《电子测量基础》PPT课件
合集下载
第1章 电子测量原理
(7)测量环境
测量环境是指测量过程中人员、对象和仪器系统所处空 间的一切物理和化学条件的总和。它包括温度、湿度、重 力场、电磁场、辐射、化学气雾和粉尘,霉菌以及有关电 磁量(工作电流、电压、频率、源阻抗、负载阻抗、地磁 场、雷电等)的数值、范围及其变化。
17
电子科技大学
《电子测量原理》
(补充)计量的基本概念
方式多样化,灵活 单位自愿行为
自下而上 可越级溯源 “数据”的准确性
方式单一,不灵活 政府法制行为
自上而下 强调逐级传递 “器具”的准确性
26
电子科技大学
《电子测量原理》
• 1.1.2 电子测量的意义
它的优势表现在: (1)具有极快的速度
(2)具有极精细的分辨能力和很宽的作用范围
(3)极有利于信息传递 (4)极为灵活的变换技术,有利于信息的获取 (5)巨大的信息处理能力
1.1.1 测量的基本概念
• 3.测量的组成
(2)测量过程——基本要素之间的互动关系
测量过程是测量的主体(测量人员)获取测量客体(被测对 象)的量值信息的过程。 具体的整个过程如下图所示:
13
电子科技大学
《电子测量原理》
1.1.1 测量的基本概念
开 始 被测对象 论 证 阶 段 测量任务要求 现有仪器设备
(2)离开测量就不会有真正的科学
5
电子科技大学
《电子测量原理》
1.1.1 测量的基本概念
• 1 .测量的意义(续)
(3)在现代化的工业生产中,处处离不开测量
测量是精细加工的基础,没有测量也就没有现代化的制 造业。 生产水平越是高度发达,测量的规模就越大,需要的测 量技术与仪器也越先进。 (4)在高新技术和国防现代化建设中则更是离不开测量 比如航空航天领域,医学生物领域,农业、气象、环境、 勘探等各学科
《电子测量》课件
电子测量技术在人工智能中的应用
数据处理
人工智能需要大量的数 据进行训练和学习,电 子测量技术可以提供高 精度、高效率的数据处 理解决方案。
算法优化
人工智能算法的优化需 要电子测量技术进行性 能评估和改进。
嵌入式系统
人工智能的嵌入式系统 需要电子测量技术进行 硬件和软件的测试和调 试。
THANKS
功能
用于观察和测量电信号的 波形,测量信号的幅度、 频率等参数。
分类
模拟示波器和数字示波器 ,其中数字示波器又分为 实时示波器和采样示波器 。
使用注意事项
正确选择示波器的量程范 围,避免信号过载;根据 需要选择合适的触发模式 。
信号发生器
功能
产生各种波形信号,如正弦波、方波、三角波等 。
分类
模拟信号发生器和数字信号发生器。
网络化
网络化测量仪器将实现远程控制和数 据共享,提高测量效率和资源利用率 。
电子测量技术在物联网中的应用
传感器网络
物联网中的传感器网络需要高精度、高稳定性的电子测量技术进 行数据采集和处理。
无线通信
物联网中的无线通信技术需要电子测量技术进行信号质量测试和优 化。
智能家居
智能家居中的各种设备需要进行精确的电量、温度、湿度等参数的 测量,需要电子测量技术的支持。
当、零点漂移等。
环境误差
由于环境因素的变化,如温度 、湿度、气压等,对测量结果 造成的影响。
人为误差
由于操作人员的主观因素,如 视觉误差、操作不当等,对测 量结果造成的影响。
方法误差
由于测量方法的局限性或不完 善性,如测量电路的设计缺陷 、算法误差等,对测量结果造
成的影响。
电子测量的数据处理
电子测量技术课件PPT课件
应用领域
在电子设备和系统的电压 参数测量中广泛应用。
阻抗的测量
测量方法
通过使用阻抗分析仪等测 量仪器,可以测量电路中 的阻抗值。
测量原理
