温度变送器

合集下载

温度变送器标准

温度变送器标准

温度变送器标准
温度变送器的标准通常包括以下几个方面:
1. 传感器类型和工作原理:标准应规定所使用的温度传感器的
类型,如热电偶、热敏电阻或半导体传感器,并描述其工作原理。

2. 测量范围和精度:标准应规定温度变送器的测量范围,即能
够测量的温度范围,并规定其精度要求,即测量结果与实际温度之间
的偏差。

3. 输出信号:标准应规定温度变送器的输出信号类型,常见的
有模拟信号(如4-20mA、0-10V)信号(如RS485、Modbus)。

4. 安装和连接方式:标准应规定温度变送器的安装方式,如法
兰安装或管道安装,并规定温度传感器与温度变送器之间的连接方式。

5. 环境适用性:标准应规定温度变送器在特定环境条件下的适
用性,包括工作温度范围、湿度范围和防护等级要求。

6. 校准和验证:标准应规定温度变送器的校准和验证要求,包
括校准间隔、校准方法和验证方法等。

7. 安全和可靠性要求:标准应规定温度变送器的安全和可靠性
要求,包括过载保护、防雷保护和故障诊断功能等。

8. 标识和包装要求:标准应规定温度变送器的标识和包装要求,包括产品型号、序列号、生产日期和厂家信息等。

这些标准旨在确保温度变送器在各种应用环境下能够准确、可靠
地测量温度,并满足相关的安全和质量要求。

具体的标准可以根据不
同地区和行业的要求而有所不同。

温度变送器的原理及应用图

温度变送器的原理及应用图

温度变送器的原理及应用图1. 温度变送器的概述温度变送器是一种将温度信号转换为标准电信号输出的设备。

它能够将温度传感器所采集到的温度信号转换成标准信号(如4-20mA、0-10V等),并输出给控制系统进行监测、控制和数据采集等用途。

温度变送器广泛应用于工业自动化领域,如冶金、化工、电力等行业。

2. 温度变送器的工作原理温度变送器的核心部件是温度传感器和信号转换电路。

温度传感器主要有热电偶、热电阻和半导体温度传感器等。

当温度传感器被置于被测物体上时,温度变送器会通过传感器采集到温度值,并将该温度值转换为标准电信号输出。

温度传感器采集到的温度信号首先经过放大电路放大,然后再经过线性化电路进行电信号的线性化处理。

接着,信号转换电路将处理好的信号进行电流/电压转换,并将其输出给控制系统。

控制系统通过对接收到的信号进行处理,并根据需要进行控制操作。

3. 温度变送器的应用图示下图展示了一个典型的温度变送器的应用图,图中标注了各部件的名称和功能。

+--------------+| || 电源供应单元 +---->| | 给变送器供电+----+---------+|||+----+---------+| || 温度传感器 || |+----+---------+|||+----+---------+| || 信号转换电路 | ----> 输出标准信号给控制系统| |+----+---------+4. 温度变送器的优势和应用领域温度变送器具有以下优势: - 提供稳定、可靠的温度测量和控制。

- 支持远距离传输和远程监测。

- 具备防护性和防腐蚀性能,适合恶劣环境使用。

- 方便安装和维护。

温度变送器的应用领域包括但不限于: - 工业过程控制:如化工厂中的温度监测和控制。

- 环境监测:如空调系统中的温度监测和控制。

- 制造业:如烤箱温度的控制和监测。

总结:温度变送器是一种将温度信号转换为标准电信号输出的设备,它的工作原理是通过温度传感器采集温度信号,并经过放大电路和线性化电路进行处理,最后通过信号转换电路输出给控制系统。

温度变送器工作原理

温度变送器工作原理

温度变送器工作原理
1温度变送器概述
温度变送器是一种常用的电气控制设备,它的主要作用是将测量到的温度信号转换成标准的输出信号,以便于控制系统进行处理和操作。

2温度变送器的组成和原理
温度变送器主要由温度传感器、信号转换器和输出电路组成。

其中,温度传感器通过接触或近距离探测方式测量物体温度并转换成电信号,然后信号转换器对电信号进行放大、线性化、滤波处理,最终输出标准的工业信号(一般为4-20mA)。

这样,测量到的温度信号就可以与其他设备的信号集成在一起,方便进行信息处理和控制。

3温度变送器的工作流程
温度变送器的工作流程一般如下:
1)温度传感器进行温度测量;
2)温度信号经过条件处理,由模拟电路转换成标准的输出信号;
3)经过模拟信号的传输和处理,输出电路将信号送达控制系统终端;
4)控制系统按照设定的工作要求进行控制操作。

