变频器中的载波频率

合集下载

变频器载波频率的设置及注意事项

变频器载波频率的设置及注意事项

变频器载波频率的设置及注意事项变频器的载波频率,是影响变频器控制性能,长期稳定性及可靠性的一个关键因素,根据不同应用场合、负载大小、性能要求等,对载波做合理的设置显得尤为重要。

一,各型号机器的默认出厂载频二,载波频率对温升的影响1,载波频率对变频器温升的影响:载波频率越高,变频器IGBT温升越大,反之亦然。

2,载波频率对电机温升的影响:载波频率越高,电机温升越低,反之依然。

3,出厂载波频率的设置,是在额定负载下,综合考虑变频器温升,电机温升后的最小载波设置。

如果用户设置载波频率过大,会影响变频器长期稳定性。

三,载波频率对电机噪声的影响1,对于SD90/SD90H机型,提高低频载波频率(F00.16)可以降低电机低频运行下的噪声,但低频运行下的最大力矩输出会有一定的下降。

提高高频载波频率(F00.15),可以降低电机高频运行下的噪声。

2,对于SD90/SD90H机型,F07.29为PWM模式,出厂设置为1(2/3相调制切换);修改F07.29=0(3相调制)后,可降低电机在高频运行下的噪声。

3,对于SD200/SD300机型,低频运行下的载频是强制设置的,通过修改F0C.17=0可以使得强制载频无效,此时高低频运行下使用同样载频设置F00.15。

4,对于SD200/SD300机型,F0C.16为PWM模式,出厂设置为1(2/3相调制切换);修改F0C.16=0(3相调制)后,可降低电机在高频运行下的噪声。

四,载波频率与变频器实际输出频率的调整关系载波频率的出厂值设置,都是根据50Hz标准异步电机的满负荷测试标准来设定的,在实际50Hz实际使用中,变频器载波频率设置>=5倍的变频器实际最大输出频率;以SD90H为例,如果如果设置为高频机型(驱动高频电机)。

高压变频器载波频率

高压变频器载波频率

高压变频器载波频率
高压变频器是一种能够将电能转化为机械能的设备,广泛应用于工业生产中。

而其中一个关键参数就是载波频率。

载波频率是高压变频器中一个重要的参数,它指的是在变频器输出的交流电信号中所包含的高频载波信号的频率。

这些高频载波信号在电机绕组中产生交变磁场,从而驱动电机运转。

高压变频器的载波频率通常在几千赫兹至几万赫兹之间。

不同的载波频率对应着不同的应用场景和要求。

在选择载波频率时,需要综合考虑电机的特性、负载情况以及工作环境等因素。

一般来说,较高的载波频率可以提高高压变频器的输出电压波形质量和控制精度,减小电机的噪音和振动,提高电机的效率。

这是因为较高的载波频率可以使变频器的PWM调制方式更加精细,减小了电机的谐波失真。

同时,较高的载波频率也可以提高电机的响应速度,使其更加灵敏。

然而,较高的载波频率也会增加功率晶体管的开关频率,增加变频器的损耗和热量,降低变频器的效率。

此外,较高的载波频率还会增加电磁干扰的可能性,对其他设备产生干扰。

因此,在选择载波频率时,需要在质量、效率和成本之间进行权衡。

除了载波频率的选择,高压变频器还有其他一些参数需要考虑。


如,变频器的额定电流、额定功率、输出电压范围等。

这些参数的选择需要根据具体的应用需求和电机的电气特性来确定。

高压变频器的载波频率是影响其性能和应用的重要参数之一。

通过选择合适的载波频率,可以提高变频器的控制精度、效率和可靠性,满足不同场景下的需求。

在实际应用中,需要综合考虑各种因素,合理选择载波频率,以实现最佳的控制效果。

变频器常用的15大参数

变频器常用的15大参数

变频器最常用的15个参数变频器的设定参数较多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象,因此,必须对相关的参数进行正确的设定。

1 、控制方式:即速度控制、转距控制、PID 控制或其他方式。

采取控制方式后,一般要根据控制精度进行静态或动态辨识。

2 、最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。

而且低速时,其电缆中的电流也会增大,也会导致电缆发热。

3 、最高运行频率:一般的变频器最大频率到60Hz ,有的甚至到400 Hz ,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。

4 、载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。

5 、电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。

6 、跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。

7、加减速时间加速时间就是输出频率从0 上升到最大频率所需时间,减速时间是指从最大频率下降到0 所需时间。

通常用频率设定信号上升、下降来确定加减速时间。

在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。

加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。

加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。

8、转矩提升又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V 增大的方法。

变频器功能解析(一)--频率的给定与相关功能

变频器功能解析(一)--频率的给定与相关功能

变频器功能解析(一)--频率的给定与相关功能1 频率给定的方式与选择1.1 基础概念(1) 给定方式的基本含义要调节变频器的输出频率,必须首先向变频器提供改变频率的信号,这个信号,称为频率给定信号,也有称为频率指令信号或频率参考信号的。