基于交流电的阻抗和感抗 的测量,通过阻抗分析仪 的测量和计算,得到被测 阻抗的值。
应用领域
在电子设备和系统的阻抗 参数测量中广泛应用。
频率和时间的测量
测量方法
应用领域
详细描述
频谱分析仪能够分析信号在不同频率下的幅度和频率,从而确定信号的频谱分布。频谱分析仪通常采用扫频技术, 通过改变本振信号的频率来覆盖所需的频率范围。在通信、雷达、电子对抗等领域中,频谱分析仪具有重要的应 用价值。
网络分析仪
总结词
网络分析仪是一种用于测量电子网络的阻抗特性的电子测量仪器。
详细描述
幅度、频率、相位等。
测量原理
基于电磁感应原理和电子线路的特 性,将电信号转换为适合测量的物 理量,如电压、电流、电阻等。
应用领域
在通信、雷达、音频处理等领域中 广泛应用。
电压的测量
01
02
03
测量方法
通过使用电压表或万用表 等测量仪器,可以测量电 路中的电压值。
测量原理
基于电压表的电阻和电流 的测量,通过欧姆定律计 算出被测电压的值。
未来,智能化测量技术将在越来越多的领域得到应用,如智能制造、智 能交通、智能医疗等,为各行业的智能化发展提供重要的技术支持。
虚拟仪器技术的前景
虚拟仪器技术是一种基于计算机的测试 和测量技术,它通过软件来模拟传统仪 器的硬件功能,从而实现测量的虚拟化。
虚拟仪器技术具有很多优点,如可重复 未来,随着计算机技术和软件技术的不 性强、易于维护和升级、可远程控制等, 断发展,虚拟仪器技术将得到更广泛的
电子测量与仪器教学课件第7章 频率特性测量及仪器
时域分析是研究信号的瞬时幅度u与时间t的变化关系,如信号通过电路后幅度的放大、衰 减或畸变等。通过时域测量可测定电路是否工作在线性区、电路的增益是否符合要求、时 间响应特性等。实际工作中常用的示波器就是典型的时域测量分析仪器,常用它来观测信 号电压随时间的变化,但它无法获得信号中包含哪些频率成分、它们之间的相对幅度如何 等信息,也无法得到信号通过某个系统后频率成分是否产生了变化及变化的大小等信息, 这些都必须借助于频域测量分析来完成。
频域分析则是研究信号中各频率分量的幅值A与频率f的关系,包括线性系统频率特性的测 量和信号的频谱分析。频率特性测量和频谱分析都是以频率为自变量,以频率分量的信号 值为因变量进行分析的,通常由频率特性测试仪(扫频仪)来完成。其中,频率特性测试仪利 用扫频测量法,可直接在显示屏上显示被测电路的频率响应特性;频谱分析仪则是对信号 本身进行分析和对线性系统非线性失真系数进行测量,从而可以确定信号所含的频率成分, 了解信号的频谱占用情况,以及线性系统的非线性失真特性。
(3)增益测试。将Y衰减置于10挡上(相当于衰减20 dB),调节 粗、细输出衰减使因被测电路接入而变化的曲线高度仍恢复为H, 记下输出衰减总分贝数A2,则该中频放大器的电压增益k为
(4)测量带宽。利用扫频仪上的频标,在幅度左右两边分别对应 与波峰的0.707倍时的上下频率差就是被测网络的幅频特性曲线的 频带宽度。
扫频测量法就是将等幅扫频信号加至被测电路输入端,然后用显示器 来显示信号通过被测电路后振幅的变化。由于扫频信号的频率是连续 变化的,因此在屏幕上可直接显示出被测电路的幅频特性。
7.2 ቤተ መጻሕፍቲ ባይዱ频仪
扫频仪是频率特性测试仪的简称,是一种能在荧光屏上直接观测 到各种网络频率特性等曲线的频域测量仪器,由此可以测算出被 测电路的频带宽度、品质因数、电压增益、输出阻抗及传输线特 性阻抗等参数。扫频仪与示波器的主要区别在于前者能够自身提 供测试时所需要的信号源,并将测试结果以曲线形式显示在荧光 屏上。
