巨磁电阻效应及其应用
巨磁电阻效应及其应用实验报告
巨磁电阻效应及其应用实验报告引言巨磁电阻(GMR)效应是一种在特定材料中的电阻随着磁场强度的改变而发生改变的现象,这个现象在1988年被发现并且被认为是一种非常重要的物理现象。
GMR效应的发现因其在信息存储和传输方面的应用而获得广泛的关注。
本实验旨在通过对GMR效应的测量来研究其基本性质以及应用。
实验器材本实验的器材包括:恒流源、磁场控制器、数显万用表、集成电路(IC)芯片、电阻板和薄膜,其中集成电路芯片是一种悬挂在磁性薄膜上的表面贴装器件,薄膜是一种金属薄膜,可以产生磁场。
实验步骤1.将IC芯片放置在电阻板的中心位置。
2.将磁性薄膜放置在IC芯片顶部,注意不要碰到芯片。
3.将恒流源的电流调节到正确的数值,根据实验需求选择恒流源的最大或最小电流值。
4.打开磁场控制器,使用磁场控制器来控制磁场的强度,根据需要进行改变。
5.使用数显万用表来测量芯片中的电压。
6.根据实验的需要调整电阻板和薄膜之间的距离。
实验结果实验结果表明,在施加不同大小的磁场时,IC芯片的电阻会发生变化,这种变化非常灵敏,能够实现高精度的控制。
此外,IC芯片的电阻随着磁场的强度增加而减小,这表明芯片的电阻具有“负巨磁电阻”效应。
讨论与结论巨磁电阻效应是一种非常重要的物理现象,它在信息存储和传输方面具有非常广泛的应用。
本实验展示了GMR效应的基本特性,并探讨了其在实际应用中的潜在价值。
我们可以通过调整材料的性质来提高其敏感度和精度,从而扩展其现有应用。
总之,GMR效应在信息技术领域是一个革命性的技术,它为我们提供了一种新的方式来控制和处理信息。
通过进一步研究和优化,我们可以更好地利用这个效应,实现更高效的数据传输和处理。
与巨磁电阻效应有关的实例
与巨磁电阻效应有关的实例巨磁电阻效应在现代科技领域中有着广泛的应用,它不仅在磁存储器、磁传感器等领域发挥着重要作用,还在生物医学、环境监测等方面展现出巨大的潜力。
本文将以几个实例来介绍巨磁电阻效应的应用。
一、磁传感器磁传感器是一种能够测量和检测磁场的设备,巨磁电阻效应在磁传感器中得到了广泛应用。
例如,在汽车领域,磁传感器可以用于测量车辆的速度、方向和位置,以实现导航、自动驾驶等功能。
而巨磁电阻效应的磁传感器具有灵敏度高、响应速度快、尺寸小等优点,因此被广泛应用于汽车行业。
二、磁存储器磁存储器是计算机中常用的存储设备,而巨磁电阻效应的磁阻器件在磁存储器中发挥着重要作用。
磁存储器通过改变磁阻器件的电阻来存储和读取数据。
当外加磁场改变磁阻器件的磁化方向时,电阻值也会发生变化。
利用这种巨磁电阻效应,可以实现高密度、高速度的数据存储和读取,提高计算机的性能。
三、生物医学应用巨磁电阻效应在生物医学领域也有着广泛的应用。
例如,在磁共振成像(MRI)中,可以利用巨磁电阻效应的磁传感器来感知人体内的微弱磁场变化,从而实现对人体组织和器官的成像。
此外,巨磁电阻效应还可以用于生物传感器,用于检测生物分子、细胞等微小物质的浓度和活性,有助于疾病的早期诊断和治疗。
四、环境监测巨磁电阻效应在环境监测中也发挥着重要作用。
例如,利用巨磁电阻效应的磁传感器可以测量地震、气候变化等自然灾害的磁场变化,从而提供预警和监测信息。
此外,巨磁电阻效应还可以用于测量和监测水质、空气质量等环境因素,有助于环境保护和资源管理。
巨磁电阻效应在磁传感器、磁存储器、生物医学和环境监测等领域都有着广泛的应用。
它的出现和发展不仅改变了现代科技的面貌,也为人们的生活和工作带来了便利和创新。
随着科技的进步和巨磁电阻效应的不断优化,相信它的应用领域还将不断扩展和深化,给人们的生活带来更多的惊喜和便利。
巨磁阻效应
巨磁阻效应发展的奠基人
法国科学家阿尔贝· 费尔和德国科学家彼得· 格林贝格尔 因1988年先后各自独立发现“巨磁电阻”效应而共同获得2007 年诺贝尔物理学奖。
阿尔贝· 费尔
彼得· 格林贝格尔
三、巨磁阻效应的应用
巨磁阻效应自从被发现以来就被用于开发研制使 硬磁盘的体积更小和更灵敏的数据读出头。这使得存 储单字节数据所需的磁性材料尺寸大为减少,从而使 得磁盘的存储能力得到大幅度的提高。
硬磁盘存储器的结构
磁记录原理和记录方式
• 磁记录中的“位”和二进制信息中的“位 ”大多数情况下都是对应的:大多数情况 下磁场方向代表“0”,而它的反向磁场代表 “1”,这是一种最容易理解的信号调制方式 ,是很可靠的一种理论理解,可以在理论 分析的时候使用。
原理图
磁记录方式 写入数据
写线圈 I 铁芯 磁通 写线圈 I
二、效应发现
早在1988年,费尔和格林贝格尔就各自 独立发现了这一特殊现象:有些磁性材料在 非常弱小的磁性变化下就能导致发生非常显 著的电阻变化。那时,法国的费尔在铁、铬 相间的多层膜电阻中发现,微弱的磁场变化 可以导致电阻大小的急剧变化,其变化的幅 度比通常高十几倍,他把这种效应命名为巨 磁阻效应。
二、请利用巨磁阻材料,设计一个可以实现“通” 、和“断”的装置,并分析该装置可能的一些应用
。
•
“通”和”断“在电脑磁盘读取数据中的设计 图
谢谢大家!
