人教版小学数学公式定理定义汇总
人教版数学一至六年级概念公式大全
人教版小学数学概念公式大全一、图形计算公式1、三角形的面积=底×高÷2。
公式 S= a×h÷22、正方形的面积=边长×边长公式 S= a²或S=a×a3、长方形的面积=长×宽公式 S= ab4、平行四边形的面积=底×高公式 S= ah5、梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷26、内角和:三角形的内角和=180度。
7、长方体的体积=长×宽×高公式:V=abh8、长方体(或正方体)的体积=底面积×高公式:V=Sh9、正方体的体积=棱长×棱长×棱长公式:V=aaa=a310、圆的周长=直径×π公式:L=πd=2πr11、圆的面积=半径×半径×π公式:S=πr212、圆柱的侧面积:圆柱的侧面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh13、圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr214、圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh15、圆锥的体积=1/3底面×积高。
公式:V=1/3Sh二、数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加减乘除加数+加数=和一个加数=和-另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数三、计算法则1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
新人教版小学1-6年级数学公式+定律汇总
新人教版小学1-6年级数学公式+定律一网打尽!公式01几何公式►长方形的周长=(长+宽)×2C=(a+b)×2►长方形的面积=长×宽S=ab►正方形的周长=边长×4C=4a►正方形的面积=边长×边长S=a.a=a►三角形的面积=底×高÷2S=ah÷2►三角形的内角和=180度►平行四边形的面积=底×高S=ah►梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2►圆的直径=半径×2(d=2r)►圆的半径=直径÷2(r=d÷2)►圆的周长=圆周率×直径=圆周率×半径×2C=πd =2πr►圆的面积=圆周率×半径×半径S=πr×r►长方体的体积=长×宽×高V=abh►正方体的体积=棱长×棱长×棱长V=aaa►圆柱的侧面积:圆柱的侧面积等于底面的周长乘高S=ch=πdh=2πrh►圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积S=ch+2s=ch+2πr×r►圆柱的体积:圆柱的体积等于底面积乘高V=Sh►圆锥的体积=1/3底面×积高V=1/3Sh02单位换算长度单位1公里=1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米面积单位1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1公顷=10000平方米1亩=666.666平方米体积单位1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1升=1立方分米=1000毫升1毫升=1立方厘米质量单位1吨=1000千克1千克=1000克=1公斤=2市斤人民币单位1元=10角1角=10分1元=100分时间单位1世纪=100年1年=12月大月(31天)有:18月小月(30天)的有:49月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分=3600秒1分=60秒03数量关系►每份数×份数=总数总数÷每份数=份数总数÷份数=每份数►1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数►速度×时间=路程路程÷速度=时间路程÷时间=速度►单价×数量=总价总价÷单价=数量总价÷数量=单价►工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率►加数+加数=和和-一个加数=另一个加数►被减数-减数=差被减数-差=减数差+减数=被减数►因数×因数=积积÷一个因数=另一个因数►被除数÷除数=商被除数÷商=除数商×除数=被除数04特殊问题►相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间►追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间►流水问题(1)一般公式:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度►浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量►利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-5%)►工程问题工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间1÷工作时间=单位时间内完成工作总量的几分之几1÷单位时间能完成的几分之几=工作时间02数与数的运算01概念►整数1、整数的意义自然数和0都是整数。
人教版4-6年级数学公式与定理和知识点
人教版4-6年级数学公式与定理和知识点四年级数学公式与定理和知识点:1.加法交换律:a + b = b + a,两个数相加的结果与它们的顺序无关。