频域分析则是研究信号中各频率分量的幅值A与频率f的关系,包括线性系统频率特性的测 量和信号的频谱分析。频率特性测量和频谱分析都是以频率为自变量,以频率分量的信号 值为因变量进行分析的,通常由频率特性测试仪(扫频仪)来完成。其中,频率特性测试仪利 用扫频测量法,可直接在显示屏上显示被测电路的频率响应特性;频谱分析仪则是对信号 本身进行分析和对线性系统非线性失真系数进行测量,从而可以确定信号所含的频率成分, 了解信号的频谱占用情况,以及线性系统的非线性失真特性。
(3)增益测试。将Y衰减置于10挡上(相当于衰减20 dB),调节 粗、细输出衰减使因被测电路接入而变化的曲线高度仍恢复为H, 记下输出衰减总分贝数A2,则该中频放大器的电压增益k为
(4)测量带宽。利用扫频仪上的频标,在幅度左右两边分别对应 与波峰的0.707倍时的上下频率差就是被测网络的幅频特性曲线的 频带宽度。
扫频测量法就是将等幅扫频信号加至被测电路输入端,然后用显示器 来显示信号通过被测电路后振幅的变化。由于扫频信号的频率是连续 变化的,因此在屏幕上可直接显示出被测电路的幅频特性。
7.2 ቤተ መጻሕፍቲ ባይዱ频仪
扫频仪是频率特性测试仪的简称,是一种能在荧光屏上直接观测 到各种网络频率特性等曲线的频域测量仪器,由此可以测算出被 测电路的频带宽度、品质因数、电压增益、输出阻抗及传输线特 性阻抗等参数。扫频仪与示波器的主要区别在于前者能够自身提 供测试时所需要的信号源,并将测试结果以曲线形式显示在荧光 屏上。
电工测量基本知识ppt课件
仪表使用时所产生的最大可能误差:
某指针式电压表的精度为2.5级,用它来测量电压时 可能产生的最大引用误差为2.5%。
Am Am s
x Am Ax s
14 总目录 章目录 返回 上一页 下一页
例3:某指针式万 用表的面板如图所 示,问:用它来测 量直流、交流(~) 电压时,可能产生 的最大引用误差分 别为多少?
• 另一种是比较测量法,即把被测量与“较量仪器” 中的已知标准量进行比较而确定未知量的大小。
• 还有一种是间接测量法,即根据被测量和其它量的 函数关系,先测得其它量,然后按函数式把被测量 计算出来的一种方法叫间接测量法。
4 总目录 章目录 返回 上一页 下一页
2、测量误差及分类
• 测量误差的基本概念
0.5
0.5
100
%
5.263 %
03
A 100 % A0
1
0.5
0.5
100
%
100 %
11 总目录 章目录 返回 上一页 下一页
引用误差:绝对误差与仪表量程的比值
n
A 100 % Am
Ax A0 Amax Amin
100 %
nm
系统误差的消除和减小
(1)从产生系统误差的来源上考虑 (2)利用特殊的测量方法消除系统误差 交换法;代替法;对称测量法;补偿法
25 总目录 章目录 返回 上一页 下一页
作业
P333:2、9、12、13
26 总目录 章目录 返回 上一页 下一页
23 总目录 差反映了测量值偏离真值的程度。 凡误差的数值固定或按一定规律变化者,均属 于系统误差。
电子测量技术基础第05章
近代最准确的频率标准是原子频率标准, 简称为原子频标。 原子频标有许多种, 其中铯束原子频标的稳定性、 制造重复 性较好, 因而高标准的频率标准源大多采用铯束原子频标。
原子频标的原理是: 原子处于一定的量子能级, 当它从一个能级跃迁到另一个 能级时, 将辐射或吸收一定频率的电磁波。 铯-133原子两个能级之间的跃迁频率为9192.631 770 MHz, 利用铯原子源射出的原子束在磁间隙中获得偏转, 在谐振腔中 激励起微波交变磁场, 当其频率等于跃迁频率时, 原子束穿过 间隙, 向检测器汇集, 从而就获得了铯束原子频标。
