浙教版七年级数学下册因式分解教案

合集下载

数学浙教版七下因式分解精品教案3

数学浙教版七下因式分解精品教案3

数学浙教版七下因式分解精品教案3一、教学内容本节课选自浙教版数学七年级下册第3章《因式分解》。

具体内容包括教材第3.1节至3.3节的内容,详细讲解因式分解的定义、方法和应用。

重点掌握提取公因式法、平方差公式、完全平方公式等方法进行因式分解。

二、教学目标1. 让学生理解因式分解的概念,掌握因式分解的基本方法,并能熟练运用。

2. 培养学生运用因式分解解决实际问题的能力,提高数学思维能力。

3. 培养学生合作交流、自主探究的学习习惯,激发学生学习数学的兴趣。

三、教学难点与重点1. 教学重点:因式分解的定义、提取公因式法、平方差公式、完全平方公式。

2. 教学难点:如何灵活运用各种方法进行因式分解,解决实际问题。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、笔。

五、教学过程1. 导入:通过实际情景引入,如让学生分解一个多项式的因式,引出本节课的主题——因式分解。

2. 讲解:讲解因式分解的定义,介绍提取公因式法、平方差公式、完全平方公式等方法。

4. 随堂练习:让学生独立完成教材上的练习题,及时巩固所学知识。

5. 小组讨论:分组讨论,让学生相互交流心得,解决练习中遇到的问题。

7. 作业布置:布置课后作业,巩固所学知识。

六、板书设计1. 因式分解的定义2. 提取公因式法3. 平方差公式4. 完全平方公式七、作业设计1. 作业题目:(1)分解因式:x^2 5x + 6(2)分解因式:4a^2 9b^2(3)分解因式:9x^2 + 30x + 25(4)应用题:一个长方形的长是x+3,宽是x3,求长方形的面积。

答案:(1)(x 2)(x 3)(2)(2a + 3b)(2a 3b)(3)(3x + 5)^2(4)x^2 9八、课后反思及拓展延伸2. 拓展延伸:布置一道拓展题,让学生在课后独立思考,提高学生的思维能力和解决问题的能力。

拓展题:分解因式:x^3 + 3x^2 4x 12,并说明分解方法。

数学浙教版七下因式分解优质教案3

数学浙教版七下因式分解优质教案3

数学浙教版七下因式分解优质教案3一、教学内容本节课选自数学浙教版七年级下册第5章第3节“因式分解”。

教学内容包括教材第123页至第126页,详细内容涉及因式分解的定义、方法及应用。

重点掌握提取公因式法、平方差公式及完全平方公式的运用。

二、教学目标1. 理解因式分解的概念,掌握提取公因式法、平方差公式及完全平方公式。

2. 能够运用因式分解解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力和团队协作能力。

三、教学难点与重点重点:提取公因式法、平方差公式及完全平方公式的运用。

难点:如何运用因式分解解决实际问题,及对公式的灵活运用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示一个长方形,引导学生通过分解长方形的面积,理解因式分解的概念。

2. 例题讲解(15分钟)讲解提取公因式法、平方差公式及完全平方公式的具体应用,通过示例让学生掌握这些方法。

(1)提取公因式法:例如:分解因式 3x^2 + 6x步骤:找出公因数3x,提取公因数后得3x(x+2)。

(2)平方差公式:例如:分解因式 a^2 4步骤:a^2 4 = (a+2)(a2)。

(3)完全平方公式:例如:分解因式 x^2 + 4x + 4步骤:x^2 + 4x + 4 = (x+2)^2。

3. 随堂练习(10分钟)(1)分解因式 2x^2 + 4x(2)分解因式 9a^2 1(3)分解因式 x^2 4x + 44. 小组讨论(10分钟)问题:一个正方形的面积是x^2,如果从正方形中剪去一个面积为(x2)^2的小正方形,剩下的图形是什么形状?它的面积是多少?5. 答疑解惑(10分钟)针对学生随堂练习和小组讨论中的问题,进行解答。

六、板书设计1. 因式分解的定义及方法。

2. 提取公因式法、平方差公式及完全平方公式的示例。

3. 练习题及答案。

七、作业设计1. 作业题目:(1)分解因式 3x^2 6x(2)分解因式 4a^2 9(3)分解因式 x^2 + 6x + 92. 答案:(1)3x(x2)(2)(2a+3)(2a3)(3)(x+3)^2八、课后反思及拓展延伸1. 反思:本节课学生对因式分解的理解程度,以及在实际问题中的应用能力。

2023年浙教版七年级数学下册全册教案因式分解

2023年浙教版七年级数学下册全册教案因式分解

第六章因式分解6.1 因式分解...................................................................... 错误!未定义书签。

6.2 提取公因式法.............................................................. 错误!未定义书签。