4温度传感器的种类
温度传感器主要分为热电偶、热电阻和半导体三种类型。

其中,热电偶测温范围广、响应快、稳定性好,适用于高温度测量;热电阻测温精度高、温度范围较窄,适用于低温度测量;半导体测温范围窄、响应快,适用于局部的温度测量。

5温度变送器的应用领域
温度变送器的应用领域广泛,既可以用于工业生产领域、也可以应用于家电、汽车、医疗等领域。

在工业生产中,可以用于测量温度、湿度、水位等,实现对生产过程的实时控制和监测;在家电、汽车、医疗领域,则可用于温度控制等方面。

pt100温度变送器原理

pt100温度变送器原理

pt100温度变送器原理
PT100温度变送器是一种常用的温度测量仪器,它使用PT100电阻传感器来测量温度,并将测量结果转换成电信号输出。

PT100电阻传感器是一种根据电阻值随温度变化的特性来测量温度的传感器。

它由具有特殊电阻-温度特性的白金电阻丝构成,电阻值随温度的变化呈线性关系。

温度变送器包含一个电路板,上面安装有PT100电阻传感器和其他电子元件。

当温度变化时,PT100电阻传感器的电阻值也会发生变化。

变送器的电路通过测量电阻值的变化来确定温度的变化。

温度变送器的工作原理基于电桥电路。

常见的电桥电路包括满桥、半桥和四线制电桥。

其中,最常见的是四线制电桥,因为它具有较高的测量精度。

四线制电桥中,PT100电阻传感器作为电桥的一个电阻,其他三个电阻为固定电阻。

当电桥平衡时,输出电压为零。

根据电桥平衡条件可以得到PT100电阻传感器的电阻值与温度之间的关系。

温度变送器使用一种特殊的电路来将电桥的平衡情况转换成电信号输出。

一般使用运算放大器等电子元件来实现信号放大和转换。

通过校准和调节温度变送器,可以将变送器的输出信号与实际
温度之间建立准确的关系。

用户可以根据变送器的输出信号来获取准确的温度测量值。

总结来说,PT100温度变送器利用PT100电阻传感器的电阻-温度特性来测量温度,并通过电桥电路和特殊的电路将测量结果转换成电信号输出。

温度变送器使用说明

温度变送器使用说明

温度变送器使用说明
一、引言
温度变送器是一种用于测量和传输温度信号的设备。

它将温度信号转换为相应的电信号,以便在远距离传输或连接至其他设备。

本文将为您提供关于温度变送器的详细使用说明,帮助您正确操作和维护设备。

二、产品描述
1. 温度变送器是一种小型设备,通常由外壳、传感器、转换电路等组成。

2. 温度变送器通常具有高精度、稳定性和抗干扰能力。

3. 温度变送器可以将温度信号转换为标准的电信号输出。

三、安装和连接
1. 确保温度变送器与所测量的温度物体保持良好的接触,避免导热不良。

2. 温度变送器应放置在通风良好且不易受潮的位置。

3. 根据所需的安装方式,选择合适的固定方式(如螺纹、法兰等)将温度变送器固定在所需位置。

4. 连接变送器的电气接线务必按照设备上的标记连接,确保正
确性。

四、操作和显示
1. 通电前确认温度变送器连接正常并已正确接线。

2. 使用适当的电源电压给温度变送器供电,一般为DC 24V。

3. 温度变送器通常具有显示屏,可以显示当前测量的温度值。

4. 如需更改温度单位或其他设置,请参考设备说明书进行操作。

五、校准和维护
1. 温度变送器一般在出厂前已校准,但长期使用后可能会出现
偏差。

因此,定期校准很重要。

2. 根据设备说明书或校准工具的指引,进行温度变送器的校准。

3. 温度变送器应定期检查是否有损坏或零件老化的情况,并及
时更换损坏的零部件。

温度变送器的适用介绍

温度变送器的适用介绍

温度变送器的适用介绍温度变送器是一种常见的工业自动化控制仪表,它是用于将现场温度信号转换为标准信号输出的装置。

温度变送器可以将不同种类的温度传感器检测到的温度信号转换为标准的信号,如4-20mA电流或0-10V电压等。

温度变送器适用于各种工业场合,如化工、石化、电力、制药、食品等行业。

本文将介绍温度变送器的适用范围、分类、选型和安装注意事项。

适用范围温度变送器适用于以下场合:1.环境温度较高或较低的工况2.采用远传信号的场合,提供稳定的远距离信号传输3.对信号精度有要求的情况4.要求设备可控、自动化程度高的场合分类根据输入信号类型的不同,温度变送器可以分为以下几种类型:热电偶变送器热电偶变送器是将热电偶检测到的温度信号转换为标准信号输出的装置。

热电偶变送器适用于工作温度在-270℃至+1800℃范围内的场合,具有测量范围宽、质量稳定、抗干扰能力强等特点。

热电阻变送器热电阻变送器是将热电阻检测到的温度信号转换为标准信号输出的装置。

热电阻变送器适用于工作温度在-200℃至+600℃范围内的场合,具有精度高、响应快等特点。

同时,它还可以根据温度补偿线的不同,分为三线式、四线式热电阻变送器。

红外温度变送器红外温度变送器是将通过红外线检测到的物体表面温度转换为标准信号输出的装置。

红外温度变送器适用于非接触式温度检测的场合,可以广泛应用于造纸、印染、化工、冶金、炼油、食品加工、纺织等行业。

其他类型除了以上三种类型的温度变送器,还有磁敏电阻温度变送器、晶体管温度变送器、热电积温度变送器等。

这些类型的温度变送器主要应用于特殊的温度检测场合。

选型选择适合的温度变送器,需要考虑以下几个方面:1.检测对象的最高温度和最低温度2.对控制精度、响应速度的要求3.电源的电压和信号传输距离4.工作环境与外界温度条件安装注意事项1.将温度变送器放置在干燥、通风良好的地方,并避免水汽、腐蚀性气体的侵蚀。