这部分电路中的逻辑控制电路用来控制计数器的工作程序 (准备→计数→显示→复零→准备下一次测量)。 逻辑控制电路 一般由若干门电路和触发器组成的时序逻辑电路构成。 时序逻
电子计数器的测频原理实质上是以比较法为基础的。 它将 被测信号频率fx和已知的时基信号频率fc相比, 将相比的结果以 数字的形式显示出来。
在1967年第十三届国际计量大会上通过的秒的定义为: “秒是铯133原子(Cs133)基态的两个超精细能级之间 跃迁所对应的辐射的9 192 631 770个周期所持续的时间。” 现在各国标准时号发播台所发送的是协调世界时标 (UTC), 其准确度优于±2×10-11。
需要说明的是, 时间标准并不像米尺或砝码那样的标准, 因为“时间”具有流逝性。
在闸门脉冲关闭主门期间, 周期为Tx的窄脉冲不能在 主门的输出端产生输出。
在闸门脉冲控制下主门输出的脉冲将输入计数器计数, 所以将主门输出的脉冲称为计数脉冲。
(3) 计数显示电路。 计数被测周期信号重复的次数, 显示被测信号的频率。 它一般由计数电路、 控制(逻辑)电路、 译码器和显示器组成。 在控制(逻辑)电路的控制下, 计数器对主门输出的计数脉冲 实施二进制计数, 其输出经译码器转换为十进制数, 输出到数码 管或显示器件显示。因时基T都是10的整次幂倍秒, 所以显示出 的十进制数就是被测信号的频率, 其单位可能是Hz、 kHz或MHz。
原子频标的原理是: 原子处于一定的量子能级, 当它从一个能级跃迁到另一个 能级时, 将辐射或吸收一定频率的电磁波。 铯-133原子两个能级之间的跃迁频率为9192.631 770 MHz, 利用铯原子源射出的原子束在磁间隙中获得偏转, 在谐振腔中 激励起微波交变磁场, 当其频率等于跃迁频率时, 原子束穿过 间隙, 向检测器汇集, 从而就获得了铯束原子频标。
这部分电路中的逻辑控制电路用来控制计数器的工作程序 (准备→计数→显示→复零→准备下一次测量)。 逻辑控制电路 一般由若干门电路和触发器组成的时序逻辑电路构成。 时序逻
电子计数器的测频原理实质上是以比较法为基础的。 它将 被测信号频率fx和已知的时基信号频率fc相比, 将相比的结果以 数字的形式显示出来。
在1967年第十三届国际计量大会上通过的秒的定义为: “秒是铯133原子(Cs133)基态的两个超精细能级之间 跃迁所对应的辐射的9 192 631 770个周期所持续的时间。” 现在各国标准时号发播台所发送的是协调世界时标 (UTC), 其准确度优于±2×10-11。
需要说明的是, 时间标准并不像米尺或砝码那样的标准, 因为“时间”具有流逝性。
在闸门脉冲关闭主门期间, 周期为Tx的窄脉冲不能在 主门的输出端产生输出。
在闸门脉冲控制下主门输出的脉冲将输入计数器计数, 所以将主门输出的脉冲称为计数脉冲。
(3) 计数显示电路。 计数被测周期信号重复的次数, 显示被测信号的频率。 它一般由计数电路、 控制(逻辑)电路、 译码器和显示器组成。 在控制(逻辑)电路的控制下, 计数器对主门输出的计数脉冲 实施二进制计数, 其输出经译码器转换为十进制数, 输出到数码 管或显示器件显示。因时基T都是10的整次幂倍秒, 所以显示出 的十进制数就是被测信号的频率, 其单位可能是Hz、 kHz或MHz。
第01章电子测量基础知识50页PPT
第1章 电子测量的基本概念
