自适应噪声抵消LMS算法Matlab仿真

合集下载

MATLAB仿真实现LMS和RLS算法

MATLAB仿真实现LMS和RLS算法

MATLAB 仿真实现LMS 和RLS 算法题目:序列x(n)有AR (2)模型产生:)()2()1()(21n w n x a n x a n x +-+-=,w(n)是均值为0、方差为1的高斯白噪声序列。

.7.0,4.121-==a a 用LMS 算法和RLS 算法来估计模型参数21,a a 。

按照课本第三章63页的要求,仿真实现LMS 算法和RLS 算法,比较两种算法的权值收敛速度,并对比不同u 值对LMS 算法以及λ值对RLS 算法的影响。

解答:1 数据模型(1)高斯白噪声用用randn 函数产生均值为0、方差为1的标准正态分布随机矩阵来实现。

随后的产生的信号用题目中的AR (2)模型产生,激励源是之前产生的高斯白噪声。

(2)信号点数这里取为2000,用2000个信号来估计滤波器系数。

(3)分别取3个不同的u 、λ值来分析对不同算法对收敛效果的影响。

其中u=[0.001,0.003,0.006],lam=[1,0.98,0.94]。

2 算法模型2.1自适应算法的基本原理自适应算法的基本信号关系如下图所示:图 1 自适应滤波器框图输入信号x(n)通过参数可调的数字滤波器后产生输出信号y(n),将其与参考信号d(n)进行比较,形成误差信号e(n)。

e(n)通过某种自适应算法对滤波器参数进行调整,最终是e(n)的均方值最小。

当误差信号e(n)的均方误差达到最小的时候,可以证明信号y(n)是信号d(n)的最佳估计。

2.2 LMS 算法简介LMS 算法采用平方误差最小的原则代替最小均方误差最小的原则,信号基本关系如下:1()()()()()()(1)()2()()(0,1,2,....1)N i i i y n w n x n i e n d n y n w n w n e n x n i i N μ-=-=-+=+-=-∑ 写成矩阵型式为:()()()()()()(1)()2()()T y n W n X n e n d n y n W n W n e n X n μ==-+=+ 式中,W(n) 为n 时刻自适应滤波器的权矢量,011()[(),(),....()]TN W n w n w n w n -=,N 为自适应滤波器的阶数;X( n) 为n 时刻自适应滤波器的参考输入矢量,由最近N 个信号采样值构成,()[(),(1),....(1)]TX n x n x n x n N =--+;d ( n) 是期望的输出值;e ( n) 为自适应滤波器的输出误差调节信号(简称失调信号) ;μ是控制自适应速度与稳定性的增益常数,又叫收敛因子或步长因子。

在Matlab中进行噪声抑制和降噪处理的方法

在Matlab中进行噪声抑制和降噪处理的方法

在Matlab中进行噪声抑制和降噪处理的方法引言:噪声是信号处理中的一个常见问题,它可以由多种因素引起,如传感器本身的噪声、电磁干扰等。

噪声的存在会影响到信号的质量和准确性,因此在许多应用中,我们需要进行噪声抑制和降噪处理。

对于Matlab来说,它提供了多种方法和工具来实现这一目标。

本文将介绍在Matlab中进行噪声抑制和降噪处理的方法。

一、频域滤波方法在Matlab中,频域滤波方法是一种常见且有效的噪声抑制和降噪处理方法。

该方法的基本思想是将信号从时域转换到频域,在频域中对信号进行滤波,并将滤波后的信号再转换回时域。

Matlab提供了丰富的频域滤波函数和工具,如fft、ifft、fftshift等。

通过这些函数,我们可以实现低通滤波、高通滤波、带通滤波等各种滤波操作,从而有效抑制和降噪信号。

二、时域滤波方法时域滤波方法是另一种常用的噪声抑制和降噪处理方法。

该方法的基本思想是在时域中对信号进行滤波,直接对信号进行抽样和滤波处理。

与频域滤波不同的是,时域滤波方法更加直观和易于理解。

在Matlab中,我们可以使用filter函数和fir1函数实现时域滤波。

其中,filter函数可以对信号进行FIR滤波,而fir1函数可以设计并生成FIR滤波器。

三、小波变换方法小波变换是一种非常有用的信号处理方法,它可以将信号在时间和频率上进行局部分析。

在噪声抑制和降噪处理中,小波变换可以帮助我们将信号分解成不同的频率成分,并对噪声进行抑制。

在Matlab中,我们可以使用wavelet函数和wdenoise函数来实现小波变换。

通过这些函数,我们可以选择不同的小波基函数,并设置适当的阈值来实现噪声抑制和降噪处理。

四、自适应滤波方法自适应滤波是一种根据信号特性自动调整滤波器参数的滤波方法。

它可以自动识别和适应信号中的噪声,并对其进行抑制和降噪处理。

在Matlab中,自适应滤波可以通过nlms函数和rls函数来实现。

这些函数基于LMS算法和RLS算法,可以快速、准确地对信号进行自适应滤波。

基于LMS算法自适应噪声抵消系统的仿真研究概要

基于LMS算法自适应噪声抵消系统的仿真研究概要

基于LMS算法自适应噪声抵消系统的仿真研究概要摘要:随着科技的进步和应用的广泛,我们日常生活中经常会遇到各种噪声干扰,对于一些噪声严重的环境,我们需要使用噪声抵消技术来提高信号质量。

本文主要研究了一种基于LMS算法的自适应噪声抵消系统,并通过仿真方法对其进行了评估和验证。

关键词:LMS算法,自适应,噪声抵消,信号质量1.引言噪声是一种对信号质量产生负面影响的因素,噪声抵消技术可以有效地降低噪声干扰,提高信号的质量。

LMS算法是一种常用的自适应滤波算法,它通过不断调整滤波器系数来最小化误差信号和输入信号之间的平方差,从而实现噪声抵消的目的。

本文基于LMS算法,设计了一个自适应噪声抵消系统,并使用MATLAB进行仿真评估。

2.系统模型我们考虑一个包含输入信号、噪声信号和输出信号的噪声抵消系统。

输入信号经过噪声干扰后得到输出信号,我们需要通过自适应滤波器来估计噪声信号,然后将其从输出信号中剔除。

系统模型可以表示如下:y(n)=s(n)+d(n)其中,y(n)为输出信号,s(n)为输入信号,d(n)为噪声信号。

3.LMS算法原理LMS算法可以通过不断更新自适应滤波器的系数来最小化估计误差。

算法的迭代过程如下:-初始化自适应滤波器的系数为0。

-通过滤波器对输入信号进行滤波,得到滤波后的输出信号。

-根据输出信号和期望信号之间的误差来更新滤波器系数。

-重复上述步骤,直到收敛。

4.仿真实验我们使用MATLAB软件来进行仿真实验。

首先,我们生成一个包含噪声干扰的输入信号,并设定期望信号为输入信号本身。

然后,根据LMS算法的迭代过程,不断更新自适应滤波器的系数。

最后,比较输出信号和期望信号之间的误差,评估噪声抵消系统的性能。

5.仿真结果分析通过比较输出信号和期望信号的误差,我们可以评估系统的性能。

通过调整LMS算法的参数,如步长和滤波器长度等,我们可以进一步优化系统的性能。

在本文的仿真实验中,我们发现当步长设置为0.01,滤波器长度为100时,系统的性能最佳。

基于LMS和RLS算法的自适应滤波器仿真

基于LMS和RLS算法的自适应滤波器仿真

基于LMS和RLS算法的自适应滤波器仿真自适应滤波器是一种可以自动调整其权重参数来适应不断变化的信号环境的滤波器。

常用的自适应滤波算法包括最小均方(LMS)和最小二乘(RLS)算法。

本文将对基于LMS和RLS算法的自适应滤波器进行仿真,并分析其性能和特点。

首先,介绍LMS算法。

LMS算法是一种基于梯度下降的自适应滤波算法。

其权重更新规则为:w(n+1)=w(n)+μ*e(n)*x(n),其中w(n)为当前时刻的权重,μ为步长(学习速率),e(n)为当前时刻的误差,x(n)为输入信号。

