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积问题。
【教学方法】教师指导学生自学法。
【教学过程】一、创设问题情境,引入新课师:本节课我们来学习用二次函数来解决实际问题。
解决这类问题的关键是要读懂题目,明确要解决的是什么,分析问题中各个量之间的关系,把问题表示为数学的形式,在此基础上,利用我们所学过的数学知识,就可以一步步地得到问题的解。
本节课我们将继续利用二次函数解决最大面积问题。
二、新课讲解(一)例题讲解展示例题:1.如下图,在一个直角三角形的内部作一个长方形ABCD 。
其中AB 和AD 分别在两直角边上。
(1)设长方形的一边AB =x m ,那么AD 边的长度如何表示?(2)设长方形的面积为y m 2当x 取何值时,y 的值最大?最大值是多少?2.师:分析:(1)要求AD 边的长度,即求BC 边的长度,而BC 是△EBC 中的一边,因此可以用三角形相似求出BC .由△EBC ∽△EAF ,得304040BC x AF BC EA EB =-=即所以AD=BC=43(40-x )。
九年级数学下册《二次函数的应用》教案、教学设计
3.拓展作业:
(1)针对优秀生,布置一些具有挑战性的题目,如研究二次函数图像的变换规律、探讨二次方程与二次不等式之间的关系等。
(2)鼓励学生利用网络、书籍等资源,了解二次函数在其他学科领域的应用,拓宽知识视野。
(三)情感态度与价值观
在本章节的教学中,学生将形成以下情感态度与价值观:
1.培养学生对数学学习的兴趣,激发他们探索数学问题的热情,增强自信心和自主学习的意识。
2.通过解决实际生活中的问题,使学生感受到数学与现实生活的紧密联系,认识数学的价值,提高学习的积极性。
3.培养学生的团队合作意识,让他们在交流、互助中学会尊重他人,培养良好的人际沟通能力。
2.运用问题驱动法,设计具有挑战性的问题和实际案例,激发学生的兴趣和求知欲,培养其独立思考、合作交流的能力。
3.利用数形结合的方法,结合图像和解析式,帮助学生形象地理解二次函数的几何意义,提高解决问题的直观感知能力。
4.通过分类讨论、逐步推进的解题策略,培养学生的逻辑思维和条理性。
5.组织课堂讨论和小组活动,鼓励学生分享解题心得,提高表达和沟通能力。
九年级数学下册《二次函数的应用》教案、教学设计
一、教学目标
(一)知识与技能
在本章节《二次函数的应用》的教学中,学生将掌握以下知识与技能:
1.理解二次函数的定义及其图像特点,能够识别并写出一般形式的二次函数表达式。
2.学会运用二次函数的顶点式、交点式等不同形式进行问题求解,掌握求解二次方程的方法。
3.能够利用二次函数解决实际生活中的问题,如最值问题、范围问题等,并能够解释其几何意义。
4.掌握二次函数与一元二次方程、不等式之间的关系,能够进行简单的综合应用。
二次函数教学设计(精选9篇)
二次函数教学设计(精选9篇)《二次函数》数学教案篇一教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。
重点难点:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。
难点:会运用二次函数知识解决有关综合问题。
教学过程:一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。
(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。
(2)抛物线顶点P(-1,-8),且过点A(0,-6)。
(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。
(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。
学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。
教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。
当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。
当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。
(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。
二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交次函数教案篇二教学目标熟练地掌握二次函数的最值及其求法。
2024北师大版数学九年级下册2.4.1《二次函数的应用》教案1
2024北师大版数学九年级下册2.4.1《二次函数的应用》教案1一. 教材分析《二次函数的应用》是北师大版数学九年级下册第2章第4节的内容,本节课主要让学生了解二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
教材通过生活中的实例,引导学生认识二次函数的图像和性质,进而解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了二次函数的图像和性质,能够熟练地求解二次方程。
但将二次函数应用于实际问题中,解决生活中的问题,对学生来说还较为陌生。
因此,在教学过程中,教师需要通过生动的实例,引导学生将理论知识与实际问题相结合,提高学生解决实际问题的能力。
三. 教学目标1.让学生了解二次函数在实际生活中的应用,培养学生的数学应用意识。
2.引导学生运用二次函数的知识解决实际问题,提高学生的数学素养。
3.通过对实际问题的探讨,培养学生合作交流、解决问题的能力。
四. 教学重难点1.重点:二次函数在实际生活中的应用。
2.难点:如何将实际问题转化为二次函数模型,并运用二次函数的知识解决。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生了解二次函数的应用。
2.问题驱动法:提出实际问题,激发学生探究兴趣,引导学生主动解决问题。
3.合作交流法:鼓励学生分组讨论,共同探讨问题的解决方法。
六. 教学准备1.准备相关的实际问题,如购物、面积、高度等问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备教案和教学课件。
七. 教学过程1.导入(5分钟)利用生活中的实例,如购物时发现商品打折,引导学生思考如何利用二次函数解决实际问题。
2.呈现(10分钟)呈现一系列实际问题,如购物、面积、高度等问题,让学生尝试运用二次函数的知识解决。
3.操练(10分钟)学生分组讨论,共同探讨问题的解决方法。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对每组问题,选取代表性的解法进行讲解,巩固学生对二次函数应用的理解。
《二次函数的实际应用》教案
《二次函数的实际应用》教案
一、教学目标
1、能够正确理解二次函数的定义及其特性;
2、了解二次函数在各种领域的实际应用;
3、对二次函数掌握有一定的计算能力和分析思维能力;
4、了解二次函数的基本性质,学会运用到实际应用中。
二、教学重点
1、正确理解二次函数的定义及其特性;
2、掌握各种二次函数实际应用的实践操作;
3、掌握有关二次函数的基本性质,学会运用到实际应用中。
三、教学准备
1、多媒体课件、教学设备;
2、多图表、模型;
3、实际应用例题材料;
4、教学示范示例。
四、教学过程(计划约2课时)
第一课时
(一)导入
1、根据全班学生的答案,进行“二次函数”简单介绍;
2、引导学生思考:你知道二次函数在哪些领域有应用吗?