2.温度变送器的电源和信号线应分开布置,避免相互干扰。

温度变送器的原理及应用实验

温度变送器的原理及应用实验

温度变送器的原理及应用实验1. 温度变送器的概述温度变送器是一种用于测量和转换温度信号的设备。

它可以将温度信号转换为标准的电流信号或电压信号,从而方便传输和处理。

温度变送器通常由温度传感器和信号转换器组成,具有广泛的应用领域,包括工业自动化、仪器仪表、环境监测等。

2. 温度变送器的工作原理温度变送器的工作原理基于热电效应、热敏效应或热电阻效应,具体取决于所采用的温度传感器的类型。

以下是几种常见的温度传感器及其工作原理:2.1 热电偶热电偶是利用两种不同金属导线的热电效应产生电压差来测量温度的传感器。

当两根不同金属导线的连接处温度发生变化时,由于两种金属的热电特性不同,会在连接处产生热电势。

通过测量这个热电势的大小,可以确定温度的变化情况。

2.2 热敏电阻热敏电阻是一种根据材料电阻随温度变化的特性来测量温度的传感器。

当温度发生变化时,热敏电阻的电阻值也会发生变化。

通过测量热敏电阻的电阻值,可以推断出温度的变化情况。

2.3 热电阻热电阻是一种利用材料电阻随温度变化的特性来测量温度的传感器。

与热敏电阻类似,当温度发生变化时,热电阻的电阻值也会发生变化。

热电阻常用的材料有铜、铂等,其中铂电阻常常被用作温度变送器的传感器。

3. 温度变送器的应用实验为了更好地理解温度变送器的原理和应用,可以进行一些实验来验证其性能和功能。

下面是一些常见的应用实验:3.1 温度测量实验在这个实验中,我们可以使用温度变送器来测量不同介质的温度。

首先,选择一个合适的温度传感器(如热电偶或热敏电阻),将其与温度变送器连接。

然后,将传感器放置在要测量温度的介质中,并记录变送器输出的电流或电压信号。

通过比较变送器的输出信号和已知温度值,可以评估温度变送器的准确性和精度。

3.2 温度控制实验在这个实验中,我们可以利用温度变送器来控制一个加热或冷却设备,以使温度保持在预定的范围内。

首先,将温度传感器和温度变送器连接,并将变送器的输出信号与控制装置(如PLC或PID控制器)连接。

温度变送器的用途

温度变送器的用途

温度变送器的用途温度变送器是一种用于测量和传输温度信号的设备。

它将温度传感器测量到的温度值转换成电信号,并通过输出端口将这些信号传送给控制系统或监控仪器。

温度变送器在工业控制和过程监测中广泛应用。

温度变送器的主要用途有以下几个方面:1.工业过程监测:温度是工业过程中最常用的物理量之一。

温度变送器能够将温度信号转换为标准的电信号,以便实时监测和记录温度变化。

比如,温度变送器可以用于监测炉温、容器中的液体温度、管道的流体温度等,以确保工业过程的稳定性和安全。

2.温度控制:在一些工业生产过程中,需要对温度进行实时控制,以保证产品的质量和稳定性。

温度变送器可以将温度信号传输给温度控制器,进而根据设定值调整加热或冷却设备的工作状态,以使温度保持在所需的范围内。

比如,温度变送器可以应用在烘烤设备、冷冻设备、炼油厂等工业生产过程中。

3.温度报警和保护:对于一些需要严格控制温度的系统,温度变送器可以设置上下限报警功能。

当温度超出设定的范围时,温度变送器会发出报警信号,以便及时采取措施防止温度过高或过低引发系统故障或危险。

比如,温度变送器可以用于电力变压器、发电机、电机等的温度监测和报警保护。

4.能源管理:温度变送器也常用于能源管理系统中,通过监测和控制建筑物、办公室、厂房等环境中的温度,以达到节能和提高舒适度的目的。

温度变送器可以与空调系统、暖气系统、通风系统等设备连接,实现精确的温度控制和调节,降低能耗,提高能源利用效率。

5.科学研究和实验室:温度变送器在科学研究和实验室中也有重要的应用。

它可以用于实验室实验中对温度进行精确的测量和控制。

比如,在化学实验中,温度变送器可以帮助实验人员精确控制反应温度,以确保实验的准确性和可重复性。

总结起来,温度变送器在各个领域中起到了重要的作用。

无论是工业过程监测、温度控制、报警保护,还是能源管理和科学研究,温度变送器都扮演着不可或缺的角色。

它能够将温度信号转换为电信号,实现温度的测量、监测、控制和保护,为控制系统和监控仪器提供了准确的温度数据。

温度变送器的常见故障及解决方法

温度变送器的常见故障及解决方法

温度变送器的常见故障及解决方法什么是温度变送器温度变送器是一种用于将工业场所的温度信号转换成为一个标准电信号的设备,通常被用于用于测量温度变化的热敏电阻、热电偶等硬件。

温度变送器常见于各种工业自动化设备中,是工业测量的一个重要部分,其性能和功能的稳定性对于工业生产的稳定性有着至关重要的作用。

常见故障及其解决方法1. 电源不稳定温度变送器在工作的过程中需要稳定的电源供应,如果电源不稳定,则会影响到温度变送器的正常工作。

这种故障通常表现为输出的信号不稳定以及输出信号量不准确。

解决方法是:检查电源供应以及供电线路。

2. 温度变送器短路对于采用4-20mA电流输出的温度变送器,如果输出端短路,则会导致变送器输出电流为20mA,从而产生的输出信号就不能正常的接收控制系统。

短路通常发生在温度变送器的输出端,导致电路受到过流保护。

解决方法是检查传输线路的连接情况以及代替损坏的输出线路。

3. 温度变送器长期工作过载或过热长期使用温度变送器在环境温度过高或过载等特殊情况下,可能会导致电路中的元件或器件过热,进而导致出现损坏和故障。

解决方法是:检查变送器的使用环境是否符合要求,如环境温度是否超过了仪器设计的使用温度范围;同时,检查变送器使用的控制系统是否合理,避免过载使用。

4. 温度变送器被电磁干扰当温度变送器与其他电子设备或灯光等设备之间的电磁干扰发生时,可能会导致温度变送器失灵。

这种干扰可能会导致输出量不稳定,或者干脆无输出。

解决方法是:采取有效的屏蔽措施以避免电磁干扰造成损害。

5. 温度变送器保护继电器故障温度变送器通常使用继电器进行保护,以便在特定的情况下切断电源。

如果继电器故障,则可能会导致失去保护,从而使变送器功能不完整或造成不必要的事故。

解决方法是:及时验证并更换有问题的继电器,确保继电器正常工作。

6. 电缆或连接器的损坏电缆和连接器是温度变送器重要的组成部分,如果连接线路无法工作或连接器已经破损,则会导致无法正常传输信号。

温度变送器工作原理

温度变送器工作原理

温度变送器工作原理温度变送器是一种用于测量和转换温度信号的仪器,它将温度信号转换成标准信号输出,通常是4-20mA电流信号或0-10V电压信号。

温度变送器的工作原理主要包括传感器、信号调理、A/D转换、微处理器和输出等几个方面。

首先,传感器是温度变送器的核心部件,它可以将温度信号转换成电信号。

常见的传感器有热电偶、热敏电阻和半导体温度传感器等。

热电偶是利用两种不同材料的导电性能产生的温差电动势来测量温度的传感器,热敏电阻则是利用材料的电阻随温度变化而变化来测量温度的传感器,而半导体温度传感器则是利用半导体材料的电阻随温度变化而变化来测量温度的传感器。