6.3 乘法公式分解因式(1)........................................... 错误!未定义书签。

6.3 乘法公式分解因式(2)........................................... 错误!未定义书签。

6.4 因式分解旳简朴应用 ................................................. 错误!未定义书签。

6.1因式分解〖教学目旳〗◆1、理解因式分解旳概念和意义.◆2、理解因式分解与整式乘法旳关系——互逆变形.◆3、体验矛盾旳对立统一规律.〖教学重点与难点〗◆教学重点:本节教学旳重点是因式分解旳概念.◆教学难点:认识因式分解与整式乘法旳关系,并能意识到可以运用整式乘法旳一系列法则来处理因式分解旳多种问题,是本节教学旳难点.〖教学准备〗多媒体,分好学习小组.〖教学过程〗一、创设情境,导入新课师:谁能以最迅速度求:当a=101,b=99时,a2-b2旳值?析:教师不要立即作答.也许会有学生运用计算器计算,教师引导,若不使用计算器你能处理吗?等学了本节内容后再来处理它.师:在小学里,我们学过2×3×5=30,这是什么运算?生1:整数乘法.师:那30=2×3×557.是什么运算?生2:因数分解.师:因数分解有什么作用?你在平时学习中碰到过吗?请举例阐明(合作学习).生3:分数旳约分与通分.师:,(x-y)=x2-xy是什么运算?等式左右两边有何特点?生4:整式旳乘法.左边是整式旳积,右边是多项式.析:学生也许会答成分派律,左右两边都是代数式.教师要作引导.师:那x2-xy=x(x-y)与否成立?这个等式旳两边有何特点?又是什么运算?生5:成立.左边是多项式,右边是整式旳积.师:这就是我们今天要探讨旳因式分解.二、合作交流,探求新知1.形成概念.师:像这样,把一种多项式化成几种整式旳积旳形式叫因式分解,有时,也把这一过程叫分解因式.请你仔细默读概念,并留心概念中旳注意点.下面请看练习(多媒体出示):教师在点评上述10题旳过程中,请学生留心因式分解概念中旳注意点,与本人本来旳想法与否一致.生6:①左边是多项式,右边是整式;②右边是整式旳乘积旳形式.2.理解因式分解与整式乘法旳关系.师:注意第(9),(10)两题是两种对旳旳变形,但不是因式分解.观测下列等式,并回答问题(多媒体出示)师:1.填空(整式乘法,因式分解)2.这两种运算是什么关系?(互逆)图示表达:师:你能运用因式分解与整式乘法旳关系,做下面旳例题蚂(多媒体出示)?析:①让学生体验怎样运用已学知识处理新知识;②让学生体验因式分解与整式乘法旳互逆性.练一练:书本课内练习第1题(请三个学生在黑板演习,老师巡视).3.尝试简朴旳因式分解.析:①强调格式;②再次体验因式分解与整式乘法旳互逆性.4.处理问题.师:目前你能运用所学旳知识处理上课初旳那道题吗(合作完毕)?生7:1012-992=-(101+99)(101-99)=200×2=400.师:那872+87×13又该怎么算呢?析:①这两题在例2旳基础上完毕也许更轻易些;②让学生体验因式分解对处理某些问题带来旳便利.三、小结回忆,反思提高师:本堂课你有什么收获?合作交流得:(1)因式分解旳概念;(2)因式分解旳注意点;(3)因式分解旳作用.四、布置作业书本作业题.6.2提取公因式法〖教学目旳〗◆1、会用提取公因式法分解因式.◆2、理解添括号法则.〖教学重点与难点〗◆教学重点:用提取公因式法分解因式.◆教学难点:例2分解因式,需要添括号,还要运用换之旳思想,是本节教学旳难点.〖教学过程〗一、新课引入计算(1)25×17+25×83 (2)15.67×91+15.67×9由学生小结:(1)应用分派律,使计算简便(2)分派律旳一般式a(b+c)= ab+ac在此应用旳是ab+ac= a(b+c)(*)从因式分解旳角度观测式(*)(1)可以看作是因式分解(2)做法是把每一项中都具有旳相似旳因式,提取出来(3)举例把2ab+4abc分解因式二、揭示课题,新课教学1. 公因式旳概念和用提取公因式法分解因式2. 提取公因式法分解因式旳环节(1)确定提取旳公因式例:3ax2y+6x3yz归纳:公因式是各项系数旳最大公因数(当系数是整数旳)与各项都具有旳相似字母旳最低次幂旳积(2)用提取公因式法分解因式:3ax2y+6x3yz=3x2y(a+2xz)归纳:a、提取公因式后,多项式余下旳各项不再具有公因式b、提取旳实质是将多项式中旳每一项分别除以公因式3x2y(3)练习分解因式:5ab2c +15abc23. 例题教学例1 把下列各式分解因式:(1)2 x3+6 x2(2)3pq3+15p3q (3)-4x2+8ax+2x(4)-3ab+6abx-9aby小结:提取公因式法旳一般环节和规定4. 再议公因式(1)公因式还可以包括各项中都具有旳多项式如2(a+b) 2-(a+b)中a+b 则引导学生进行提取,观测成果与否符合因式分解旳规定。

2024年浙教版七年级下册因式分解教案汇总

2024年浙教版七年级下册因式分解教案汇总

2024年浙教版七年级下册因式分解教案汇总一、教学内容本教案依据2024年浙教版七年级下册数学教材,涉及第九章《因式分解》的相关内容。

具体包括:9.1因式分解的意义,9.2提公因式法,9.3运用公式法,9.4十字相乘法,9.5因式分解的应用。

二、教学目标1. 理解因式分解的概念,掌握因式分解的基本方法。

2. 能够运用提公因式法、公式法、十字相乘法等方法进行因式分解。

3. 学会运用因式分解解决实际问题,提高数学思维能力。

三、教学难点与重点教学难点:因式分解的方法及其运用。

教学重点:提公因式法、公式法、十字相乘法的掌握。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 实践情景引入(约5分钟)通过一个生活实例,引导学生了解因式分解的实际意义,激发学习兴趣。

2. 知识讲解(约15分钟)(1)讲解因式分解的概念。

(2)介绍提公因式法、公式法、十字相乘法的具体步骤。

3. 例题讲解(约10分钟)(1)用提公因式法进行因式分解。

(2)用公式法进行因式分解。

(3)用十字相乘法进行因式分解。

4. 随堂练习(约10分钟)学生进行随堂练习,教师巡回指导。

5. 知识巩固与拓展(约10分钟)(2)讲解因式分解在实际问题中的应用。

六、板书设计1. 因式分解的概念及意义。

2. 提公因式法、公式法、十字相乘法的步骤。

3. 例题及解答过程。

4. 随堂练习题目及答案。

七、作业设计1. 作业题目:(1)用提公因式法进行因式分解:2x^2 + 4x。

(2)用公式法进行因式分解:a^2 + 2ab + b^2。

(3)用十字相乘法进行因式分解:x^2 5x + 6。

2. 答案:(1)2x(x + 2)。

(2)(a + b)^2。

(3)(x 2)(x 3)。

八、课后反思及拓展延伸2. 拓展延伸:了解因式分解在数学竞赛中的应用,提高解题能力。

重点和难点解析1. 教学目标的设定。

2. 教学难点与重点的识别。

浙教版七年级下册因式分解教案汇总

浙教版七年级下册因式分解教案汇总

浙教版七年级下册因式分解教案汇总一、教学内容本节课选自浙教版七年级下册数学教材,主要涉及第六章《因式分解》的第一节至第三节,内容包括因式分解的定义、提取公因式法、平方差公式和完全平方公式。