所谓给定方式,就是调节变频器输出频率的具体方法, 也就是提供给定信号的方式。

(2) 面板给定方式通过面板上的键盘或电位器进行频率给定(即调节频率)的方式,称为面板给定方式,面板给定又有两种情况如图1所示:(a) 键盘给定频率的大小通过键盘上的升键(▲键)和降键(q键)来进行给定。

键盘给定属于数字量给定,精度较高。

(b) 电位器给定部分变频器在面板上设置了电位器,如图1(a)所示。

频率大小也可以通过电位器来调节。

电位器给定属于模拟量给定,精度稍低。

图1 频率的面板给定方式多数变频器在面板上并无电位器,故说明书中所说的“面板给定”,实际就是键盘给定。

变频器的面板通常可以取下,通过延长线安置在用户操作方便的地方,如图2所示。

图2 面板遥控给定此外, 采用哪一种给定方式, 须通过功能预置来事先决定。

(3) 外部给定方式从外接输入端子输入频率给定信号,来调节变频器输出频率的大小,称为外部给定,或远控给定。

主要的外部给定方式有:(a) 外接模拟量给定通过外接给定端子从变频器外部输入模拟量信号(电压或电流)进行给定,并通过调节给定信号的大小来调节变频器的输出频率。

模拟量给定信号的种类有:·电压信号以电压大小作为给定信号。

给定信号的范围有:0~10v、2~10v、0~±10v、0~5v、1~5v、0~±5v 等。

·电流信号以电流大小作为给定信号。

给定信号的范围有:0~20ma、4~20ma等。

(b) 外接数字量给定通过外接开关量端子输入开关信号进行给定。

(c) 外接脉冲给定通过外接端子输入脉冲序列进行给定。

(d) 通讯给定由plc或计算机通过通讯接口进行频率给定。

变频器载波频率范围

变频器载波频率范围

变频器载波频率范围变频器的载波频率就是打算逆变器的功率开关器件(如:IGBT)的开通与关断的次数,因此,也称开关频率。

它主要影响以下几方面:1、功率模块IGBT的功率损耗与载波频率有关,载波频率提高,功率损耗增大,功率模块发热增加,对变频器不利。

2、载波频率对变频器输出二次电流的波形影响:当载波频率高时,电流波形正弦性好,而且平滑。

这样谐波就小,但是干扰相对要大,反之就差,当载波频率过低时,电机有效转矩减小,损耗加大,温度增高的缺点,反之载波频率过高时,变频器自身损耗加大,IGBT温度上升,同时输出电压的变化率dv/dt增大,对电动机绝缘影响较大。

假设SPWM波的载波频率为fc,基波频率为fs,fc/fs称为载波比N,对于三相变频器,当N为3的整数倍时,输出不含3次谐波及3的整数倍谐波。

且谐波集中载波频率整数倍四周,即谐波次数为:kfc±mfs,k和m为整数。

右图是基波频率fs=50Hz,载波频率fc=3kHz,调制比为0.8的SPWM 的波形及频谱的Matlab仿真图。

图中58次谐波和60次谐波的幅值分别为27.8%和27.7%,含量最大的谐波为119次和121次谐波,谐波幅值分别为39.1%和39.3%。

即最大谐波在两倍载波频率四周。

实际的SPWM波,其载波比不肯定为整数,此时,为了降低频谱泄露,可适当增加傅里叶窗口长度,对多个基波周期的PWM进行傅里叶变换(FFT或DFT)。

3、载波频率对电动机的噪音的影响:载波频率越高电动机的噪音相对越小。

4、载波频率与电动机的发热:载波频率高电动机的发热也相对较小。

在实际使用中要综合以上各点,合理选择变频器的载波频率。

一般电动机功率越大,载率选择得越小。

变频器常用频率参数

变频器常用频率参数

变频器常⽤频率参数1.给定频率⽤户根据⽣产⼯艺的需求所设定的变频器输出频率称为给定频率。

例如,原来⼯频供电的风机电动机现改为变频调速供电,就可设置给定频率为50Hz,其设置⽅法有两种:①⽤变频器的操作⾯板来输⼊频率的数字量50;②从控制接线端上⽤外部给定(电压或电流)信号进⾏调节,最常见的形式就是通过外接电位器来完成。