在科学研究和生产实践中, 常常需要对许多非电量进行 测量。 传感技术的发展为这类测量提供了新的方法和途径。 现在, 可以利用各种敏感元件和传感装置将非电量(如位移、 速度、 温度、 压力、 流量、 物质成分等)变换成电信号, 再 利用电子测量设备进行测量。 在一些危险的和人们无法进行 直接测量的场合, 这种方法几乎成为唯一的选择。 在生产的 自动过程控制系统中, 将生产过程中各有关非电量转换成电 信号进行测量、 分析、 记录并据此对生产过程进行控制是一 种典型的方法, 如图1.1-1所示。Βιβλιοθήκη 第1章 电子测量的基本概念
近几十年来计算技术和微电子技术的迅猛发展为电子测量 和测量仪器增添了巨大活力。 电子计算机尤其是微型计算机 与电子测量仪器相结合, 构成了一代崭新的仪器和测试系统, 即人们通常所说的“智能仪器”和“自动测试系统”, 它们 能够对若干电参数进行自动测量、 自动量程选择、 数据记录 和处理、 数据传输、 误差修正、 自检自校、 故障诊断及在线 测试等, 不仅改变了若干传统测量的概念, 更对整个电子技 术和其他科学技术产生了巨大的推动作用。 现在, 电子测量 技术(包括测量理论、 测量方法、 测量仪器装置等)已成为电 子科学领域重要且发展迅速的分支学科。
第1章 电子测量的基本概念
英国科学家库克(A.H.cook)也认为:“测量是技术生命的 神经系统”。 这些话都极为精辟地阐明了测量的重要意义。 历史事实也已证明: 科学的进步, 生产的发展, 与测量理论、 技术、 手段的发展和进步是相互依赖、 相互促进的。 测量技 术水平是一个历史时期、 一个国家的科学技术水平的一面 “镜子”。 正如美国科学家特尔曼(F.E.Telmen)教授所说: “科学和技术的发展是与测量技艺并行进步、 相互匹配的。 事实上, 可以说, 评价一个国家的科技状态, 最快捷的办法 就是去审视那里所进行的测量以及由测量所累积的数据是如 何被利用的。”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章
历史事实也已证明:科学的进步,生产的发展,与测 量理论、技术、手段的发展和进步是相互依赖、相互 促进的。测量技术水平是一个历史时期、一个国家的 科学技术水平的一面“镜子”o正如特尔曼(F, E.Telmen)教授所说:“科学和技术的发展是与测量 技艺并行进步相互匹配的。事实上,可以说,评价一 个国家的科技状态,最快捷的办法就是去审视那里所 进行的测量以及由测量所累积的数据是如何被利用的.”
第1章
错误的测量结果有时还会使研究工作误入歧途甚至带 来灾难性后果。因此,人们不得不认真对待测量误差, 研究误差产生的原因,误差的性质,减小误差的方法 以及对测量结果的处理等.
第1章
7.单次测量和多次测量 单次(一次)测量是用测量仪器对待测量进行一次测 量的过程。显然,为了得知某一量的大小,必须至少 进行一次测量。在测量精度要求不高的场合,可以只 进行单次测量。单次测量不能反映测量结果的精密度, 一般只能给出一个量的大致概念和规律。
第1章
第1章 电子测量基础
第1章
1.1 电子测量概述
一、测量 测量是通过实验方法对客观事物取得定量信息即数 量概念的过程。人们通过对客观事物大量的观察和测 量,形成定性和定量的认识,归纳、建立起各种定理 和定律,而后又要通过测量来验证这些认识、定理和 定律是否符合实际情况,经过如此反复实践,逐步认 识 事物的客观规律,并用以解释和改造世界。
第1章
4.标称值 测量器具上标定的数值称为标称值。如标准砝码 上标出的l k8,标准电阻上标出的 1Ω ,标准电池上标 出来的电动势1 .018 6V,标准信号发生器度盘上标出 的输出正弦波的 频率土00kHz等。由于制造和测量精 度不够以及环境等因素的影响,标称值并不一定等于 它的真值或实际值。为此,在标出测量器具的标称值 时,通常还要标出它的误差范围或准确度等级.