2.加法结合律:(a + b) + c = a + (b + c),三个数相加的结果不受加法顺序的影响。
3.减法和加法的关系:a - b = a + (-b),减法可以转化为加法的形式。
4.乘法交换律:a × b = b × a,两个数相乘的结果与它们的顺序无关。
5.乘法结合律:(a × b) × c = a × (b × c),三个数相乘的结果不受乘法顺序的影响。
6.数的倒数:a的倒数为1/a,即a × 1/a = 1。
7.乘法和除法的关系:a ÷ b = a × (1/b),除法可以转化为乘法的形式。
五年级数学公式与定理和知识点:1.分数的加法:a/b + c/d = (ad + bc) / bd,分数相加时,分子相乘再相加,分母保持不变。
2.分数的减法:a/b - c/d = (ad - bc) / bd,分数相减时,分子相乘再相减,分母保持不变。
3.分数的乘法:a/b × c/d = ac/bd,分数相乘时,分子相乘,分母相乘。
4.分数的除法:a/b ÷ c/d = ad/bc,分数相除时,转化为乘法问题的倒数,即a/b × d/c。
5.分数的化简:将一个分数化简为最简形式,即分子和分母没有公因数,并且分母为正数。
6.分数与小数的互相转化:分数可以转化为小数,小数也可以转化为分数。
7.分数的比较:分数大小比较可以通过将两个分数转化为相同分母进行比较。
六年级数学公式与定理和知识点:1.百分数的意义:百分数表示部分与整体之间的比例关系,百分之一即为1%。
2.百分数的转化:将一个分数或小数转化为百分数时,分子或小数部分乘以100。
3.百分数的运算:将百分数的加法、减法、乘法、除法转化为对应的分数或小数运算。
小学数学公式定理定义大全
小学数学公式定理定义大全第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
人教版小学数学定义定理公式
人教版小学数学定义定理公式
兴趣数学的设计改动以单纯主动接受方式为主要特征的传统的数学学习方式,注重对先生自动获取知识才干的培育。
我们要格外注重兴趣数学。
下面是小编预备的人教版小学数学定义定理公式,欢迎大家阅读!
三角形的面积=底高2。
公式S=ah2
正方形的面积=边长边长公式S=aa
长方形的面积=长宽公式S=ab
平行四边形的面积=底高公式S=ah
梯形的面积=(上底+下底)高2公式S=(a+b)h2
内角和:三角形的内角和=180度。
长方体的体积=长宽高公式:V=abh
长方体(或正方体)的体积=底面积高公式:V=abh
正方体的体积=棱长棱长棱长公式:V=aaa
圆的周长=直径公式:L=r
圆的面积=半径半径公式:S=r2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=rh
圆柱的外表积:圆柱的外表积等于底面的周长乘高再加上中间的圆的面积。
公式:S=ch+2s=ch+2r2
圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh
圆锥的体积=1/3底面积高。
公式:V=1/3Sh
分数的加、减法那么:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法那么:用分子的积做分子,用分母的积做分母。
分数的除法那么:除以一个数等于乘以这个数的倒数。
由小编为大家提供的人教版小学数学定义定理公式就到这
里了,希望可以协助到您!。
小学数学公式定理定义大全
小学数学公式定理定义大全第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O 的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学各位公式定义定律大全
小学数学公式大全1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a +b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒积=底面积×高V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
部编人教版小学阶段各年级数学公式定理定义大全
部编人教版小学数学公式定理定义大全第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
7、简便乘法:被乘数、乘数末尾有O的乘法,可以先把O 前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
9、什么叫方程?含有未知数的等式叫方程。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
(完整)人教版小学数学公式定理定义汇总,文档
小学数学公式定理定义大全第一局部:看法1、加法交换律:两数相加交换加数的地址,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的地址,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,能够把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:〔2+4〕× 5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大〔或减小〕相同的倍数,商不变。