2.输出频率输出频率指变频器实际输出的频率。

当电动机所带的负载变化时,为使拖动系统稳定,此时变频器的输出频率会根据系统情况不断地调整。

因此,输出频率在给定频率附近经常变化。

3.基准频率基准频率也叫基本频率。

⼀般以电动机的额定频率作为基准频率的给定值。

基准电压指输出频率到达基准频率时变频器的输出电压,基准电压通常取电动机的额定电压。

基准电压和基准频率的关系如图3-3所⽰。

4.上限频率和下限频率上限频率和下限频率分别指变频器输出的最⾼、最低频率,常⽤f H和f L表⽰。

根据拖动系统所带负载的不同,有时要对电动机的最⾼、最低转速给予限制,以保证拖动系统的安全和产品的质量。

另外,由操作⾯板的误操作及外部指令信号的误动作引起的频率过⾼和过低,设置上限频率和下限频率可起到保护作⽤。

常⽤的⽅法就是给变频器的上限频率和下限频率赋值。

当变频器的给定频率⾼于上限频率,或者低于下限频率时,变频器的输出频率将被限制在上限频率或下限频率,如图3-4所⽰。

例如,设置f H=60Hz,f L=10Hz。

若给定频率为50Hz或20Hz,则输出频率与给定频率⼀致;若给定频率为70Hz或5Hz,则输出频率被限制在60Hz或1OHz。

5.点动频率点动频率指变频器在点动时的给定频率。

⽣产机械在调试以及每次新的加⼯过程开始前常需进⾏点动,以观察整个拖动系统各部分的运转是否良好。

为防⽌发⽣意外,⼤多数点动运转的频率都较低。

如果每次点动前都需将给定频率修改成点动频率是很⿇烦的,所以⼀般的变频器都提供了预置点动频率的功能。

如果预置了点动频率,则每次点动时,只需要将变频器的运⾏模式切换⾄点动运⾏模式即可,不必再改动给定频率。

变频器载波频率与电动机功率

变频器载波频率与电动机功率

变频器载波频率与电动机功率
电动机功率大的,相对选用载波频率要低些,目的是减少干扰,一般都遵守这个原则,但不同制造厂具体值也不同见表1~表4。

表1 日本变频器载波频率与电动机功率
表2 芬兰VacON变频器变频器
变频器的英文译名是VFD(Variable-frequency Drive),这可能是现代科技由中文反向译为英文的为数不多实例之一。

(但VFD也可解释为Vacuum fluorescent display,真空荧光管,故这种译法并不常用)。

变频器是应用变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件。

变频器在中、韩等亚洲地区受日本厂商影响而曾被称作VVVF(Variable V oltage Variable Frequency Inverter)。

[全文]
载波频率与电动机功率
表3 深圳安圣(原华为)变频器变频器
变频器的英文译名是VFD(Variable-frequency Drive),这可能是现代科技由中文反向译为英文的为数不多实例之一。

(但VFD也可解释为Vacuum fluorescent display,真空荧光管,故这种译法并不常用)。

变频器是应用变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件。

变频器在中、韩等亚洲地区受日本厂商影响而曾被称作VVVF(Variable V oltage Variable Frequency Inverter)。

载波频率与电动机功率
表4 成都佳灵公司JP6C一V系列变频器载波频率与电动机功率。

变频_脉冲频率_载波频率__概述说明以及解释

变频_脉冲频率_载波频率__概述说明以及解释

变频脉冲频率载波频率概述说明以及解释1. 引言1.1 概述本文旨在对变频、脉冲频率和载波频率进行综合的概述说明和解释。

这三个概念都是与信号处理和通信领域密切相关的重要技术,它们在不同的应用场景中具有各自独特的作用和影响。

1.2 文章结构本文将按照如下结构展开对变频、脉冲频率和载波频率进行阐述。

首先,在第二部分中,我们将定义和阐述变频的原理,并介绍其在不同领域中的应用。

接着,在第三部分,我们将详细讨论脉冲频率的定义、特点以及脉冲调制技术,同时介绍一些典型的应用场景。

然后,在第四部分,我们将介绍载波频率的基本概念、作用以及载波调制技术,并探讨其受到影响的因素。

最后,在结论部分,我们将总结文章主要观点与发现,并给出未来研究方向的启示。

1.3 目的本文旨在提供一个清晰全面的概述关于变频、脉冲频率和载波频率这几个重要概念的原理、应用和影响因素。

通过对这些内容的探讨,读者将能够更好地理解和运用相关技术,并为未来的研究提供一定的参考和启示。

本文旨在为读者提供一个初步了解这些概念的基础,同时也希望引发读者对于进一步深入研究的兴趣。

2. 变频:2.1 定义和原理:变频是指通过改变电力系统供电频率的一种技术,通常用于调整交流电机的转速控制。

在传统的电力系统中,交流电的频率是固定的,如50Hz或60Hz。

然而,某些应用场合需要可调节的转速来满足不同的工作需求。

这时就需要使用变频技术来改变供电频率。

变频器是实现变频的关键设备,它通过将输入直流电转换为可调节的交流电来改变供电频率。

其基本工作原理为:首先将输入直流电通过整流器转换为直流信号;接下来经过滤波器进行滤波处理;然后通过逆变器将直流信号转换为可调节的交流信号,输出到负载上。

2.2 应用领域:变频技术在许多领域都有广泛应用。

其中最常见和重要的领域之一就是工业生产。

在各种工业设备中,如风机、水泵、压缩机等都需要根据不同情况灵活地调整转速以提高效率或适应不同负载条件。

通过使用变频器可以实现对这些设备驱动系统进行精确控制。

变频器开关频率

变频器开关频率

变频器(开关频率)载波频率编辑词条摘要目前没有摘要内容欢迎补充编辑摘要目录-[ 隐藏 ]1.1变频器开关频率载波频率编辑本段|回到顶部变频器开关频率载波频率变频器大多是采用PWM调制的形式进行变频器的。

