第10章核酸及蛋白质的生物合成
第十章 DNA的生物合成(共65张PPT)

配对
方向 引物
DNA(不对称转录)
NTP RNA聚合酶 mRNA,tRNA,rRNA,小RNA
A-U,T-A,G-C
5’ 3’ 不需要
DNA复制与转录的比较
以DNA为模板
相 遵循碱基配对原则 同 都需依赖DNA的聚合酶 点 聚合过程都是生成磷酸二酯键
新链合成方向为5’→3’
重组修复(recombination repair )
• 又称复制后修复( postreplication repair)
• 受损伤的DNA在进行复制时,跳 过损伤部位,在子代DNA链与损 伤相对应部位出现缺口。通过分子 间重组,从完整的母链上将相应的 碱基顺序片段移至子链的缺口处, 然后再用合成的多核苷酸来补上母 链的空缺,此过程即重复修复。并 非完全校正。
structures were observed; no single stranded
DNA is visible.
No complete unwinding of the two
parental strands occurred before the
daughter strands are synthesized
• 当DNA受到大剂量紫外线(波长260nm附近)照射 时,可引起DNA链上相邻的两个嘧啶碱基共价聚合 ,形成二聚体,例如TT二聚体。
2. DNA损伤修复
• 光复活 • 切除修复 • 重组修复 • SOS修复
光复活(photoreactivation)
• 可见光(最有效波长 400nm)激活生物界 广泛分布(高等哺乳 动物除外)的光复活 酶,该酶分解嘧啶二 聚体。
二、DNA的复制
dnaA蛋白与起始点形成复合物,促进其他 dna蛋白也与起始点形成复合物。一旦双螺旋 解开成单链,SSB即结合单链。
第十章 蛋白质的生物合成

翻译过程十分复杂,需要mRNA、tRNA、rRNA和多种蛋白因子参与。在此过程中mRNA为合成的模板,tRNA为运输氨基酸工具,rRNA和蛋白质构成核糖体,是合成蛋白质的场所,蛋白质合成的方向为N—C端。
遗传信息传递的中心法则
生物的遗传信息以密码的形式储存在DNA分子上,表现为特定的核苷酸排列顺序。在细胞分裂的过程中,通过DNA复制把亲代细胞所含的遗传信息忠实地传递给两个子代细胞。在子代细胞的生长发育过程中,这些遗传信息通过转录传递给RNA,再由RNA通过翻译转变成相应的蛋白质多肽链上的氨基酸排列顺序,由蛋白质执行各种各样的生物学功能,使后代表现出与亲代相似的遗传特征。后来人们又发现,在宿主细胞中一些RNA病毒能以自己的RNA为模板复制出新的病毒RNA,还有一些RNA病毒能以其RNA为模板合成DNA,称为逆转录这是中心法则的补充。
30-35%蛋白质。
2、结构:
球形颗粒,由大小二个亚基组成。
(一)核糖体的组成和结构
核糖体的组成
(二)核糖体的功能
1、16S rRNA对识别mRNA上肽链起始位点(AUG)起重要作用。
2、参与肽链的启动、延长、终止、移动等
核糖体是蛋白质合成的场所
核糖体大亚基X-衍射图
3、功能位点:
核 糖 体
是由rRNA(ribosomal ribonucleic asid)和多种蛋白质结合而成的一种大的核糖核蛋白颗粒,蛋白质肽键的合成就是在这种核糖体上进行的。核糖体是蛋白质合成的工厂。
2、核糖体的功能
1、核糖体的结构和组成
1、组成:
60-65%rRNA,
6)密码的防错系统
tRNA
(transfer ribonucleic asid)在蛋白质合成中处于关键地位,它不但为每个三联体密码子译成氨基酸提供接合体,还准确无误地将活化的氨基酸运送到核糖体中mRNA模板上。
大学生物化学课件蛋白质的生物合成

核糖体结合的分子伴侣
非核糖体结合性分子伴侣— 热休克蛋白 伴侣蛋白
(1)热休克蛋白(heat shock protein, HSP ):
属于应激反应性蛋白,高温应激可诱导该蛋白 合成增加。
在大肠杆菌中包括HSP70, HSP40和GrpE三族
Peptidyl site (P Site)
E位
Aminoacyl site (A Site)
mRNA
肽链合成需要酶类和蛋白质因子
• 蛋白质因子: • (1)起始因子 • 原核生物 IF; 真核生物 eIF • (2)延长因子 • 原核生物 EF; 真核生物 eEF • (3)释放因子 • 原核生物 RF; 真核生物 eRF
第二节 蛋白质生物合成的过程
翻译过程从阅读框架的5’-AUG开始,按mRNA 模板三联体密码的顺序延长肽链,直至终止密码 出现。
整个翻译过程可分为三个阶段:
起始(initiation)
延长(elongation)
终止(termination)
一、肽键合成的起始(Initiation)
多肽链合成后需要逐步折叠成天然空间构象才成为有 功能的蛋白质。
时间: 新生肽链N端在核蛋白体上一出现,肽链的折叠
即开始,折叠在肽链合成中、合成后完成。
细胞中大多数天然蛋白质折叠都不是自动完 成,而需要其他酶、蛋白质辅助 :
•
分子伴侣
•
蛋白二硫键异构酶
•
肽-脯氨酰顺反异构酶
1.分子伴侣*(molecular chaperon)
需要:
转位酶(原核生物中是EFG,真核生物中是eEF-2), GTP 结果:
核酸和蛋白质的生物合成