其次,传感器输出的信号需要经过信号调理模块进行放大、滤波和线性化处理。

在这个过程中,信号调理模块可以将传感器输出的微弱信号放大成标准信号,同时对信号进行滤波处理,去除干扰信号,还可以进行线性化处理,使输出信号与温度成线性关系。

然后,经过信号调理模块处理后的信号需要经过A/D转换器转换成数字信号。

A/D转换器是将模拟信号转换成数字信号的装置,它可以将信号转换成微处理器可以处理的数字信号,从而进行后续的处理。

接着,微处理器对数字信号进行处理,包括对信号进行滤波、线性化校正、温度补偿等操作。

微处理器可以根据预设的算法对信号进行处理,从而得到准确的温度数值。

最后,经过微处理器处理后的信号通过输出模块输出,通常是4-20mA电流信号或0-10V电压信号。

这些信号可以直接送入控制系统或显示仪表,从而实现对温度的测量和控制。

总的来说,温度变送器的工作原理是通过传感器将温度信号转换成电信号,经过信号调理、A/D转换、微处理器处理和输出模块输出,最终实现对温度信号的测量和转换。

温度变送器在工业自动化控制系统中具有广泛的应用,可以满足各种工业场合对温度测量和控制的需求。

温度变送器知识点归纳总结

温度变送器知识点归纳总结

温度变送器的核心部件是传感器和信号处理电路。

传感器用于感知温度,并将温度信号转换成电信号;信号处理电路则负责对温度信号进行放大、滤波、线性化等处理,同时还会进行抗干扰、灾难性安全保护等功能。

此外,温度变送器还包括供电回路、数字转换电路、通信接口等部件。

温度变送器的知识点可以归纳为以下几个方面:一、传感器类型和选择1. 热电偶传感器:由两种不同金属(或合金)的导线焊接在一端形成测温端,另一端接在显示仪表或变送器上,其工作原理是利用两种不同材料的导热特性形成温度梯度,产生电动势,测量温度。

2. 热敏电阻传感器:利用热敏电阻材料的电阻随温度的变化而变化的特性进行温度测量。

3. 红外线传感器:利用物体对红外线的辐射和反射特性测量目标物体的真实温度。

4. 光纤传感器:采用光纤传感器测量目标物体的温度。

选择传感器时需要考虑以下几点:温度范围、测量精度、环境适应性、抗干扰能力、可靠性等因素。

二、温度变送器的工作原理温度变送器的工作原理是将传感器采集到的温度信号进行放大、滤波、线性化等处理,并输出标准的工业信号;同时还进行抗干扰、灾难性安全保护等功能。