组长:张羲 组员:赵玉平,陈烜,张超,张荣贵,李若 恒,叶顺。
巨磁阻效应及其应用
一、什么是巨磁阻效应?
平行磁化方向(低阻态)
相反磁化方向(高阻态)
巨磁阻效应是指当铁磁材料和非磁性金属层交替组合成的材料在
足够强的磁场中时,电阻突然巨幅下降的一种现象。如果相邻材料中的 磁化方向平行的时候,电阻会变得很低;而当磁化方向相反的时候电 阻则会变得很大。电阻值的这种变化是由于不同自旋的电子在单层磁 化材料中的散射性质不同而造成的。
巨磁电阻效应及其应用
巨磁电阻效应及其应用巨磁电阻效应(GMR)是指一种材料在外加磁场作用下,其电导率发生改变,从而导致电阻率发生变化的现象。
这一现象最早是在20世纪50年代由Alfred G. Yelon等人在垂直于金属层面的磁场作用下观察到的。
但直到1988年,Prinz等人才发现了铁磁性薄膜间的GMR现象,这也使得GMR效应引起了科学家们的广泛兴趣。
GMR效应在接下来的几年里得到了深入研究,被发现可以用于高密度数据存储和无线通讯等多种应用中。
GMR效应可以由一系列不同的物理机制所产生。
其中,最为常见的是自旋環境杂化(SEH)和直接交换耦合(DEC)。
在SEH机制下,电流通过一条薄膜时会造成电子的自旋极化,这个自旋极化可以将与之相邻的薄膜中的自旋磁矩引起旋转,导致自旋的损失。
因此,在自旋磁矩方向相同的情况下,电阻率会较小,而在自旋反向的情况下,电阻率会较大。
在DEC机制下,自旋子交换能会通过金属层之间的电场作用而引起自旋磁矩的反向。
这也可以导致GMR效应的体现,但其具体机理仍有待深入探究。
GMR效应在很多领域都具有重要的应用。
其中最为广泛的是在数据存储中的应用。
磁头读取硬盘上的数据时,通过读取与保存数据时的自旋方向差异来区分不同的数据信息。
而GMR头比传统头更加灵敏,因此能够更准确地读取数据,同时也能够提高数据存储的密度。
此外,GMR效应还可以应用于磁性传感器中。
例如,GMR平面传感器可以精确地测量磁场的强度和方向,因此被广泛应用于导航、探矿以及科学实验中。
此外,GMR还可以应用于生物医学领域中的诊断和治疗。
比如在生命科学中,GMR传感器可以用于检测药物和蛋白质的相互作用,在诊断和治疗中也具有潜在的应用价值。
总之,GMR效应是一种基于材料电导率随磁场变化的现象。
其重要的应用领域包括数据存储、磁性传感器以及生物医学等领域。
随着技术的进步和理解的不断深入,GMR效应将有更多广阔的应用前景。
巨磁阻效及应用报告
巨磁阻效及应用报告巨磁阻效应是一种在外加磁场作用下发生显著磁电阻变化的物理现象。
这种效应是在1992年由巴黎莱旺研究机构的阿尔贝特罗蒂埃教授和他的团队首次发现的。
巨磁阻效应的应用前景巨大,因此引起了广泛的关注和研究。
巨磁阻效应基于磁电阻效应,即磁场对材料电阻的影响。
一般情况下,材料的电阻对磁场的变化不敏感。
然而,当材料中存在特殊的磁性结构时,如磁共振等,电阻对磁场的变化就会显著地变化,这就是磁电阻效应。
而巨磁阻效应是磁电阻效应中最明显的一种。
巨磁阻效应以具有巨大磁电阻变化的磁性材料为基础。
当这些材料处于没有外加磁场时,它们的电阻是最小的,可以达到几个百分点。
然而,当外加磁场作用于这些材料时,它们的电阻会迅速增加,甚至可以增加到几十个百分点。
这种磁电阻的巨大变化使得巨磁阻效应具有很大的应用潜力。
巨磁阻效应的应用非常广泛,尤其在磁存储技术中具有重要地位。
巨磁阻材料可以用来制造磁头,这是计算机硬盘驱动器中不可或缺的部分。
通过利用巨磁阻效应,磁头可以以非常小的尺寸来探测和读取硬盘上的磁场信息。
巨磁阻材料还可以用于制造磁阻随机存储器(MRAM),这是一种新兴的存储技术,具有快速的读写速度和非易失性的特点。
此外,巨磁阻效应还可以应用于传感器技术中。
例如,巨磁阻材料可以用于制造磁传感器,用来检测和测量磁场强度和方向。
磁传感器广泛应用于导航、地震监测、医疗诊断等领域。
此外,巨磁阻效应在自动控制领域也具有重要的应用。
例如,巨磁阻材料可以用于制造磁阻变结构,这种结构可以根据外界磁场的变化实时调节其电阻,从而实现对电路的精确控制和调节。
尽管巨磁阻效应在磁存储、传感器和自动控制等领域有着广泛的应用,但是该效应的原理和机制还需要进一步研究和理解。
目前,巨磁阻材料的性能还有待进一步提高和优化,以满足不同领域的应用需求。
随着材料科学和纳米技术的不断发展,相信巨磁阻效应的应用前景会越来越广阔。
巨磁电阻效应及应用的原理
巨磁电阻效应及应用的原理巨磁电阻效应的定义巨磁电阻效应是指当外加磁场发生变化时,材料的电阻发生改变的现象。
这种现象的发现和研究引发了巨磁电阻效应的探索和应用。
巨磁电阻效应的原理巨磁电阻效应是由磁性材料自旋极化和电子传输的相互作用引起的。
这种效应主要依赖于磁性材料中的自旋极化态以及电子的传输方式。
当磁场施加在磁性材料上时,磁场与材料中的自旋相互作用会引起自旋的重新排列。
自旋的重新排列会导致电子在材料中的传输行为发生变化,从而影响材料的电阻。
这种自旋排列的重新配置会引起电子的散射和反射,从而影响电子的传输路径和速度。
巨磁电阻效应的应用巨磁电阻效应的发现和研究为许多实际应用提供了可能。
以下是巨磁电阻效应的一些主要应用:1.磁存储器:巨磁电阻效应被广泛应用于磁存储器中,可用于读取和写入数据。
磁存储器可以储存大量的数据,而且巨磁电阻效应能够实现快速、高密度的读写操作。
2.磁传感器:巨磁电阻效应广泛应用于磁传感器中,用于检测磁场的变化。
磁传感器可以用于地理导航系统、磁共振成像仪、汽车导航系统等。
3.磁阻变传感器:巨磁电阻效应还可应用于磁阻变传感器中,用于检测物体的位置、位移和旋转角度。
磁阻变传感器可以应用于汽车制动系统、手持设备的姿态感知等领域。
4.磁阻随机存取存储器(MRAM):巨磁电阻效应在磁阻随机存取存储器中的应用有很大潜力。
MRAM具有非易失性、低功耗、高速度和高密度等优点。
5.磁阻式角度传感器:巨磁电阻效应还可以应用于磁阻式角度传感器中,用于检测物体的角度变化。