也就是说变频器输出的电压其实是一系列的脉冲,脉冲的宽度和间隔均不相等。

其大小就取决于调制波和载波的交点,也就是开关频率。

开关频率越高,一个周期内脉冲的个数就越多,电流波形的平滑性就越好,但是对其它设备的干扰也越大。

载波频率越低或者设置的不好,电机就会发出难听的噪音。

通过调节开关频率可以实现系统的噪音最小,波形的平滑型最好,同时干扰也是最小的。

1低压变频器概述对电压≤500V的变频器,当今几乎都采用交—直—交的主电路,其控制方式亦选用正弦脉宽调制即SPWM,它的载波频率是可调的,一般从1-15kHz,可方便地进行人为选用。

但在实际使用中不少用户只是按照变频器制造单位原有的设定值,并没有根据现场的实际情况进行调整,因而造成因载波频率值选择不当,而影响正确,感觉的有效工作状态,因此在变频器使用过程中如何来正确选择变频器的载波频率值亦是重要的事。

本文就此提供应该从以下诸方面来考虑,并正确选择载波频率值的依据。

2 载波频率与功率损耗功率模块IGBT的功率损耗与载波频率有关,且随载波频率的提高、功率损耗增大,这样一则使效率下降,二则是功率模块发热增加,对运行是不利的,当然变频器的工作电压越高,影响功率损耗亦加大。

对不同电压、功率的变频器随着载波频率的加大、功率损耗具体变化,可见图1A-E 所示。

3 载波频率与环境温度当变频器在使用时载波频率要求较高,而且环境温度亦较高的情况下,对功率模块是非常不利的,这时对不同功率的变频器随着使用的载波频率的高低及环境温度的大小,对变频器的允许恒输出电流要适当的降低,以确保功率模块IGBT安全、可靠、长期地运行。

可参见表1及图2A-D 所示。

4 载波频率与电动机功率电动机功率大的,相对选用载波频率要低些,目的是减少干扰(对其它设备使用的影响),一般都遵守这个原则,但不同制造厂具体值亦不同的。

三菱变频器参数设置

三菱变频器参数设置

三菱变频器参数设置三菱变频器控制方式:即速度控制、转距控制、PID控制或其他方式。

采取控制方式后,一般要根据控制精度,需要开展静态或动态辨识。

三菱变频器最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。

而且低速时,其电缆中的电流也会增大,也会导致电缆发热。

三菱变频器最高运行频率:一般的三菱变频器最大频率到60Hz,有的甚至到400Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。

三菱变频器载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热三菱变频器发热等因素是密切相关的。

三菱变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。

三菱变频器跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要防止压缩机的喘振点。

三菱变频器参数设置操作规程一.工作监视选择1. 待机状态现在为频率监视2. 按SET键进入电流监视3. 在2状态下按SET键进入电压监视4. 在3状态下按SET键进入报警监视5. 在4状态下按SET键进入频率监视二. 变频器工作模式选择1. 在待机状态下显示监视模式2. 按MODE键进入频率设置模式3. 在2状态按MODE键进入参数模式4. 在3状态下按MODE键进入运行模式5. 在4 状态下按MODE键进入帮助模式6. 在5 状态下按MODE键回到监视模式三.变频器主要参数介绍1. 上限频率(Pr。