信号处理电路通常由模拟电路和数字电路两部分组成,通过对温度信号进行放大、滤波、线性化等处理,最终输出标准的4-20mA电流信号或0-10V电压信号。

三、温度变送器的特点和优势1. 测量范围广:温度变送器可以适用于各种温度范围的测量,从-200℃至+2000℃不等。

2. 准确性高:温度变送器的测量精度通常在0.5%以内。

3. 稳定性好:温度变送器在工作条件稳定的情况下,具有很好的稳定性。

4. 抗干扰能力强:温度变送器对电磁干扰和环境干扰有很好的抵抗能力。

5. 安全可靠:温度变送器通常具有防爆、隔离、防腐蚀等功能,适用于各种恶劣的工业环境。

6. 输出信号标准化:温度变送器输出的是标准的工业信号,便于传输和处理。

1. 化工行业:用于各种化工生产过程中的温度测量和控制。

2. 电力行业:用于发电厂的锅炉、汽轮机、发电机组等设备的温度测量和控制。

温度变送器的概念

温度变送器的概念

温度变送器的概念温度变送器是用于测量和转换温度信号的设备。

它是工业过程控制中非常重要的一种仪表,可将温度信号转换为标准的电流信号(如4-20mA)或电压信号(如0-10V),以便于信号传输、处理和控制。

温度变送器的工作原理基于热敏电阻、热电偶或半导体温度传感器,它们将温度转化为电阻或电动势。

温度变送器通过使用内部的放大器电路,将这些信号转换为具有更好传输性能和抗干扰能力的标准电流或电压信号。

温度变送器有多种类型,包括智能型和非智能型。

非智能型温度变送器主要由传感器、信号处理电路和输出电路组成。

它们的输出信号与输入信号成线性关系,适用于简单的温度测量与控制系统。

智能型温度变送器不仅具备传感器的功能,还具备灵活的配置和通信接口,可以与监控系统和控制系统进行数字通信,实现更高级的功能和集成。

温度变送器在工业自动化领域有着广泛的应用。

首先,它们能够在复杂的工业环境下可靠地测量温度。

无论是高温、低温、高压、强腐蚀性介质等恶劣条件下,温度变送器都能提供准确可靠的温度测量。

其次,温度变送器的输出信号对远距离传输和抗干扰性能较好,适合于工控系统中大量信号的集中传输和处理。

此外,温度变送器具备高度的可配置性和可调性,可以根据不同的需求进行参数设置和校准。

最后,智能型温度变送器还能通过通信接口与上位机进行连接,实现监测、配置和远程控制等功能。

温度变送器的使用带来了许多优势和便利。

首先,它们提供了更稳定、精确的温度测量结果,能够满足工业生产对温度精度和可靠性的要求。

其次,温度变送器的输出信号能够直接与控制系统集成,通过控制台实时监测温度变化,实现及时的调节和控制。

此外,温度变送器的安装和维护也较为简单方便,可以根据需要进行更换和拓展。

总之,温度变送器作为一种用于测量和转换温度信号的设备,在工业过程控制中具有重要的作用。

通过将温度信号转化为标准的电流或电压信号,温度变送器能够实现信号的传输、处理和控制。

它们具备高精度、可靠性强、抗干扰能力好等优点,在工业自动化领域得到了广泛应用。

温度变送器国家标准

温度变送器国家标准

温度变送器国家标准温度变送器是一种用于测量、转换和传输温度信号的装置,广泛应用于工业自动化控制系统中。

为了保证温度变送器的性能和质量,国家对其进行了一系列的标准规定,以确保其在生产、安装和使用过程中的稳定性和可靠性。

首先,温度变送器国家标准规定了其基本技术要求。

包括温度测量范围、测量精度、输出信号类型、工作温度范围等参数的要求,以及对其外部结构、防护等级、抗干扰能力等方面的要求。

这些基本技术要求的规定,可以有效地指导生产厂家在设计和生产过程中,确保温度变送器的基本性能符合国家标准的要求。

其次,国家标准还规定了温度变送器的型式和基本参数。

根据不同的工业场合和使用要求,温度变送器的型式和基本参数可能会有所不同。

国家标准对不同型号的温度变送器进行了分类和规定,包括其测量原理、安装形式、输出信号类型等方面的参数要求,以及对其外形尺寸、安装方式等方面的规定。

这些规定有助于用户在选型和使用过程中,明确温度变送器的适用范围和技术要求,以及与其他设备的匹配性。

此外,国家标准还对温度变送器的性能测试和评定方法进行了详细规定。

包括对其测量精度、长期稳定性、抗干扰能力等性能指标的测试方法和要求,以及对其外观质量、防护等级的评定方法和规定。

这些性能测试和评定方法的规定,为生产厂家提供了技术指导,也为用户提供了选型和使用时的参考依据。

最后,国家标准还对温度变送器的安装、使用和维护进行了规定。

包括其安装位置、安装方式、使用环境要求,以及对其定期校准、维护保养等方面的规定。

这些规定有助于用户在实际使用过程中,正确安装和使用温度变送器,保证其性能和可靠性。

总的来说,温度变送器国家标准的制定和实施,对于保障温度变送器的性能和质量,促进工业自动化控制系统的稳定运行具有重要意义。

生产厂家和用户都应当严格遵守国家标准的规定,确保温度变送器在生产、安装和使用过程中能够达到国家标准规定的要求,为工业生产提供可靠的技术支持。

温度变送器原理

温度变送器原理

温度变送器原理
1 温度变送器原理
温度变送器是一种仪表设备,用于测量温度并将数字化的温度测量数据放大输出到其他仪表中。

它与温度计的原理基本相同,都是根据温度变化的物理原理或物理机械原理进行温度测量的,但温度变送器的输出方式不同,一般是模拟量输出或数字量输出。

温度变送器的操作原理:温度变送器结构包括测量部分、放大调节部分、屏蔽电缆和输出接口。

测量部分有三种:膨胀式变送器、恒温式变送器和电阻式变送器,它们之间的原理基本相同,用温度变化刺激元件发生变化,将变化的信号放大输出至输出接口,形成一定精度的信号,来表示温度的大小。

膨胀式变送器的基本原理是:将一个精制的金属杆放入有温度检测元件的温度管中,温度变化时,变温管内壁的温度也随之变化,金属杆也将会由此受到温度变化刺激而发生延伸变化,进而转动连接的拉杆,拉动控制电位器,从而使输出电流起到调节温度大小的作用。

恒温式变送器的操作原理类似,它将温度变化引起的物理变化转换为电信号,然后将电信号放大后输出。

它有一个电阻环的结构,其中的一环或多环电阻为恒定的,另外一环电阻则会受温度的变化而变化,然后将变化的电阻值转换成发送给输出的电流脉冲信号。

电阻式变送器的操作原理与上面两种基本相同,是将物理变化转
化成电信号输出,但它是通过测量电阻随温度变化而发生变化来表示
温度的大小,例如,热电偶、热敏电阻及金属膨胀式温度元件等。

温度变送器是根据温度变化的物理原理或物理机械原理进行测量,把温度信号放大输出到其他仪表中,是当今许多工业自动化测控系统
的重要组成部分。

温度变送器原理

温度变送器原理

温度变送器原理
温度变送器原理是指将被测物体的温度转化为与之对应的信号,并将这个信号传送到显示仪表或控制设备上。

温度变送器一般由敏感元件、信号处理电路和输出电路组成。

敏感元件主要采用热电阻、热电偶或半导体温度传感器。

热电阻是一种电阻随温度变化的元件,常用的有铂电阻和镍电阻。

热电偶由两种不同材料的导线焊接而成,当焊点温度发生变化时,两种材料形成的电势差也会发生变化。

半导体温度传感器利用半导体材料的电阻温度特性来实现温度测量。

信号处理电路主要起放大、滤波和线性化的作用。

放大电路对敏感元件输出的微弱信号进行放大,以增强信号的强度。

滤波电路对信号进行滤波处理,去除噪声干扰,保证输出信号的稳定性和准确性。

线性化电路通过对信号进行线性转换,使输出信号与被测温度成线性关系。

输出电路一般采用模拟电信号或数字信号输出。

模拟信号通常是电压信号或电流信号,其大小与被测温度成正比。

数字信号输出则是通过A/D转换将模拟信号转化为数字信号,以便于
数字化处理和传输。

总之,温度变送器通过敏感元件对被测物体的温度进行感知,并通过信号处理电路和输出电路将温度信号转化为可读的形式,以实现温度测量和控制。

温度变送器工作原理

温度变送器工作原理

温度变送器工作原理
温度变送器是一种用来测量温度并将其转换成标准信号输出的仪器,它在工业自动化控制领域中起着至关重要的作用。

本文将介绍温度变送器的工作原理,以帮助读者更好地理解和应用这一设备。

温度变送器的工作原理主要基于热敏电阻和热电偶两种传感元件。

热敏电阻是一种电阻随温度变化而变化的元件,它的电阻值随温度的升高而降低,反之亦然。

而热电偶则是由两种不同金属材料焊接在一起形成的一种温度传感器,当两种金属材料的焊点处温度发生变化时,会产生电动势,从而实现温度的测量。

在温度变送器中,传感元件感知到的温度信号首先会经过放大电路进行放大,然后经过线性化处理电路将其转换成与温度成线性关系的标准信号输出,如4-
20mA电流信号或0-10V电压信号。