具体章节内容如下:1. 因式分解的定义及基本概念;2. 提取公因式法的步骤及应用;3. 平方差公式及完全平方公式的推导和应用。

二、教学目标1. 理解因式分解的概念,能够熟练运用提取公因式法、平方差公式和完全平方公式进行因式分解;2. 能够解决实际问题,将多项式分解成几个整式的乘积;3. 培养学生的观察能力、分析能力和解决问题的能力。

三、教学难点与重点1. 教学难点:平方差公式和完全平方公式的推导和应用;2. 教学重点:提取公因式法、平方差公式和完全平方公式的熟练运用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔;2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 实践情景引入:通过实际生活中物品的拆分组合,引导学生理解因式分解的概念;2. 知识讲解:(1)因式分解的定义及基本概念;(2)提取公因式法的步骤及应用;(3)平方差公式及完全平方公式的推导和应用;3. 例题讲解:讲解典型例题,引导学生运用所学知识解决实际问题;4. 随堂练习:布置一定数量的练习题,让学生巩固所学知识;六、板书设计1. 因式分解的定义;2. 提取公因式法的步骤;3. 平方差公式和完全平方公式;4. 典型例题及解答过程;5. 课堂练习题目。

七、作业设计1. 作业题目:(1)因式分解:2x^2 8x + 6;(2)因式分解:9a^2 16b^2;(3)因式分解:x^2 + 6x + 9;(4)实际应用题:一个长方形的长和宽分别是x+2和x2,求该长方形的面积。

2. 答案:见附件。

八、课后反思及拓展延伸1. 反思:本节课学生对因式分解的概念和提取公因式法的掌握情况较好,但对平方差公式和完全平方公式的应用还不够熟练,需要在课后加强练习;2. 拓展延伸:引导学生了解因式分解在数学其他领域和实际生活中的应用,激发学生的学习兴趣。

浙教版数学七年级下册《4.1 因式分解》教学设计3

浙教版数学七年级下册《4.1 因式分解》教学设计3

浙教版数学七年级下册《4.1 因式分解》教学设计3一. 教材分析浙教版数学七年级下册《4.1 因式分解》是初中学段的一节重要课程。

因式分解是代数学习中的基础,也是解决方程、不等式等问题的关键。

本节课主要让学生掌握因式分解的基本方法和技巧,能够运用因式分解解决实际问题。

二. 学情分析七年级的学生已经掌握了整式的加减、乘除等基本运算,对代数概念有了一定的理解。

但因式分解作为一种独立的解题方法,对学生来说还是较为抽象和复杂的。

因此,在教学过程中,需要关注学生的认知水平,循序渐进地引导学生理解和掌握因式分解。

三. 教学目标1.让学生掌握因式分解的定义和方法。

2.培养学生运用因式分解解决实际问题的能力。

3.提高学生的逻辑思维和运算能力。

四. 教学重难点1.因式分解的定义和方法。

2.因式分解在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生自主探究和小组讨论,培养学生解决问题的能力和合作精神。

六. 教学准备1.准备相关的教学案例和练习题。

2.制作多媒体课件,以便进行生动形象的讲解。

七. 教学过程1.导入(5分钟)通过一个实际问题引出因式分解的概念,激发学生的学习兴趣。

示例:已知二次方程 x^2 + 4x + 3 = 0,求解该方程的解。

2.呈现(10分钟)讲解因式分解的定义和方法,让学生理解和掌握。

因式分解的定义:将一个多项式表示为两个或多个多项式的乘积的形式。

因式分解的方法:(1)提取公因式法:找出多项式中的公因式,将其提取出来。

(2)十字相乘法:对于二次多项式,通过十字相乘的方式找到因式。

3.操练(10分钟)让学生进行因式分解的练习,巩固所学知识。

(1)因式分解 x^2 - 5x + 6。

(2)因式分解 x^2 + 6x + 9。

4.巩固(10分钟)通过讲解和练习,让学生进一步理解和掌握因式分解。

示例:已知二次方程 x^2 - 5x + 6 = 0,求解该方程的解。

2024年浙教版七下 第六章《因式分解》精彩教案

2024年浙教版七下 第六章《因式分解》精彩教案

2024年浙教版七下第六章《因式分解》精彩教案一、教学目标1.理解因式分解的概念,掌握基本的因式分解方法。

2.能够运用因式分解解决简单的数学问题。

3.培养学生的逻辑思维能力和解决问题的能力。

二、教学重难点重点:掌握因式分解的基本方法。

难点:灵活运用因式分解解决实际问题。

三、教学过程第一课时:因式分解的概念与基本方法1.导入新课同学们,上一章我们学习了整式的乘法,那么大家思考一下,有没有一种方法可以把一个多项式拆分成几个整式的乘积呢?这就是我们今天要学习的因式分解。

2.知识讲解(1)因式分解的定义:把一个多项式化为几个整式的乘积的形式,这种变形叫做因式分解。

(2)因式分解的方法:提取公因式法、公式法、十字相乘法等。

3.案例讲解例1:将多项式4x^212x+9因式分解。

解:观察各项,发现4、12、9都可以被3整除,所以可以提取公因式3,得到:4x^212x+9=3(2x^24x+3)4.练习巩固练习1:将多项式6x^215x+9因式分解。