(二)讲授
1、认识二次函数的定义及其特性:
(1)二次函数的定义:二次函数是指形式为y=ax^2+bx+c,其中a、b、c为常数的函数;
(2)二次函数的特性:
a.图像性质:由于二次函数可分解为一元二次多项式,因此其对应的函数图像为“U”形;
b.函数表达式性质:a>0,则判断式D=b^2-4ac<0,函数单调递减;a<0,则判断式D=b^2-4ac>0,函数单调递增;
2、了解二次函数在各个领域的实际应。
九年级数学下册《二次函数的一般应用》教案、教学设计
在课堂的最后,我会引导学生对本节课的知识点进行总结归纳。首先,让学生回顾二次函数的定义、一般形式、顶点式及其性质。然后,让学生谈谈在解决实际问题中,如何运用二次函数的知识,并分享自己的学习心得。
最后,我会对本节课的重点、难点进行强调,并对学生在课堂上的表现给予肯定和鼓励,激发学生学习数学的兴趣,为下一节课的学习打下基础。
(四)课堂练习
在这一环节,我会设计几道具有代表性的练习题,让学生独立完成。练习题包括以下类型:
1.求解二次函数的顶点、对称轴、开口方向等基本性质;
2.利用顶点式求解实际问题的最值;
3.结合二次方程、不等式知识,解决综合性问题。
我会要求学生在规定时间内完成练习,并及时给予反馈,针对学生存在的问题进行讲解,巩固所学知识。
三、教学重难点和教学设想
(一)教学重难点
1.重点:二次函数的一般形式及其性质,二次函数在实际问题中的应用。
2.难点:将实际问题转化为二次函数模型,运用数形结合方法解决最值问题,以及顶点式的灵活运用。
(二)教学设想
1.教学方法:
-采用情境教学法,设计贴近生活的实际问题,引导学生从实际问题中发现二次函数的模型;
二、学情分析
九年级的学生已经具备了一定的数学基础,对二次函数的概念和性质有了一定的了解,但在实际应用方面尚存在一定的困难。此时,他们正处于思维逐渐由具体向抽象过渡的阶段,对数学问题的理解和解决能力有待提高。因此,在本章节的教学中,应关注以下学情:
1.学生对二次函数的一般形式和顶点式的掌握程度,以及能否灵活运用这些知识解决实际问题;
五、作业布置
为了巩固本节课所学知识,培养学生的独立思考和解决问题的能力,特布置以下作业:
1.请同学们完成课本第56页的练习题第1、2、3题。这些题目主要考察对二次函数基本性质的理解和运用,希望同学们能够通过解题,加深对二次函数图像和性质的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的应用
【教学目标】
1.知识与技能:
通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会求解实际问题中的最值问题。
2.过程与方法:
通过观察图象,理解顶点的特殊性,会把实际问题中的最值问题转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、函数思想和数学模型思想。
3.情感态度价值观:
通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值。
【教学重点】
利用二次函数y=ax2+bx+c(a≠0)的图象与性质,求最值问题
【教学难点】
1.正确构建数学模型
2.对函数图象顶点、端点与最值关系的理解与应用
【教学过程】
一、复习引入
(1)由二次函数y= -x2 +20x的解析式我们能够想到的图象特征和性质是…?
(2)根据同学们描述信息,画出函数的示意图为:
二、讲解新课
1.在情境中发现问题
[做一做]
1)你能够画一个周长为40cm的矩形吗?
2)周长为40cm的矩形是唯一的吗?
3)谁画出的矩形的面积最大?
4)有没有一个矩形的面积是最大呢?最大面积为多少?
2.在解决问题中找出方法
[想一想]:某小区想用40m的栅栏围成一个矩形花园,问矩形的长和宽各取多少米,才能使花园的面积最大,最大面积为多少?
3.在巩固与应用中提高技能
变式一:如果矩形的一面靠墙,(墙的最大利用长度为18m),
那么此时用40m的栅栏可以围成矩形的面积(1)能够为202m2吗?
(2)能够为200m2吗?
(3)此时还会有最大面积吗?如果有,请说明最大面积为多少?画出示意图。
在(想一想)的基础上,我在此设计了一个条件墙长18米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图像辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。
三、师生小结
1.通过本节课的探讨,在实际问题中求解最值,你有怎样的收获?
2.体会数学的价值
四、练习检测:
在问题2中,你能用二次函数的性质求出每件商品涨价多少,才能使每周得到的利润最多吗?。