通过不断迭代和更新权重,LMS算法可以使滤波器的输出误差逐渐减小,从而逼近期望的输出。

接下来,进行LMS自适应滤波器的仿真实验。

考虑一个声纳系统的自适应滤波器,输入信号x(n)为声波信号,输出信号y(n)为接收到的声纳信号,期望输出信号d(n)为理想的声纳信号。

根据LMS算法,可以通过以下步骤进行仿真实验:1.初始化权重w(n)为零向量;2.读取输入信号x(n)和期望输出信号d(n);3.计算当前时刻的滤波器输出y(n)=w^T(n)*x(n),其中^T表示矩阵的转置;4.计算当前时刻的误差e(n)=d(n)-y(n);5.更新权重w(n+1)=w(n)+μ*e(n)*x(n);6.重复步骤2-5,直到滤波器的输出误差满足预设条件或达到最大迭代次数。

然后,介绍RLS算法。

RLS算法是一种递推最小二乘的自适应滤波算法。

其基本思想是通过不断迭代更新滤波器的权重,使得滤波器的输出误差的二范数最小化。

RLS算法具有较好的收敛性和稳定性。

接下来,进行RLS自适应滤波器的仿真实验。

基于声纳系统的例子,RLS算法的步骤如下:1.初始化滤波器权重w(n)为一个较小的正数矩阵,初始化误差协方差矩阵P(n)为一个较大的正数矩阵;2.读取输入信号x(n)和期望输出信号d(n);3.计算增益矩阵K(n)=P(n-1)*x(n)/(λ+x^T(n)*P(n-1)*x(n)),其中λ为一个正则化参数;4.计算当前时刻的滤波器输出y(n)=w^T(n)*x(n);5.计算当前时刻的误差e(n)=d(n)-y(n);6.更新滤波器权重w(n+1)=w(n)+K(n)*e(n);7.更新误差协方差矩阵P(n)=(1/λ)*(P(n-1)-K(n)*x^T(n)*P(n-1));8.重复步骤2-7,直到滤波器的输出误差满足预设条件或达到最大迭代次数。

基于LMS的自适应干扰抵消算法的matlab实现

基于LMS的自适应干扰抵消算法的matlab实现
法 进 行 了理 论 分 析 。 关 键 词 :M S; L 自适 应 干 扰 抵 消 ; tb maa l
1自 适应 干扰抵 消算法 在通信系统 中,经常会遇到强 干扰 信号背 景下有用信 号的检测 问题 ,因此干扰抵 消是通 信 系统 的一 个很重要 的组成部分 。 自 应干扰 适 抵 消系统 , 包含有未知干扰 的原 始信 号作为 将 自 适应滤波器 的参 考信号 ,而同一干扰源 发出
法的迭代公式 如下 : e } i)Xn W( (- (- (T n n n  ̄ ) ) W( 1 w0 _u X( n ) 】 2 += n ) xI ln ( 一 ( L IF ( = ( 『 1 x) 1 ) 一 x — + ) 表示时 刻 n n J 的输入 信号矢量 ; Wn = 0 ) ㈤…WL 1 1 T [ (, w n w1 一 ( 表示 时刻 n的 自适 n 1 的干扰信号 为滤波器的输入 。通过 自 应滤波 应滤波器的权 系数 ; 中: 适 式 L为滤 波器的阶数 , d 器的权系数调整, 使得滤波器输出趋于干扰信 (为期 望输 出值 ,n n ) e】 (为误差 ,是 步长 因子 , U 为 号 。这样 , 通过相减器 , 考信号 中的干扰抵 控制稳定性和 收敛速度 的参 量。该 LMS 将参 算法 消掉 。如图 1 所示。 结构简单 、 计算量小且稳定性好. ( 频域块 L S 2 1 M 算法 块 L 算法 的基本 原理是 将输 人数 据序 MS 列 u ) 串, ( 通过 并变换将 其分成 长 为 L的块 , n 并 将 这样 的数据 数据块 逐块 的送 到阶 数为 M 的 自 适应 滤波器 。 在收集 到每个数 据块后 , 进行 自 适应 滤波抽头权值的更新 ,使滤波器 的 自适应 图 1为 典 型 自适 应 干 扰 抵 消 系统 的 原 理 框 图 过程逐块 的进行。其核心在于计算滤波器 抽头 图 1 原始 输入信 号 d 中, (是有 用信号 s ) r ( n 系数 和输 入信 号的线性卷积 ,以及输入 信号和 与噪声 干扰 v 1 (之和, 输入 信号是 与 v ) n 参考 (相 误 差信号 的线 性相关 。以 F T的 1 重叠保 留 n F 关 的噪声 un假设 s1(及(是零均值 的平稳 (, ) (' ) u nv n ) 法 的频域形式来实现 : 将输入信 号和期 望信号 随机过程且 满 足 与 v ) u ) (及 ( 互不相关, n n 由图 分成 N点 的数 据块 , 然后做 N点离散傅 里叶变 1 可见 , 整个 自 适应 干扰抵 消系统 的输 出为: 换, 权系数每 N个样点更新 一次 , 并且每次更新 e s )v1 , ) ( ( +O卜v( ( ) n n n 1 都是 由 N个误 差信 号样点 累加结果来控制 的。 对( 两边取平方 : 1 试 信普 域游辩 e ㈤ =2 ) v ) ,) 2( In v (对式 ( 2 s( 斗 (一 ( 】 8 ) (_ 侧 2 n { n v n2+ nv ) ) 2 ) 两边取数学期 望, 由于 s ) v (与 ㈤及 u n ㈤不相关 , s f与 vn n ,1 ) (也不相关, : 故 E2 【 【 ( 【 v n e s n - v ,) 2 )E o ( J 2 ( 3 )

自适应滤波器MATLAB仿真

自适应滤波器MATLAB仿真

自适应滤波器MATLAB仿真摘要:本文介绍了自适应滤波器的工作原理,以及推导了著名的LMS(Least mean squares)算法。

以一个例子演示了自适应滤波器的滤波效果。

实验结果表明,该滤波器滤波效果较好。

关键词:自适应滤波器 MATLAB7.0 LMS算法Simulate of adaptive filter based on MATLAB7.0Abstract:This article described the working principle of adaptive filter and deduced the well-known LMS algorithm. Take an example to demonstrate the adaptive filters filtering effects. The results show that the filter has an effective way to filter single.Key words:LMS algorithm Adaptive Filter Matlab7.01 引言由Widrow B等提出的自适应滤波理论,是在维纳滤波、卡尔曼滤波等线性滤波基础上发展起来的一种最佳滤波方法。