1)限制变频器输出频率上限值,出厂设定为120Hz2. 下限频率(Pr。

2)限制变频器输出频率下限值,只要启动信号为ON,频率到达下限值就启动电机3. 加减速时间设定Pr。

7加速时间Pr。

8 减速时间Pr。

44第二加速时间Pr。

45第二减速时间4. 电子过流保护(Pr。

电机载波频率

电机载波频率

电机载波频率电机载波频率是指在变频驱动系统中,控制器发送的高频脉冲信号,用来驱动电机运转的频率。

电机载波频率是变频器控制电机的重要参数,它的大小对电机运行的效果有着重要的影响。

电机载波频率是通过变频器控制电机转速的一种方式。

在变频器中,可以通过调节载波频率来改变电机的转速和转矩,从而实现对电机运转的精确控制。

因此,电机载波频率是变频器控制电机的重要参数之一,掌握这个参数能够调节电机性能,提高效率。

我们可以利用电机载波频率公式来计算电机载波频率。

其中,f:载波频率;N:变频器输出频率;m:整流桥的个数。

举个例子,一款变频器的输出频率为50Hz,整流桥的个数是6,那么这款变频器的电机载波频率就是500Hz。

在实际应用中,不同的电机、不同的负载都需要不同的电机载波频率。

在选择变频器时,要根据具体的需求和实际情况来选择。

电机载波频率会对电机的运转性能产生一定的影响。

主要有以下几个方面:(1)电机噪音:高频载波频率可以减少电机噪音,但也会增加器件损耗。

(2)电机效率:电机载波频率与电机效率成正比,所以在选择载波频率时,要尽量选适合的频率,以达到最优的效率。

(3)光伏系统中的影响:在光伏系统中,电机载波频率也会影响到光伏系统的效率。

在变频器中,可以通过调节载波频率来改变电机的运转状态。

在实际应用中,电机的载波频率可以手动设置或自动调节。

手动设置载波频率需要一定的专业知识和经验,而自动调节则需要一个好的控制器和一定的技术水平。

在电机的运行中,整流桥的数目对载波频率也有一定的影响。

具体而言,整流桥的数目越多,载波频率就越低;相反,整流桥的数目越少,载波频率就越高。

5、总结。

变频器的载波频率

变频器的载波频率

变频器的载波频率(开关频率、PWM频率)的影响及设定标准分类:变频器2012-12-06 11:17 448人阅读评论(0) 收藏举报变频器大多是采用PWM调制的形式进行变频器的。

也就是说变频器输出的电压其实是一系列的脉冲,脉冲的宽度和间隔均不相等。

其大小就取决于调制波和载波的交点,也就是开关频率。

开关频率越高,一个周期内脉冲的个数就越多,电流波形的平滑性就越好,但是对其它设备的干扰也越大。

载波频率越低或者设置的不好,电机就会发出难听的噪音。

通过调节开关频率可以实现系统的噪音最小,波形的平滑型最好,同时干扰也是最小的。

1低压变频器载波频率概述对电压≤500V的变频器,当今几乎都采用交—直—交的主电路,其控制方式亦选用正弦脉宽调制即SPWM,它的载波频率是可调的,一般从1-15kHz,可方便地进行人为选用。

但在实际使用中不少用户只是按照变频器制造单位原有的设定值,并没有根据现场的实际情况进行调整,因而造成因载波频率值选择不当,而影响正确,感觉的有效工作状态,因此在变频器使用过程中如何来正确选择变频器的载波频率值亦是重要的事。

本文就此提供应该从以下诸方面来考虑,并正确选择载波频率值的依据。

2 载波频率与变频器功耗功率模块IGBT的功率损耗与载波频率有关,且随载波频率的提高、功率损耗增大,这样一则使效率下降,二则是功率模块发热增加,对运行是不利的,当然变频器的工作电压越高,影响功率损耗亦加大。

载波频率越大,变频器的损耗越大,输出功率越小。

如果环境温度高,逆变桥上下两个逆变管在交替导通过程中的死区将变小,严重时可导致桥臂短路而损坏变频器。

3 载波频率与环境温度当变频器在使用时载波频率要求较高,而且环境温度亦较高的情况下,对功率模块是非常不利的,这时对不同功率的变频器随着使用的载波频率的高低及环境温度的大小,对变频器的允许恒输出电流要适当的降低,以确保功率模块IGBT安全、可靠、长期地运行。

4 载波频率与电动机功率电动机功率大的,相对选用载波频率要低些,目的是减少干扰(对其它设备使用的影响),一般都遵守这个原则,但不同制造厂具体值亦不同的。

MM440变频器载波频率参数设置说明

MM440变频器载波频率参数设置说明

MM440变频器载波频率参数设置说明MM440变频器载波频率参数设置说明
MM440变频器载波频率参数是P1800。

P1800一;一;设定变频器功率开关的调制脉冲频率。

这一脉冲频率每级可改变2kHz。

最低的脉冲频率取决于P1082(最大频率)和P0310(电动机的额定频率)。

电动机频率的最大值(P1082)限定为脉冲调制频率P1800。

当变频器散热器的温度(P0614)超过了报警电平,将使调制脉冲的开关频率降低和/或输出频率降低。

如果增加脉冲调制频率,变频器的最大电流(r0209)可能要降低(降容)。

降容特性决定于变频器的型号和功率大小。

如果变频器运行时并不要求绝对地安静,可选用较低的调制脉冲频率,这将有利于减少变频器的损耗和降低射频干扰发射的强度。

在一定的环境条件下,可以减少变频器的开关频率,为变频器提供过温保护,保证设备不致因过温而损坏。

但是,按理论上来说载波频率是越高越好,因为这样逆变出来的波形越接近正弦波。

同时,调整变频器的载波频率可降低机器的噪音,但是,并不
是说可以消除干扰,只是可以降低机器震动的噪音。

而且,降低载波频率会引起谐波的增加,所以说实际上干扰会更严重,对电机没有什么好处。

总的来说,降低载波频率会引起谐波分量增加,这是不好的现象,好处是有可能降低机器震动产生的噪音。

建议不要乱动这个值!
6SE70变频器的载波频率参数是P340。

变频器的其他频率参数有哪些?

变频器的其他频率参数有哪些?