磁阻式角度传感器可以应用于机械臂、机器人和汽车的转向系统等。
巨磁电阻效应的应用范围还在不断扩大,随着磁性材料和电子技术的进一步发展,巨磁电阻效应的新应用也在不断涌现。
总结巨磁电阻效应是材料的电阻在外加磁场变化时发生改变的现象,其实现需要磁性材料的自旋极化与电子传输的相互作用。
巨磁电阻效应的应用广泛,包括磁存储器、磁传感器、磁阻变传感器、磁阻随机存取存储器和磁阻式角度传感器等。
巨磁电阻效应的原理及应用
巨磁电阻效应的原理及应用1. 巨磁电阻效应的介绍巨磁电阻效应(Giant Magnetoresistance,GMR)是一种描述材料电阻随外加磁场变化的现象。
GMR的发现被认为是短距离存储技术的突破,对磁敏感材料和磁传感器的发展具有重要意义。
2. 巨磁电阻效应的原理巨磁电阻效应的产生与磁性多层膜结构中存在的顺磁性层和铁磁性层之间的相互作用有关。
当外加磁场改变时,磁性多层膜中的磁性层会发生磁矩的重排和旋转,从而导致电子的自旋定向与电子传输方向的关系发生变化。
这种变化会导致电阻的变化,即巨磁电阻效应的产生。
3. 巨磁电阻效应的应用巨磁电阻效应的应用非常广泛,主要包括以下几个方面:3.1 磁存储器巨磁电阻效应在磁存储领域发挥着重要作用。
由于巨磁电阻效应的出现,磁存储器的读写速度得到了显著提高。
传统磁存储器需要通过读写头的接触来读取数据,而采用巨磁电阻效应材料制成的磁存储器只需通过测量电阻值的变化来完成数据读取,大大提高了读取速度和数据存取密度。
3.2 磁传感器巨磁电阻效应材料常常被用于制作磁传感器。
巨磁电阻效应材料的电阻值随外加磁场的变化而变化,因此可以利用巨磁电阻效应材料制成的传感器来测量磁场的强度和方向。
磁传感器在航空航天、交通运输、医疗设备等领域中得到了广泛应用。
3.3 磁电阻随机存取存储器(MRAM)巨磁电阻效应也被应用于磁电阻随机存取存储器(Magnetoresistive Random Access Memory,MRAM)的制造。
MRAM是一种新型的非易失性存储器,兼具闪存和DRAM的优点。
相比传统存储器技术,MRAM具有读取速度快、功耗低、抗辐射等优势。
3.4 理论研究与材料改进巨磁电阻效应的研究也对材料科学领域有着重要意义。
科学家们通过对巨磁电阻效应的原理和机制的研究,不断改进巨磁电阻材料的性能和稳定性,以实现更高的电阻变化率和更佳的传感特性。
4. 结论巨磁电阻效应作为一种重要的磁电效应,具有广泛的应用前景。
巨磁电阻效应及其应用(42014030708323483)
巨磁电阻效应及其应用【思考题】1什么是磁电阻效应和巨磁电阻效应?巨磁电阻效应的发现对物理学和技术应用有什么重要贡献?2为什么铁磁材料中电子散射与电子自旋状态有关?3为什么非磁性层的厚度会影响巨磁电阻效应大小?用RKKY理论理解此现象。
4如何用双电流模型解释磁性多层膜的巨磁电阻效应?该模型除解释巨磁电阻效应外还有哪些应用?5磁性多层膜与自旋阀磁电阻在薄膜结构、性能与应用方面有什么不同?6磁硬盘记录的原理是什么?为什么磁电阻的应用能大大提高磁记录的密度和读写速度?7将多层膜制成GMR元件时一般将其几何结构光刻成微米宽度迂回形状,目的是什么?8将GMR元件用作传感器时,采用桥式电路有什么好处?9在GMR桥式电路中,有时在电桥对角位置的两个电阻表面加磁屏蔽,有时不加,其原因是什么?10如何提高GMR传感器的灵敏度?如何用磁电阻效应测量导线中的电流?11对磁性样品测量应注意哪些问题?为什么先将样品磁化到饱和再进行测量?如何判断样品已经被磁化到饱和状态?12你认为巨磁电阻效应的发现者能获得诺贝尔物理学奖的理由是什么?13如果你自己要制备一个有巨磁电阻效应的磁性多层膜,薄膜结构应满足那些条件?【引言】2007年12月10日,法国物理学家阿尔贝·费尔(Albert Fert)和德国物理学家彼得·格伦贝格(Peter Crünberg)分别获得了一枚印着蓝白红标志的2007年诺贝尔物理奖章,他们各自独立发现的巨磁阻效应(giant magnetoresistance, GMR)[1,2]。
早在一百多年前,人们对铁磁金属的输运特性受磁场影响的现象,就做过相当仔细的观测。
莫特的双电流理论,把电子自旋引入对磁电阻的解释,而巨磁电阻恰恰是基于对具有自旋的电子在磁介质中的散射机制的巧妙利用。
目前巨磁电阻传感器已应用于测量位移、角度等传感器、数控机床、汽车测速、非接触开关、旋转编码器等很多领域,与光电等传感器相比,它具有功耗小,可靠性高,体积小,能工作于恶劣的工作条件等优点。
巨磁电阻效应及应用 实验内容与操作
巨磁电阻效应及应用 实验内容与操作一、GMR 模拟传感器的磁电转换特性测量在将GMR 构成传感器时,为了消除温度变化等环境因素对输出的影响,一般采用桥式结构,图10是某型号传感器的结构。
图10 GMR 模拟传感器结构图R 2R 1R 3 R 4输出- 输入+a 几何结构对于电桥结构,如果4个GMR 电阻对磁场的响应完全同步,就不会有信号输出。
图10中,将处在电桥对角位置的两个电阻R 3、R 4 覆盖一层高导磁率的材料如坡莫合金,以屏蔽外磁场对它们的影响,而R 1、R 2 阻值随外磁场改变。
设无外磁场时4个GMR 电阻的阻值均为R ,R 1、R 2 在外磁场作用下电阻减小ΔR ,简单分析表明,输出电压:UOUT = U IN ΔR/(2R-ΔR ) (2)屏蔽层同时设计为磁通聚集器,它的高导磁率将磁力线聚集在R 1、R 2电阻所在的空间,进一步提高了R 1、R 2 的磁灵敏度。
从图10的几何结构还可见,巨磁电阻被光刻成微米宽度迂回状的电阻条,以增大其电阻至k Ω数量级,使其在较小工作电流下得到合适的电压输出。
图11是某GMR 模拟传感器的磁电转换特性曲线。
图12是磁电转换特性的测量原理图。
图12 模拟传感器磁电转换特性实验原理图图11 GMR 模拟传感器的磁电转换特性 输出/V 磁感应强度/高斯 -30 -20 -10 0 10 20 30实验装置:巨磁阻实验仪,基本特性组件。
