结构化学基础第1章

合集下载

结构化学课件(周公度版)第一章

结构化学课件(周公度版)第一章

有带电或不带电物体的运动,因而也不是电磁波.
1927年,戴维逊、革末用电子束单晶衍射法,G.P.汤姆 逊用薄膜透射法证实了物质波的存在, 用德布罗意关系式计 算的波长与布拉格方程计算结果一致. 1929年, de Broglie获 诺贝尔物理学奖;1937年,戴维逊、革末、G.P.汤姆逊也获
得诺贝尔奖.
请在后面输入加速电压: de Broglie波长等于
100 V 122.5 pm
de Broglie还利用他的关系式为Bohr的轨道角动量 量子化条件
h mvr n 2
作了一个解释:由这一条件导出的
nh h S 2r n n mv p
表明圆轨道周长S是波长的整数倍,这正是在圆周上形 成稳定的驻波所需要的,如同琴弦上形成驻波的条件是 自由振动的弦长为半波长的整数倍一样. 尽管这种轨迹确定的轨道被不确定原理否定了,但 “定态与驻波相联系”的思想还是富有启发性的.
1 1 R( 2 2 ), n2 n1 n1 n2 n1 1, Lyman 系 n1 2, Balmer 系 n1 3, Paschen 系 n1 4, Brackett系 n1 5, Pfund 系
原子光谱是原子结构的信使. 那么, 在此之前, 人们对 原子结构认识如何呢?
1.1.2
光电效应与光量子化
经典物理无法解释的另一个现象来自 H.R.赫芝1887
年的著名实验. 这一实验极为有趣和重要, 因为它既证实 了Maxwell的电磁波理论——该理论认为光也是电磁波, 又发现了光电效应(photoelectric effect), 后来导致了光的 粒子学说.
1889年, 斯托列托夫提出获得光电流的电池方案(下图
的相似或相同,推出它们在其他方面也可能相似或相同的思想方法,

结构化学第1章 量子力学基础和原子结构-1-01

结构化学第1章 量子力学基础和原子结构-1-01
☆ 经典物理学遇到了难题
19世纪末,物理学理论(经典物理学)已相当完善: ◆Newton力学 ◆Maxwell电磁场理论 ◆Gibbs热力学 ◆Boltzmann统计物理学
上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。
一、三个著名实验导致“量子论”概念的引入和应 用1. 黑体辐射与普朗克的量子论
2、当h=w 阈频率0
时,=0,这时的频率就是产生光电效应的临
3、=当hh-wh时0,,动能0与,频逸率出呈金直属线的关电系子,具与有光一强定无动关能。,Ek
conservation of momentum are obey.
产生光电效应时的能量守恒:
w h mv h= +E = + /2 2
• (脱出功:电子逸出k 金属所需的0最低能量,w=h0) • 用Einstein光子说,可圆满解释光电效应:
1、不当发h生光w 电时效,应 ;0,光子没有足够能量使电子逸出金属,
1905年,Einstein在Planck能量量子化的启发下,提出 光子说:
★光的能量是不连续的,每一种频率的光其能量都有一个 最小单位,称为光子,光子的能量与其频率成正比: h
★光是一束以光速行进的光子流,光的强度取决于单位体 积内光子的数目(光子密度)。
★光子不但有能量,还有质量(m),但光子的静止质量 为零。根据相对论的质能联系定律=mc2,光子的质量 为:m=h/c2,不同频率的光子具有不同的质量。
★光子有质量,必有动量:p=mc=h/c=h/ (c=) ★光子与电子碰撞时服从能量守恒与动量守恒定律。
In 1905, Einstein proposed the corpuscular theory of light which explained this photoelectric effect. The theory states:

第一章 量子力学基础知识

第一章  量子力学基础知识

《结构化学基础》讲稿第一章孟祥军第一章 量子力学基础知识 (第一讲)1.1 微观粒子的运动特征☆ 经典物理学遇到了难题:19世纪末,物理学理论(经典物理学)已相当完善: ◆ Newton 力学 ◆ Maxwell 电磁场理论 ◆ Gibbs 热力学 ◆ Boltzmann 统计物理学上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。