1.点动频率点动频率是指变频器在点动时的给定频率。

生产机械在调试以及每次新的加工过程开始前常需进行点动,以观察整个拖动系统各部分的运转是否良好。

为防止意外,大多数点动运转的频率都较低。

如果每次点动前都需将给定频率修改成点动频率是很麻烦的,所以一般的变频器都提供了预置点动频率的功能。

如果预置了点动频率,每次点动时,只需要将变频器的运行模式切换至点动运行模式即可,不必再改动给定频率了。

2.载波频率(PWM频率)在第3章中,阐述了PWM变频器的输出电压是一系列脉冲,脉冲的宽度和间隔均不相等,其大小取决于调制波(基波)和载波(三角波)的交点。

载波频率越高,一个周期内脉冲的个数越多,也就是说脉冲的频率越高,电流波形的平滑性就越好,但是对其他设备的干扰也越大。

载波频率如果预置不合适,还会引起电动机铁心的振动而发出噪声,因此一般的变频器都提供了PWM频率调整的功能,使用户在一定的范围内可以调节该频率,从而使得系统的噪声最小,波形平滑性最好,同时干扰也最小。

3.起动频率起动频率是指电动机开始起动时的频率,常用fs表示;这个频率可以从0开始,但是对于惯性较大或是摩擦转矩较大的负载,需加大起动转矩。

此时可使起动频率加大至fs,此时起动电流也较大。

一般的变频器都可以预置起动频率。

一旦预置该频率,变频器对小于起动频率的运行频率将不予理睬。

给定起动频率的原则是,在起动电流不超过允许值的前提下,拖动系统能够顺利起动为宜。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解相关变频器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。

变频器参数设置大全

变频器参数设置大全

变频器参数设置大全要知道变频器的参数如何设置,首先要明白变频器是什么东西,用它来做些什么活儿。

变频器是用来调整异步电机转速的一种电源装置,根据转速n=60f∕P(I-S)这个公式,变频器本质是输出频率可调的电压源,通过改变电源频率来改变电机转速,而频率改变的同时,为了避免磁通饱和导致电机过热,还要跟着改变电压,也就是保持V/F比值恒定,所以变频器的参数设置,都是围绕这个核心来进行的。

变频器的设定参数较多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象,因此,必须对相关的参数进行正确的设定。

一、控制方式即速度控制、转距控制、PID控制或其他方式。

采取控制方式后,一般要根据控制精度进行静态或动态辨识。

二、最低运行频率即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。

而且低速时,其电缆中的电流也会增大,也会导致电缆发热。

三、最高运行频率一般的变频器最大频率到60Hz,有的甚至至∣J400Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。

四、载波频率载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。

五、电机参数变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。

六、跳频在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。

变频器两台或多台同步控制参数设置方法:第一步准备变频器两台、导线两根、电源一个。

第二步变频器接线,将两个变频器分别定义为主机和从机,主机485A端口接入从机485A 端口中,主机485B端口接入从机485B端口中。

如果有第三台,可将第三台的485A 和485B一样接入到主机的485A与485B端口中,如有更多以此类推。

变频器控制电机,可以调到多大的频率

变频器控制电机,可以调到多大的频率

变频器控制电机,可以调到多大的频率变频器控制电机的知识你了解多少?在工作中,一道变频器控制电机的频率题,难倒众多电工达人工程干将。

请看百度的截图,类似这样的问题不胜枚举!我们都知道,变频器是从事电气工作所应该掌握的一种技术,使用变频器控制电机是电气控制中较为常见的方法;有的也要求一定要熟练运用。

今天小编就以浅薄的知识整理归纳相关的知识点,内容或有重复,旨在和大家分享变频器和电机之间的那些奇妙关系。

首先,为什么要用变频器控制电机?我们先简单的了解下这两个设备。

电机是一个感性负载,它阻碍电流的变化,在启动的时候会产生电流的较大变化。

变频器,是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。

它主要由两部分电路构成,一是主电路(整流模块、电解电容和逆变模块),二是控制电路(开关电源板、控制电路板)。

为了降低电动机的启动电流,尤其是功率较大的电机,功率越大,启动电流越大,过大的启动电流会给供配电网络带来较大的负担,而变频器能够解决这个启动问题,让电机平滑启动,而不会引起启动电流过大。

使用变频器的另一个作用就是对电机进行调速,很多场合需要控制电机的转速以获得更好的生产效率,而变频器调速一直是它最大的亮点,变频器通过改变电源的频率以达到控制电机转速的目的。

变频器控制方式都有哪些?变频器控制电机最常用的五种方式如下:低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。

其控制方式经历了以下四代。

1U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。

但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。

另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。

变频器的参数

变频器的参数

变频器的参数设置详解变频器的设定参数较多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象,因此,必须对相关的参数进行正确的设定。

1、控制方式:即速度控制、转距控制、PID控制或其他方式。

采取控制方式后,一般要根据控制精度进行静态或动态辨识。

2、最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。

而且低速时,其电缆中的电流也会增大,也会导致电缆发热。

3、最高运行频率:一般的变频器最大频率到60Hz,有的甚至到400Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。