(一)DNA聚合酶(DNA polymerases) 作用:以单链DNA为模板,以dNTP为原料, 合成完整DNA分子 催化合成DNA的四个条件 模板(template):解开的DNA单链 引物(primer):RNA片段 合成方向:新链5’ →3’方向 底物:dNTP(Mg2+为辅助因子)
细胞的生长、发育、遗传、变异等生命现象有了更深刻的认识,而且以这方面的理论和技
术为基础发展了基因工程,给人类的生产和生活带来了深刻的革命。
• DNA是自身复制的模
板
• DNA通过转录作用将
遗传信息传递给中间 物质RNA • RNA通过翻译作用将 遗传信息表达成蛋白 质
第二节 DNA的生物合成
以DNA聚合酶I为代表说明三个酶的特性
• DNA聚合酶I是一个模板指导酶
– 需要打开的DNA单链作为模板才能合成子链 – 底物必须是dNTP,并且只有当所有4种脱氧 核苷三磷酸以及DNA模板存在时,才能实现 DNA的合成
• DNA聚合酶Ⅰ 需要引物
– DNA聚合酶Ⅰ只能将脱氧核苷酸加于已存在的 DNA或RNA链的3’-羟基上,缺少则不能合成。即 需要一个有游离的3’-羟基作为“引物”才能合成 DNA子链 – 在有3‘-羟基引物存在时,脱氧核苷5’-三磷酸中α 磷原子与3’-羟基结合,形成磷酸二酯键,放出一 个焦磷酸(PPi)。焦磷酸水解驱动了聚合反应。 可见这是一个耗能反应,每合成一个核苷酸消耗2 分子ATP – 聚合反应是延着5’→3’方向进行
第十章 核酸和蛋白质的生物合成
第一节 中心法则 第二节 DNA的生物合成 第三节 RNA的生物合成 第四节 蛋白质的生物合成
第一节 中心法则
中心法则(central dogma)概念
第10章:蛋白质的代谢

第三节 蛋白质的合成机制
以大肠杆菌为例 1. 氨基酸的活化与搬运 2. 活化氨基酸在核蛋白体上的缩合
① 起始
a. 核蛋白体大小亚基分离;
b. mRNA在小亚基定位结合; c. 起始氨基酰-tRNA的结合; d. 核蛋白体大亚基结合。
第三节 蛋白质的合成机制 a.核蛋白体大小亚基分离
白质的场所。
第二节 蛋白质的合成系统
二、蛋白质合成体系
1、mRNA和遗传密码 2、tRNA和氨基酸的活化 3、rRNA和核糖体 4、 辅助因子 5、供能物质和无机离子
第二节 蛋白质的合成系统
1、mRNA和遗传密码
帽子结构功能
①使mRNA免遭核酸酶的破坏 ②使mRNA能与核糖体小亚基结合并开始合 成蛋白质 ③被蛋白质合成的起始因子所识别,从而 促进蛋白质的合成。
第十章 蛋白质的代谢
第一节 蛋白质的消化和降解 一、蛋白质的消化与吸收
蛋白质在动物消化道中的水解过程称为蛋白质 的消化。消化产物是氨基酸或短的肽链。
消化部位:自胃中开始,主要在小肠。 食物蛋白质在酶作用下水解为氨基酸和小肽。
第一节 蛋白质的消化和降解
胃蛋白酶以酶原的形式由胃粘膜主细胞 分泌,其被盐酸激活。胃泌素促使胃中 柱细胞分泌盐酸。
5´
AUG
3´
IF-3
IF-2促进
IF-1
fMet-tRNAifMet
与小亚基结合
第三节 蛋白质的合成机制 d.核蛋白体大亚基的结合
IF2自复合物解离的同时发生 GTP水解(消耗一个高能磷酸
键),大亚基随之与小亚基结
合,并释放各种起始因子,形
成70S起始复合物,为延伸作好
翟中和细胞生物学第十章总结2(名词解释)

第十章细胞核与染色体1.细胞核:真核细胞中由双层膜所包被的,包含由DNA、组蛋白等组织而成的染色质的细胞器,是细胞内储存遗传物质的场所,也是基因组复制、RNA合成和加工、核糖体组装的场所。
它是细胞内最大的细胞器,真核生物的细胞都有细胞核,只有成熟的红细胞和植物成熟的筛管没有细胞核。
核膜上有核孔及其环状结构形成核孔复合体,它与大分子物质的运输有关。
2.核被膜:真核细胞内细胞质与细胞核之间由双层膜构成,分别称为外核膜与内核膜。
双层核膜上镶嵌有核孔复合体,能选择性地运输核内外物质。
内膜面向核质,内、外膜间有20~40nm的透明空隙,称为核周间隙,膜上有核孔。
3.核被膜的功能:一方面,核被膜构成了核、质之间的天然选择性屏障,将细胞分成核与质两大结构与功能区域,使得DNA复制、RNA转录与加工在核内进行,而蛋白质翻译则局限在细胞质中。
这样既避免了核质间彼此相互干扰,使细胞的生命活动秩序更加井然,同时还能保护核内的DNA分子免受损伤。
另一方面,核被膜调控细胞核内外的物质交换和信息交流。
核被膜并不是完全封闭的,核质之间进行着频繁的物质交换与信息交流。
这些物质交换与信息交流主要是通过核被膜上的核孔复合体进行的。
4.内、外核膜各有特点:①外核膜表面常附有核糖体颗粒,且常常与糙面内质网相连续,使核周间隙与内质网腔彼此相通、从这种结构上的联系出发,外核膜可以被看作是糙面内质网的一个特化区域。
②内核膜表面光滑,无核糖体颗粒附着,但紧贴其内表面有一层致密的纤维网络结构,即核纤层。
内核膜上有一些特有的蛋白成分,如核纤层蛋白B受体(lamin B receptor,LBR)。
5.核纤层:位于核膜内侧,由核纤层蛋白组成的纤维状网络结构。
在与核质相邻的核膜内表面有一层厚30~160nm的网络状蛋白质,叫核纤层,对核被膜起支撑作用。
核纤层由3种分子量为6~7万道尔顿的多肽亚单位α、β、γ所组成,核纤层纤维的直径约10 nm,属于中间纤维的一种,其中β亚基与内核膜的特异受体蛋白相结合,α、γ亚单位与β相连接,而α、γ又同染色质的特定部分相结合。
第十章 DNA、RNA的生物合成