1.1.1 黑体辐射与能量量子化黑体:能全部吸收外来电磁波的物体。

黑色物体或开一小孔的空心金属球近似于黑体。

黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。

★经典理论与实验事实间的矛盾:经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。

按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。

按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。

Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。

经典理论无论如何也得不出这种有极大值的曲线。

• 1900年,Planck (普朗克)假定:黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。

• h 称为Planck 常数,h =6.626×10-34J •S•按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合:●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。

能量波长黑体辐射能量分布曲线 ()1/8133--=kt h c h eE ννπν1.1.2 光电效应和光子学说光电效应:光照射在金属表面,使金属发射出电子的现象。

结构化学 第1章 量子力学基本原理---量子论

结构化学 第1章 量子力学基本原理---量子论

光是一种电磁波
➢1856年,Maxwell建立电磁场理论,预言了电 磁波的存在。 ➢理论计算出电磁波以3×108m/s的速度在真空 中传播,与光速度相同,所以人们认为光也是 电磁波。 ➢1888年,Hertz探测到电磁波。 ➢光作为电磁波的一部分,在理论上和实验上就 完全确定了。
L. Rayleigh(瑞利) 1911年Nobel物理奖
➢R - J 方 程 只 在 波 长 很 大时与实际情况比较符
。实验 -- 维恩 -- 瑞利-金斯
合 , 随 着 λ 减 小 , ρλ 单调增大,与实验结果
呈现巨大分歧。
➢推 论 : 黑 体 的 单 色 辐
射强度将随波长变短而
趋于“无限大”。
光子学说对光电效应的解释
当光照射金属中的电子时,电子吸收光子的能量,
体现为逸出功(W0)和光电子动能(Ek) :
hn
1 mv2 2
W0
n0=W0/h,为金属材料的特征值。
当n>n0时,如果光的强度越大,则单位体积内
通过的光子数目就越多,因而光电流也越大。
W0
W0
W0 ,逸出功, 或称为功函数,F
结构化学 —— 第一章量子力学原理
第一章
I 量子论的形成 新理论的产生
为世人接受的新 观念和新理论
传统观念 和经典理论
不能解释 实验新发现
解释实验且为 其他实验证实

新观念 新假设

结构化学 —— 第一章量子力学原理
经典物理学
1900年以前,物理学的发展处于经典物理学 (classical physics)阶段: 由经典力学,电磁波理论, 统计物理学和热力学等组成。
与此相反,Wien方程只在
--“紫外灾难” 高频区符合。

结构化学 第一章 量子化学基础 习题

结构化学 第一章 量子化学基础 习题

1029
y y y 设 体 系 处 在 状 态 =c1 211+ c2 210 中 , 角 动 量 M2 和 Mz 有 无 定 值 。其值为多少?若无 ,
则求其平均值。
1030

试 求 动 量 算 符 pˆ x=
的 本 征 函 数 (不 需 归 一 化 )。
i2p ¶x
1031
y 下 列 说 法 对 否 :” =cos x, px 有确 定 值 , p2x 没 有 确 定 值,只有平均值 。” ---------- ( )
(A) 16.5 × 10 -24? J (B) 9.5
× 10 -7 J (C) 1.9
× 10 (E) 1.75 × 10 -50? J
1039 一个在一维势箱中运动的粒子,
(1) 其 能 量 随 着 量 子 数 n 的 增 大 :------------------------ ( ) (A) 越 来 越 小 (B) 越 来 越 大 (C) 不变 (2) 其 能 级 差 En+1-En 随 着 势 箱 长 度 的 增大 : -------------------( ) (A) 越 来 越 小 (B) 越 来 越 大 (C) 不变
(A)
Aˆ U=λU, λ=常数
(B)
Bˆ U=U*
(C)
Cˆ U=U2
(D)
Dˆ U = dU
dx
(E)
Eˆ U=1/ U
1026 物 理 量 xp y- ypx
1027
_____ 。
某 粒 子 的 运 动 状 态 可 用波 函 数y =Ne-ix 来表 示 , 求 其 动 量 算符 pˆ x 的 本 征 值 。
1013
测 不 准 原 理 的 另一 种 形 式 为 Δ E·Δt≥h/2 π。当一个电子从 高能级向低能级跃迁 时,