将GMR模拟传感器置于螺线管磁场中,功能切换按钮切换为“传感器测量”。
实验仪的4伏电压源接至基本特性组件“巨磁电阻供电”,恒流源接至“螺线管电流输入”,基本特性组件“模拟信号输出”接至实验仪电压表。
按表1数据,调节励磁电流,逐渐减小磁场强度,记录相应的输出电压于表格“减小磁场”列中。
由于恒流源本身不能提供负向电流,当电流减至0后,交换恒流输出接线的极性,使电流反向。
再次增大电流,此时流经螺线管的电流与磁感应强度的方向为负,从上到下记录相应的输出电压。
巨磁电阻效应及应用实验报告
巨磁电阻效应及应用实验报告巨磁电阻效应及应用实验报告引言在现代科技领域中,材料科学的发展一直是一个重要的研究领域。
巨磁电阻效应作为一种重要的磁电效应,在材料科学中具有广泛的应用前景。
本实验旨在探究巨磁电阻效应的原理和特性,并通过实验验证其在实际应用中的可行性。
一、巨磁电阻效应的原理巨磁电阻效应是指在外加磁场作用下,材料电阻发生变化的现象。
这一效应的发现对磁性材料的研究和应用带来了革命性的变化。
巨磁电阻效应的原理主要是基于磁矩自旋相互作用和电子传输过程中的自旋极化效应。
当外加磁场作用于材料时,磁矩会发生定向排列,导致电子在材料中传输时会受到不同程度的散射,从而改变了材料的电阻。
二、实验方法1. 实验材料准备本实验选用了一种常见的巨磁电阻材料,如铁磁合金。
首先,将铁磁合金样品切割成适当的尺寸,并对其进行表面清洁处理,以确保实验的准确性。
2. 实验装置搭建将铁磁合金样品固定在实验装置中,并连接电源和电流计,以便测量电阻的变化。
同时,设置一个可调节的磁场装置,用于施加外加磁场。
3. 实验步骤首先,将实验装置置于零磁场环境中,测量铁磁合金样品的初始电阻。
然后,逐渐增加外加磁场的强度,并测量相应的电阻值。
记录每个磁场强度下的电阻值,并绘制电阻-磁场曲线。
三、实验结果与分析通过实验测量得到的电阻-磁场曲线如下图所示。
从图中可以看出,在外加磁场作用下,铁磁合金样品的电阻发生了明显的变化。
随着磁场的增加,电阻呈现出逐渐减小的趋势。
图1:电阻-磁场曲线根据实验结果可以发现,铁磁合金样品在外加磁场作用下呈现出典型的巨磁电阻效应。
这是由于外加磁场改变了材料中磁矩的排列方式,导致电子在传输过程中受到不同程度的散射,从而改变了电阻值。
四、巨磁电阻效应的应用巨磁电阻效应在实际应用中具有广泛的潜力。
其中最典型的应用就是磁存储技术。
通过利用巨磁电阻效应,可以实现高密度、高速度的磁存储器件。
此外,巨磁电阻效应还可以应用于传感器、磁场测量和磁性材料的研究等领域。
巨磁电阻效应及其应用
实验十七巨磁电阻效应及其应用2007年诺贝尔物理学奖授予了巨磁电阻(Rianr magneto resistance,简称GMR)效应的发现者,法国Paris-Sud大学的物理学家阿贝尔·费尔(Albert Fert)和德国尤里希研究中心物理学家彼得·格伦贝格尔(Peter Grunberg)。
他们于1988年独立作出的发现巨磁阻效应。
诺贝尔奖委员会说明:“这是一次好奇心导致的发现,但其随后的应用却是革命性的,因为它计算机硬盘的容量从几百兆,几千兆,一跃而提高几百倍,达到几百G乃至上千G。
”凝聚态物理研究原子,分子在构成物质时的微观结构,他们之间的互相作用力,及其与宏观物理性质之间的联系。
人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。
量子力学出现后,德国科学家海森伯(W.Heisenberg,1932年诺贝尔奖得主)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。
后来发现很多的过渡金属和稀土金属的化合物具有反铁磁有序状态,即在有序排列的磁材料中,相邻原子因受负的交换作用,自旋为反平行排列,如图17-1所示。
图17-1 反铁磁有序磁矩虽处于有序状态,但总的净磁矩在不受外场作用时仍为零。
这种磁有序状态称为反铁磁性。
法国科学家奈尔(L. E. F. Neel)因为系统地研究反铁磁性而获1970年诺贝尔奖。
在解释反铁磁性时认为,化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。
另外,在稀土金属中也出现了磁有序,其中原子的固有磁矩来自4f电子壳层。
相邻稀土原子的距离远大于4f电子壳层直径,所以稀土金属中的传导电子担当了中介,将相邻的稀土原子磁矩耦合起来,这就是RKKY型间接交换作用。
直接交换作用的特征长度为0.1—0.3nm,间接交换作用可以长达1nm以上。
1nm已经是实验室中人工微结构材料可以实现的尺度。
巨磁阻效应的原理及应用
巨磁阻效应的原理及应用1. 引言巨磁阻效应(Giant Magneto Resistance,简称GMR)是一种材料特性,是指在外加磁场下,材料电阻发生大幅度变化的现象。
由于其在信息存储、传感器等领域具有广泛的应用,因此对其原理及应用进行深入研究和了解具有重要意义。
2. 巨磁阻效应的原理巨磁阻效应源于磁性多层结构材料中的自旋阻尼效应和磁性交换效应。
当多层结构材料中的两个磁性层之间被非磁性层隔开时,自旋极化电流通过这些层会引起阻尼之间的传递,导致电阻发生变化。
巨磁阻效应的原理可以用以下几点进行解释:•磁性多层结构:采用多层薄膜结构,其中包含不同磁性层和非磁性层。
•自旋极化电流:施加自旋极化电流时,电子的自旋会对电子传输产生影响。
•自旋阻尼效应:自旋极化电流通过磁性层时,会与该层磁矩发生相互作用,引起自旋的阻尼。
•磁性交换效应:自旋极化电流引起的自旋阻尼会与相邻磁性层之间的磁性交换作用产生耦合,导致电阻变化。
3. 巨磁阻效应的应用3.1 磁存储器巨磁阻效应在磁存储器中有广泛应用。
磁存储器利用外加磁场的变化,改变磁性多层结构材料中的电阻,从而存储和读取信息。
巨磁阻效应的高灵敏度和可控性,使得磁存储器具有更高的容量和更快的速度。