练习2:将多项式x^25x+6因式分解。

通过讲解和练习,学生掌握了提取公因式法,能够独立完成类似的题目。

第二课时:因式分解的应用1.导入新课同学们,我们已经学会了因式分解的基本方法,那么在实际问题中,如何运用因式分解来解决问题呢?这就是我们今天要学习的内容。

2.知识讲解(1)因式分解的应用:求多项式的值、解方程、化简表达式等。

(2)解题技巧:灵活运用因式分解,简化问题。

3.案例讲解例2:解方程2x^25x+2=0。

解:将方程左边因式分解,得到:2x^25x+2=(2x1)(x2)=0由乘积为零的性质,得到:2x1=0或x2=0解得:x1=1/2,x2=24.练习巩固练习3:解方程x^24x5=0。

练习4:化简表达式(x+3)^2(x3)^2。

通过讲解和练习,学生掌握了因式分解在解方程和化简表达式中的应用。

第三课时:因式分解的拓展1.导入新课同学们,我们已经学习了因式分解的基本方法和应用,那么还有一些特殊的因式分解技巧,我们来一起探讨。

2024年浙教版七年级下册因式分解精彩教案汇总

2024年浙教版七年级下册因式分解精彩教案汇总

2024年浙教版七年级下册因式分解精彩教案汇总教案一:探索因式分解的奥秘一、教学目标1.知识目标:让学生理解因式分解的概念,掌握提公因式法、十字相乘法等基本的因式分解方法。

2.能力目标:培养学生运用因式分解解决实际问题的能力。

3.情感目标:激发学生对数学的兴趣,培养合作、探究的精神。

二、教学重难点1.重点:因式分解的基本方法。

2.难点:运用因式分解解决实际问题。

三、教学过程1.导入新课通过讲解数学家华罗庚的名言:“数学是自然的诗篇”,引导学生进入因式分解的学习。

2.探索发现(1)引导学生回顾平方差公式、完全平方公式,为新课学习打下基础。

(2)通过具体例子,让学生尝试运用平方差公式、完全平方公式进行因式分解。

(2)通过例题,让学生熟练掌握各种因式分解方法。

4.实践应用(1)设置一些实际问题,让学生运用因式分解方法解决。

(2)分组讨论,互相交流解题过程,提高解题能力。

(2)鼓励学生提出疑问,共同探讨,加深对因式分解的理解。

四、作业布置1.完成课后练习题,巩固因式分解方法。

2.收集生活中的实际问题,尝试运用因式分解解决。

教案二:因式分解的实际应用一、教学目标1.知识目标:让学生掌握因式分解在实际问题中的应用。

2.能力目标:培养学生运用数学知识解决实际问题的能力。

3.情感目标:培养学生学以致用的意识,提高学习兴趣。

二、教学重难点1.重点:因式分解在实际问题中的应用。

2.难点:提炼实际问题中的数学模型,运用因式分解解决。

三、教学过程1.导入新课通过讲解实际生活中的例子,引导学生认识因式分解在现实中的应用价值。

2.案例分析(1)展示几个实际问题,引导学生分析其中的数学模型。

(2)引导学生运用因式分解方法解决实际问题。

(2)通过例题,让学生熟练掌握因式分解在实际问题中的应用。

4.实践应用(1)设置一些实际问题,让学生独立运用因式分解解决。

(2)分组讨论,互相交流解题过程,提高解题能力。

(2)鼓励学生提出疑问,共同探讨,加深对因式分解的理解。

浙教版七下第六章《因式分解》教案

浙教版七下第六章《因式分解》教案

浙教版七下第六章《因式分解》教案一、教学内容本节课选自浙教版七年级下册第六章《因式分解》的第一课时。

主要内容包括:因式分解的意义,提取公因式法,以及应用举例。

具体涉及的教材章节为6.1节。

二、教学目标1. 理解因式分解的概念,掌握提取公因式法进行因式分解的方法。

2. 能够运用因式分解解决一些实际问题,提高数学思维能力。

3. 培养学生的观察能力、分析能力和解决问题的能力。

三、教学难点与重点教学重点:提取公因式法进行因式分解。

教学难点:理解因式分解的意义,以及如何找出多项式中的公因式。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:练习本、草稿纸、笔。

五、教学过程1. 实践情景引入通过一个简单的实际问题,引导学生思考如何求解一个多项式的值。

如:计算长方形的面积和周长,引导学生将面积和周长公式中的多项式进行因式分解。

2. 知识讲解(1)因式分解的意义:将一个多项式表示成几个整式的乘积的形式。

(2)提取公因式法:找出多项式中的公因式,并将其提取出来。

3. 例题讲解讲解两道例题,一道为提取公因式的简单例子,另一道为稍微复杂的多项式因式分解。

4. 随堂练习让学生独立完成两道练习题,巩固因式分解的方法。

5. 答疑解惑针对学生在练习中遇到的问题,进行解答和讲解。

六、板书设计1. 因式分解的概念及意义。

2. 提取公因式法进行因式分解的步骤。

3. 两道例题的解答过程。

4. 练习题目及答案。

七、作业设计1. 作业题目:(1)分解因式:6x^2 9x。

(2)分解因式:5a^2 + 10a。

2. 答案:(1)3x(2x 3)。

(2)5a(a + 2)。

八、课后反思及拓展延伸1. 反思:本节课学生掌握了因式分解的基本方法,但部分学生在提取公因式时仍存在困难,需要在今后的教学中加强练习。

2. 拓展延伸:引导学生思考,除了提取公因式法,还有哪些方法可以进行因式分解?为学生学习下一节课的内容做好准备。

重点和难点解析1. 教学难点与重点的明确。

浙教版数学七年级下册《4.1 因式分解》教学设计1

浙教版数学七年级下册《4.1 因式分解》教学设计1

浙教版数学七年级下册《4.1 因式分解》教学设计1一. 教材分析浙教版数学七年级下册《4.1 因式分解》是学生在掌握了有理数的乘法、平方差公式和完全平方公式的基础上进行学习的内容。