湖南大学结构化学讲义第一章

湖南大学结构化学讲义第一章
35
结构化学
1993 年,M. F. Crommie 等人用扫描隧道显微镜技术,把蒸发 到Cu(111)表面上的48 个Fe 原子排列成了半径为7.13nm 的 圆环形“量子栅栏(Quantum Corral)”。在量子栅栏内,受到 Fe 原子散射的电子波与入射的电子波发生干涉 而形成同心圆
36
结驻构波化学,直观地显示了电子的波动性。
结构化学 黑体辐射----经典的理论解
L. Rayleigh(瑞利)7 1911年Nobel物理奖
Rayleigh-Jeans方程
1900年6月,Rayleigh和Jeans从经典的电磁理论出发 推导出黑体辐射的数学表达式:
dEV
ቤተ መጻሕፍቲ ባይዱ
(
)
d
8kT
1
4
d
近似地按简谐振动处理,可连续改变振动状态,发射
理 或吸收电磁波。 论 平衡时,空腔内形成驻波,驻波的个数与频率的平方 要 成正比。 点 驻波的振幅和能量可以连续地变化,每个驻波具有相
5
(2)黑体辐射实
high
Frequency,
low
黑体辐射实验的结论是:随 着温度升高,辐射总能量急 剧增加,最大强度蓝移。
黑体在热辐射达到平衡时,
结辐构射化能学量Er 随频率ν的变化曲线
6
(3) 基于经典物理理论的解
不少物理学家,如Wien(1864~1928,德)、 Rayleigh(1842~1919,英)和Jeans(1877~ 1946,英)试图用经典热力学和统计力学理论来解 释这种现象,从理论上推导出符合实验曲线的函数 表达式,但都不能得到满意的结果。
25
结构化学
光是一种电磁波
1856年,Maxwell建立电磁场理论,预言了电 磁波的存在。 理论计算出电磁波以3×108m/s的速度在真空 中传播,与光速度相同,所以人们认为光也是 电磁波。 1888年,Hertz探测到电磁波。 光作为电磁波的一部分,在理论上和实验上就 完全确定了。

福师《结构化学》第一章-量子力学基础和原子结构-课堂笔记

福师《结构化学》第一章-量子力学基础和原子结构-课堂笔记

福师《结构化学》第一章量子力学基础和原子结构课堂笔记◆主要知识点掌握程度了解测不准关系,掌握和的物理意义;掌握一维势箱模型方程的求解以及该模型在共轭分子体系中的应用;理解量子数n,l,m的取值及物理意义;掌握波函数和电子云的径向分布图,原子轨道等值线图和原子轨道轮廓图;难点是薛定谔方程的求解。

◆知识点整理一、波粒二象性和薛定谔方程1.物质波的证明德布罗意假设:光和微观实物粒子(电子、原子、分子、中子、质子等)都具有波动性和微粒性两重性质,即波粒二象性,其基本公式为:对于低速运动,质量为m的粒子:其中能量E和动量P反映光和微粒的粒性,而频率ν和波长λ反映光和微粒的波性,它们之间通过常数h联系起来,普朗克常数焦尔·秒。

实物微粒运动时产生物质波波长λ可由粒子的质量m和运动度ν按如下公式计算。

λν量子化是指物质运动时,它的某些物理量数值的变化是不连续的,只能为某些特定的数值。

如微观体系的能量和角动量等物理量就是量子化的,能量的改变为ν的整数倍。

2.测不准关系:内容:海森保指出:具有波粒二象性的微观离子(如电子、中子、质子等),不能同时具有确定的坐标和动量,它们遵循“测不准关系”:(y、z方向上的分量也有同样关系式)ΔX是物质位置不确定度,Δ为动量不确定度。