400 40 20 109 90 140 有 有 有 有 有 无 有 有 有 聚合核苷酸数/分钟/分子(37℃) 1000 50 15000 主要功能 修复等 修复作用 复制
────────────────────────
表13-2 真核细胞中DNA聚合酶的性质 ───────────────────── DNA聚合酶 性质 -------------------------------------------------------
α
β
γ
δ
ε
───────────────────── 分布 细胞核 细胞核 线粒体 细胞核 细胞核 分子量(kd) >250 36-38 160-300 170 256 3’ →5’外切酶活性 无 无 有 有 有 5’ →3’聚合作用 有 有 有 有 有 主要功能 复制 损伤修复 复制 复制 复制,损伤修复
3、DNA的损伤修ranscription)
概念
以RNA为模板,dNTP为原料,反转录酶 催化,按碱基配对规律合成DNA的过程。 反转录酶, 又称为依赖RNA的DNA聚合酶 (RNA-dependent DNA polymerase, RDDP)
DNA 转录 RNA RNA(病毒)
2.半保留复制的实验证据:
1958年Meselson和Stahl用同位素15N标记大 肠杆菌DNA,首先证明了DNA的半保留复制。
DNA的复制的方式-----DNA半保留复制
1958, Messelson and Stahl 实验证实
含15N-DNA的细菌
普通DNA
培养于普 通培养液
第一代 细菌的DNA双链 (蓝线的代表含15N)
作用:防止重新形成双 链和防止单链模板 被核酸酶水解,维持DNA单链状态和完整性
生化-第十章DNA的生物合成

3. 大肠杆菌 大肠杆菌DNA聚合酶 Ⅲ——polⅢ 聚合酶 Ⅲ DNA复制酶,1972年发现 复制酶, 复制酶 年发现 是真正起复制作用的酶, (1)pol Ⅲ 是真正起复制作用的酶,由10种 ) 种 亚基组成不对称二聚体 不对称二聚体, 、 、 组成核心酶 亚基组成不对称二聚体,α、ε、θ组成核心酶 (2)功能: )功能: 聚合酶活性; ① 5′→3′聚合酶活性; 聚合酶活性 外切酶活性。 ② 3′→5′外切酶活性。 外切酶活性 该酶在原核细胞中主要负责DNA链的延伸, 链的延伸, 该酶在原核细胞中主要负责 链的延伸 是复制延长中真正起催化作用的酶。 是复制延长中真正起催化作用的酶。
双向复制
复制叉
起点 单向复制 起点
的复制--( 三、原核细胞DNA的复制--( 原核细胞 的复制--(DNA指导下的 指导下的 DNA合成) 合成) 合成 (一)DNA聚合酶 聚合酶 1956年kornberg等首先从大肠杆菌中发现 年 等首先从大肠杆菌中发现DNA 等首先从大肠杆菌中发现 聚合酶。其后在广泛不同的生物中都找到有这 聚合酶。 种酶。 种酶。
加入的dNTP 加入的
亲核攻击
5′
引 物
3′
DNA模板链 模板链 脱氧核糖
底物: 底物: dNTP (dATP dGTP dCTP dTTP); ; 聚合酶( 聚合酶(polymerase, DNA-pol): , 依赖DNA的DNA聚合酶 是1种模板指导的酶 聚合酶,是 种 依赖 的 聚合酶 模板( 解开成单链的DNA母链; 母链; 模板(template): 解开成单链的 母链 引物( 提供3′-OH末端 使dNTP聚合; 末端,使 聚合; 引物(primer): 提供 末端 聚合 其它酶和蛋白质因子
Arthur Kornberg won the 1959 Nobel Prize in Medicine for his discovery of the mechanism in the biological synthesis of deoxyribonucleic acid (before Watson and Crick won theirs!)
动物生物化学课件:蛋白质的生物合成