第1章
5.示值 由测量器具指示的被测量量值称为测量器具的示 值,也称测量器具的测得值或测量值,它包括数值和 单位。一般地说,示值与测量仪表的读数有区别,读 数是仪器刻度盘上直接读到的数字。例如以l00分度表 示50mA的电流表,当指针指在刻度盘上的50处时,读 数是50,而值是25mA.为便于核查测量结果,在记录测 量数据时,一般应记录仪表量程、读数和示值(当然还 要记载测量方法,连接图,测量环境,测量用仪器及 编号及测量者姓名、测量日期等),对于数字显示仪表, 通常示值和读数是统一的。
第1章
1.2 测量误差
一、误差 1.真值A0 一个物理量在一定条件下所呈现的客观大小或真
实数值称作它的真值。要想得到真值,必须利用理想 的量具或测量仪器进行无误差的测量。由此可推断, 物理量的真值实际上是无法测得的。这首先因为, “理想”量具或测量仪器即测量过程的参考比较标准 (或叫计量标准)只是一个纯理论值,
第1章
因此可以说,测量是人类认识和改造世界的一种不可 缺少和替代的手段。俄国科学家门捷列夫 在论述测量 的意义时曾说过: “没有测量,就没有科学”, “测量是认识自然界的主要工具”。·英国科学家库克 (A . H . cook) 也 认 为 : “ 测 量 是 技 术 生 命 的 神 经 系 统”o这些话都极为精辟地阐明了测量的重 要意义。
第1章
1.指定值As 由于绝对真值是不可知的,所以一般由国家设立 各种尽可能维持不变的实物标准(或基准),以法令的形 式指定其所体现的量值作为计量单位的指定值,这在 第一章中已有叙述。例如指定国家计量局保存的铂铱 合金圆柱体质量原器的质量为1kg,指定国家天文台保 存的铯钟组所产生的特定条件下铯—l33原子基态的两 个超精细能级之间跃迁所对应的辐射的9192 63l 770个 周期的持续时间为1s(秒)等。国际间通过互相比对保持 一定程度的一致。指定值也叫约定真值,一般就用来 代替真值。
第1章
6.测量误差 在实际测量中,由于测量器具不准确,测量手段 不完善,环境影响,测量操作刁二熟练及工作疏忽等 因素,都会导致测量结果与破测量真值不同。测量仪 器仪表的测下导值与破测量真值之间的差异,称为测 量误差。测量误差的存在具有必然性和普遍性,人们 只能根据需要和可能,将其限制在一定范围内而不可 能完全加以消除。人们进行测量的目的,通常是为了 获得尽可能接近真值的测量结果,如果测量误差超出 一定限度,测量工作及由测量结果所得出的结论就失 去了意义。在科学研究及现代生产中,
第1章
二、电子测量
电子测量是泛指以电子技术为基本手段的一种测 量技术。它是测量学和电子学相互结合的产物。电子 测量除具体运用电子科学的原理、方法和设备对各种 电量、电信号及电路元器件的特性和参数进行测量外, 还可通过各种敏感器件和传感装置对非电量进行测量, 而且往往更加方便、快捷、准确,有时是用其他测量 方法所不能替代的。因此,电子测量不 仅用于电学各 专业,也广泛用于物理学、化学、光学、机械学、材 料学、生物学、医学等科学领域及生产、国防\交通、 通讯、商业贸易、生态环境保护乃至日常生活的各个 方面。
第1章
例如电流的计量标准安培,按国际计量委员会和第九届 国际计量大会的决议,定义为“安培是一恒定电流,若 保持在处于真空中相距l米的两根无限长而圆截面可忽 略的平行直导线内,则此两导线之间产生的力为每米长 度上等于2×l0-7牛顿”,显然这样的电流计量标准是一 个理想的而实际上无法实现的理论值,因而,某电流的 真值我们无法实际测得,因为没有符合定义的可供实际 使用的测量参考标准,尽管随着科技水平的提高,可供 实际使用的测量参考标准可以愈来愈逼近理想的理论定 义值。其次,在测量过程中由于各种土观、客观因素的 影响,做,不可能都直接与国家基准相比对, 所以国家通过一系列的各级实物计量 标准构成量值传 递网,把国家基准所体现的计量单位逐级比较传递到 日常工作仪器或量具’ 上去。在每一级的比较中,都 以上一级标准所体现的值当作准确无误的值,通常称 为实际 值,也叫作相对真值,比如如果更高一级测量 器具的误差为本级测量器具误差的1/3到 l/l0,就可 以认为更高一级测量器具的测得值(示值)为真值。在本 书后面的叙述中,不再 对实际值和真值加以区别。