该关系是微观粒子波动性的必然结果,亦是宏观物体和微观物体的判别标准。

对于可以把h看作O的体系,表示可同时具有确定的坐标和动量,是可用牛顿力学描述的宏观物体,对于h不能看作O的微观粒子,没有同时确定的坐标和动量,需要用量子力学来处理。

3.波函数的物理意义——几率波实物微粒具有波动性,其运动状态可用一个坐标和时间的函数来描述,称为波函数或状态函数。

1926年波恩对波函数的物理意义提出了统计解释:由电子衍射实验证明,电子的波动性是和微粒的行为的统计性联系在一起的,波函数正是反映了微粒行为的统计规律。

这规律表明:对大量电子而言,在衍射强度大的地方,电子出现的数目多,强度小的地方电子出现的数目少,即波函数的模的平方与电子在空间分布的密度成正比。

结构化学知识点归纳

结构化学知识点归纳

结构化学知识点归纳根据北京大学出版社周公度编写的“结构化学”总结第一章 量子力学基础知识一、微观粒子的运动特征1. 波粒二象性:,hE h p νλ==2. 测不准原理:,,,,x y z x p h y p h z p h t E h ∆∆≥∆∆≥∆∆≥∆∆≥ 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数(,,,)x y z t ψ来描述,它包括体系的全部信息。

这一函数称为波函数或态函数,简称态。

不含时间的波函数(,,)x y z ψ称为定态波函数。

在本课程中主要讨论定态波函数。

由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于*ψψ,所以通常将用波函数ψ描述的波称为几率波。

在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将*ψψ称为几率密度,它就是通常所说的电子云;*d ψψτ为空间某点附近体积元d τ中电子出现的几率。

对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born )统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。

波函数ψ可以是复函数,ψψψ⋅=*2合格(品优)波函数:单值、连续、平方可积。

2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。

算符:作用对象是函数,作用后函数变为新的函数。

线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。

11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 自厄算符:满足**2121ˆˆ()d ()d A A ψψτψψτ=∫∫的算符。

自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。

3. 假设3:若某一物理量A 的算符ˆA作用于某一状态函数ψ,等于某一常数a 乘以ψ,即:ˆAa ψψ=,那么对ψ所描述的这个微观体系的状态,物理量A 具有确定的数字a 。