3.2 磁传感器巨磁阻效应也可以应用于磁传感器中。
磁传感器利用材料的电阻变化来感应磁场的变化。
巨磁阻传感器具有高灵敏度、宽工作范围和低功耗的特点,广泛应用于磁测量、地磁导航和磁生物学等领域。
3.3 磁电阻头巨磁阻效应还可以用于磁电阻头的制造。
磁电阻头是读取硬盘驱动器中存储信息的装置,利用材料电阻的变化来感知磁场中的数据。
巨磁阻效应的高灵敏度和稳定性,使得其在磁电阻头中有广泛的应用。
3.4 其他应用领域除了上述应用领域,巨磁阻效应还可应用于磁生物学、磁传导等领域。
例如,巨磁阻效应可以用于生物传感器中,实现对生物磁场的检测和分析。
此外,巨磁阻效应还可以用于磁传导器件中,实现磁传导的控制和调节。
巨磁电阻效应及其应用实验报告
巨磁电阻效应及其应用【实验目的】1、了解GM效应的原理2、测量GM模拟传感器的磁电转换特性曲线3、测量GM的磁阻特性曲线4、用GM传感器测量电流5、用GM梯度传感器测量齿轮的角位移,了解GM转速(速度)传感器的原理【实验原理】根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。
称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。
电阻定律R二I/S中,把电阻率视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ,可以忽略边界效应。
当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3 nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。
;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。
在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。
施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。
电流的方向在多数应用中是平行于膜面的。
图3是图2结构的某种GM材料的磁阻特性。
由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。
当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。
磁阻变化率△ R/R达百分之十几,加反向磁场时磁阻特性是对称的。
注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。
有两类与自旋相关的散射对巨磁电阻效应有贡献。
其一,界面上的散射。
无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行-反平行,或反平行-平行),电子在界面上的散射几率很大,对应于高电阻状态。
巨磁电阻效应及其应用实验报告记录
巨磁电阻效应及其应用实验报告记录作者: 日期:巨磁电阻效应及其应用【实验目的】1、了解GM效应的原理2、测量GM模拟传感器的磁电转换特性曲线3、测量GM的磁阻特性曲线4、用GM传感器测量电流5、用GMI梯度传感器测量齿轮的角位移,了解GM转速(速度)传感器的原理【实验原理】根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。
称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。
电阻定律R=J/S中,把电阻率「视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nn),可以忽略边界效应。
当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。
电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。
早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。
总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。
在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。
施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。
电流的方向在多数应用中是平行于膜面的。
图3是图2结构的某种GM材料的磁阻特性。
由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。
当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。
磁阻变化率△ R/R达百分之十几,加反向磁场时磁阻特性是对称的。
巨磁电阻效应及其应用实验报告
巨磁电阻效应及其应用实验报告巨磁电阻效应(Giant Magneto-Resistance, GMR)是一种在金属中观察到的电阻变化现象,由于它的优异特性,使得它在信息技术领域有着广泛的应用。
本实验旨在通过实验观察巨磁电阻效应,并探索其在磁存储器领域的应用。
1.实验原理2.实验器材和实验步骤实验器材:-差分放大器-稳压电源-多层膜样品-外加磁场产生器-数字万用表实验步骤:1.将多层膜样品连接到差分放大器的输入端,并将输出端连接到数字万用表。
2.连接稳压电源,并将多层膜样品置于外加磁场产生器中。
3.通过调节外加磁场的大小和方向,观察并记录差分放大器输出的电压值。
4.改变外加磁场的方向,再次观察并记录差分放大器输出的电压值。
5.重复步骤3和4,直到获得一系列不同磁场方向下的电压值。