蛋白质的生物合成
将mRNA分子中 4 种核苷酸序列 编码的遗传信息,通过遗传密码破译的 方式解读为蛋白质一级结构中20种氨基 酸的排列顺序过程,称为蛋白质的生物 合成或翻译。
参与蛋白质生物合成的物质 蛋白质生物合成的过程
第一节 参与蛋白质生物合成的物质
参与蛋白质合成的物质
• 原料:20种氨基酸 • 模板:mRNA • 运载体:tRNA • 场所:核蛋白体(rRNA与蛋白质构成) • 蛋白质因子:
生物功能
占据A位防止结合其他tRNA 促进起始tRNA与小亚基结合 促进大、小亚基分离,提高P位对结合起始tRNA的 敏感性 促进起始tRNA与小亚基结合 最先结合小亚基促进大、小亚基分离 eIF-4F复合物成分,有解螺旋酶活性,促进mRNA 结合小亚基 结合mRNA,促进mRNA扫描定位起始tRNA eIF-4F复合物成分,结合mRNA5`-帽子 eIF-4F复合物成分,结合eIF-4E和PAB
➢ tRNA凭借自身的反密码子与mRNA链上的密码 子相识别,按照mRNA链上的密码子所决定的氨 基酸顺序将所带氨基酸转运到核糖体的特定部位。
一种氨基酸可以有一种以上tRNA作为 运载工具。通常把携带相同氨基酸而反密 码子不同的一组tRNA称为同功tRNA.
氨基酰tRNA----氨基酸的活化形式。 表示为: tRNAPhe
对应同一种氨基酸的不同密码子,称 为同义密码子。同义密码子使用频率不同.
在蛋白质中出现频率越多的氨基酸, 其密码子的数量越多。
4.密码子使用频率不同
• 在蛋白质合成时,对简并密码子的使用频率是 不同的。
• 如UUU和UUC都为苯丙氨酸编码,但在高表 达的蛋白质中使用UUC的频率明显高于UUU。
5. 密码子与反密码子配对的不严格性
10 核酸结构、功能与核苷酸代谢

第一节 核酸的化学组成
第二节 DNA的结构与功能
第三节 RNA的结构与功能 第四节 核酸的理化性质 第五节 核苷酸的代谢
核酸的研究历程: 1868年 Fridrich Miescher从脓细胞中提取“核素” 1944年 Avery等人证实DNA是遗传物质 1953年 Watson和Crick发现DNA的双螺旋结构 1968年 Nirenberg发现遗传密码 1975年 Temin和Baltimore发现逆转录酶 1981年 Gilbert和Sanger建立DNA 测序方法 1985年 Mullis发明PCR 技术 1990年 美国启动人类基因组计划(HGP) 2003年 美、英等国完成人类基因组计划
3、本质:双链间氢键的断裂。 4、DNA变性后的性质改变: 增色效应:DNA变性后对260nm 紫外光的吸收度增加的现象; 旋光性下降; 粘度降低; 生物学功能丧失或改变。
5、DNA热变性的解链曲线:如果在连续加热DNA的过程中以 温度对A260(absorbance,A,A260代表溶液在260nm处的 吸光率)值作图,所得的曲线称为解链曲线。 融解温度(melting temperature, Tm):加热DNA溶液,使 DNA解链,对260nm紫外光的吸收度达到最大值一半时的温 度。Tm的高低与DNA分子中G+C的含量有关,G+C的含量越 高,则Tm越高。
先合成 IMP,消耗5个ATP(6个高能磷酸键),再转变成 AMP 或GMP,又需要1个ATP。
嘌呤核苷酸从头合成的调节 调节方式:反馈调节和交叉调节
补救合成途径:利用体内游离的嘌呤或嘌呤核苷,经过简 单的反应,合成嘌呤核苷酸的过程。
参与补救合成的酶:
东北师范大学生物化学 第十章氨基酸代谢

必需氨基酸
(氨基酸和糖的转 变是不可逆的)
酮体
生酮兼生糖氨基酸
Tyr(酪),Phe(苯),Ile(异), Trp(色)
生酮氨基酸 Lys Leu 生糖氨基酸:
三 氨基酸合成代谢 非必需氨基酸(10) 必需氨基酸(8):
Phe 、Met 、 Thr、 Val、 Leu、 Lys、Trp、Ile
半必需氨基酸:His Arg
NAD+ + H2O + (NADP+)
+ NH4+ + NADH +H+ (NADPH)
在动物体内辅酶为NAD+,在植物体内辅酶为NADP+
非必需氨基酸由相应的α -酮酸氨基化生成
八种必需氨基酸中,除赖氨酸和苏氨酸外其余六种亦可由相 应的α-酮酸加氨生成。但和必需氨基酸相对应的α-酮酸不能 在体内合成,所以必需氨基酸依赖于食物供应。
一 蛋白质的酶促降解
(一)外源蛋白质的降解
(二)内源蛋白质的降解
(一)外源蛋白质的降解(细胞外途径)
1 蛋白质的消化
胃蛋白酶:水解芳香族氨基酸的羧基形成的肽键
胰蛋白酶:水解碱性氨基酸羧基形成的肽键
肽链内切酶
胰凝乳蛋白酶:水解芳香族氨基酸的羧基形成 的肽键
弹性蛋白酶:脂肪族氨基酸的羧基形成的肽键 氨肽酶
肝脏是合成尿素的主要器官,肾脏是排出尿素的主要器官
氨基甲酰磷酸合成酶
一种在线粒体中参与尿素的合成
一种在细胞质中参与嘧啶的从头合成
尿素合成的特点: 主要在肝脏的线粒体和胞液中进行 一分子尿素需消耗4个 高能磷酸键 精氨琥珀酸合成酶是尿素合成的关键酶 尿素分子中的两个氮原子,一个来源于NH3, 一个来源于天冬氨酸
核酸与蛋白质的生物合成