结构化学基础总结

结构化学基础总结

结构化学基础总结第一章:量子力学基础知识一、3个实验1、黑体辐射实验:(1)黑体:被认为是可以吸收全部外来辐射的物体,是理想的辐射体。

理想黑体可以吸收所有照射到它表面的电磁辐射,并将这些辐射转化为热辐射,其光谱特征仅与该黑体的温度有关,与黑体的材质无关。

可见光:400-700nm(2)假设:黑体吸收或发射辐射的能量是不连续的,而是分子一份一份的,即,量子化的。

E=hμ2、光电效应实验和Einstein光子学说:光量子化和光的波粒二象性本质。

(1)Einstein提出来了光量子(光子)。

波的性质:衍射、干涉。

E=hμ粒子的性质:反射、折射。

P=h/λ光子的动能与入射光的频率成正比,与光的强度无关。

(2)Heisenberg不确定度关系:Δq∙Δp≥ℏΔq坐标不确定量;Δp动量不确定量;q广义坐标单缝衍射:某粒子坐标确定得愈精确,其相应动量就愈不确定。

h可作为区分宏、微观粒子的标准:宏观h=0,微观h不能看作0。

3、氢原子光谱与Born氢原子模型:(1)氢原子光谱:指的是氢原子内之电子在不同能级跃迁时所发射或吸收不同波长、能量之光子而得到的光谱。

氢原子光谱为不连续的线光谱,自无线电波、微波、红外光、可见光、到紫外光区段都有可能有其谱线。

根据电子跃迁的后所处的能阶,可将光谱分为不同的线系。

(2)在卢瑟福模型的基础上,玻尔提出了电子在核外的量子化轨道,解决了原子结构的稳定性问题,描绘出了完整而令人信服的原子结构学说。

定态假设:原子的核外电子在轨道上运行时,只能够稳定地存在于具有分立的、固定能量的状态中,这些状态称为定态(能级),即处于定态的原子能量是量子化的。

此时,原子并不辐射能量,是稳定的。

激发态:原子受到辐射、加热或通电时,获得能量后电子可以跃迁到离核较远的轨道上去,即电子被激发到高能量的轨道上,这时原子处于激发态。

处于激发态的电子不稳定,可以跃迁到离核较近的轨道上,同时释放出光子。

二、量子力学基本假设1、假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。

结构化学第一章课后习题答案

结构化学第一章课后习题答案

6.626 ×10−34 = = 8.95 × 10−10 m p 7.40 × 10−25
13. 在电视机显像管中运动的电子,假定加速电压为 1000 V,电子运动速度的不确定量Δυ为υ的 10%,
判断电子的波动性对荧光屏上成像有无影响? 解:根据不确定关系: Δx Δpx ≥ h Δx • m • Δυ x ≥ h ∴Δx = h h = m Δυ x m υ x 10%
l
px = ∫
0
2 nπ x ˆx sin p l l
2 nπ x dx sin l l 2 nπ x sin dx = 0 l l
=∫
0
l
2 nπ x ih d sin (− ) 2π dx l l h2 d 2 4π 2 dx 2
ˆ x2 = − pˆ x源自2ψ n ( x) = − ph2 d 2 h2 d 2 = − ψ ( ) x n 4π 2 dx 2 4π 2 dx 2
n πy n πx nπz 8 sin x sin y sin z 3 a a a a
8 2π x πy πz sin sin sin 3 a a a a πy 2 πz 2 8 2π x 2 * ∫ψ 211 ( x, y, z )ψ 211 ( x, y, z)dτ = a3 ∫ (sin a ) ∫ (sin a ) ∫ (sin a ) 2π z ⎤ 8 ⎡ Δx a 4π ( x + Δx) a 4π x ⎤ ⎡ Δy a 2π ( y + Δy ) a 2π y ⎤ ⎡ Δz a 2π ( z + Δz ) a = 3⎢ − + − + − + sin sin sin sin sin sin ⎢ ⎥ ⎢ ⎥ a ⎥ 8π 4π 4π a ⎣ 2 8π a a ⎦ ⎣ 2 4π a a ⎦ ⎣ 2 4π a ⎦ 8 πx πy 2π z ψ 112 ( x, y, z ) = 3 sin sin sin a a a a πx 2 πy 2 8 2π z 2 * ∫ψ 112 ( x, y, z)ψ 112 ( x, y, z )dτ = a3 ∫ (sin a ) ∫ (sin a ) ∫ (sin a ) 4π z ⎤ 8 ⎡ Δx a 2π ( x + Δx) a 2π x ⎤ ⎡ Δy a 2π ( y + Δy ) a 2π y ⎤ ⎡ Δz a 4π ( z + Δz ) a = 3⎢ − + − + − + sin sin sin sin sin sin ⎢ ⎢ ⎥ a ⎥ π π π π 4π 2 4 4 2 8 8 a ⎣ 2 4π a a ⎥ a a a ⎦ ⎦⎣ ⎦⎣

结构化学第一章习题答案

结构化学第一章习题答案

《结构化学》第一章习题答案1001 (D)1002 E =h ν p =h /λ1003,mvhp h ==λ 小1004 电子概率密度1005 1-241-9--34s kg m 10626.6s kg m 100.1106.626⋅⋅⨯=⋅⋅⨯⨯==-λhpT = m p 22 = 3123410109.92)10626.6(--⨯⨯⨯ J = 2.410×10-17 J1006 T = h ν- h ν0=λhc -λhcT = (1/2) mv 2v =)11(20λλ-m hc = 6.03×105 m ·s -11007 (1/2)mv 2= h ν - W 0 = hc /λ - W 0 = 2.06×10-19Jv = 6.73×105 m/s1008 λ = 1.226×10-9m/10000= 1.226×10-11 m1009 (B)1010 A,B 两步都是对的, A 中v 是自由粒子的运动速率, 它不等于实物波的传播速率u , C中用了λ= v /ν, 这就错了。