O 除以任何不是 O的数都得 O。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的根本性质:等式两边同时乘以〔或除以〕一个相同的数,等式依旧成立。
等式两边同时加上或减去同一个数,等式依旧成立.8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
10、分数:把单位“ 1〞平均分成假设干份,表示这样的一份或几分的数,叫分数。
11、分数的加减法那么:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,尔后再加减。
12、分数大小的比较:同分母的分数对照较,分子大的分数大。
异分母的分数对照较,先通分尔后再比较;假设分子相同,分母大的反而小。
13、甲数除以乙数〔 0除外〕,等于甲数乘以乙数的倒数。
14、分数的加、减法那么:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,尔后再加减。
15、分数乘分数的乘法那么:用分子的积做分子,用分母的积做分母。
分数乘整数的原那么:用分数的分子和整数相乘的积作分子,分母不变。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大也许分子和分母相等的分数叫做假分数。
新人教版小学1-6年级数学公式+定律汇总
新人教版小学1-6年级数学公式+定律一网打尽!公式01几何公式►长方形的周长=(长+宽)×2C=(a+b)×2►长方形的面积=长×宽S=ab►正方形的周长=边长×4C=4a►正方形的面积=边长×边长S=a.a=a►三角形的面积=底×高÷2S=ah÷2►三角形的内角和=180度►平行四边形的面积=底×高S=ah►梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2►圆的直径=半径×2(d=2r)►圆的半径=直径÷2(r=d÷2)►圆的周长=圆周率×直径=圆周率×半径×2C=πd =2πr►圆的面积=圆周率×半径×半径S=πr×r►长方体的体积=长×宽×高V=abh►正方体的体积=棱长×棱长×棱长V=aaa►圆柱的侧面积:圆柱的侧面积等于底面的周长乘高S=ch=πdh=2πrh►圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积S=ch+2s=ch+2πr×r►圆柱的体积:圆柱的体积等于底面积乘高V=Sh►圆锥的体积=1/3底面×积高V=1/3Sh02单位换算长度单位1公里=1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米面积单位1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1公顷=10000平方米1亩=666.666平方米体积单位1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1升=1立方分米=1000毫升1毫升=1立方厘米质量单位1吨=1000千克1千克=1000克=1公斤=2市斤人民币单位1元=10角1角=10分1元=100分时间单位1世纪=100年1年=12月大月(31天)有:18月小月(30天)的有:49月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分=3600秒1分=60秒03数量关系►每份数×份数=总数总数÷每份数=份数总数÷份数=每份数►1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数►速度×时间=路程路程÷速度=时间路程÷时间=速度►单价×数量=总价总价÷单价=数量总价÷数量=单价►工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率►加数+加数=和和-一个加数=另一个加数►被减数-减数=差被减数-差=减数差+减数=被减数►因数×因数=积积÷一个因数=另一个因数►被除数÷除数=商被除数÷商=除数商×除数=被除数04特殊问题►相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间►追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间►流水问题(1)一般公式:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度►浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量►利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-5%)►工程问题工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间1÷工作时间=单位时间内完成工作总量的几分之几1÷单位时间能完成的几分之几=工作时间02数与数的运算01概念►整数1、整数的意义自然数和0都是整数。
小学数学定理、定义、公式大全
1. 加法的意义:把两个数合成一个数的运算,叫做加法。
相加的两个数叫做加数,加得的数叫做和。
注意:一个数加上0,还得原数。
2. 减法的意义:已知两个数的和与其中的一加数,求另一个加数运算,叫做减法。
在减法中,已知的和叫做被减数,减的已知加数叫减数,求出的未知加数叫做差。
减法是加法的逆运算。
注意:(1)一个数减去0,还得原数。
(2)被减数等于减数,差是0。
3. 乘法的意义:求几个相同加数的和的简便运算,叫做乘法。
相乘的两个数叫做因数,乘得的数叫做积。