3、需要引物primer
4、双向复制与复制叉
DNA复制时,局部双链解开形成两条单链,这种叉状结构称为复制叉。
DNA复制时,以复制起始点为中心,向两个方向进行复制。但在低等生物中,也可进行单向复制(如滚环复制)。
02
中心法则
反中心法则
在RNA病毒中,其遗传信息贮存在RNA分子中。因此,在这些生物体中,遗传信息的流向是RNA通过复制,将遗传信息由亲代传递给子代,通过反转录将遗传信息传递给DNA,再由DNA通过转录和翻译传递给蛋白质,这种遗传信息的流向就称为反中心法则。
第一节 DNA的复制与修复 一、DNA复制的特点 1、半保留复制 DNA在复制时,以亲代DNA的每一股作模板,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为DNA的半保留复制(semi-conservative replication)。
02
真核生物DNA聚合酶
2)DNA复制的保真性
为了保证遗传的稳定,DNA的复制必须具有高保真性。DNA复制时的保真性主要与下列因素有关: 遵守严格的碱基配对规律; DNA聚合酶在复制时对碱基的正确选择; 对复制过程中出现的错误及时进行校正。
5、DNA连接酶ligase
DNA连接酶(DNA ligase)可催化两段DNA片段之间磷酸二酯键的形成,从而使两段DNA连接起来。 DNA连接酶催化的条件是: 需一段DNA片段具有3‘-OH,而另一段DNA片段具有5’-Pi基; 未封闭的切口位于双链DNA中,即其中有一条链是完整的,但T4 DNA连接酶能连接平头双链DNA; 需要消耗能量,在原核生物中由NAD+供能,在真核生物中由ATP供能。
《生物化学》课程配套练习核酸与蛋白质生物合成参考答案

第十一章核酸生物合成第十二章蛋白质的生物合成练习参考答案1.名词解释:1)复制:DNA的生物合成,以亲本DNA为模板,根据碱基互补原则,合成与亲代DNA相同分子的过程。
2)冈崎片段:DNA复制过程中,合成方向与复制叉移动方向相反的DNA片断。
3)半保留复制:DNA生物合成过程中,子代双链DNA分子中有一条DNA链来自亲本。
这种合成方式称为半保留复制。
4)半不连续复制:DNA复制过程中,一条链复制是连续的,另一条是不连续的,这种复制方式称为半不连续复制。
5)前导链:DNA复制过程中,复制方向与复制叉移动方向相同,连续合成的DNA链称为前导链;6)滞后链:在复制过程中,复制方向与复制叉移动方向相反,形成不连续的片断,后连接成完整链的DNA链,称为滞后链。
7)转录:以DNA为模板,在RNA聚合酶指导下,合成RNA并把遗传信息传给RNA的过程,称为转录。
8)遗传密码:即指核苷酸三联体决定氨基酸的对应关系,这种编码氨基酸序列的核苷酸称为密码子。
2. 写出原核生物DNA复制过程;原核生物与真核生物DNA复制的区别?答:(1)原核生物DNA复制过程可分为:起始,延伸和终止。
1)复制的起始;2)复制的延伸;3)复制的终止(请分别说明)(2)原核生物与真核生物DNA复制的区别:1)聚合酶的不同;2)复制的起点不同;3)复制的速度不同4)DNA复制的调节;(详细内容看课件及参考书)3.比较原核生物和真核生物转录过程有哪些不同点?答:1)聚合酶的不同;2)启动子的不同;3)终止过程的不同;4)转录的调节控制;4)转录后加工不同。
(详细内容看课件及参考书)4.哪些理化因素能引起DNA分子损伤?体内有何种DNA修复机制?答:(1)某些理化因素,如紫外线照射、电离辐射和化学诱变剂等等。
(2)修复机制有:错配修复,直接修复,切除修复,重组修复和易错修复。
5.大肠杆菌蛋白质合成体系由哪些物质组成?各起什么作用?答:参与蛋白质生物合成的物质:(1)20 基本氨基酸作为材料。
第十章 核酸的生物合成复习题-带答案

第十章核酸的生物合成一、名词解释97、核酸限制性内切酶答案:(restriction endonuclease)是一类具有极高专一性,在识别位点内或附近,识别并切割外源双链DNA,形成粘性末端或平端的核酸内切酶。
98、粘性末端答案:(sticky end)由限制性内切酶切割后,在双链DNA切口处产生交错互补的单链末端。
99、中心法则答案:(central dogma)生物体遗传信息流动途径。
最初由Crick(1958)提出,经后人的不断补充,修改。
即:DNA本身复制;以DNA为模板转录成RNA;RNA在逆转录酶的作用下,合成DNA;以RNA为模板翻译成蛋白质.100、半保留复制答案:简单复制,(semiconservative replication)亲代双链DNA以每条链为模板,按碱基配对原则各合成一条互补链,这样一条亲代DNA双螺旋,形成两条完全相同的子代DNA螺旋,子代DNA分子中都有一条合成的“新”链和一条来自亲代的“旧”链,称为半保留复制。
101、DNA聚合酶答案:(DNA polymerase)指以脱氧核苷三磷酸为底物,按5′--3′方向合成DNA 的一类酶,反应条件:4种脱氧核苷三磷酸,Mg++、模板、引物。
DNA聚合酶是多功能酶,除具有聚合作用外,还具有其它功能,不同DNA聚合酶所具有的功能不同。
102、解旋酶答案:(helicase)是一类通过水解ATP提供能量,使DNA双螺旋两条链分开的酶,每解开一对碱基,水解2分子ATP。
103、拓扑异构酶答案:(topolisomerase)是一类引起DNA拓扑异构反应的酶,分为两类:类型I 的酶能使DNA的一条链发生断裂和再连接,反应无需供给能量,类型II的酶能使DNA的两条链同时发生断裂和再连接,当它引入超螺旋时,需要由ATP供给能量。
104、单链DNA结合蛋白答案:(single-strand binding protein SSB)是一类特异性和单链区DNA结合的蛋白质。
生物化学蛋白质的生物合成

