勾股定理单元 易错题检测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题

1.如图,在ABC 中,,904C AC ︒

∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC 上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )

A .不存在

B .等于 1cm

C .等于 2 cm

D .等于 2.5 cm

2.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )

A .254cm

B .152

cm C .7cm D .132cm 3.如图,已知圆柱的底面直径6BC π=,高3AB =,小虫在圆柱侧面爬行,从C 点爬到

A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程的平方为( )

A .18

B .48

C .120

D .72

4.如图是一块长、宽、高分别为6cm 、4cm 、3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )

A .cm

B .cm

C .cm

D .9cm

5.如图,ABC 中,90ACB ∠=︒,2AC =,3BC =.设AB 长是m ,下列关于m 的四种说法:①m 是无理数;②m 可以用数轴上的一个点来表示;③m 是13的算术平方根;④23m <<.其中所有正确说法的序号是( )

A .①②

B .①③

C .①②③

D .②③④ 6.下列结论中,矩形具有而菱形不一定具有的性质是( )

A .内角和为360°

B .对角线互相平分

C .对角线相等

D .对角线互相垂直 7.如图,在等腰Rt △ABC 中,∠C =90°,AC =7,∠BAC 的角平分线AD 交BC 于点D ,则点D 到AB 的距离是( )

A .3

B .4

C .7(21)-

D .7(21)+ 8.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( )

A .8

B .9.6

C .10

D .12 9.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( )

A 5

B 51

C 51

D .51-

10.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF 的长是( )

A.14 B.13 C.143D.142

二、填空题

11.如图,∠MON=90°,△ABC的顶点A、B分别在OM、ON上,当A点从O点出发沿着OM向右运动时,同时点B在ON上运动,连接OC.若AC=4,BC=3,AB=5,则OC 的长度的最大值是________.

12.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)

的周长为_______________.13.在△ABC中,AB=15,AC=13,高AD=12,则ABC

14.在△ABC中,AB=6,AC=5,BC边上的高AD=4,则△ABC的周长为__________. 15.《算法统宗》中有一道“荡秋干”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A离地1尺,将它往前推送10尺(水平距离)时,点A对应的点B就和某人一样高,若此人的身高为5尺,秋干的绳索始终拉得很直,试问绳素有多长?”根据上述条件,秋干绳索长为________尺.

16.如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =6,AD =BC =10,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为______.

17.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边长为_____.

18.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC ,则AC 边上的高的长度是_____________.

19.如图的实线部分是由Rt ABC ∆经过两次折叠得到的.首先将Rt ABC ∆沿高CH 折叠,使点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中90ACB ∠=︒,15cm BC =,20cm AC =,则MB '的长为______.

20.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.

三、解答题

21.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.

(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;

(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;

(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.

22.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处.

(1)求BF 的长;

(2)求CE 的长.

23.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE ,

(1)求证:ABD ACE ≅;

(2)若AF 平分DAE ∠交BC 于F ,

①探究线段BD ,DF ,FC 之间的数量关系,并证明;

②若3BD =,4CF =,求AD 的长,

相关文档
最新文档