由于它具有更强的适应性和更优的滤波性能,从而广泛应用于通信、系统辨识、回波消除、自适应谱线增强、自适应信道均衡、语音线性预测和自适应天线阵等诸多领域[1]。

自适应滤波器最大的优点在于不需要知道信号和噪声的统计特性的先验知识就可以实现信号的最佳滤波处理。

本文通过一个具体例子和结果论证了自适应滤波器的滤波效果。

2 自适应滤波原理及LMS算法2.1 自适应滤波原理自适应滤波原理图[2],如图1所示。

图1自适应滤波原理图在自适应滤波器中,参数可调的数字滤波器一般为FIR数字滤波器,IIR数字滤波器或格型数字滤波器。

自适应滤波分2个过程。

第一,输入信号想x(n)通过参数可调的数字滤波器后得输出信号y(n),y(n)与参考信号d(n)进行比较得误差信号e(n);第二,通过一种自适应算法和x(n)和e(n)的值来调节参数可调的数字滤波器的参数,即加权系数,使之达到最佳滤波效果。

基于自适应语音增强的算法研究与MATLAB仿真

基于自适应语音增强的算法研究与MATLAB仿真

本科毕业设计论文题目增强算法研究及Matlab实现专业名称电子信息科学与技术学生姓名朱盛领指导教师张瑞毕业时间2014-07毕业设计一、题目基于自适应语音信号增强算法研究与Matlab仿真二、指导思想和目的要求本论文主要阐述了基于自适应滤波器实现语音增强的基本原理,研究了最小二乘法(LMS算法),完成了基于LMS算法的自适应滤波器对语音增强的设计,在设计过程中,对信号的降噪处理进行了分析讨论。

利用Matlab仿真软件实现了LMS自适应滤波算法,并从仿真结果得知步长因子是自适应滤波器中很重要的参数,以及滤波器的阶数和采样数等,都对自适应滤波器降噪以及收敛性能有影响。

三、主要技术指标自适应步长μ的值: 从公式max01μλ<<可以看出,收敛性能对收敛参数μ的选取很敏感,不同的μ值使收敛的速度不同,“μ值太小, 迭代次数太多,收敛速度变慢;μ值太大收敛性能曲线又不稳定”。

所以选取合适的μ值对收敛性能至关重要。

四、进度和要求05周-06周:广泛查阅资料,确定论文的总体设计方案。

07周-10周:学习自适应语音信号增强的基本原理并进行研究,掌握LMS 算法,谱减法的知识,学习Matlab仿真软件,DSP相关知识。

11周-12周:对研究的内容进行详细分析,制定阶段性目标并进行设计。

13周-14周:撰写论文的全部正文部分,并修缮论文的结果与分析、结束语、参考文献、致谢及毕业设计小结等。

15周:整理文档资料,装订论文,准备论文答辩。

五、主要参考书及参考资料[1]Sambur M.Adaptive noise cancelling for speech signalS.IEEE Transactions onAcoustics,Speech and Signal Processing,1978,26(5):419—43[2]B Widrow,S D Stearns千永德、龙宪惠译,自适应信号处理,成都四川大学出版社,1989.[3]T w Parsons,文成义、常国岑、王化周等译,语音处理,北京国防工业出版社,1990.[4]姚天任,数字语音处理,武汉华中科技大学出版社,1992.[5]邹国良,自适应滤波理论及应用[M],河北大学出版社,1997.[6]胡广传,数字信号处理理论、算法与实现,北京清华大学出版社,1997.[7]葛良、陶智,基于自适应滤波的语音增强算法.江苏:苏州大学学报,2002.[8]何振亚,自适应信号处理[M],北京科学出版社,2002.[9]何振亚.等,自适应信号处理,科学出版社,2002.4.[10]袁俊泉,MATLAB信号处理.清华大学出版社,2002.5.[11]赵力,语音信号处理,北京机械工业出版社,2003.[12]丁玉美、高西全.,数字信号处理,西安电子科技大学出版社,2003.[13]Simon Haykin,自适应滤波器原理,电子工业出版社,2003.7.[14]韩利竹,王华.MA TLAB电子仿真与应用.北京国防工业出版社,2003.[15]龚耀寰,自适应滤波器-时域自适应滤波和智能天线,电子工业出版社,2003.7. 学生___________ 指导教师___________ 系主任___________目录摘要 (II)ABSTRACT .................................................................................................................................... I II 前言 .. (V)第一章绪论 (1)1.1语音增强的应用背景 (1)1.2语音增强的研究历史 (2)1.3本课题的研究内容 (2)第二章语音增强的基础知识 (3)2.1语音和人耳的感知特性 (3)2.2噪声特性 (4)第三章语音增强算法研究及MATLAB实现 (9)3.1MATLAB仿真软件介绍 (9)3.2基于LMS的自适应算法及MATLAB仿真 (11)3.3经典语音增强减谱算法及MATLAB实现 (22)3.4改进形式的语音增强减谱算法及MATLAB仿真 (25)3.5基于噪声残差的语音增强减谱算法及MATLAB仿真 (28)3.6小结与进一步改进思想 (31)第四章基于DSP的语音增强算法系统的实现 (33)4.1DSP概述 (33)4.2CCS(C ODE C OMPOSER S TUDIO)DSP集成开发环境 (34)4.3语音增强算法在CCS环境下的实现 (35)4.4语音增强算法在硬件平台上的实现 (36)4.5系统的软件设计 (37)第五章结论和展望 (38)5.1总结 (38)5.2展望 (40)致谢 (43)参考文献 (44)摘要语音总会受到外界噪声不同程度的干扰和影响,噪声不但降低了语音质量和可懂度,而且还将导致语音处理系统性能的急剧恶化。

语音降噪--LMS算法

语音降噪--LMS算法

语音降噪–LMS算法语音降噪是指通过技术手段将语音信号中的噪声成分去除,提高语音信号的清晰度和准确性的一种方法。

LMS(最小均方算法)是一种常见的语音降噪算法,下文将介绍该算法的原理和实现方式。

算法原理LMS算法基于自适应线性滤波理论,通过估计噪声信号与语音信号在某个时刻的相关性来进行降噪处理。

该算法的基本流程如下:1.获取含有噪声的语音信号:通常采用麦克风捕捉环境语音信号,或从音频文件中读取。

2.前置处理:对原始语音信号进行增益处理、预加重等前置处理,便于后续滤波处理。

3.滤波处理:将语音信号输入自适应滤波器中,通过不断调整滤波器的权值,使得滤波器的输出尽可能的接近于原始语音信号,并最小化滤波器输出和实际语音信号的均方误差。

4.降噪处理:将滤波器的输出减去噪声信号的预测。

算法实现LMS算法的实现可以用MATLAB编程完成,以下是其中的关键步骤:1.读取音频数据:可以用MATLAB的audioread函数直接读取本地音频文件,或使用麦克风捕捉环境语音信号。