的作用
伴侣素的主要作用—— 为非自发性折叠蛋白质提供能折叠形成天然 空间构象的微环境。
伴侣素GroEL/GroES系统促进蛋白质折叠过程
(二)蛋白二硫键异构酶 (protein disulfide isomerase, PDI) 在内质网腔活性很高,可在较大区 段肽链中催化错配二硫键断裂并形成正 确二硫键连接,最终使蛋白质形成热力 学最稳定的天然构象。
第一步:活化反应 氨基酸 +ATP+E → 氨基酰-AMP-E + PPi
第二步:转移反应
氨基酰-AMP-E + tRNA
↓
氨基酰-tRNA + AMP + E
氨基酰-tRNA的表示方法
Ala-tRNAAla
Ser-tRNASer Met-tRNAMet 起始肽链合成的氨基酰-tRNA
真核生物: Met-tRNAiMet
每增加一个氨基酸就按 进位→成肽→转 位 这三步不断重复,直到肽链增长到必要的长 度。
移位反应过程
核糖体循环的反应过程
进 位
转肽 移 位
三、蛋白质多肽链合成的终止和释放
蛋白质多肽链合成的终止过程
• 核糖体沿mRNA链滑动,不断使多肽链延长,
直到终止信号进入A位。
识别:RF识别终止密码,进入核糖体的A位。 水解:RF使转肽酶变为酯酶,多肽链与tRNA之间的 酯 键被水解,多肽链释放。 脱离:模板mRNA、RF以及空载tRNA与核糖体脱离 ,
四、蛋白质合成所需的能量
原核生物
氨基酸活化:2个~P
起始: 延长: 1个 2个 GTP GTP
ATP
终止:
1个
GTP
结论:每合成一个肽键至少消耗4个~P。
蛋白质生物合成的特点
第十章生化简明教程章节习题集

第十章蛋白质的生物合成(一)名词解释1.翻译 2.密码子 3.密码的简并性 4.同义密码子 5.变偶假说 6.移码突变 7.同功受体 8.多核糖体(二)问答题1.参与蛋白质生物合成体系的组分有哪些?它们具有什么功能?2.遗传密码是如何破译的?3.遗传密码有什么特点?4.简述三种RNA在蛋白质生物合成中的作用。
5.简述核糖体的活性中心的二位点模型及三位点模型的内容。
6.氨基酸在蛋白质合成过程中是怎样被活化的?7.简述蛋白质生物合成过程。
8.蛋白质合成中如何保证其翻译的正确性?9.原核细胞和真核细胞在合成蛋白质的起始过程有什么区别。
10.蛋白质合成后的加工修饰有哪些内容?11.蛋白质的高级结构是怎样形成的?12.真核细胞与原核细胞核糖体组成有什么不同?如何证明核糖体是蛋白质的合成场所?(三)填空题1.蛋白质的生物合成是以___________为模板,以___________为原料直接供体,以_________为合成杨所。
2.生物界共有______________个密码子,其中___________个为氨基酸编码,起始密码子为_________;终止密码子为_______、__________、____________。
3.原核生物的起始tRNA以___________表示,真核生物的起始tRNA以___________表示,延伸中的甲硫氨酰tRNA以__________表示。
4.植物细胞中蛋白质生物合成可在__________、___________和___________三种细胞器内进行。
5.延长因子T由Tu和Ts两个亚基组成,Tu为对热___________蛋白质,Ts为对热________蛋白质。
6.原核生物中的释放因子有三种,其中RF-1识别终止密码子_____________、____________;RF一2识别__________、____________;真核中的释放因子只有___________一种。
核酸合成、蛋白质合成、代谢调节复习题