本节内容主要让学生掌握因式分解的方法和技巧,通过一系列的例题和练习,让学生能够熟练地运用提公因式法、公式法等方法进行因式分解,为后续学习分式、二次函数等知识打下基础。

二. 学情分析七年级的学生已经掌握了有理数的乘法、平方差公式和完全平方公式,具备了一定的数学基础。

但是,对于因式分解这个概念和方法,学生可能还比较陌生,需要通过具体的例题和练习来理解和掌握。

同时,学生可能对于一些因式分解的技巧和方法还不够熟练,需要通过大量的练习来提高。

三. 教学目标1.理解因式分解的概念和方法。

2.掌握提公因式法、公式法等因式分解的方法。

3.能够运用因式分解解决实际问题。

四. 教学重难点1.因式分解的概念和方法。

2.提公因式法、公式法等因式分解的方法。

3.如何运用因式分解解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探索,从而掌握因式分解的概念和方法;通过具体的案例,让学生理解和掌握提公因式法、公式法等因式分解的方法;通过小组合作学习,让学生互相讨论和交流,提高解决问题的能力。

六. 教学准备1.PPT课件。

2.相关练习题和测试题。

3.教学黑板和粉笔。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何将问题转化为因式分解的形式,从而引入因式分解的概念。

2.呈现(10分钟)通过PPT课件,介绍因式分解的概念和方法,讲解提公因式法、公式法等因式分解的方法,并举例说明。

3.操练(10分钟)让学生分组进行练习,每组选做一些因式分解的题目,然后互相交流和讨论,教师进行巡回指导。

4.巩固(10分钟)让学生独立完成一些因式分解的题目,教师选取一些学生的答案进行讲解和分析,指出其中的错误和不足之处。

2024年数学浙教版七下因式分解教案3

2024年数学浙教版七下因式分解教案3

2024年数学浙教版七下因式分解教案3一、教学内容1. 因式分解的概念;2. 提公因式法;3. 运用平方差公式分解因式;4. 运用完全平方公式分解因式。

二、教学目标1. 理解因式分解的概念,能够熟练运用提公因式法、平方差公式和完全平方公式进行因式分解;2. 培养学生的观察能力和逻辑思维能力;3. 能够将实际问题转化为数学问题,运用因式分解解决实际问题。

三、教学难点与重点教学难点:理解并掌握平方差公式和完全平方公式。

教学重点:熟练运用提公因式法、平方差公式和完全平方公式进行因式分解。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔;2. 学具:学生用书、练习本、计算器。

五、教学过程1. 导入:通过实际情景引入因式分解的概念,例如:一个长方形的长和宽分别是a+b和ab,求长方形的面积。

2. 新课:(1)讲解因式分解的概念;(2)通过例题讲解提公因式法;(3)引导学生发现平方差公式和完全平方公式;(4)运用平方差公式和完全平方公式解决实际问题。

3. 随堂练习:布置相关习题,让学生独立完成,并及时给予反馈。

六、板书设计1. 因式分解的概念;2. 提公因式法;3. 平方差公式:a^2 b^2 = (a + b)(a b);4. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2,a^2 2ab + b^2 = (a b)^2;5. 例题及解答。

七、作业设计1. 作业题目:(1)分解因式:x^2 9;(2)分解因式:4x^2 + 4x + 1;(3)分解因式:9a^2 16b^2。

2. 答案:(1)x^2 9 = (x + 3)(x 3);(2)4x^2 + 4x + 1 = (2x + 1)^2;(3)9a^2 16b^2 = (3a + 4b)(3a 4b)。

八、课后反思及拓展延伸1. 反思:本节课学生对因式分解的概念和方法的掌握程度,以及作业完成情况;2. 拓展延伸:引导学生探索更多的因式分解方法,如分组分解法等,并解决更复杂的问题。

(word版)浙教版数学七年级下《因式分解》精品教案

(word版)浙教版数学七年级下《因式分解》精品教案

因式分解教学目标认知目标:(1)理解因式分解的概念和意义(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。

情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

分层目标:A层:(1)理解因式分解的概念和意义(2)会运用因式分解与整式乘法的相互关系寻求因式分解的方法。

B层:会自行探求解题途径观察、学会分析、判断能力和创新能力。

C层:(1)深化学生逆向思维能力和综合运用能力。

(2)培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

教学方法:1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。

2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高能力。

3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。

4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。

5.改变传统言传身教的方式,利用电化教学手段进行教学,增大教学的容量和直观性,提高教学效率和教学质量。

教学过程1、你能用几种不同的方法计算1002-992,哪种方法最简单?请与你的同伴交流。

1002-992=(100+99)(100-99)=199×1=1992、你能尝试把a2-b2写成整式的积的形式吗?(a+b)(a-b)=a2-b2 a2-b2=(a+b)(a-b)(a+b)2=a2+2ab+b2a2+2ab+b2=(a+b)2m(a+b)=am+bm am+bm=m(a+b)3、定义(板书):一般地,把一个多项式转化成几个整式的积的形式,叫做因式分解,有时我们也把这一过程叫做分解因式。