这样的标准信号可以方便地传输到控制室或PLC等设备中,实现对温度的准确监测和控制。

除了传感元件和信号处理电路外,温度变送器还包括了冷端补偿电路、线性补偿电路和标定电路等部分。

冷端补偿电路用于补偿热电偶中的冷端温度影响,线性补偿电路用于对传感元件输出信号进行线性化处理,而标定电路则用于对温度变送器进行校准,以确保输出信号的准确性和稳定性。

总的来说,温度变送器的工作原理可以概括为,传感元件感知温度信号,经过放大、线性化处理和补偿等环节后,将其转换成标准信号输出。

这一过程实现了温度的准确测量和可靠传输,为工业生产过程中的温度控制提供了重要的支持。

总之,温度变送器作为工业自动化控制领域中不可或缺的一部分,其工作原理的理解对于工程技术人员来说至关重要。

通过本文的介绍,相信读者对温度变送器的工作原理已有了更清晰的认识,希望能对大家的工作和学习有所帮助。

温度变送器的工作原理

温度变送器的工作原理

温度变送器的工作原理
温度变送器是一种常用的工业自动化仪表,用于测量和转换温度信号。

它的工作原理是基于热电偶、热电阻或半导体温度传感器的信号转换原理,通过将温度信号转换成标准信号输出,实现对温度的准确测量和控制。

首先,让我们来了解一下温度变送器的构成。

温度变送器通常由温度传感器、信号调理电路和输出电路组成。

温度传感器负责采集被测介质的温度信号,信号调理电路用于对传感器输出的信号进行放大、滤波和线性化处理,输出电路则将处理后的信号转换成标准信号输出,如4-20mA电流信号或0-10V电压信号。