因为λ= u /ν。

又D 中E =h ν是粒子的总能量, E 中E =21mv 2仅为v <<c 时粒子的动能部分,两个能量是不等的。

所以 C, E 都错。

1011 ∆x ·∆p x ≥π2h微观物体的坐标和动量不能同时测准, 其不确定度的乘积不小于π2h 。

1013 ∆E =π2h/∆t = ∆(h ν) = h ∆ν∆ν = 1/(2π∆t ) = 1/(2π×10-9) = 1.59×108 s -1∆ν~ = ∆ν/c = 1.59×108 s -1/3×1010 cm ·s -1= 5.3×10-3 cm -11014 不对。

1015 (1) 单值的。

结构化学第一章答案

结构化学第一章答案

一、填空题1.量子力学用Ψ(r,t)来描述 ,它在数学上要满足三个条件,分别是 ,∣Ψ∣2表示 。

2. 测不准关系是 ,它说明3. 汤姆逊实验证明了 。

4. 一维势箱中的粒子的活动范围扩大时, 相应的能量值会 。

5. 导致“量子”概念引入的三个著名试验分别为 、 和 。

6. 方程Âφ=a φ中,a 称为力学量算符Â的 。

7. 如果某一个微观体系有多种可能状态,则由他们线性组合所得的状态也是体系的可能状态,这叫做 。

二、选择题1. 几率密度不随时间改变的状态被称为( B )A. 物质波B. 定态C. 本征态D. 基态2. 函数()xe xf =(0x -≤≤∞) 的归一化常数是( B ) A. 1/2 B. 1 C. 0 D. 23. 对于任意实物粒子,物质波波长为λ,欲求其动能可用( A )A. hc/λB. h 2/2m λ2C. eVD. mc 24. 公式0*=⎰τψψd n m (n m ≠) 称为波函数的( D )A. 单值性B. 连续性C. 归一性D. 正交性5. 下列算符为线性算符的是 ( D )A. logB. d/dxC.D. ln 6. 下列算符为线性算符的是( B )A. sinexB. d 2/dx 2C.D. cos2x 7. 下列算符中,哪些不是线性算符( C )A. ∇2B. d dxC. 3D. xy 8. 下列函数中不是22dxd 的本征函数的是( B ) A. xe B.2x C.x cos 3 D.x x cos sin +9. 算符22dxd 作用于函数x cos 5上,则本征值为( C )A. –5B. 5C. – 1D. 110. 下列函数中22dx d ,dxd 的共同的本征函数是( B ).. A. coskx B.e -bx C. sin x D. 2kx e -11. 下列条件不是品优函数的必备条件的是___C_____A. 连续B. 单值C. 归一D. 有限或平方可积12. 粒子处于定态意味着:( C )A. 粒子处于概率最大的状态B. 粒子处于势能为0的状态C. 粒子的力学量平均值与概率密度分布都与时间无关系的状态D. 粒子处于静止状态13. 电子在核附近有非零几率密度的原子轨道是( D )。

结构化学基础知识点总结

结构化学基础知识点总结

结构化学基础第一章量子力学基础:经典物理学是由Newton(牛顿)的力学,Maxwell(麦克斯韦)的电磁场理论,Gibbs(吉布斯)的热力学和Boltzmann(玻耳兹曼)的统计物理学等组成,而经典物理学却无法解释黑体辐射,光电效应,电子波性等微观的现象。

黑体:是一种可以全部吸收照射到它上面的各种波长辐射的物体,带一个微孔的空心金属球,非常接近黑体,进入金属球小孔的辐射,经多次吸收,反射使射入的辐射实际全被吸收,当空腔受热,空腔壁会发出辐射,极少数从小孔逸出,它是理想的吸收体也是理想的放射体,若把几种金属物体加热到同一温度,黑体放热最多,用棱镜把黑体发出的辐射分开就可测出指定狭窄的频率范围的黑体的能量。