浙教版数学七年级下册4.1《因式分解》教学设计

浙教版数学七年级下册4.1《因式分解》教学设计

浙教版数学七年级下册4.1《因式分解》教学设计一. 教材分析《因式分解》是浙教版数学七年级下册第4章第1节的内容。

本节课的主要内容是让学生掌握因式分解的定义、意义及方法,能够运用因式分解解决一些实际问题。

教材通过引入实例,引导学生发现因式分解的规律,进而总结出因式分解的方法。

教材内容由浅入深,循序渐进,有利于学生掌握。

二. 学情分析学生在七年级上学期已经学习了整式的乘法,对单项式和多项式的乘法有一定的了解。

但因式分解与整式乘法在思维方式上有所不同,学生可能需要一定的时间来适应。

另外,学生可能对一些抽象的概念和符号理解起来有一定困难,需要教师在教学中给予引导和帮助。

三. 教学目标1.知识与技能:理解因式分解的定义,掌握因式分解的方法,能够对一些简单的不等式进行因式分解。

2.过程与方法:通过观察、分析、归纳等方法,引导学生自主探索因式分解的方法,培养学生的逻辑思维能力。

3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学的实用性,提高学生解决实际问题的能力。

四. 教学重难点1.重点:因式分解的定义和方法。

2.难点:因式分解的思路和方法的运用。

五. 教学方法采用问题驱动法、案例分析法、小组讨论法等教学方法。

通过设置问题,引导学生自主探索,合作交流,从而掌握因式分解的方法。

六. 教学准备1.准备相关课件和教学素材。

2.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题——因式分解。

例如:已知某数的平方加上32等于这个数的三倍,求这个数。

让学生尝试解决这个问题,从而引出因式分解的概念。

2.呈现(10分钟)呈现因式分解的定义和意义,以及因式分解的方法。

通过讲解和示例,让学生理解因式分解的本质,掌握因式分解的方法。

3.操练(10分钟)让学生进行一些因式分解的练习,巩固所学知识。

教师可适时给予指导和帮助,让学生逐步熟练掌握因式分解的方法。

4.巩固(10分钟)通过一些综合性的练习,让学生运用因式分解解决实际问题。

浙教版数学 七年级下册 4.1 因式分解 教案

浙教版数学 七年级下册 4.1 因式分解 教案

课题:因式分解教学目标:一、知识与技能目标:1.理解因式分解的概念和意义2.认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

二、过程与方法目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。

三、情感态度与价值观目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

重点:因式分解的概念;难点:明确因式分解与整式乘法的关系及运用整式乘法的有关法则解决因式分解的相应问题。

教学流程:一、知识回顾1.在小学里,我们学过:2×3×5=30 ( 整数乘法 )30 = 2×3×5 ( 因数分解 )2.第三章里,我们学过:x (x + y) = ( 整式乘法 )x2 + xy = x (x + y) (因式分解)二、导入新课小学时,我们学过怎么把一个整数转化为几个整数的积。

整数乘法:2×5×7=70因式分解:70=2×5×7而在代数式中,我们也需要常常把一个多项式转化为几个整式的积.x(x-y)=x2-xy x2-xy=x(x-y)定义:一般地,把一个多项式化成几个整式的积的形式,叫做因式分解,有时我们也把这一过程叫做分解因式.想一想:下列代数式变形中,哪些是因式分解?哪些不是?像这样把多项式转化为两个整式的积的形式,是一种重要的代数式变形。

请观察下列两种代数式变形的例子,它们之间有什么联系吗?a(a+1)=a2+a(a+b)(a-b)=a2-b2(a+1)2=a2+2a+1 特点:由整式积的形式转化成多项式和的形式.a2+a=(a)(a+1)a2-b2=(a+b)(a-b)特点: 把多项式和的形式转化a2+2a+1=(a+1)2为几个整式的积的形式.想一想:通过刚才的学习你能说出因式分解与整式乘法它们之间有什么关系吗?整式的乘法根据等式的性质结论:多项式的因式分解与整式乘法是两种相反方向的恒等变形,它们是互逆过程。

浙教版七下 第六章《因式分解》教案

浙教版七下 第六章《因式分解》教案

第6.1节因式分解【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

【教学重点、难点】重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

【教学过程】㈠、情境导入看谁算得快:(抢答)(1)若a=101,b=99,则a2-b2=___________;(2)若a=99,b=-1,则a2-2ab+b2=____________;(3)若x=-3,则20x2+60x=____________。

㈡、探究新知1、请每题答得最快的同学谈思路,得出最佳解题方法。

(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

2、观察:a2-b2=(a+b)(a-b) ,a2-2ab+b2 = (a-b)2 ,20x2+60x=20x(x+3),找出它们的特点。

(等式的左边是一个什么式子,右边又是什么形式?)3、类比小学学过的因数分解概念,得出因式分解概念。

(学生概括,老师补充。

)板书课题:§6.1 因式分解因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。

㈢、前进一步1、让学生继续观察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2,20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?2、因式分解与整式乘法的关系:因式分解结合:a2-b2(a+b)(a-b)整式乘法说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

浙教版七年级数学下册 第四章 因式分解复习教案

浙教版七年级数学下册 第四章 因式分解复习教案

第四章 因式分解一、提公因式法.知识点1:分解因式的定义1.分解因式:把一个多项式化成几个_整式的乘的积,这种变形叫做分解因式,它与整式的 乘法互为逆运算。

分解因式需知;(1)只有多项式才能够分解因式,单项式不能分解因式(2)结果必须是整式,不能有分式出现(3)结果必须是积的形式【经典例题】判断下列从左边到右边的变形是否为分解因式:①8)3)(3(892+-+=+-x x x x ( ) ②)49)(49(4922y x y x y x -+=- ( )③ 9)3)(3(2-=-+x x x ( ) ④)2(222y x xy xy xy y x -=+- ( )知识点2:公因式公因式: 定义:我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。

公因式的确定:(1)符号: 若第一项是负号则先把负号提出来(提出负号后括号里每一项都要变号)(2)系数:取系数的最大公约数;(3)字母:取字母(或多项式)的指数最低的;(4)所有这些因式的乘积即为公因式;【经典例题】:1错误!未指定书签。