其次,让我们来了解一下温度变送器的工作原理。

当温度传感器接触到被测介质时,根据热电偶、热电阻或半导体温度传感器的特性,产生相应的电压或电阻信号。

这个信号会经过信号调理电路进行放大、滤波和线性化处理,以保证输出的信号符合标准的输入输出关系。

最后,输出电路将处理后的信号转换成标准信号输出,供给给控制系统或显示仪表进行显示和控制。

在实际应用中,温度变送器通常与温度显示仪表、温度控制器
或PLC等设备配合使用,实现对温度的实时监测和控制。

它被广泛应用于化工、电力、冶金、石油、制药等领域,对生产过程中的温度进行监测和控制,保证生产过程的稳定性和安全性。

总的来说,温度变送器的工作原理是基于温度传感器的信号转换原理,通过信号调理和输出电路的处理,将温度信号转换成标准信号输出,实现对温度的准确测量和控制。

它在工业自动化控制中起着重要的作用,是保证生产过程稳定运行的重要仪表设备。

温度变送器的技术参数

温度变送器的技术参数

温度变送器的技术参数一、引言温度变送器是一种用于测量温度并将其转换为标准信号输出的设备。

它广泛应用于各种工业自动化控制领域,如化工、石油、电力、冶金等行业。

本文将详细介绍温度变送器的技术参数。

二、温度变送器的定义温度变送器是一种将热电偶或热敏电阻等传感器测得的温度信号转换为标准信号输出的设备。

它通常由传感器模块、信号调理模块和输出模块组成。

三、温度变送器的技术参数1. 量程范围量程范围是指温度变送器能够测量的最小和最大温度值。

通常情况下,不同型号的温度变送器具有不同的量程范围,例如-50℃~150℃或0℃~400℃等。

2. 精确度精确度是指温度变送器测量结果与实际值之间的误差。

通常情况下,精确度可以分为静态精确度和动态精确度两种。

静态精确度是指在稳态条件下,测量结果与实际值之间的误差;动态精确度是指在温度变化较大时,测量结果与实际值之间的误差。

3. 稳定性稳定性是指温度变送器在长时间使用中,输出信号的稳定程度。

通常情况下,稳定性可以分为零点稳定性和满度稳定性两种。

零点稳定性是指在零点处,输出信号的稳定程度;满度稳定性是指在满量程处,输出信号的稳定程度。

4. 响应时间响应时间是指温度变送器从接收到温度信号到输出标准信号所需的时间。

通常情况下,响应时间越短,温度变送器对温度变化的反应速度越快。

5. 输出信号输出信号是指温度变送器将测得的温度转换为标准信号后所输出的形式。

常见的输出信号包括模拟量和数字量两种。

模拟量通常以电流或电压形式输出;数字量则以数字形式输出。

6. 工作电源工作电源是指供给温度变送器工作所需的电源电压。

通常情况下,不同型号的温度变送器具有不同的工作电源要求,例如12V、24V或220V等。

7. 环境温度环境温度是指温度变送器能够正常工作的环境温度范围。

通常情况下,环境温度范围应符合国际标准,例如-20℃~70℃等。

8. 防护等级防护等级是指温度变送器的外壳具有的防护性能。

通常情况下,防护等级可分为IP65、IP67、IP68等不同等级,其中IP68表示最高防护等级。

温度变送器工作原理

温度变送器工作原理

温度变送器工作原理温度变送器是一种常见的工业控制设备,用于将温度信号转换为标准的电流、电压或数字信号输出,以便于监测和控制系统对温度的实时反馈。

温度变送器的工作原理是基于热敏元件的特性和信号转换电路的原理。

热敏元件是温度变送器的核心部件,常见的热敏元件有热电偶、热敏电阻和热敏电容等。

这些热敏元件都具有随温度变化而改变电阻、电压或电容的特性,利用这些特性可以实现温度的测量和转换。

热电偶是由两种不同金属导线焊接在一起而成,当焊点处温度发生变化时,两种金属导线的热电势也会发生变化,从而产生微小的电压信号。

温度变送器通过放大和滤波这个微小的电压信号,将其转换为标准的电流或电压输出,以便于监测和控制系统的使用。

热敏电阻是一种随温度变化而改变电阻值的元件,常见的热敏电阻有铂金热敏电阻和镍铬热敏电阻等。

温度变送器通过将热敏电阻接入一个恒流源电路中,测量电阻值的变化,然后将其转换为标准的电流或电压输出。

热敏电容是一种随温度变化而改变电容值的元件,温度变送器通过测量电容值的变化,并将其转换为标准的电流或电压输出。

除了热敏元件外,温度变送器还包括信号转换电路和补偿电路。

信号转换电路用于放大、滤波和线性化热敏元件的信号,以便于得到稳定和准确的输出信号。

补偿电路用于对热敏元件的非线性特性进行补偿,以确保输出信号与实际温度之间的准确对应关系。

在实际应用中,温度变送器通常还包括温度补偿和线性化补偿功能。

温度补偿是指根据环境温度对热敏元件的影响进行补偿,以确保输出信号与实际温度之间的准确对应关系。

线性化补偿是指根据热敏元件的非线性特性进行补偿,以确保输出信号与实际温度之间的线性关系。

总的来说,温度变送器的工作原理是基于热敏元件的特性和信号转换电路的原理,通过测量、放大和转换热敏元件的信号,实现温度的测量和转换。

同时,通过温度补偿和线性化补偿,确保输出信号与实际温度之间的准确对应关系。

温度变送器在工业控制系统中起着至关重要的作用,广泛应用于化工、电力、冶金、石油、制药等领域。

温度变送器的工作原理

温度变送器的工作原理

温度变送器的工作原理
温度变送器是一种用于测量、转换和传输温度信号的仪器。

它可以将温度信号转换为标准的电信号,以便在远距离传输或作为其他设备的输入。

温度变送器工作原理如下:
1. 温度感应器:温度变送器通常配备了温度感应器,常见的有热电阻和热电偶。

热电阻是利用金属电阻随温度的变化而变化,而热电偶则是通过两种不同金属之间的热电效应来测量温度。

2. 信号转换:温度感应器读取环境的温度,并将其转换为电信号。

这些信号可以是电压信号或电流信号。

在一些情况下,温度变送器还会进行一些增益或补偿操作,以确保输出信号的准确性。

3. 信号调理:温度变送器会对转换后的信号进行调理,以便进行传输或作为其他设备的输入。

这可能涉及到放大、滤波和线性化等操作,以确保信号的稳定性和可靠性。

4. 输出信号:最后,温度变送器会将调理后的信号输出给接收方。

这可以是一条传输线路、一个数据记录器或者其他需要温度输入的设备。

总的来说,温度变送器的工作原理是将温度感应器读取到的温度信号转换为标准的电信号,并经过调理后输出给其他设备使
用。

这样,温度变送器可以在工业控制、自动化系统等领域中起到重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温度变送器
一.简介
温度变送器采用热电偶、热电阻作为测温元件,从测温元件输出信号送到变送器模块,经过稳压滤波、运算放大、非线性校正、V/I转换、恒流及反向保护等电路处理后,转换成与温度成线性关系的4~20mA电流信号0-5V/0-10V电压信号,数字信号输出。

变送器如果由两个用来测量温差的传感器组成,输出信号与温差之间有一给定的连续函数关系。

故称为温度变送器。

应用领域:石油、化工、化纤;纺织、橡胶、建材;电力、冶金、医药;食品等工业领域现场测温过程控制;特别适用于计算机测控系统,也可与仪表配套使用.
二、性能指标
1、执行标准:IEC688:1992,QB
2、输入范围:-60℃~175℃
3、精度等级:≤0.5%.F.S
4、整机功耗:≤0.5VA
5、绝缘电阻:≥20MΩ(DC500V)
6、响应时间:≤350mS
7、工作环境:-10℃~50℃,20%~90%无凝露
8、贮存环境:-40℃~70℃,20%~95%无凝露
9、将被测环境温度隔离转换成按线性比例输出的单路标准直流电压或直流电流
10、低功耗、可靠性高
11、优良的抗干扰能力
12、拔插端子接口、标准导轨(35mm)安装
13、体积小、外型尺寸(mm):95(L)×37(W)×32(H)
温度变送器是一种将温度变量转换为可传送的标准化输出信号的仪表。

主要用于工业过程温度参数的测量和控制。

带传感器的变送器通常由两部分组成:传感器和信号转换器。

传感器主要是热电偶或热电阻;信号转换器主要由测量单元、信号处理和转换单元组成(由于工业用热电阻和热电偶分度表是标准化的,因此信号转换器作为独立产品时也称为变送器),有些变送器增加了显示单元,有些还具有现场总线功能。