规律:频率相同下黑体的能量随温度的升高而增大,温度相同下黑体的能量呈峰型,峰植大致出现在频率范围是0.6-1.0/10-14S-1。

且随着温度的升高,能量最大值向高频移动.加热金属块时,开始发红光,后依次为橙,白,蓝白。

黑体辐射频率为v的能量是hv的整数倍.光电效应和光子学说:Planck能量量子化提出标志量子理论的诞生。

光电效应是光照在金属表面上使金属放出电子的现象,实验证实:1.只有当照射光的频率超过金属最小频率(临阈频率)时,金属才能发出电子,不同金属的最小频率不同,大多金属的最小频率位于紫外区。

2.增强光照而不改变照射光频率,则只能使发射的光电子数增多,不影响动能。

3.照射光的频率增强,逸出电子动能增强。

光是一束光子流,每一种频率的光的能量都有一个最小单位光子,其能量和光子的频率成正比,即E=hv光子还有质量,但是光子的静止质量是0,按相对论质能定律光子的质量是m=hv/c2光子的动量:p=mc=hv/c=h/波长光的强度取决于单位体积内光子的数目,即光子密度。

光电效应方程:hv(照射光频率)=W(逸出功)+E(逸出电子动能)实物微粒的波粒二象性:由de Broglie(德布罗意)提出:p=h/波长电子具有粒性,在化合物中可以作为带电的微粒独立存在(电子自身独立存在,不是依附在其他原子或分子上的电子)M.Born(玻恩)认为在空间任何一点上波的强度(即振幅绝对值平方)和粒子出现的概率成正比,电子的波性是和微粒的统计联系在一起,对大量的粒子而言衍射强度(波强)大的地方粒子出现的数目就多概率就大,反之则相反。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=h,p=h/
3. 实物微粒的波粒二象性
习题:P34,1,3,4
• de Broglie(德布罗意)假设:
• 1924年,de Broglie受光的波粒二象性启发,提出实物微粒(静止质量不为 零的粒子,如电子、质子、原子、分子等)也有波粒二象性。认为=h,p =h/ 也适用于实物微粒,即,以p=mv的动量运动的实物微粒,伴随有波 长为 =h/p=h/mv 的波。此即de Broglie关系式。
上述理论可解释当时常见物理现象,但也发现了解释 不了的新现象。
1. 黑体辐射与能量量子化
黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。
★经典理论与实验事实间的矛盾:
经典电磁理论假定,黑体辐射是由黑体中带电粒子的振动发出的,按经典热力学和统计 力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。
绪言
• 结构化学的研究范围 • 结构化学的主要内容 • 结构化学的发展历程 • 结构化学的学习方法
第一章 量子力学基础知识
1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题
19世纪末,物理学理论(经典物理学)已相当完善: ◆Newton力学 ◆Maxwell电磁场理论 ◆Gibbs热力学 ◆Boltzmann统计物理学
★光子具有一定的动量:p=mc=h/c=h/
(c=)
★光的强度取决于单位体பைடு நூலகம்内光子的数目(光子密度)。
产生光电效应时的能量守恒:h=w+Ek=h0+mv2/2
(脱出功:电子逸出金属所需的最低能量,w=h0)
用Einstein光子说,可圆满解释光电效应:
○当hw时,0,光子没有足够能量使电子逸出金属,不发生光电效应; ○当h=w时,=0,这时的频率就是产生光电效应的临阈频率( 0 ); ○当hw时,0,逸出金属的电子具有一定动能,Ek=h-h0,动能与频 率
• de Broglie 波 与 光 波不 同:光 波 的传 播速度 和 光子 的运动 速 度相 等; de Broglie波的传播速度(u)只有实物粒子运动速度的一半:v=2u。对于实 物微粒:u=,E=p2/(2m)=(1/2)mv2 ,对于光:c=,E=pc=mc2
• 微观粒子运动速度快,自身尺度小,其波性不能忽略;宏观粒子运动速度慢, 自 身 尺 度 大 , 其 波 性 可 以 忽 略 : 以 1.0106m/s 的 速 度运动 的 电 子 , 其 de Broglie波长为7.310-10m(0.73nm),与分子大小相当;质量为1g的宏观粒 子以 110-2m/s 的速度运动,de Broglie 波长为7 10-29m,与宏观粒子的 大小相比可忽略,观察不到波动效应。
结构化学基础
(第三版)
周公度 段连运 编著
主讲教师:孙 忠 副教授
辅 导:许 嘉
授课学时:48
学分:3
参 考 书:1.周公度 段连运编著《结构化学基础》,第二
版,北京大学出版社,1995年
2.谢有畅 邵美成编《结构化学》,第二版, 人 民教育出版社,1983年
3.江元生遍《结构化学》,第一版,高等教育 出版社,1997年
• 1927年,Davisson和Germer用镍单晶电子衍射、Thomson用多晶金属箔电子衍 射,分别得到了与X-射线衍射相同的斑点和同心圆,证实电子确有波性。后 来证实:中子、质子、原子等实物微粒都有波性。
电子衍射示意图
CsI箔电子衍射图
■实物微粒波的物理意义——Born的统计解释
• h称为Planck常数,h=6.626×10-34J•S
• 按Planck假定,算出的辐射能E与实验观测到的黑体辐射
E e 1 能非常吻合:
8h 3 h / kt
1
c3
●能量量子化:黑体只能辐射频率为,数值 为h的整数倍的不连续的能量。
2. 光电效应与光的波粒二象性
光电效应:光照射在金属表面,使金属发射出电子的现象。
1900年前后,许多实验已证实:
●照射光频率须超过某个最小频率0,金 属才能发射出光电子;
●增加照射光强度,不能增加光电子的动
能,只能使光电子的数目增加;
Ek
●光电子动能随照射光频率的增加而增加。