4、载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。

5、电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。

6、跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。

7、加减速时间加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。

通常用频率设定信号上升、下降来确定加减速时间。

在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。

加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。

加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。

8、转矩提升又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率围f/V增大的方法。

关于变频器各参数之间的关系问题

关于变频器各参数之间的关系问题

关于变频器各参数之间的关系问题一、与频率相关的参数问题1.变频器的输出频率与输入侧频率无关。

因为常见的电压型变频器有dc电容的中间环节是交-直-交类型的。

2. 变频器输出频率取决于调制波频率。

3. IGBT的开关频率应至少是变频器输出频率的3倍,甚至更高。

载频越高,电流波形越好啊变频器的输出频率和输出电压基本成线性比例。

在负载不变的情况下,频率升高,电压升高,电流下降。

相反频率降低,电压减少,电流增大。

低速情况下,电流大。

二、变频器输入输出电流与负载的关系同一品牌的变频器都被分成两大类:"恒转矩式"和"变转矩式"后者内部所使用的IGBT功率要比前者小.应用于风机,水泵类(可变转矩设备)的控制.它的输入输出电流同负载的转速(转速越高负载越大)是正比关系,它也叫做"风机,水泵类变频器".所以把风机,水泵控制在低速时可以节能。

如果是前者("恒转矩式"变频器)要比较贵些,一般使用在:"恒转矩式的负载上(如:输送棍道,压边机,投料机等)则变频器的输入输入电流基本是恒定的.但是变频器的输出电流却是跟其输出频率成反比例关系,因为输出频率越低变频器的输出电压也越低,为了维持<恒转矩>所以输出电流只有升高了来保持恒定的输出功率P=V×I。

异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。

因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。

这种控制方式多用于风机、泵类节能型变频器V/F控制和矢量控制是不一样的。

这取决于负载特性和变频器设定的驱动特性。

变频器变频后输出的电流变大有的相关参数是变频器的输出没有设置好,检查变频器的输出电流,要么降低变频器的1:载波频率:降低2:转矩提升:降低3:自动稳压:关闭如果变频器应电流过大而跳闸,也许就是负载的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器(开关频率)载波频率变频器大多是采用PWM调制的形式进行变频器的。

也就是说变频器输出的电压其实是一系列的脉冲,脉冲的宽度和间隔均不相等。

其大小就取决于调制波和载波的交点,也就是开关频率。

开关频率越高,一个周期内脉冲的个数就越多,电流波形的平滑性就越好,但是对其它设备的干扰也越大。

载波频率越低或者设置的不好,电机就会发出难听的噪音。

通过调节开关频率可以实现系统的噪音最小,波形的平滑型最好,同时干扰也是最小的。

1低压变频器概述
对电压≤500V的变频器,当今几乎都采用交—直—交的主电路,其控制方式亦选用正弦脉宽调制即SPWM,它的载波频率是可调的,一般从1-15kHz,可方便地进行人为选用。

但在实际使用中不少用户只是按照变频器制造单位原有的设定值,并没有根据现场的实际情况进行调整,因而造成因载波频率值选择不当,而影响正确,感觉的有效工作状态,因此在变频器使用过程中如何来正确选择变频器的载波频率值亦是重要的事。

本文就此提供应该从以下诸方面来考虑,并正确选择载波频率值的依据。

2 载波频率与功率损耗
功率模块IGBT的功率损耗与载波频率有关,且随载波频率的提高、功率损耗增大,这样一则使效率下降,二则是功率模块发热增加,对运行是不利的,当然变频器的工作电压越高,影响功率损耗亦加大。

对不同电压、功率的变频器随着载波频率的加大、功率损耗具体变化,可见图1A-E所示。

3 载波频率与环境温度
当变频器在使用时载波频率要求较高,而且环境温度亦较高的情况下,对功率模块是非常不利的,这时对不同功率的变频器随着使用的载波频率的高低及环境温度的大小,对变频器的允许恒输出电流要适当的降低,以确保功率模块IGBT安全、可靠、长期地运行。

可参见表1及图2A-D所示。

4 载波频率与电动机功率
电动机功率大的,相对选用载波频率要低些,目的是减少干扰(对其它设备使用的影响),一般都遵守这个原则,但不同制造厂具体值亦不同的。

例,日本有下列关系供参考
载波频率15kHz 10kHz 5kHz
电动机频率≤30kW 37-100kW 185-300kW
例,芬兰VACON
载波频率1-16kHz 1-6kHz
电动机功率≤90kW 110-1500kW
例,深圳安圣(原华为)
载波频率6kHz 3kHz 1kHz
电动机功率 5.5-22kW 30-55kW 75-200kW
例,成都佳灵公司JP6C-T9系列
载波频率2-6kHz 2-4kHz
电动机功率0.75-55kW 75-630kW
5 载波频率与变频器的二次出线(U,V,W)长度
载波频率15kHz 10kHz 5kHz 1kHz
线路长度<50M >50-100M >100-150M >150-200M
6 载波频率对变频器输出二次电流的波形
众所周知变频器的逆变(DC/AC变换)部分是由IGBT通过正弦脉宽调制SPWM 后,产生呈正弦波的电流波形,那么载波频率的大小、直接影响电流波形的好坏程度,以及干扰的大小,而且载波频率的大小是较为敏感和直接的,所以在运行过程中首先要正确选择载波频率值的大小后,然后再考虑附加各种抑制谐波装置,例AC电抗器、DC电抗器、滤波器、另序电抗器,及安装布线、接地等措施,这样处理是较合理的、更有效的,切不可本未倒置来处理问题,这是很重要的原则。