2.进行前置处理:可以使用MATLAB的filter函数进行卷积滤波,或手动计算并应用增益、预加重等处理。

3.自适应滤波器的初始化:通常使用MATLAB的zeros函数初始化自适应滤波器的权重向量。

4.滤波处理:在MATLAB中可以使用filter函数实现自适应滤波器的滤波过程,并使用LMS算法对滤波器的权重进行调整。

5.噪声预测:通过估计语音信号和噪声信号的相关性得到噪声估计值,从而实现降噪处理。

LMS算法是一种常用的语音降噪算法,其本质是自适应滤波,通过在线调整滤波器的权重来最小化其输出与实际语音信号的均方误差,从而实现降噪处理。

对于语音处理领域的从业者来说,掌握LMS算法的原理和实现方法是必不可少的。

基于LMS算法的自适应对消器的MATLAB实现

基于LMS算法的自适应对消器的MATLAB实现

基于LMS算法的自适应对消器的MATLAB实现LMS(Least Mean Squares)算法是一种常用于自适应信号处理领域的算法,用于实现自适应滤波器或者自适应对消器。

本文将介绍基于LMS 算法的自适应对消器的MATLAB实现。

自适应对消器是一种用于消除信号中的干扰或噪声的滤波器,它的系数会随着输入信号的变化而自适应地调整。

LMS算法是一种广泛使用的自适应算法,它通过最小化预测误差的平方来更新滤波器的权值。

该算法适用于非线性系统、时变系统以及参数不确定的系统。

在MATLAB中,我们可以使用以下步骤来实现基于LMS算法的自适应对消器:1.定义输入信号和期望输出信号:```matlabinput_signal = ... % 输入信号desired_output = ... % 期望输出信号```2.初始化自适应对消器的滤波器系数和步长:```matlabfilter_order = ... % 滤波器阶数filter_coefficients = zeros(filter_order, 1); % 滤波器系数初始化为零step_size = ... % 步长```3.对于每个输入样本,计算预测输出和误差,并更新滤波器的系数:```matlabfor k = 1:length(input_signal)%根据当前输入样本计算预测输出predicted_output = filter_coefficients' * input_signal(k,:);%计算当前误差error = desired_output(k) - predicted_output;%更新滤波器系数filter_coefficients = filter_coefficients + step_size * error * input_signal(k,:);end```4.最后```matlabfiltered_signal = filter_coefficients' * new_input_signal;```需要注意的是,LMS算法的性能和收敛速度与步长的选择有很大关系。

LMS和RLS算法应用及仿真分析

LMS和RLS算法应用及仿真分析

LMS 和RLS 算法应用及仿真分析摘要:本文采用MATLAB 软件对LMS 和RLS 两种自适应均衡算法在回波抵消器中的应用进行仿真,分析收敛步长μ、抽头w 、遗忘因子λ 等参数对回波抵消器性能的影响,并对两种算法下的性能做出比较。

关键词:LMS ;RLS ;自适应;回波抵消1 引言进入90 年代后期,通过网络拨打长途电话即IP 电话开始盛行,由于发话端到受话端的延迟达100ms 以上,而人耳对大于50ms 的回声就能辨别出来,因此IP 电话的回声严重影响通话效果。

如何消除回声成为非常重要的问题,回波抵消器就是一个自适应辨识系统,它通过特定的算法辨识未知的目标系统,即回声路径。

本文采用LMS 和RLS 算法实现回波抵消,并对收敛步长μ、抽头w 、遗忘因子λ 等相关参数对回波抵消性能的影响进行了仿真分析,从而为一种通用的回波抵消技术的实际应用提供理论参考。

回波抵消算法原理图如图1 所示。

图1 回波抵消算法原理图 2 LMS 和RLS 算法概述最陡下降法(LMS )和递归最小二乘算法(RLS )是自适应滤波最常用,也是最基本的两种算法。

下面分别对LMS 和RLS 两种算法原理做简单介绍。

2.1 LMS 算法设J(n)是n 时刻均方误差,J(n+1)是n+1 时刻的均方误差,W(n)、W(n+1)分别是n 、n+1时刻M 维抽头权向量011()[()()...()]T M W n w n w n w n -= (1)为使J(n+1)<J(n) (2)W(n)必须按J(n)的负方向变化即(1)()W n W n J μ→→→+=-∇ (μ>0) (3)最后以U (n )*e (n )瞬时值代替统计平均,得到抽头权向量迭代式 *(1)()()()W n W n U n e n μ→→+=- (4)式中U(n)式n 时刻的输入向量[u(n) u(n-1) u(n-2)···u(n-M+1)]。

matlab的lms算法

matlab的lms算法

matlab的lms算法"matlab的lms算法"一、介绍matlab是一种强大的数值计算和科学编程工具,可以用于各种信号处理和机器学习应用。

其中,最小均方(LMS)算法是一种自适应滤波算法,常用于信号降噪和系统辨识等领域。

本文将详细介绍matlab中的LMS 算法的实现步骤和应用。

二、LMS算法原理LMS算法是基于梯度下降的一种自适应滤波算法,用于根据输入信号和期望输出信号来估计系统的权重。

其基本原理是通过调整权重,使得算法输出的估计信号与期望输出信号之间的均方误差最小化。

LMS算法的迭代公式如下:w(n+1) = w(n) + μ* e(n) * x(n)其中,w(n)表示第n次迭代的权重,μ是步长(学习速率),e(n)表示估计信号与期望输出信号之间的误差,x(n)表示输入信号。