第十章核酸的生物合成一、名词解释99、中心法则100、半保留复制108、前导链109、冈崎片段110、半不连续复制111、逆转录115、转录116、模板链(无义链)121、内含子122、外显子二、填空题137、Meselson—Stahl的DNA半保留复制证实试验中,区别不同DNA用同位素示踪法。
分离不同DNA用方法。
测定DNA含量用方法。
138、DNA聚合酶Ⅰ(E.coli)的生物功能有、和作用。
139、在E.coli中,使DNA链延长的主要聚合酶是,它由10种亚基组成。
DNA聚合酶Ⅱ主要负责DNA的作用。
140、真核生物DNA聚合酶主要有、、、、。
其中在DNA复制中起主要作用的是和。
141、解旋酶的作用是使,反应需要提供能量,结合在后随链模板上的解旋酶,移动方向。
142、在DNA复制过程中,改变DNA螺旋程度的酶叫。
143、SSB的中文名称,功能特点是使。
144、DNA连接酶只能催化双链DNA中的缺口形成3',5'—磷酸二酯键,不能催化两条间形成3',5'—磷酸二酯键,真核生物DNA连接酶以作为能源,大肠杆菌则以NAD+作为能源,DNA连接酶在DNA 、、中起作用。
145、DNA生物合成的起始,需要一段作为引物,引物由催化完成。
146、DNA生物合成的方向是,冈崎片段合成方向是。
147、由逆转录酶催化的核酸合成是以为模板,以为底物,产物是与。
148、诱变剂大致分为、、三种类型。
149、RNA生物合成中,RNA聚合酶的活性需要模板,原料是、、、。
150、大肠杆菌RNA聚合酶为多亚基酶,亚基组成,称为酶,其中亚基组成称为核心酶,功能是;σ亚基的功能是。
151、用于RNA生物合成的DNA模板链称为或。
152、RNA聚合酶沿DNA模板方向移动,RNA合成方向。
153、真核生物RNA聚合酶共三种,,它们分别催化,、和的生物合成。
154、某DNA双螺旋中,单链5'…ATCGCTCGA…3'为反义链,若转录mRNA,其中碱基排列顺序为5'……3'。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DNA传递到子代DNA分
子上,合成出与原来
DNA相同分子的过程。
转录—在DNA分子
Reverse transcription
上合成出与其核苷酸顺
序相对应的RNA的过
程。 翻译—在RNA的指导下,
根据核酸链上每三个核苷
酸决定一个氨基酸的三联
体密码规则,合成出具有
特定氨基酸顺序的蛋白质
1 形成γ复合物
β
4 两个β亚基形成滑动夹子,以提
高酶的持续合成能力。
pol- Ⅲ 异二聚体结构
pol- Ⅲ 异二聚体结构
β亚基由两个形成夹子结构
(4)DNA聚合酶Ⅳ和DNA聚合酶Ⅴ
涉及DNA的错误倾向修复。使修复缺 乏准确率。
DNA受到较严重的损伤时,即可诱导 产生这两种酶。
DNA聚合酶
酶
Top I , Top II
Helicase (rep protein)
复
Single Strand Binding protein (SSB)
Helix destabilizing protein (HDP)
制
DnaB pritein
for primosome
DnaC protein
体
Primase
AT GC AT AT CG
AT GC AT AT CG
AT GC AT AT CG
亲
子子
亲
链
链链
链
二、DNA复制的起点和方式J.Cairns(1963年)
复制子—基因组能独立进行复制的单位。
每个复制子都含有控制复制起始的起点(富含A、T区), 可能还有终止复制的终点。复制是在起始阶段进行控制的,一 旦复制开始,它既继续下去,,直到整个复制子完成复制。
用反。应分三步进行:
第一步:NAD或ATP+DNA连接酶
酶-AMP复合物
第二步:酶将AMP转移给DNA切口处的5′磷酸,形成AMP-
DNA。
第三步:通过相邻链的3′-OH对活化的磷原子发生亲核攻击,
Nick生:成指3断′ ,裂5的′磷磷酸酸二二酯酯键键。。同时释放出AMP。
Gap:指缺失核苷酸
四、原核生物DNA生物合成过 程 进化中形成了活的多酶复合体 replisome
(2)DNA聚合酶Ⅱ( pol- Ⅱ),
DNA聚合酶Ⅱ 为多亚基酶。 作用: A:从5` 3`方向合成DNA,并需要带有缺口的双链DNA作 为模板,缺口不能过大。 B: 3` 5`核酸外切酶活性,但无5` 3` 核酸外切酶活性。
不是复制酶,而是修复酶。 每分子每分钟催化2400个dNTP的聚合。 每个大肠杆菌细胞约有100个分子DNA聚合酶Ⅱ 。
引发体的下游解开双链,再由引物酶催化引物的合成。
Primosome (consists of six proteins)
PriA (dual role) displace SSB from S.S DNA and helicase DnaT required at prepriming stage DnaB is central component, action with DnaC DnaC is central component, action with DnaB PriB function is unknown PriC function is unknown DnaG primase
DNA聚合酶Ⅲ全酶亚基组成
亚基 亚基数
亚基功能
α
核
心 酶
ε
2 聚合活性。催化从5` 3`方向合 成DNA。
2 3'→5'外切酶活性,校对功能 核心酶
θ
2 组建核心酶
τ
2 核心酶二聚化
γ
夹δ 子 装 δ' 配χ 器φ
2 依赖DNA的ATP酶,形成γ复合 物