注意:(1)一个数和1相乘,仍得原数。
(2)一个数和0相乘,仍得0。
4. 除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
在除法中,已知的积叫做被除数,已知的一个因数叫做除数,求出的未知因数叫商。
除法是乘法的逆运算。
注意:(1)一个数除以1还得原数。
平行线:同一平面内不相交的两条直线叫做平行线垂直:两条直线相交成直角,像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
1 、正方形:C:周长 S:面积 a:边长,周长=边长×4面积=边长×边长2 、正方体:V:体积 a:棱长表面积=棱长×棱长×6体积=棱长×棱长×棱长3 、长方形:C:周长 S:面积 a:边长周长=(长+宽)×2面积=长×宽4 、长方体:V:体积 s:面积 a:长 b: 宽 h:高表面积(长×宽+长×高+宽×高)×2体积=长×宽×高5、三角形:s:面积 a:底 h:高三角形三个内角和=1800面积=底×高÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形:s:面积 a:底 h:高面积=底×高7、梯形:s:面积 a:上底 b:下底 h:高8、圆形:S:面积 C:周长π d:直径 r:半径周长=直径×∏=2×∏×半径面积=半径×半径×π圆直径=半径×2圆半径=直径÷29、圆柱体:v:体积 h:高 s;底面积 r:底面半径 c:底面周长侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高体积=侧面积÷2×半径10、圆锥体:v:体积h:高s;底面积r:底面半径体积=底面积×高÷31、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的 最大公约数。
小学数学公式定理定义大全
小学数学公式定理定义第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O 除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学公式定理定义大全
小学数学公式定理定义大全1.数与数的运算:定义:数是用来计数、比较大小和进行运算的抽象概念。
数的种类包括自然数、整数、分数、小数等。
定理1:加法交换律:a+b=b+a定理2:加法结合律:(a+b)+c=a+(b+c)定理3:乘法交换律:a×b=b×a定理4:乘法结合律:(a×b)×c=a×(b×c)定理5:乘法分配律:a×(b+c)=(a×b)+(a×c)2.数的整除与倍数:定义:如果一个数b除以另一个数a可以整除,即没有余数,那么a就称为b的约数,b称为a的倍数。
定理6:若a能整除b,b能整除c,则a能整除c。
定理7:任何一个数a都能整除它本身。
3.算式的计算规则:定义:算式是由数字、符号和运算符号组成的表达式,用来表示数与数之间的关系。
定理8:在一个算式中,先进行乘除运算,再进行加减运算。
定理9:在一个算式中,先进行括号内的运算,再进行括号外的运算。
4.分数与小数:定义:分数是表示部分数量的数,小数是表示除法运算结果的数。
定理10:分数可以化简为最简形式,即分子与分母没有公因数。
定理11:小数可以化为分数,分子是小数点后的数字,分母是1后面跟着相应数量的0。
定理12:分数和小数可以相互转换,如1/2和0.5表示同一个数。
5.图形的性质:定义:图形是由点、线、面组成的平面图形。
定理13:平行线在同一平面上,它们不会相交。
定理14:垂直线之间的夹角是90度。
6.长方形和正方形:定义:长方形是一个长和宽不同的四边形,正方形是一个边长相等的长方形。
定理15:长方形的面积等于长乘以宽,即A=l×w。
定理16:正方形的面积等于边长的平方,即A=s^27.三角形的性质:定义:三角形是由三条边和三个内角组成的多边形。
定理17:直角三角形的两条直角边的平方和等于斜边的平方,即a^2+b^2=c^2(勾股定理)。
人教部编版小学1到6年级数学公式定理定义大全
人教部编版小学1到6年级数学公式定理定义大全第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。
简便乘法:被乘数、乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
人教版小学数学概念及公式大全
探究工民建施工中应用人工挖孔桩技术人工挖孔桩是整个建筑施工的基础条件,对建筑质量起着决定性作用。
大部分的工民建工程均采纳人工挖孔桩施工技术,在人工挖孔桩施工中,程序要求复杂严格,从人工挖孔到成孔直至在孔桩内填充钢筋和浇筑混凝土这一长串的施工程序,都要由具有相应资质及丰富经验的施工队完成。
1.工民建施工中人工挖孔桩常见的问题人工挖孔桩施工关系到整个建筑的进度与质量,尽管实际施工中对此施工过程极为严格,但还是无法幸免出现许多问题,常见的施工问题及引起原因如下:一是地下水问题引起挖孔进度受到影响,难以成孔。
工民建施工过程中,因地下水问题引起的各方面影响都非常大。
一般来说,地下水流域极广,遍布地下,因此极易出现地下水位降低致使地面沉降,造成地下水降低地域的建筑及其他设备受损。
另外地下水中富含各类有机物质经过土壤层将会释放出部分有害气体渗入孔桩内,对施工人员的人身安全造成威胁;二是处于地下水位较高位置的砂性泥土与淤泥土随压力在施工时进入孔桩内导致涌管或孔桩坍塌。
在人工挖孔桩时,施工作用使得土质松动,孔桩周围区域的土质变得更加松散,强度降低,一旦缺乏护壁措施,极大可能造成孔壁大面积坍塌,这样重大的事故后果不堪设想;三是孔桩内底部清理不彻底导致测量失误,垂直度不符合标准将会导致孔桩进行浇筑混凝土时,孔壁受力不均致使变形,进而桩位偏移。