三、matlab中的LMS算法实现步骤1. 定义输入信号和期望输出信号在matlab中,首先需要定义输入信号和期望输出信号。

输入信号一般为一个信号向量,期望输出信号为一个与输入信号长度相同的向量。

2. 初始化权重和步长LMS算法需要初始化权重和步长。

权重可以初始化为全零向量,步长可以根据实际应用进行选择,常用的有固定步长和自适应步长。

3. 迭代更新权重使用迭代公式进行权重更新,更新的次数可以根据实际情况进行选择。

每次迭代时,根据输入信号和当前权重估计输出信号,计算误差,并根据误差和步长更新权重。

4. 输出估计信号使用更新后的权重和输入信号计算估计输出信号,并将其作为最终的LMS 算法输出。

四、案例应用:噪声消除为了更好地理解LMS算法的应用,我们将通过一个噪声消除的案例来演示其使用方法。

假设我们有一个含有噪声的信号,并且我们希望通过LMS 算法来滤除噪声。

1. 定义输入信号和期望输出信号首先,我们生成一个长度为N的纯净信号,并向其添加一定程度的高斯噪声,生成含有噪声的输入信号。

我们还定义一个与输入信号长度相同的期望输出信号,该信号为纯净信号。

基于MATLAB反馈型自适应噪声抵消系统仿真研究

基于MATLAB反馈型自适应噪声抵消系统仿真研究
21 0 0年 8月
宇航 计 测技 术
J un l f t n ui Merlg n au e n o ra r a t too y a d Me s rme t o As o c
Au g., 01 2 0
第3 0卷
第 4期
Vo _ 0. . l3 No 4
文 章 编 号 :0 0— 2 2 2 1 )0 10 7 0 (0 0 4—0 5— 4 0 4 0
作者简介 : ( 92一 , 硕 士研究 生 , 余慧 1 8 ) 女, 主要研究方 向: 数字集成 电路设计 。
宇航 计 测技 术
21 拄 00
2 自适 应 噪 声 抵 消基 本 原 理
如图1 所示 , 信号含有s 信号和一个噪声 。。 n 与 n相关 。 自适 应 滤 波 器 的输 出 为 Y n ( )的 滤 波 信 号, 因此 , 自适应 噪声抵 消器 系 统 的输 出 为
YU u H i'
ZENG Yun
CH ENG . i Ya q
(1H nnU i r t , h nsa 10 2 . u a n esy C agh 0 8 ; v i 4
2 Is t eo i olc ois hn s A ae yo c n e,B in 0 0 0 ) .ntu f c eet n iee cdm f i cs e i 100 it M r r cC Se jg
sg e . Co a i g t h e d o wa d ANC s se ,t in d mp rn o t e f e f r r ytm he ̄e b c d a k ANC y tm a te fe ta d a s se h s a betr ef c n fse o v r e c eo iy a tr c n e g n e v l ct .MATL AB i lto e u t r ie smu ai n r s lsa e gv n,whc r oncd n t het e r t ih a ec i i e twi t h o e— h

MATLAB做LMS算法(最小均方误差算法)

MATLAB做LMS算法(最小均方误差算法)

MATLAB做LMS算法(最⼩均⽅误差算法)⽬录背景知识⾃适应滤波的4种不同应⽤是:预测、辨识、反建模和⼲扰抵消LMS算法(最⼩均⽅误差算法)是⾃适应滤波算法的⼀种,主要⼲的事情是:基于最⼩均⽅误差准则,使滤波器的输出信号与期望输出信号之间的均⽅误差最⼩。

LMS算法简单有效,计算量⼩,鲁棒性好,易于实现。

代码LMS.m 代码来⾃这本书,本⼈改了2个句⼦这份代码是真的强,0.05π⾓频率的单频信号叠上3dB且0均值的加性⾼斯⽩噪声,很快被“纠正回”期望的0.05π⾓频率的单频信号。

%⽤MATLAB实现LMS算法,将输⼊和输出信号进⾏对⽐,并给出均⽅误差曲线。

%假设滤波器抽头个数为k,数据长度为Ng=100; %统计仿真次数为gN=1024; %输⼊信号抽样点数为Nk=128; %时域抽头LMS算法滤波器阶数pp=zeros(g,N-k);%将每次独⽴循环的误差结果存于矩阵pp中,以便后⾯取平均u=0.0002;%步长因⼦ufor q=1:1:gt=1:1:N;a=1;s=a*sin(0.05*pi*t); %输⼊单频信号sfigure(1);subplot(311);plot(t,real(s) ); %信号s时域波形title('信号s时域波形');xlabel('n');ylabel('s');axis([0,N,-a-1,a+1]);xn=awgn(s,5);%加⼊均值为0的⾼斯⽩噪声,信噪⽐为3dB%设置初值y=zeros(1,N);%输出信号yy(1:k)=xn(1:k);%将输⼊信号xn的前k个值赋值给y的前k个值w=zeros(1,k); %设置抽头加权初值e=zeros(1,N); %误差信号%⽤LMS算法迭代滤波for i=(k+1):1:NXN=xn((i-k+1):(i));y(i)=w*XN';e(i)=s(i)-y(i);w=w+u*e(i)*XN;endpp(q, : )=( e(k+1:N ) ).^2;endsubplot(312);plot(t,real(xn)); %信号s时域波形title('信号s加噪声后的时域波形');subplot(313);plot(t,real(y));%信号s时域波形title('⾃适应滤波后的输出时域波形');bi=mean(pp,1); %对第⼀维度求平均%⼈⽣苦短,对某⼀维度求平均这么写不是更好写吗figure(2);t=1:1:N-k;plot(t,bi,'r');title('均⽅误差-时间曲线') %太蠢了这⾥为什么会写hold on参考1. 《⽆线通信的MATLAB和FPGA实现》 3.5.3 LMS算法的MATLAB实现2.Processing math: 100%。

lms算法自适应滤波器应用于自适应回声消除matlab基本步骤

lms算法自适应滤波器应用于自适应回声消除matlab基本步骤

lms算法自适应滤波器应用于自适应回声消除matlab基本步骤1.引言1.1 概述LMS算法自适应滤波器应用于自适应回声消除是一种有效的信号处理技术。

在通信系统、音频处理等领域,回声是一个常见的问题,它会导致信号质量下降和通信效果的恶化。

为了解决这个问题,自适应滤波器和LMS算法被广泛采用。

本文旨在介绍LMS算法自适应滤波器在自适应回声消除中的应用,并详细讲解其基本步骤。

首先,我们将对LMS算法和自适应滤波器进行介绍,包括其原理和基本概念。

然后,我们将探讨自适应回声消除的原理,并介绍LMS算法在回声消除中的具体应用。

通过研究本文,读者将了解到LMS算法自适应滤波器的基本原理和应用场景,以及如何利用该算法实现回声消除。

此外,我们还将对LMS算法自适应滤波器的性能进行分析和评价。

最后,我们将对本文进行总结,并展望其在未来的研究和应用中的发展前景。

通过本文的介绍,读者将具备一定的理论基础和实践经验,能够应用LMS算法自适应滤波器解决实际问题,提高信号处理的效果,从而为通信系统和音频处理领域的发展做出贡献。

文章结构部分应该包括对整篇文章的章节和内容进行简要介绍和概述。

以下是文章1.2文章结构部分的一个例子:1.2 文章结构本文主要介绍了LMS算法自适应滤波器在自适应回声消除中的应用,文章共分为以下几个部分:2. 正文2.1 LMS算法在本节中,我们将详细介绍LMS算法的原理和步骤。

我们将解释LMS算法是如何通过迭代过程来逼近系统的输入和输出之间的关系,从而实现滤波器的自适应调整。

2.2 自适应滤波器本节将重点介绍自适应滤波器的原理。

我们将分析自适应滤波器是如何通过反馈机制和参数调整来实现信号滤波的自适应性。

并探讨了自适应滤波器在实际应用中的一些典型场景。

2.3 自适应回声消除在本节中,我们将详细讨论回声消除的原理和技术。

我们将解释回声是如何产生的以及对通信信号产生的影响。

并介绍LMS算法在回声消除中的应用,以解决回声干扰带来的问题。

LMS和RLS算法应用及仿真分析

LMS和RLS算法应用及仿真分析

LMS和RLS算法应用及仿真分析LMS(最小均方)算法和RLS(递归最小二乘)算法是两种经典的自适应滤波算法,广泛应用于各种实际场景中。

本文将介绍LMS和RLS算法的原理及其在实际应用场景中的应用,并进行仿真分析。

首先,我们来介绍LMS算法。

LMS算法是一种基于梯度下降法的自适应滤波算法,在信号处理中经常应用于滤波、降噪、系统辨识等领域。

其基本原理是通过不断调整滤波器的权值,使得滤波器的输出与期望输出之间的均方误差最小化。

LMS算法的核心是权值更新公式:w(n+1)=w(n)+μe(n)x(n),其中w(n)表示第n次迭代的权值向量,μ为步长因子,e(n)为滤波器输出与期望输出之差,x(n)为输入信号。