1 可与β亚基结合,形成γ复合物 1 形成γ复合物 1 形成γ复合物
DNA新起始方式(de novo initiation)复制的基本模式
Parental D.S,DNA Unwinding protein
RNA polymerase Primase
Replication loop RNA primer
DNA polymerase
leading Strand
lagging Strand
水解ATP推动DNA解链
解螺旋
合成引物
2、延伸阶段
前导链—以走向3’ 5’的亲代链为模板,连续合成子代链。 滞后链—以走向5’ 3’的亲代链为模板,不连续合成子代链。 冈崎片断—滞后链侧的 较小的DNA片断。
半不连续复制:在复制 叉上前导链连续合成子 代链,而滞后链不连续 合成子代链。
每一个复制叉上只有一 个DNA聚合酶Ⅲ全酶的二 聚体。同时在前导链和滞 后链上完成复制任务。
(3)DNA聚合酶Ⅲ(pol- Ⅲ)
DNA聚合酶Ⅲ为多亚基(10种)组成的蛋白质,其全酶由α、 β、γ、δ、δ‘、ε、θ、τ、χ、ψ10种亚基组成。 是DNA的复制酶。 每个大肠杆菌细胞约有10-20个分子DNA聚合酶Ⅲ。
作用:其性能与DNA聚合酶Ⅱ相似。 A:需要模板,以dNTP为底物,需要有引物的存在,从5` 3` 方向合成DNA。 B:具有3` 5`核酸外切酶活性,但无5` 3`核酸外切酶活性。 C:多亚基酶。
作用
DNA聚合酶 不能从无到有开始DNA合成,要有引物链。5'
Ⅰ
3'聚合酶及外切酶作用,3' 5'外切酶酶作用,
可校正/修复DNA链,还可切除引物。
DNA聚合酶 5' 3'聚合酶及3' 5'外切酶酶作用,可校正/修
Ⅱ
复DNA链。
DNA聚合酶 与酶Ⅰ作用类似,酶活高,是主要的链延伸酶
Ⅲ
(聚合酶 replicase)。
DNA聚合酶 涉及DNA的错误倾向修复。DNA受到严重损伤
Ⅳ
时,可诱导产生,使修复缺乏准确性。
(四)DNA连接酶
DNA聚合酶只能催化DNA链的延长反应,不能使链之间连接。
DNA连接酶催化双链DNA切口处的5‘磷酸基和3’羟基生成
磷酸二 酯键。
DNA连接酶在DNA的复制、修复和重组等过程均起重要的作
Elongation of lag.& lea. strands DNA polymerase
RNA-primed DNA pieces (1kb)
Continuous 5’ to 3’ in Leading S. Discontinuous 3’ to 5’ in lagging S. Two long DNA pieces Many shorter DNA pieces (1-2 kb)
(一)复制中解链和DNA分子拓扑学变化
解螺旋酶(DNA helicase) 解开双链。同样功能的还有Rep蛋白。
解旋、 解链酶
DNA拓扑异构酶(Top I 、Top II)改变DNA分子拓 扑构象。 单链DNA结合酶 (SSB) 维持模板的单链状态并保持单链的完整。
共同起解开、理顺DNA链,维持DNA在一定时间内处于单链状态的作用。
Repair & filling in 5’ to 3’
Poly(dNt) ligase
眼形结构
Bidirectional lengthening of new stands
三、原核生物DNA复制的酶学
DNA复制所需的物质及作用
1、底物:dNDP 。 2、聚合酶:依赖DNA的DNA聚合酶,简称DNA-pol。 3、模板:解开成单链的DNA母链。 4、引物:提供3´-OH末端,使dNDP可以依次聚合。 5、其他酶和蛋白因子(如:引物酶、解旋酶、DNA连 接酶、拓扑异构酶、单链DNA结合蛋白等)。
拓扑—物体或图像做弹性位移而又保持物体不变的性质。
核酸的拓扑结构—核酸分子结构的空间关系。
Top I
Top II
Cut D.S. DNA ATP
Ligat e
Top I在DNA的一股链上产生缺口,使另一条链得以穿越。 Top II则在DNA的双链上产生缺口,使另一双链DNA片段得以穿越。
(二)引物酶(Primase)和引发体(Primosome)
Ung-ase
DNA Polymeras I Ligase
包括起始、延伸和终止三个阶段。 1、起始阶段
复制的起始阶段主要是引发体的形成。
(1)Dna A 蛋白识别并结合于起始点ori C。 (2)Dna B、Pri A、引物酶等相继结合,组成复制引发体。 (3)拓扑异构酶Ⅱ引入负超螺旋,促进Dna A的结合,同时 消除扭曲张力。 (4)DNA聚合酶Ⅲ结合到模板上,在引物的3′-OH后 面合成新的DNA链。
引物酶(Dna G ):催化引物合成的一种RNA聚合酶。 引物酶在模板的复制起始部位催化互补碱基的聚合,形成短片断的RNA。引物
酶和解螺旋酶共同起作用。
辨认起点
解螺旋
引物酶
引发体: Dna A 蛋白、 Dna B蛋白 、Dna G 蛋白、 Dna C及其他复制因子,
一起形成复合体,结合引物酶,形成较大的聚合体,再结合到模板DNA上。
肽链的过程。
10.1 DNA的生物合成
复制过程可分为:起始、延长和终止3个阶段。
一、DNA的半保留复制
通过碱基配对(A-T,C-G),两条链连在一起,成为 互补链。一条链上核苷酸排列顺序决定了另一条链上 的核苷酸排列顺序,每一条链都含有合成它的互补链 所必需的全部遗传信息。
DNA复制过程中,首先碱 基间氢键断裂并使双链解旋和 分开,然后每条链可作为模板 在其上合成新的互补连,新形 成的两个DNA分子与原来 DNA分子的碱基顺序完全一样。 在此过程中,每个子代分子的 一条链来自亲代DNA,另一条 链子是新合成的。这种方式称 为半保留复制。