3.实验结果和分析通过实验记录的数据,我们可以绘制出不同磁场方向下的电压-磁场曲线图。
该曲线图显示了巨磁电阻效应的存在,在磁场方向变化时,电压值也随之变化。
当磁场方向与多层膜样品的磁化方向一致时,电压值较小,而反之电压值较大。
4.应用领域巨磁电阻效应在磁存储器领域有着广泛的应用。
其中一个重要的应用是硬盘驱动器。
硬盘驱动器通过在磁头上应用磁场读取和写入信息到磁性盘片上。
巨磁电阻效应可以提高磁头的读取精度和灵敏度,从而提高硬盘驱动器的性能和存储容量。
此外,巨磁电阻效应还可以用于磁场传感器、磁记忆器等领域。
总结:本实验通过实验观察和记录,成功展示了巨磁电阻效应的存在,并探索了其在磁存储器领域的应用。
巨磁电阻效应的出现为信息技术领域带来了巨大的进步和发展。
随着对巨磁电阻效应的深入研究,相信它的应用将会越来越广泛,对信息技术的发展起到重要的推动作用。
巨磁电阻效应及应用实验
嘉应学院物理学院普通物理实验实验报告实验项目:巨磁电阻效应及应用实验实验地点:班级:姓名:座号:实验时间:年月日一、实验目的:1、了解GMR效应的原理2、测量GMR模拟传感器的磁电转换特性曲线3、测量GMR的磁阻特性曲线4、测量GMR开关(数字)传感器的磁电转换特性曲线5、用GMR传感器测量电流6、用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理7、通过实验了解磁记录与读出的原理二、实验仪器和用具:三、实验原理:根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。
称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。
电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。
当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。
电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。
早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。
总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。
在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。
施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。
电流的方向在多数应用中是平行于膜面的。
无外磁场时顶层磁场方向无外磁场时底层磁场方向图2 多层膜GMR 结构图图3 某种GMR 材料的磁阻特性磁场强度 / 高斯 电阻 \ 欧姆图3是图2结构的某种GMR材料的磁阻特性。
6-巨磁电阻效应及应用
巨磁电阻效应及应用一. 实验目的理解多层膜巨磁电阻(Giant Magneto Resistance —GMR )效应的原理,通过实验了解几种GMR 传感器的结构、特性及应用领域。
二. 实验内容1.GMR 模拟传感器的磁电转换特性测量改变螺线管励磁电流,记录传感器的输出模拟电压。
螺线管电流范围-100mA~100mA 。
由公式nI B 0μ=(n 为线圈密度,I 为流经线圈的电流强度,m H /10470-⨯=πμ)计算出磁感应强度B ,以B 为横坐标,电压表读数为纵坐标做出磁电转换特性曲线。
2.GMR 磁阻特性测量改变螺线管励磁电流,记录巨磁阻的输出电流。
螺线管电流范围-100mA~100mA (正负电流的切换需手动改变导线连接)。
根据欧姆定律计算巨磁阻的电阻,以磁感应强度B 为横坐标,磁阻为纵坐标做出磁阻特性曲线。
3.GMR 开关(数字)传感器的磁电转换特性曲线测量改变螺线管励磁电流,记录传感器的输出开关电压。
螺线管电流在-50mA~50mA 。
以磁感应强度B 为横坐标,电压读数为纵坐标做出开关传感器的磁电转换特性曲线。
4.用GMR 模拟传感器测量电流将待测电流设为0,改变偏置磁场,使得巨磁阻输出电压最大,记录此值。
保持该偏置磁场,改变待测电流,每隔50mA 记录一次巨磁阻的输出电压。
其中,待测电流变换范围-300mA~300mA 。
改变偏置磁场,重复测量3组数据。
以电流读数为横坐标,电压表读数为纵坐标作图,分别作出4条曲线。
5.GMR 梯度传感器的特性及应用逆时针慢慢转动齿轮,当输出电压为0时记录起始角度,以后每转3度记录一次角度与电压表的读数。
转动48度齿轮转过2齿,输出电压变化2个周期。
以齿轮实际转过的度数为横坐标,电压表的度数为纵向坐标作图。
6.磁记录与读出读写模块启用前,同时按下“0/1转换”和“写确认”按键约2秒,将读写组件初始化。
将此卡有刻度区域的一面朝前,沿着箭头标识的方向插入划槽,按需要切换写“0”或写“1”,按住“写确认”按键不放,缓慢移动磁卡,根据磁卡上的刻度区域写入。
巨磁电阻效应及应用实验报告
巨磁电阻效应及其应用2007年诺贝尔物理学奖授予了巨磁电阻( Giant magneto resistance,简称GMR)效应的发现者:法国物理学家阿尔贝·费尔(Albert Fert)和德国物理学家彼得·格伦贝格尔( Peter Grunberg )。
诺贝尔奖委员会说明:“这是一次好奇心导致的发现,但其随后的应用却是革命性的,因为它使计算机硬盘的容量从几百、几千兆,一跃而提高几百倍,达到几百G乃至上千G。
”凝聚态物理研究原子,分子在构成物质时的微观结构,它们之间的相互作用力,及其与宏观物理性质之间的联系。
人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。
量子力学出现后,德国科学家海森伯(W. Heisenberg,1932年诺贝尔奖得主)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。