LMS算法具有简单、易实现的特点,但收敛速度较慢,对信号的统计特性较为敏感。

LMS算法在实际应用中有着广泛的应用。

以自适应滤波为例,LMS算法可以用于消除信号中的噪声,提高信号的质量。

在通信系统中,LMS算法可以应用于自适应均衡,解决信道等效时延导致的传输误差问题。

除此之外,LMS算法还可以用于系统辨识、自适应控制等领域。

接下来,我们来介绍RLS算法。

RLS算法是一种基于递归最小二乘法的自适应滤波算法,广泛应用于信号处理、自适应滤波、波束形成等领域。

与LMS算法相比,RLS算法具有更快的收敛速度和更好的稳定性。

其核心思想是通过递归计算逆相关矩阵,从而得到滤波器的最优权值。

RLS算法的权值更新公式可以表示为:w(n+1)=w(n)+K(n)e(n),其中K(n)为滤波器的增益向量,e(n)为滤波器输出与期望输出之差。

不同于LMS算法,RLS算法的步长因子时刻变化,可以根据需要进行调整,从而实现最优的权值更新。

RLS算法在实际应用中也有着广泛的应用。

例如,在通信系统中,RLS算法可以用于波束形成,提高信号的接收效果。

在自适应滤波中,RLS算法可以用于降低信号中的噪声。

此外,在自适应控制领域,RLS算法可以用于模型辨识、参数估计等问题。

自适应滤波LMS算法及RLS算法及其仿真

自适应滤波LMS算法及RLS算法及其仿真

自适应滤波LMS算法及RLS算法及其仿真1.引言2.自适应滤波LMS算法LMS(Least Mean Square)算法是一种最小均方误差准则的自适应滤波算法。

其基本原理是通过不断调整滤波器的权值,使得输出信号的均方误差最小化。

LMS算法的迭代公式可以表示为:w(n+1)=w(n)+μ*e(n)*x(n)其中,w(n)为滤波器的权值向量,μ为步长因子,e(n)为误差信号,x(n)为输入信号。

通过迭代更新权值,LMS算法逐渐收敛,实现了自适应滤波。

3.RLS算法RLS(Recursive Least Square)算法是一种递归最小二乘法的自适应滤波算法。

相比于LMS算法,RLS算法具有更好的收敛性能和适应性。

RLS算法基于最小二乘准则,通过递归式地计算滤波器权值矩阵,不断优化滤波器的性能。

迭代公式可以表示为:P(n)=(P(n-1)-P(n-1)*x(n)*x(n)'*P(n-1)/(λ+x(n)'*P(n-1)*x(n))) K(n)=P(n)*x(n)/(λ+x(n)'*P(n)*x(n))w(n+1)=w(n)+K(n)*e(n)其中,P(n)为滤波器的协方差矩阵,K(n)为最优权值,λ为遗忘因子(用于控制算法的收敛速度),e(n)为误差信号。

4.仿真实验为了验证LMS算法和RLS算法的性能,我们进行了一组仿真实验。

假设输入信号为一个正弦信号,噪声为高斯白噪声。

我们分别使用LMS和RLS算法对输入信号进行自适应滤波,比较其输出信号和原始信号的均方误差。

在仿真中,我们设置了相同的滤波器长度和步长因子,比较LMS和RLS算法的收敛速度和输出质量。

实验结果表明,相对于LMS算法,RLS 算法在相同条件下具有更快的收敛速度和更低的均方误差。

这验证了RLS 算法在自适应滤波中的优越性。

5.结论本文介绍了自适应滤波LMS算法和RLS算法的原理及其在仿真中的应用。

实验结果表明,相对于LMS算法,RLS算法具有更好的收敛性能和适应性。

matlab自适应高斯平滑算法滤除噪声

matlab自适应高斯平滑算法滤除噪声

matlab自适应高斯平滑算法滤除噪声
在MATLAB中,可以使用自适应高斯平滑算法滤除噪声。

具体步骤如下:
1. 定义高斯滤波器大小:选择一个适当的高斯滤波器大小,该大小应该根据图像的大小和所需的平滑程度进行调整。

2. 创建高斯滤波器:使用MATLAB中的 `fspecial` 函数创建一个高斯滤波器。

例如,`h = fspecial('gaussian', [sizeX sizeY sigma])` 创建一个大小为 `[sizeX sizeY]`、标准差为 `sigma` 的高斯滤波器。

3. 应用高斯滤波器:使用MATLAB中的 `imfilter` 函数将高斯滤波器应用于图像。

例如,`filteredImage = imfilter(image, h)` 将高斯滤波器应用于名为 `image` 的图像。

4. 可选:调整输出图像的亮度:由于高斯滤波器可能会降低图像的亮度,因此可以使用MATLAB中的 `imadjust` 函数调整输出图像的亮度。

例如,`filteredImage = imadjust(filteredImage)`。

需要注意的是,自适应高斯平滑算法适用于去除噪声,但可能会导致图像细节的损失。

因此,在使用该算法时,应该根据实际情况进行权衡。

在Matlab中实现自适应滤波算法的实践指南

在Matlab中实现自适应滤波算法的实践指南

在Matlab中实现自适应滤波算法的实践指南引言:自适应滤波算法是一种重要的信号处理技术,在许多领域都得到了广泛的应用。

它通过实时调整滤波器参数来适应信号的变化,从而提高信号去噪和信号恢复的效果。

本文将介绍如何使用Matlab实现自适应滤波算法,并给出一些实践指导。

一、自适应滤波的原理自适应滤波算法的核心思想是根据信号的统计特性来调整滤波器的参数。

常见的自适应滤波算法包括LMS(最小均方)算法和RLS(递推最小二乘)算法。

LMS算法通过不断地调整滤波器的权值来使预测误差最小化;RLS算法则通过递推最小化滤波器的误差代价函数来更新权值。

这两种算法都可以实现自适应滤波的目的,但是在不同的应用场景中可能有差异。

二、Matlab中的自适应滤波函数在Matlab中,提供了一些方便实现自适应滤波算法的函数。

其中最常用的是`nlms`函数和`rls`函数。

`nlms`函数实现了LMS算法,可以用于实时的自适应滤波;`rls`函数实现了RLS算法,适用于更复杂的信号恢复任务。

三、使用`nlms`函数实现自适应滤波下面以一个简单的例子来说明如何使用`nlms`函数实现自适应滤波。

假设我们有一个带噪声的正弦信号,我们可以通过自适应滤波来去除噪声。

首先,我们生成一个1000个采样点的正弦信号,并添加高斯白噪声。

```matlabt = 0:0.1:100;x = sin(t);noise = 0.5*randn(size(t));y = x + noise;```接下来,我们使用`nlms`函数进行自适应滤波。

首先,我们需要初始化滤波器权重。

通常可以将初始权重设置为0或者一个很小的值。

然后,我们使用一个循环来逐步更新滤波器权重,直到达到滤波的要求。