.的公因式是多项式 963ab - aby abx -+_________2错误!未指定书签。

.多项式3223281624a b c a b ab c -+-分解因式时,应提取的公因式是( )A .24ab c -B .38ab -C .32abD .3324a b c3. 342)()()(n m m n y n m x +++-+的公因式是__________知识点3:用提公因式法分解因式提公因式法分解因式:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成几个因式的乘积,这种分解因式的方法叫做提公因式法。

1可以直接提公因式的类型:(1)3442231269b a b a b a +-=________________; (2)11n n n a a a +--+=___________(3)(3)542)()()(b a b a y b a x -+---=_____________(4)不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值2.式子的第一项为负号的类型:(1)①33222864y x y x y x -+- =_______________②243)(12)(8)(4n m n m n m +++-+-=_______(2)若被分解的因式只有两项且第一项为负,则直接交换他们的位置再分解(特别是用到平方差公式时)如: 22188y x +- 【变式练习】1.多项式:aby abx ab 24186++-的一个因式是ab 6-,那么另一个因式是( )y x A 431..+-- y x B 431..-+ C y x 431--- D..y x 431--2.分解因式-5(y -x)3-10y(y -x)33. 公因式只相差符号的类型:公因式相差符号的,要先确定取哪个因式为公因式,然后把另外的只相差符号的因式的负号提出来,使其统一于之前确定的那个公因式。

2024年七年级下册数学浙教版教案完整版课件

2024年七年级下册数学浙教版教案完整版课件

2024年七年级下册数学浙教版教案完整版课件一、教学内容本节课选自2024年七年级下册数学浙教版教材第四章《因式分解》的第一课时。

详细内容包括:4.1因式分解的概念,4.2提公因式法,4.3运用乘法公式进行因式分解。

二、教学目标1. 理解因式分解的概念,掌握提公因式法和乘法公式进行因式分解的方法。

2. 能够熟练运用因式分解解决实际问题,提高数学思维能力。

3. 培养学生的逻辑推理能力和合作交流能力。

三、教学难点与重点教学难点:提公因式法和乘法公式的运用。

教学重点:因式分解的概念及其在实际问题中的应用。

四、教具与学具准备1. 教师准备:多媒体课件、黑板、粉笔。

2. 学生准备:教材、练习本、文具。

五、教学过程1. 实践情景引入利用多媒体课件展示实际生活中的问题,如:一张长方形纸片的面积可以通过长和宽的乘积来计算,如果知道面积和长,如何求解宽?引导学生发现因式分解在实际生活中的应用。

2. 知识讲解(1)讲解因式分解的概念,让学生理解其意义。

(2)通过例题讲解提公因式法和乘法公式进行因式分解的方法。

3. 例题讲解(1)讲解提公因式法的例题,如:x^2 + 3x 4的因式分解。

(2)讲解乘法公式的例题,如:a^2 b^2的因式分解。

4. 随堂练习(1)x^2 5x + 6的因式分解。

(2)a^2 + 2ab + b^2的因式分解。

5. 小组讨论(1)如何判断一个多项式是否可以进行因式分解?(2)在因式分解过程中,如何选择合适的公因式?6. 答疑解惑针对学生提出的问题进行解答,巩固所学知识。

六、板书设计1. 因式分解的概念2. 提公因式法3. 乘法公式进行因式分解七、作业设计1. 作业题目:(1)x^2 8x + 7的因式分解。

(2)a^2 2ab + b^2的因式分解。

答案:(1)(x 1)(x 7)(2)(a b)^22. 课后思考题:(1)一个多项式经过因式分解后,其各项系数的和是否改变?(2)如何求解一个一元二次方程的根?八、课后反思及拓展延伸1. 反思:本节课学生对因式分解的概念掌握情况,以及对提公因式法和乘法公式的运用熟练程度。

浙教版因式分解教案

浙教版因式分解教案

浙教版因式分解教案一、教学内容本节课选自浙教版《数学》七年级下册第五章“因式分解”的第一课时。

详细内容包括教材第5.1节“因式分解的概念与意义”,通过实例引入因式分解的概念,学习因式分解的意义及其在简化计算中的应用。

接着,学习教材第5.2节“提公因式法”,掌握提取公因式进行因式分解的方法,并运用此方法解决实际问题。

二、教学目标1. 理解因式分解的概念,掌握提公因式法进行因式分解的基本步骤。

2. 能够运用提公因式法解决具体数学问题,增强解决问题的能力。

3. 通过因式分解的学习,培养学生的逻辑思维能力和抽象思维能力。

三、教学难点与重点教学难点:理解因式分解的意义,以及如何寻找多项式中的公因式。

教学重点:掌握提公因式法进行因式分解的方法,并能够熟练运用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:练习本、笔。