当载波频率高时,电流波形正弦性好,而且平滑。

这样谐波就小,干扰就小,反之就差,当载波频率过低时,电机有效转矩减小,损耗加大,温度增高的缺点,反之载波频率过高时,变频器自身损耗加大,IGBT温度上升,同时输出电压的变化率dv/dt增大,对电动机绝缘影响较大。

具体例如表2。

7 载波频率对电动机的噪音
电动机的噪音来自通风躁音、电磁噪音、机械噪音三个方面,对通风和机械噪音在此估且不谈,只就使用变频器后对电磁噪音问题作下分析。

变频器的输出电压、电流中含有一定分量的高次谐波,使电动机气隙的高次谐波磁通增加,所以噪声变大。

其特征为:
(1)由于变频器输出的较低的高次谐波分量与转子固有频率的谐振,使转子固有频率附近的噪音增大。

(2)由于变频器输出的高次谐波使铁心、机壳、轴承座等的谐振,在固有频率附近的噪音增大。

(3)噪音与载波频率大小有直接关系,当载波频率高时相对噪音就小。

(4)经测试得到当电动机在变频运行时,比在工频50Hz运行时,噪声只大2dB
可见影响不很大,其绝对值约在70dB附近。

(5)采用变频电动机能降低相同运行参数时的噪音6-10dB。

8 载波频率与电动机的振动
电动机的振动原因可分为电磁与机械两种,这里估且不谈机械原因,只就电磁原因作下分析:
(1) 由于较低次的高次谐波分量与转子的谐振,其固有频率附近的振动分量增加。

(2) 由于高次谐波产生脉动转矩的影响发生振动。

(3) 当采用变频器后在相同50Hz频率下工作时振动略大,尤其当工作频率20H z时振动将增至全振幅为7um,工作频率80Hz-120Hz全振幅将增为6um,且电动机极数小的较极数大的略为严重。

(4) 可采用输出AC电抗器减振动。

(5) 将v/f给定小些。

(6) 采用变频电动机可降低振动。

(7) 对高速磨床等可采用低噪声、低振动的专用电动机。

9 载波频率与电动机的发热
由于逆变器采用正弦脉宽调制后其电流输出波形是近似正弦波,谐波分量见图3,必定有一定分量的各次的高次谐波产生,以及波形不够光滑有毛刺出现,庶必造成输出电流的增加可达10%,而发热与电流I2成正比,因此在相同工作频率相同负荷下,使用变频器后电动机的温升略高些,为尽可能减少这部分损耗,要尽可能使载波频率值大些,对运行有利,或选用变频电动机,具体解决办法是:
(1) 尽可能选用较高载波频率,以改善输出电流波形。

(2) 加装输入、输出AC电抗器或有源滤波器等。

(3) 选用变频电动机。

(4) 变频器的工作频率要低于20Hz,而生产设备就要低速,而且有较大的负荷运行时,(下转34页)(上接50页)电动机输出轴后再加装一级减速器,以利工作频率(变频器)提高,且增大输出转矩,以利统一解决负荷的要求、变频器的许可,以及电动机的振动、噪音、发热、工作频率、载波频率几方面统筹的合理解决。

10 载波频率与变频器输入三相电流的不平衡度
变频器的输入部分是6脉冲三相桥式二极管整流电路即AC/DC变换,由于二极管是非线性元件,在实际装配时,每个元件的内阻抗不会一致,造成三相不匹配,又因输入电流是非正弦性,这样就造成输入变频器的三相电流的不平衡产生原因,尤其当输入电压就存在较大的不平衡,例:有3-5%的差值,这样三相输入电流最大可能出现有10-20%的差别,这是经常有可能出现的,为改善输入电流三相的不平衡度,尽可能减少起见,通常采用以下方法:
(1) 改善电网品质使它不平衡度尽可能小些。

(2) 选用高档次优质品牌的变频器。

(3) 尽可能提高载波频率值。

(4) 调换R、S、T三相的相序(变频器输入电压相位不需理相)
(5) 选用变频电动机
通过以上方法使三相不平衡度尽可能减小为原则,要绝对平衡难以做到的。

但变频器输出三相电流基本是平衡的,这里还要注意的测量变频器的输入或输出电压、电流时,最好选用一只,只反映基波(50Hz)的带有滤波的电压、电流表、钳形电流表万能或表为宜,否则测量值比实际值出现偏大的现象,这点亦要注意的。

相关文档
最新文档