```matlaborder = 10; % 滤波器阶数mu = 0.1; % 步长参数w = zeros(order+1, 1); % 初始化滤波器权重for i = order+1:length(y)input = y(i:-1:i-order); % 输入信号output = input' * w; % 滤波输出error = x(i) - output; % 预测误差w = w + mu * input * error; % 权重更新end```最后,我们可以将滤波器的输出与原始信号进行对比,评估滤波效果。

LMS及RLS自适应干扰抵消算法的比较

LMS及RLS自适应干扰抵消算法的比较

前言自适应信号处理的理论和技术经过40 多年的发展和完善,已逐渐成为人们常用的语音去噪技术。

我们知道,在目前的移动通信领域中,克服多径干扰,提高通信质量是一个非常重要的问题,特别是当信道特性不固定时,这个问题就尤为突出,而自适应滤波器的出现,则完美的解决了这个问题。

另外语音识别技术很难从实验室走向真正应用很大程度上受制于应用环境下的噪声。

自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果,自动地调节现时刻的滤波参数,从而达到最优化滤波。

自适应滤波具有很强的自学习、自跟踪能力,适用于平稳和非平稳随机信号的检测和估计。

自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。

其中,自适应滤波算法一直是人们的研究热点,包括线性自适应算法和非线性自适应算法,非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应滤波算法。

线性自适应滤波算法的种类很多,有RLS自适应滤波算法、LMS自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等[1]。

其中最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法就是两种典型的自适应滤波算法,它们都具有很高的工程应有价值。

本文正是想通过这一与我们生活相关的问题,对简单的噪声进行消除,更加深刻地了解这两种算法。

我们主要分析了下LMS算法和RLS算法的基本原理,以及用程序实现了用两种算法自适应消除信号中的噪声。

通过对这两种典型自适应滤波算法的性能特点进行分析及仿真实现,给出了这两种算法性能的综合评价。

LMS及RLS自适应干扰抵消算法的比较1 绪论1.1课题背景与意义自适应噪声抵消( Adaptive Noise Cancelling,ANC) 技术是自适应信号处理的一个应用分支,其主要理论和框架由B.Widrow等在1975 年提出,经过三十多年的丰富和扩充,现在已经应用到了很多领域,比如车载免提通话设备,房间或无线通讯中的回声抵消( AdaptiveEcho Cancelling,AEC) ,在母体上检测胎儿心音,机载电子干扰机收发隔离等,都是用自适应干扰抵消的办法消除混入接收信号中的其他声音信号。

lms自适应滤波算法matlab

lms自适应滤波算法matlab

lms自适应滤波算法matlab
自适应滤波算法matlab
自适应滤波是指根据信号的变化情况来调整滤波器的参数,使滤波器适应不同信号环境,以最佳的抑制信号中噪声和其他干扰的能力。

自适应滤波在现实中有着广泛的应用,其中最常用的就是LMS(Least Mean Square, 最小均方误差)算法,它是一种收敛算法,可以快速、稳定地收敛,目前已经被广泛应用在信号处理、智能控制等领域。

LMS算法包含的组件有信号贡献函数、模型函数、误差更新函数和滤波函数。

信号贡献函数是用来计算信号当前帧和计算当前帧的贡献值的
函数,也就是当前信号的权重,这个参数的计算方法是通过积分或者是求和的方法来计算的。

模型函数是计算模型参数的函数,这个函数的输入是信号贡献函数的输出,也就是贡献值,输出就是系数矩阵,我们就是根据系数矩阵来计算出最优的参数,也就是滤波器的参数。

误差更新函数是计算模型误差的函数,也就是根据当前模型的输出和实际数据的误差来更新模型参数的函数,一般来说我们计算本次误差则可以估计新的模型参数和新的数据矩阵。

滤波函数就是使用模型参数来实现数据的滤波处理,它的目的是为了抑制信号的噪声,达到更好的信号质量。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自适应噪声抵消LMS 算法Matlab 仿真传统的宽带信号中抑制正弦干扰的方法是采用陷波器(notch filter),为此我们需要精确知道干扰正弦的频率.然而当干扰正弦频率是缓慢变化时,且选频率特性要求十分尖锐时,则最好采用自适应噪声抵消的方法.下图是用一个二阶FIR 的LMS 自适应滤波器消除正弦干扰的一个方案。

1) 借助MATLAB 画出误差性能曲面和误差性能曲面的等值曲线; 2) 写出最陡下降法, LMS 算法的计算公式(δ=0.4);3) 用MATLAB 产生方差为0.05,均值为0白噪音S(n),并画出其中一次实现的波形据2)中的公式,并利用3)中产生的S(n),在1)中的误差性能曲面的等值曲n 的值曲线上叠加画出LMS 法时100情况确定,一般选取足够大以使算法达到基)(n y 宽带信号+正弦干扰0()()()y n S n N n =+图;4) 根线上叠加画出采用最陡下降法, LMS 法时H(n)的在叠代过程中的轨迹曲线。

5)用MATLAB 计算并画出LMS 法时 随时间变化曲线(对 应S(n)的某一次的一次实现)和e(n)波形;某一次实现的结果并不能从统计的角度反映实验的结果的正确性,为得到具有统计特性的实验结果,可用足够多次的实验结果的平均值作为实验的结果。

用MATLAB 计算并画出LMS 法时J(n)的100次实验结果的平均值随时间n 的变化曲线。

6)用MATLAB 计算并在1)中的误差性能曲面的等次实验中的H(n)的平均值的轨迹曲线;(在实验中n=1,,…..N,N 的取值根据实验本收敛)01(),(0)0.052()sin(16102()sin()16ss S n r N n n N n n πππ==+是均匀分布的白噪音不相关和)(),()(10n N n N n S)(n x x 1()())(n e n N n =1、用Matlab画误差性能曲面和误差性能曲面的等值曲线的程序如下:[h0,h1] = meshgrid(-2:0.1:4 , -4:0.1:2);J=0.55+h0.*h0+h1.*h1+2*cos(pi/8)*h1.*h0-sqrt(2)*h0*cos(pi/10)-sqrt(2)*h1*cos(9*pi/40);echo on;v=0:0.1:2;%axis([-4 4 -4 4 0 100]);figure(1);%误差曲面surf(h0,h1,J);xlabel('h0');ylabel('h1');title('误差性能曲面');figure(2);contour(h0,h1,J,v); %等值曲线xlabel('h0');ylabel('h1');title('误差性能曲面等值曲线');运行结果如下图示:2、①最陡下降法计算公式:)(n 21)()1(H G V n H n δ−=+ 其中δ取0.4,H(0)=[3 -4],T ⎟⎠⎞⎜⎝⎛+=⎟⎠⎞⎜⎝⎛−⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛+==⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛=⎥⎦⎤⎢⎣⎡−⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=−=∑∑==1016k 2cos 2116)(2sin 210162sin 2161)(r 16k2cos 16)(2sin 2162sin 2161)(r )1()0(2)()()0()1()1()0(22)(2)(V 15015010G ππππππππi yx i xx yx yx xx xx xx xx yxxx k i i k k i i k r r n h n h r r r r r n H R n 而故⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=5320.37362.2)0(5377.06725.02)()(19239.09239.012)(10G G V n h n h n V②LMS 算法计算公式:,...2,1,0),1()1()()1()1()()1()1(e =+++=++−+=+n n X n e n H n H n X n H n y n T δ其中δ取0.4。