五、教学过程1. 实践情景引入通过一个简单的实际例题,如计算长方形面积,引导学生理解因式分解的必要性和意义。

2. 例题讲解讲解因式分解的基本概念,使用提公因式法进行因式分解的步骤,并通过具体例题进行演示。

3. 随堂练习设计一些简单的因式分解练习题,让学生独立完成,及时巩固所学知识。

4. 知识拓展引导学生思考如何寻找多项式中的公因式,介绍一些寻找公因式的小技巧。

六、板书设计1. 因式分解的概念及意义。

2. 提公因式法的步骤及例题。

3. 练习题及答案。

七、作业设计1. 作业题目:(1) 因式分解:a^2 b^2,a^2 + 2ab + b^2。

(2) 应用题:一个长方形的长是宽的两倍,如果长方形的周长是60cm,求长和宽。

2. 答案:(1) a^2 b^2 = (a + b)(a b),a^2 + 2ab + b^2 = (a +b)^2。

(2) 长为20cm,宽为10cm。

八、课后反思及拓展延伸1. 反思:本节课学生对因式分解的概念和提公因式法的掌握情况,对教学方法和进度进行调整。

2024年浙教版因式分解教案

2024年浙教版因式分解教案

2024年浙教版因式分解教案一、教学内容本节课选自2024年浙教版初中数学教材,内容为第二章“整式的乘法与因式分解”中的2.3节“因式分解”。

详细内容包括:因式分解的定义、提取公因式法、平方差公式法、完全平方公式法以及因式分解在实际问题中的应用。

二、教学目标1. 理解因式分解的概念,掌握提取公因式、平方差公式和完全平方公式等方法。

2. 能够运用所学方法解决实际问题,提高数学思维能力。

3. 培养学生合作交流、自主探究的能力。

三、教学难点与重点教学难点:提取公因式、平方差公式和完全平方公式的运用。

教学重点:理解因式分解的概念,掌握各种因式分解方法。

四、教具与学具准备教具:多媒体课件、黑板、粉笔。

学具:练习本、草稿纸、计算器。

五、教学过程1. 实践情景引入利用多媒体展示一个长方形图形,引导学生计算长方形面积,引出整式乘法。

然后提出问题:如何将整式乘法的结果反过来分解成两个或多个整式的乘积?2. 知识讲解(1)因式分解的定义:将一个多项式表示成两个或多个整式的乘积。

(2)提取公因式法:讲解如何找到多项式中的公因式,并举例说明。

(3)平方差公式法:讲解平方差公式,并举例说明。

(4)完全平方公式法:讲解完全平方公式,并举例说明。

3. 例题讲解分别用提取公因式、平方差公式和完全平方公式解答三个例题,并强调解题步骤。

4. 随堂练习出示四道练习题,让学生独立完成,并进行讲解。

5. 小组讨论6. 课堂小结六、板书设计1. 因式分解的定义2. 提取公因式法3. 平方差公式法4. 完全平方公式法5. 例题及解答七、作业设计1. 作业题目(1)分解因式:x^2 4(2)分解因式:a^2 + 2ab + b^2(3)分解因式:2x^2 + 3x 2(4)实际问题:一个长方形的长比宽多2厘米,面积比另一个长方形少4平方厘米。

求这两个长方形的长和宽。

2. 答案(1)(x + 2)(x 2)(2)(a + b)^2(3)(2x 1)(x + 2)(4)第一个长方形的长和宽分别为4厘米和2厘米,第二个长方形的长和宽分别为6厘米和3厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1 因式分解
教学目标:
(一)教学知识点
使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.
(二)能力训练要求
通过观察,发现因式分解与整式乘法的关系,培养学生的观察能力和语言概括能力.
(三)情感与价值观要求
通过观察,推导因式分解与整式乘法的关系,让学生了解事物间的因果联系.
教学重、难点:
教学重点:
1.理解因式分解的意义.
2.识别因式分解与整式乘法的关系.
教学难点:
通过观察,归纳因式分解与整式乘法的关系.
教学过程:
一、创设情境,导入新课
[师]大家会计算(a+b)(a-b)吗?
[生]会.(a+b)(a-b)=a2-b2.
[师]对,这是大家学过的平方差公式,我们是在整式乘法中学习的.从式子(a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢?
[生]能从等号右边推出等号左边,因为多项式a2-b2与(a+b)(a-b)既然相等,那么两个式子交换一下位置还成立.
[师]很好,a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.
二、明确目标,互助探究:
1、想一想
由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?
[生]由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是因式分解,这两种过程正好相反.
[生]由(a+b)(a-b)=a2-b2可知,左边是整式乘法,右边是一个多项式;由a2-b2=(a+b)(a-b)来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过程正好相反.
[师]非常棒.下面我们一起来总结一下.
如:m(a+b+c)=ma+mb+mc (1)
ma+mb+mc=m(a+b+c) (2)
联系:等式(1)和(2)是同一个多项式的两种不同表现形式.
区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.
即ma+mb+mc m(a+b+c).
所以,因式分解与整式乘法是相反方向的变形.
2、议一议
你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.
[师]大家可以观察a3-a与993-99这两个代数式.
[生]a3-a=a(a2-1)=a(a-1)(a+1)
3、做一做
(1)计算下列各式:
①(m+4)(m-4)=__________;
②(y-3)2=__________;
③3x(x-1)=__________;
④m(a+b+c)=__________;
⑤a(a+1)(a-1)=__________.
[生]解:①(m+4)(m-4)=m2-16;
②(y-3)2=y2-6y+9;
③3x(x-1)=3x2-3x;
④m(a+b+c)=ma+mb+mc;
⑤a(a+1)(a-1)=a(a2-1)=a3-a.
(2)根据上面的算式填空:
①3x2-3x=( )( );
②m2-16=( )( );
③ma+mb+mc=( )( );
④y2-6y+9=( )2.
⑤a3-a=( )( ).
[生]把等号左右两边的式子调换一下即可.即:
①3x2-3x=3x(x-1);
②m2-16=(m+4)(m-4);
③ma+mb+mc=m(a+b+c);
④y2-6y+9=(y-3)2;
⑤a3-a=a(a2-1)=a(a+1)(a-1).
[师]能分析一下两个题中的形式变换吗?
[生]在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式.
[师]在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解.
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解(factorization).
4、练习
下列各式从左到右的变形,哪些是因式分解?
(1)4a(a+2b)=4a2+8ab;
(2)6ax-3ax2=3ax(2-x);
(3)a2-4=(a+2)(a-2);
(4)x2-3x+2=x(x-3)+2.
[生](1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,而不是因式分解;
(2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解;
(3)和(2)相同,是因式分解;
(4)是因式分解.
[师]大家认可吗?
[生]第(4)题不对,因为虽然x2-3x=x(x-3),但是等号右边x(x-3)+2整体来说它还是一个多项式的形式,而不是乘积的形式,所以(4)的变形不是因式分解.
三、总结归纳,课堂反馈
本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与因式分解的关系是相反方向的变形.。

相关文档
最新文档