另外,浇筑混凝土过程中质量不达标将会使得桩孔内出现大量积水。
亦或是挖孔时运用一般串筒形式而非水中浇灌混凝土导管,就会出现浇灌滚凝土过程发生离析,并不利于孔桩内混凝土的振捣。
2.工民建施工中人工挖孔桩技术的应用人工挖孔桩技术因其具有施工简单、成本低、承载性能强等优点而受到工民建施工团队的青睐,应用极为广泛,相比于其他的挖孔技术,人工挖孔桩技术的确具有其优越性,在机械自动化如此普及的今天仍然具有其应用的存在价值,受到欢迎。
2.1人工挖孔桩施工技术具备的优点根据长期的施工实践,总结起来,人工挖孔桩施工技术具有三大优点,下面进行一一详述:首先投入成本相对较低,减少施工时占用的施工土地面积,充分利用施工场地,在降低成本的同时提高土地利用率。
人教版小学数学定义定理公式
人教版小学数学定义定理公式
人教版小学数学定义定理公式
趣味数学的设计改变以单纯被动接受方式为主要特征的传统的数学学习方式,重视对学生主动获取知识能力的培养。
我们要格外重视趣味数学。
下面是小编准备的人教版小学数学定义定理公式,欢迎大家阅读!
三角形的面积=底高2。
公式S=ah2
正方形的面积=边长边长公式S=aa
长方形的面积=长宽公式S=ab
平行四边形的面积=底高公式S=ah
梯形的面积=(上底+下底)高2公式S=(a+b)h2
内角和:三角形的内角和=180度。
长方体的体积=长宽高公式:V=abh
长方体(或正方体)的体积=底面积高公式:V=abh
正方体的体积=棱长棱长棱长公式:V=aaa
圆的周长=直径公式:L=r
圆的面积=半径半径公式:S=r2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=rh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2r2
圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh
圆锥的体积=1/3底面积高。
公式:V=1/3Sh。
小学数学公式定理定义大全【范本模板】
小学数学公式定理定义大全第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式.9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算.10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1。
小学数学公式定理定义大全
第一部分:概念1、加法交换律:两数相加交换加数的位置和不变。
2、加法结合律:三个数相加先把前两个数相加或先把后两个数相加再同第三个数相加和不变。
3、乘法交换律:两数相乘交换因数的位置积不变。
4、乘法结合律:三个数相乘先把前两个数相乘或先把后两个数相乘再和第三个数相乘它们的积不变。
5、乘法分配律:两个数的和同一个数相乘可以把两个加数分别同这个数相乘再把两个积相加结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里被除数和除数同时扩大(或缩小)相同的倍数商不变。
O 除以任何不是O 的数都得O。
简便乘法:被乘数、乘数末尾有O 的乘法可以先把O 前面的相乘零不参加运算有几个零都落下添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份表示这样的一份或几分的数叫做分数。
11、分数的加减法则:同分母的分数相加减只把分子相加减分母不变。
异分母的分数相加减先通分然后再加减。
12、分数大小的比较:同分母的分数相比较分子大的大分子小的小。
异分母的分数相比较先通分然后再比较;若分子相同分母大的反而小。
13、分数乘整数用分数的分子和整数相乘的积作分子分母不变。
14、分数乘分数用分子相乘的积作分子分母相乘的积作为分母。
15、分数除以整数(0 除外)等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式叫做带分数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学公式定理定义大全第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
等式两边同时加上或减去同一个数,等式仍然成立.8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的分数大。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
14、分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
15、分数乘分数的乘法则:用分子的积做分子,用分母的积做分母。
分数乘整数的原则:用分数的分子和整数相乘的积作分子,分母不变。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、什么叫比:两个数相除就叫做两个数的比。
比的基本性质:比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
21、什么叫比例:表示两个比相等的式子叫做比例。
22、比例的基本性质:在比例里,两外项之积等于两内项之积23、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y24、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x×y = k( k一定)或k / x = y25、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