3、 用MATLAB 产生方差为0.05,均值为0白噪音s(n) 程序如下: n=1:1024;s(n)=sqrt(0.05)*randn(1,length(n)); plot(s);axis([0 1024 -1 1]); title('白噪声s(n)');其一次实现图形如下:4、 最陡下降法和LMS 算法程序: clear all;N=1000;%信号点数 k=2;%滤波器阶数q=0.4;%步长s=sqrt(0.05)*randn(1,N);%原始信号n=1:N;y=s(n)+sin(2*pi*n/16+pi/10);%叠加噪声后的期望输出信号x=sqrt(2)*sin(2*pi*n/16);%相关噪声输入figure(1);subplot(3,1,1);plot(n,s);title('原始宽带信号S(n)');subplot(3,1,2);plot(n,y);title('叠加噪声后输出信号y(n)');subplot(3,1,3);plot(n,x);title('相关噪声输入信号x(n)');%设置初值并进行两种算法的迭代hn=zeros(2,N);%存放最陡下降法下H(n)迭代数据hn(:,1)=[3 -4]';vg=[-2.7362 -3.5320]';Rxx=[[1 0.9239]',[0.9239 1]'];Ryx=[0.6725 0.5377]';echo off;for i=1:N-1%最陡下降法,第n=i-1次迭代vg=2*Rxx*hn(:,i)-2*Ryx;hn(:,i+1)=hn(:,i)-1/2*q*vg;end;hm=zeros(2,N);%存放LMS算法下H(n)迭代数据h=[3 -4]';hm(:,1)=h;for i=2:N%XN=x(i+1:i)';u=x(i:-1:i-1);en=y(i)-u*h;h=h+q*en*u';hm(:,i)=h;end;%绘制图像[h0,h1] = meshgrid(-2:.1:4 , -4:.1:2);J = 0.55+h0.*h0+h1.*h1+2*cos(pi/8)*h1.*h0-sqrt(2)*h0*cos(pi/10)-sqrt(2)*h1*cos(9*pi/4 0);v=0:0.1:2;%等值曲线取值figure(2);%surf(h0,h1,J); %误差曲面contour(h0,h1,J,v); %等值曲线xlabel('h0');ylabel('h1');hold on;plot(hn(1,:),hn(2,:),'g');plot(hm(1,:),hm(2,:),'r');title('最陡下降法, LMS法时H(n)的在叠代过程中的轨迹曲线');legend('等值曲线','最陡下降法轨迹','LMS算法1次轨迹','NorthEastOutside'); 图形如下:5、单次实现及统计平均(100次试验)下J(n)及e(n)特性程序如下:clear all;g=100;%统计平均次数N=400;k=2;%滤波器阶数q=0.4;enn=zeros(1,N-k+1);%存放单次实现下的J(n)=e(n)^2en0=zeros(1,N-k+1);%存放单次实现下的e(n)ejn=zeros(1,N-k+1,g);%存放100次实现下的J(n)=e(n)^2%g次统计试验for j=1:gs=sqrt(0.05)*randn(1,N);%原始信号n=1:N;y=s(n)+sin(2*pi*n/16+pi/10);%叠加噪声后的期望输出信号 x=sqrt(2)*sin(2*pi*n/16);%相关噪声输入%设置初值,并进行一次LMS算法迭代h=[3 -4]';for i=k:Nu=x(i:-1:i-1);en=y(i)-u*h;h=h+q*en*u';en0(i-k+1)=en;%保存单次e(n),由于进行g次试验,仅保存最后一次enn(i-k+1)=en^2;%保存单次J(n),由于进行g次试验,仅保存最后一次 ejn(:,i-k+1,j)=en^2;%保存g次试验的J(n)end;end;%g次试验结束%计算g次试验J(n)的统计平均值for i=1:N-k+1jn(i)=sum(ejn(1,i,:))/g;end;figure(1);subplot(2,1,1);plot(enn);%单次实现下Jntitle('LMS算法单次实现下J(n)');subplot(2,1,2);plot(en0,'r');title('LMS算法单次实现下e(n)');figure(2);plot(jn);%统计平均下J(n)title('LMS算法100次实现下平均J(n)');单次实现下J(n)和e(n)如下图所示:100次统计平均下的J(n)如下图所示:6、LMS算法下100次实验H(n)曲线程序如下:clear all;g=100;%统计试验次数N=1000;%信号点数k=2;%滤波器阶数q=0.4;hh=zeros(2,N,g);%存放g次迭代下LMS算法的H(n)for j=1:g%g次统计试验s=sqrt(0.05)*randn(1,N);%原始信号n=1:N;y=s(n)+sin(2*pi*n/16+pi/10);%叠加噪声后的期望输出信号x=sqrt(2)*sin(2*pi*n/16);%相关噪声输入%设置初值hn=zeros(2,N);%存放最陡下降法下H(n)迭代数据,仅保存最后一次试验 hn(:,1)=[3 -4]';vg=[-2.7362 -3.5320]';Rxx=[[1 0.9239]',[0.9239 1]'];Ryx=[0.6725 0.5377]';echo off;for i=1:N-1%最陡下降法,第n=i-1次迭代vg=2*Rxx*hn(:,i)-2*Ryx;hn(:,i+1)=hn(:,i)-1/2*q*vg;end;%LMS算法一次试验hm=zeros(2,N);%存放LMS算法下H(n)迭代数据h=[3 -4]';hm(:,1)=[3 -4]';for i=k:N%迭代N-k+1次u=x(i:-1:i-1);en=y(i)-u*h;h=h+q*en*u';hm(:,i)=h;hh(:,i,j)=h;%保存g次试验下H(n)end;end;for i=1:N-k+1%统计平均hhh(1,i+1)=sum(hh(1,i+1,:))/g;hhh(2,i+1)=sum(hh(2,i+1,:))/g;end;hhh(:,1)=[3 -4]';[h0,h1] = meshgrid(-2:.1:4 , -4:.1:2);J = 0.55+h0.*h0+h1.*h1+2*cos(pi/8)*h1.*h0-sqrt(2)*h0*cos(pi/10)-sqrt(2)*h1*cos(9*pi/4 0);v=0:0.1:2;figure(1);contour(h0,h1,J,v); %等值曲线xlabel('h0');ylabel('h1');hold on;plot(hn(1,:),hn(2,:));%最陡下降法轨迹曲线plot(hhh(1,:),hhh(2,:),'r');%LMS法时H(n)100次统计平均轨迹曲线title('最陡下降法及 LMS法时H(n)100次统计平均轨迹曲线');legend('等值曲线','最陡下降法轨迹','LMS算法100次平均轨迹','NorthEastOutside');图形如下:。

相关文档
最新文档