电子
金属
经典理论不能解释光电效应:
经典理论认为,光波的能量与其强度 成正比,而与频率无关;只要光强足够, 任何频率的光都应产生光电效应;光电子 的动能随光强增加而增加,与光的频率无 关。这些推论与实验事实正好相反。
0
0
光电子动能与照射光频率的关系
Einstein光子学说
1905年,Einstein在Planck能量量子化的启发下,提出光子说:
★光是一束光子流,每一种频率的光其能量都有一个最小单位,称为光 子,光子的能量与其频率成正比:h
★光子不但有能量,还有质量(m),但光子的静止质量为零。根据相 对论的质能联系定律=mc2,光子的质量为:m=h/c2,不同频率 的光子具有不同的质量。
经典理论无论如何也得不出这种 有极大值的曲线。
实验曲线 黑体辐射能量分布曲线 波长
Planck能量量子化假设
• 1900年,Planck(普朗克)假定,黑体中原子或分子辐射 能量时作简谐振动,只能发射或吸收频率为,能量为h 的整数倍的电磁能,即振动频率为的振子,发射的能量 只能是0h,1h,2h,……,nh(n为整数)。
呈直线关系,与光强无关。
光的波粒二象性
• 只有把光看成是由光子组成的光束,才能理解光 电效应;而只有把光看成波,才能解释衍射和干 涉现象。即,光表现出波粒二象性。
• 波动模型是连续的,光子模型是量子化的,波和 粒表面上看是互不相容的,却通过Planck常数, 将代表波性的概念和与代表粒性的概念和p联 系在了一起,将光的波粒二象性统一起来:
按经典理论只能得出能量随波长单调变化的曲线: 能 Rayleigh-Jeans把分子物理学中能量按自由度 量
均分原则用到电磁辐射上,按其公式计算所得结果 在长波处比较接近实验曲线。
Wien假定辐射波长的分布与Maxwell分子速度 分布类似,计算结果在短波处与实验较接近。
Wien(维恩)曲线
RayleighJeans(瑞 利-金斯) 曲线
相关文档
最新文档