三、技术参数
1、热电偶温度变送器技术指标
※输入
输入类型:K、E、S、B、T、J等型热电偶
温度量程范围:(如下图)
输入阻抗:≥20KΩ
冷端温度补偿:-15~+75℃
※输出
输出电流:4~20mA
输出回路供电:12~30VDC
最小工作电压:12VDC
负载电阻与供电电源的关系:
※综合参数
标准精度:±0.2%
温度漂移:基本误差/10℃
热电阻引线补偿:±0.1%(0~10Ω)
负载变化影响:±0.1%(允许负载范围内)
电源变化影响:±0.1%(12~30V)
开机响应时间:<1S(0~90%)
工作环境温度:-20~+70℃
防护等级:IP00/IP54(传感器防护等级决定)
电磁兼容:符合IEC61000,EN61000
2、热电阻温度变送器技术指标
※输入
温度量程范围:Pt100:-200~850℃ Cu50:-50~150℃
最小温度量程:50℃
引线电阻:≤10Ω
※输出
输出电流:4~20mA
输出回路供电:12~30VDC
最小工作电压:12VDC
负载电阻与供电电源的关系:
负载电阻(包括引线电阻)=供电电源(V)-12(V)/0.02A
※综合参数
标准精度:±0.2%(参见选型表)注:需要高精度可订制
温度漂移:基本误差/10℃
热电阻引线补偿:±0.1%(0~10Ω)
负载变化影响:±0.1%(允许负载范围内)
电源变化影响:±0.1%(12~30V)
开机响应时间:<1S(0~90%)
工作环境温度:-20~+70℃
防护等级:IP00/IP54(传感器防护等级决定)
电磁兼容:符合IEC61000,EN61000
外型图
模块式温度变送器外形结构图
导轨式温度变送器外形结构图
优势分析
模拟型
●精度高
●量程、零点外部连续可调
●稳定性能好
●正迁移可达500%、负迁移可达600%
●二线制、三线制、四线制
●阻尼可调、耐过压
●固体传感器设计
●无机械可动部件、维修量少
●重量轻(2.4kg)
●全系列统一结构、互换性强
●小型化(166mm总高)
●接触介质的膜片材料可选
●单边抗过压强
●低压浇铸铝合金壳体
智能型
●超级的测量性能,用于压力、差压、液位、流量测量
●数字精度:+(-)0.05%
●模拟精度:+(-)0.75%+(-)0.1%F.S
●全性能:+(-)0.25F.S
●稳定性:0.25% 60个月
●量程比:100:1
●测量速率:0.2S
●小型化(2.4kg)全不锈钢法兰,易于安装(见图右)
●过程连接与其它产品兼容,实现最佳测量
●世界上唯一采用H合金护套的传感器(专利技术),实现了优良的冷、热稳定性
●采用16位计算机的智能变送器
●标准4-20mA,带有基于HART协议的数字信号,远程操控
●支持向现场总线与基于现场控制的技术的升级。

四、注意事项
温度变送器的供电电源不得有尖峰,否则容易损坏变送器。

变送器的校准应在加电5
分钟后进行,并且要注意当时环境温度。

测高温时(>>100℃)传感器腔与接线盒间应用填充材料隔离,防止接线盒温度过高烧坏变送器。

在干扰严重的情况下使用传感器,外壳应牢固接地避免干扰,电源及信号输出应采用Ф10屏蔽电缆传输,压线螺母应旋紧以保证气密性。

只有RWB型温度变送器有0~10mA输出,为三线制,在量程值的5%以下,由于三极管的关断特性造成不线性。

温度变送器每6个月应校准一次,如果DWB因受电路限制不能进行线性修正,最好按说明选择量程以保证其线性。

数据显示不准的原因
1.线路长,信号衰减;
2.线路阻抗不匹配;
3.信号受干扰,没有屏蔽
一体化温度变送器:
1、一体化热电阻温度变送器是体积比较小的、可以安装到热电阻的接线盒内的温度变送器。

一体化温度变送器一般由测温探头(热电偶或热电阻传感器)和两线制固体电子单元组成。

采用固体模块形式将测温探头直接安装在接线盒内,从而形成一体化的变送器。

一体化温度变送器一般分为热电阻和热电偶型两种类型。

2、热电阻温度变送器是由基准单元、R/V转换单元、线性电路、反接保护、限流保护、V/I 转换单元等组成。

测温热电阻信号转换放大后,再由线性电路对温度与电阻的非线性关系进行补偿,经V/I转换电路后输出一个与被测温度成线性关系的4~20mA的恒流信号。

3、热电偶温度变送器一般由基准源、冷端补偿、放大单元、线性化处理、V/I转换、断偶处理、反接保护、限流保护等电路单元组成。

它是将热电偶产生的热电势经冷端补偿放大后,再帽由线性电路消除热电势与温度的非线性误差,最后放大转换为4~20mA电流输出信号。

为防止热电偶测量中由于电偶断丝而使控温失效造成事故,变送器中还设有断电保护电路。

当热电偶断丝或接解不良时,变送器会输出最大值(28mA)以使仪表切断电源。

4、一体化温度变送器具有结构简单、节省引线、输出信号大、抗干扰能力强、线性好、显示仪表简单、固体模块抗震防潮、有反接保护和限流保护、工作可靠等优点。

(LCD工作温度范围:-20℃~+70℃);
10.外形尺寸:¢44mm;
11.安装孔间距:33mm;
12.抗机械振动:10~60HZ,0.21mm正弦波;
13.抗射频干扰:IEC61000-4-3, 20V/M,80~1000MHZ
量程范围:
一体化温度变送器就是将热电偶或热电阻传感器被测温度转换成电信号,再将该信号送入变送器的输入网络,该网络包含调零和热电偶补偿等相关电路。

经调零后的信号输入到运算放大器进行信号放大,放大的信号一路经V/I转换器计算处理后以4-20mA直流电流输出;另一路经A/D转换器处理后到表头显示。

变送器的线性化电路有两种,均采用反馈方式。

对热电阻传感器,用正反馈方式校正,对热电偶传感器,用多段折线逼近法进行校正。

一体化数字显示温度变送器有两种显示方式。

LCD显示的温度变送器用两线制方式输出,LED显示的温度变送器用三线制方式输出。

六、安装问题
变送器无输出
①变送器无输出,查看变送器电源是否接反;
把电源极性接正确
②测量变送器的供电电源,是否有24V直流电压;
必须保证供给变送器的电源电压≥12V(即变送器电源输入端电压≥12V)。

如果没有电源,则应检查回路是否断线、检测仪表是否选取错误(输入阻抗应≤250Ω);等等。

③如果是一体化带表头的,检查表头是否损坏(可以先将表头的两根线短路,如果短路后正常,则说明是表头损坏);
表头损坏的则需另换表头,
④将电流表串入24V电源回路中,检查电流是否正常;
如果正常则说明变送器正常,此时应检查回路中其他仪表是否正常。

变送器输出精度不合要求
1、变送器电源是否正常
如果小于12VDC,则应检查回路中是否有大的负载,变送器负载的输入阻抗应符合RL ≤(变送器供电电压-12V)/(0.02A)Ω
2、是否进行过一体化调试
进行一体化调试
3、热电阻(或热电偶)与外壳绝缘是否达到要求
如绝缘不合要求,则需进行相应的绝缘处理。

相关文档
最新文档