图 1 反铁磁有序后来发现很多的过渡金属和稀土金属的化合物具有反铁磁有序状态,即在有序排列的磁材料中,相邻原子因受负的交换作用,自旋为反平行排列,如错误!未找到引用源。
所示。
则磁矩虽处于有序状态,但总的净磁矩在不受外场作用时仍为零。
这种磁有序状态称为反铁磁性。
法国科学家奈尔(L.E. F. Neel)因为系统地研究反铁磁性而获1970年诺贝尔奖。
在解释反铁磁性时认为,化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。
另外,在稀土金属中也出现了磁有序,其中原子的固有磁矩来自4f电子壳层。
相邻稀土原子的距离远大于4f电子壳层直径,所以稀土金属中的传导电子担当了中介,将相邻的稀土原子磁矩耦合起来,这就是RKKY型间接交换作用。
直接交换作用的特征长度为0.1~0.3nm,间接交换作用可以长达1nm以上。
1nm已经是实验室中人工微结构材料可以实现的尺度。
1970年美国IBM实验室的江崎和朱兆祥提出了超晶格的概念,所谓的超晶格就是指由两种(或两种以上)组分(或导电类型)不同、厚度d极小的薄层材料交替生长在一起而得到的一种多周期结构材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巨磁电阻效应及其应用巨磁电阻效应的发现和应用获得2007年诺贝尔物理学奖。
本实验重点理解磁性对电子散射的影响、双电流模型、RKKY理论和巨磁电阻效应产生的物理机理,了解巨磁电阻效应的实际应用领域和应用时所采用的技术设计。
【思考题】1什么是磁电阻效应和巨磁电阻效应?巨磁电阻效应的发现对物理学和技术应用有什么重要贡献?2为什么铁磁材料中电子散射与电子自旋状态有关?3为什么非磁性层的厚度会影响巨磁电阻效应大小?用RKKY理论理解此现象。
4如何用双电流模型解释磁性多层膜的巨磁电阻效应?该模型除解释巨磁电阻效应外还有哪些应用?5磁性多层膜与自旋阀磁电阻在薄膜结构、性能与应用方面有什么不同?6磁硬盘记录的原理是什么?为什么磁电阻的应用能大大提高磁记录的密度和读写速度?7将多层膜制成GMR元件时一般将其几何结构光刻成微米宽度迂回形状,目的是什么?8将GMR元件用作传感器时,采用桥式电路有什么好处?9在GMR桥式电路中,有时在电桥对角位置的两个电阻表面加磁屏蔽,有时不加,其原因是什么?10如何提高GMR传感器的灵敏度?如何用磁电阻效应测量导线中的电流?11对磁性样品测量应注意哪些问题?为什么先将样品磁化到饱和再进行测量?如何判断样品已经被磁化到饱和状态?12你认为巨磁电阻效应的发现者能获得诺贝尔物理学奖的理由是什么?13如果你自己要制备一个有巨磁电阻效应的磁性多层膜,薄膜结构应满足那些条件?【引言】2007年12月10日,法国物理学家阿尔贝·费尔(Albert Fert)和德国物理学家彼得·格伦贝格(Peter Crünberg)分别获得了一枚印着蓝白红标志的2007年诺贝尔物理奖章,他们各自独立发现的巨磁阻效应(giant magnetoresistance, GMR)[1,2]。
早在一百多年前,人们对铁磁金属的输运特性受磁场影响的现象,就做过相当仔细的观测。
莫特的双电流理论,把电子自旋引入对磁电阻的解释,而巨磁电阻恰恰是基于对具有自旋的电子在磁介质中的散射机制的巧妙利用。
目前巨磁电阻传感器已应用于测量位移、角度等传感器、数控机床、汽车测速、非接触开关、旋转编码器等很多领域,与光电等传感器相比,它具有功耗小,可靠性高,体积小,能工作于恶劣的工作条件等优点。
利用巨磁电阻效应在不同的磁化状态具有不同电阻值的特点,可以制成随机存储器(MRAM),其优点是在无电源的情况下可继续保留信息。
巨磁电阻效应在高技术领域应用的另一个重要方面是微弱磁场探测器。
巨磁电阻薄膜材料的广泛应用,也是纳米材料的第一项实际应用,它使得人们对磁性尤其是纳米尺寸的磁性薄膜介质之输运特性的研究有了突飞猛进的发展,由此带来计算机存储技术的革命性变化,从而深刻地改变了整个世界。
【实验目的】通过纳米结构层状薄膜的巨磁电阻效应及不同结构的GMR传感器特性测量和自旋阀磁电阻测量,了解磁性薄膜材料和自旋电子学的有关知识,并由磁电阻和巨磁电阻的历史发展,及关键人物解决问题的思想方法,认识诺贝尔物理奖项目巨磁电阻的原理、技术,和对科学技术发展的重要贡献。
体会实验的设计与实施,理解其原理和方法,体验科学发现的精髓与快乐,促进学生逐步形成系统的物理思想,期望由此启发学生对物理科学和高新技术的浓厚兴趣。
【实验原理】一 磁电阻与巨磁电阻效应磁电阻MR (magneto-resistance 的缩写符号)效应是指物质在磁场的作用下电阻发生变化的物理现象。
磁电阻效应按磁电阻值的大小和产生机理的不同可分为:正常磁电阻效应(Ordinary MR: OMR)、各向异性磁电阻效应(Anisotropic MR: AMR)、巨磁电阻效应(giant MR: GMR)和庞磁电阻效应(Colossal MR: CMR)等。
表征磁电阻效应大小的物理量为MR ,其定义有两种,分别为:(1)式中R (0)为外加磁场为零时样品电阻,R (H )为不同外加磁场下样品电阻,R ( H s )为外加磁场使薄膜磁化饱和时样品的电阻。
第一种定义的磁电阻比率低于100%,认为电阻的变化起源于反铁磁性的电阻,缺点是H = 0时并不总是完全反铁磁耦合态。
第二种定义认为电阻的变化起源于铁磁态电阻,更常用于计算。
巨磁电阻效应是指在一定的磁场下材料电阻急剧减小,一般减小的幅度比通常磁性金属与合金材料的磁电阻数值约高10余倍。
为了强调磁电阻的显著变化,在 “磁电阻”之前加上“巨”(“giant ”),称为“巨磁电阻”(“GMR ”)。
[][]002001100)()()(100)0()()0(⨯-=⨯-=S S H R H R H R MR R H R R MR巨磁电阻效应是在1988年由 A.Fert 研究团队的Baibich 等人和Grunberg 团队的 Binash 等人同时发现。