26、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
其实,把小数化成百分数,只要把这个小数乘以100%就行了。
27、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位28、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
29、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
30、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做最大公约数。
)31、互质数:公约数只有1的两个数,叫做互质数。
32、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
33、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数)34、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公约数)35、最简分数:分子、分母是互质数的分数,叫做最简分数。
36、分数计算到最后,得数必须化成最简分数。
37、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行38、偶数和奇数:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
39、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
最小的质数是2.40、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
最小的合数是4.41、利息=本金×利率×时间42、利率:利息与本金的比值叫做利率第三部分:几何体1。
正方形正方形的周长=边长×4 公式:C=4a正方形的面积=边长×边长公式:S=a×a正方体的体积=边长×边长×边长公式:V=a×a×a2。
正方形长方形的周长=(长+宽)×2 公式:C=(a+b)×2长方形的面积=长×宽公式:S=a×b长方体的体积=长×宽×高公式:V=a×b×h3。
三角形三角形的面积=底×高÷2。
公式:S= a×h÷24。
平行四边形平行四边形的面积=底×高公式:S= a×h5。
梯形梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷26。
圆直径=半径×2 公式:d=2r 半径=直径÷2 公式:r= d÷2圆的周长=圆周率×直径公式:c=πd =2πr圆的面积=半径×半径×π 公式:S=πrr7。
圆柱圆柱的侧面积=底面的周长×高。
圆柱的表面积=底面的周长×高+两头的圆的面积。
圆柱的体积=底面积×高。
公式:V=Sh8。
圆锥圆锥的体积=底面积×高÷3=底面积×高×1/39.三角形内角和=180度。
10.平行线:同一平面内不相交的两条直线叫做平行线11.垂直:两条直线相交成直角,像这样的两条直线,12.我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
第四部分:计算公式数量关系式:1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、速度×时间=路程路程÷速度=时间路程÷时间=速度3、单价×数量=总价总价÷单价=数量总价÷数量=单价4、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率5、加数+加数=和和-一个加数=另一个加数6、被减数-减数=差被减数-差=减数差+减数=被减数7、因数×因数=积积÷一个因数=另一个因数8、被除数÷除数=商被除数÷商=除数商×除数=被除数9、植树问题:1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距+1⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-12 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距10 相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间11.追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间12.流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度13. 浓度问题:溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度14. .利润与折扣问题:利润:利润=售出价-成本折扣:如:打七五折,就是按照原价的75%出售。
现价是原价的75% 现价÷原价×100%=折扣(折扣<1)原价×折扣=现价现价÷折扣=原价降低百分比=1—折扣原价×降价百分比=降低的价格降低的价格÷降价百分比=原价利息:利息=本金×利率×时间本息(一共可以取出多少钱)=本金+利息成数:例如增加三成五,就是增加35%。
现在是原来的135%增长:现在=原来×(1+几成)减少:现在=原来×(1—几成)。