两个团队都是利用分子束外延分别生长Fe/Cr 超晶格和 Fe/Cr/Fe 三层膜系统,当邻近两层 Fe 层的磁化方向随外加磁场由反平行转变为平行状态时,薄膜电阻迅速下降的现象。
图 1 是Baibich 等人所观察到 Fe/Cr 超晶格在 4.2 K 下电阻随磁场的变化关系。
由于该电阻下降的值非常明显,被称为巨磁电阻效应。
之后人们在Fe/Cu ,Fe/Al ,Fe/Al ,Fe/Au ,Co/Cu ,Co/Ag 和Co/Au 等很多纳米结构的多层膜中都观察到显著的巨磁阻效应。
注意到图 1 中非磁性层的厚度对巨磁电阻效应有明显的影响。
Parkin 等人在 1990 年观察到Fe/Cr 多层膜中,MR 值随相邻磁性层的交换耦合而变化[3]。
交换耦合是指两种不同的磁性材料彼此密切接触,或被一个足够薄的层(一般小于 6 nm )分隔,自旋信息可以在两种磁性材料间传递,使它们的磁矩有一优先的相对取向。
若它们的自旋方向相同,为铁磁性耦合,若其自旋方向相反,则为反铁磁性耦合。
在磁性多层膜中,只有当 Cr 层厚度使零磁场时相邻磁性层成反铁磁性耦合,磁电阻达最大值。
如果非磁性隔层的厚度比平均电子自由程大得多时,GMR效应会消失。
之后 Parkin 等系统研究了以 3d 金属 Fe, Co, Ni 及其合金作为铁磁层 (FM ) 层的 FM/NM/FM 结构( 其中 NM 为非磁性层)多层膜中非磁性层厚度对巨磁电阻效应的影响。
发现当改变非磁性层厚度时,相邻铁磁层间交换耦合存在长程振荡效应,而且这种经过非磁性 NM 层的交换耦合随 NM 层厚度的变化而振荡的现象被证明是普遍的。
图 2 为 不同温度制备的三种 Fe/Cr 结构系统中 GMR 比率随着铬层厚度的变化曲线[3]。
图1 A. Fert 小组制备的3个Fe/Cr 超晶格在 温度为4.2K 时的磁电阻曲线为什么被非磁性隔开的磁性多层膜系统具有巨磁电阻效应?为什么非磁性层的厚度会影响磁性层之间的交换耦合?要理解这些现象,就需要了解铁磁材料中与电子自旋相关的散射、莫特的双电流模型理论和 RKKY 交换作用。
二 巨磁电阻效应的物理起源及理论解释1 物质磁性对电阻的影响电阻的本质是电子在物体中运动时受到散射。
导电材料电阻率的大小是由其中自由电子的平均自由程决定的。
材料中自由电子的平均自由程越短, 其电阻率越大;反之,自由电子的平均自由程越长,材料的电阻率越小。
要讨论铁磁性对电阻的影响,必须引入电子自旋的概念。
作为费米子,电子可以取正负1/2 两种自旋。
典型的铁磁物质为过渡族元素,例如铁、锰、钴。
这些元素的3d电子壳层都未填满,它们的自旋取向服从洪德定则,即总自旋值(所有电子自旋之和)在泡里原理允许的条件下,取最大值。
例如锰有5个3d 电子,正好填充3d 壳层的一半,他们都会取正1/2 自旋。
这样就会空出另外5 个负1/2 自旋的电子态。
注意所谓正负取向,是针对一个参照体系而言。
在有外加磁场时,这个磁场就是参照方向。
磁化,就是3d 电子的自旋沿磁场取向。
铁磁金属晶体的原子磁矩来自其未满d 壳层电子的自旋,价电子为传导电子,均匀分布于晶体中,并可以在整个晶体中传播。
d 电子把材料磁性与电子的输运性质联系起来,空d 态可被与d 轨道上电子自旋方向相反的4s传导电子暂时占据,导致一个与电子自旋相关和轨道角动量相关的散射过程。
铁磁材料中承担输运的4s 电子正(负)1/2 自旋各占一半,因为泡利不相容原理和洪特规则,只有某些特定自旋的传导电子有很大的几率弛豫到3d 壳层的负(正)1/2 自旋态,而3d 电子被束缚于原子处,不参与导电,所以这个弛豫过程,使自由电子变成了束缚电子,就成为磁性材料中一种重要的散射机制而影响电阻率。
铁磁材料中4s传导电子向3d 局域态的弛豫,称为磁散射或s –d 散射。
在铁磁材料中,电阻率有三部分的贡献,分别源于杂质缺陷r,晶格振动L(T), 和磁散射M(T), 表示为:(T) = r + L(T) + M(T) (2)2 N. F. Mott 理论和磁性多层膜巨磁电阻的理论解释巨磁电阻效应是由于不同自旋极化电子具有不同电传输行为所产生,这种不同性首次在1936年被Mott观察到[4]。
在一般非磁性材料中,不同自旋方向的传导电子在传输过程中是无法分辨的。
铁磁性金属材料在足够低温下,电子自旋弛豫长度(即移动中电子自旋方向保持不变的距离)远远大于平均自由程,因此在讨论电子输运过程时,假定散射过程中移动的电子自旋方向保持不变是合理的。
于是将铁磁金属材料中电子按自旋取向分成两类处理,与本体材料磁化方向平行与反平行的自旋电子在传输过程是可以分辨的,且平行与反平行自旋通道以并联方式贡献电导率,此效应称为双电流模型(the two-current model)。
总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻。
GMR效应的物理起源为电子自旋对电子在铁磁性材料中传导过程的影响。
Mott提出由于铁磁性材料中自旋能带的分裂,导致不同自旋的电子有不同的传导行为。
过渡金属中的电导率σν= nνe2τν/mν,其中ν表示自旋向上或向下,nν为费米能级上电子态密度,τν为自旋弛豫时间,mν为有效质量。
σν与费米能级上电子状态有关。
费米能级上有两类电子:一类是巡游性强的s 电子,它的能带宽,有效质量接近自由电子;另一类是比较局域的d 电子,其能带窄,有效质量大于自由电子,所以,电流主要由s 电子传递。
但是,s 电子态密度远小于d 电子。
因此,s-s 电子间散射可以忽略;s-d 电子间散射过程才是主导的机制。
因为铁磁金属d 电子的两种自旋取向的电子数目不等,散射过程必须保证自旋守恒,所以s-d 电子散射过程就与电子间自旋的相对取向有关,这个过程称为自旋极化的电子输运过程。
这就是1936年N.F.Mott提出的过渡金属电子输运的物理模型。