计算流体动力学(CFD)简介69页PPT
合集下载
流体力学流体动力学完美版PPT
h ' h
气〔ρ〕-液〔ρ’〕 h ' h
解:水温40℃,汽化压强为7.38kPa 大气压强 pa 97.3103 10m
g 99.229.807
汽化压强
pgv 979.3.22891.803070.76m
p 12 v 1 2 ag 注z2意 z :1 z 2-p z2 1 ——2 v 2 2 下 游p 断w面高 度减上游断面高度〔±〕; ——用相对ρ压a-ρ强—计—算外的界气大体气伯密努度利减方管程内
常与连续性微分方程 ux uy uz 0 联立 x y z
2.粘性流体运动微分方程〔粘性作用→切应力〕
f 1 p 2 u d u u u u d t t
——纳维-斯托克斯方程〔N-S方程〕
分量式
X 1 p x 2 u x u tx u x u x x u y u y x u z u z x
pAagz2z1v 2 29v 2 2
1 9 2 .8 1 .2 0 .8 9 .8 4 0 0 0 .8 v 2 9 0 .8 v 2
2
2
1 1 18 528 .6 7 2.48 即 27 2 6.6 724 .48
Y 1 p y 2 u y u ty u x u x y u y u y y u z u z y Z 1 p z 2 u z u tz u x u x z u y u y z u z u z z
元流的伯努利方程
1.理想流体元流的伯努利方程 〔1〕推导方法一
将〔1〕、〔2〕、〔3〕各式分别乘以dx、dy、 dz,并相加
g 2g
单位重量流体的机械能守恒〔总水头不变〕
2.粘性流体元流的伯努利方程
z1pg 12 u1 g 2 z2pg 22 ug 2 2hw'
计算流体力学CFD课件
随流体运动的有限控制体模型
连续性方程
质量守恒定律
有限控制体的总质量为:
m dV V
随流体运动的有限控制 体模型
随流体运动的有限控制体模型
连续性方程:
D Dt
V
dV
0
随流体运动的有限控制 体模型
空间位置固定的无穷小微团模型
空间位置固定的无穷小微团模型
连续性方程
质量守恒定律
流出微团的质量流量 =微团内质量的减少
动量方程
表面力的两个 来源: 1)压力 2)粘性力
动量方程
粘性力的两个 来源:
1)正应力 2)切应力
动量方程
切应力:与流体剪切变形的时间变化率有关, 如下图中的xy
动量方程
正应力:与流体微团体积的时间变化率有关, 如下图中的xx
动量方程
作用在单位质量流体微团 上的体积力记做 f ,其X
方向的分量为 f x
随流体运动的有限控制 体,同一批流体质点始 终位于同一控制体内
速度散度及其物理意义
速度散度的物理意义:
是每单位体积运动着
的流体微团,体积相对变化的时间变化率。
连续性方程
空间位置固定的有限控制体模型
空间位置固定的有限控制体模型
连续性方程
质量守恒定律
通过控制面S流出控制体的净质量流量 =控制体内质量减少的时间变化率
流体微团在流场中的 运动-物质导数的示 意图
物质导数(运动流体微团的时间变化率)
物质导数D/Dt与偏导数/t不同 ,/t是在固定点1时观 察密度变化的时间变化率,该变化由流场瞬间的起伏所引起。
流体微团在流场中的 运动-物质导数的示 意图
物质导数(运动流体微团的时间变化率)
计算流体力学CFD课件
2 数值方法
探索常见偏微分方程,如Navier-Stokes方程, 以及它们在CFD中的作用。
介绍数值方法在CFD中的应用,包括差分法和 有限பைடு நூலகம்法等。
网格划分
传统网格划分方法
深入了解传统网格划分方法,如结构化网格和非结 构化网格。
自适应网格划分方法
探索自适应网格划分的原理和优势,以及它们在复 杂流体问题中的应用。
离散化方法
1
有限体积法
研究有限体积法如何将连续流场离散化并转化为离散方程。
2
有限元法
了解有限元法如何适用于复杂几何体和非线性问题的流体力学分析。
3
边界元法
探索边界元法的应用,特别是处理流体-结构相互作用的问题。
求解器
显式求解器
介绍显式求解器的原理和适用 情况,以及它们在CFD中的角色。
隐式求解器
深入了解CFD在多相流动模拟中的应用,如湍流、颗粒运动等。
计算结果的处理与分析
后处理
介绍CFD计算结果的后处理方法,如可视化和数 据提取。
结果评估
讨论如何评估CFD计算结果的准确性和稳定性。
优化设计
1
CFD在优化设计中的应用
了解如何在CFD中应用优化算法和敏感性
典型实例
2
分析来改善产品设计。
分享一些使用CFD进行优化设计的典型案 例,如空气动力学优化和燃烧过程优化。
计算流体力学CFD的发展前景
CFD的新发展方向
探讨CFD在多物理场耦合、不确定性分析和大规模并 行计算等方面的未来研究方向。
未来展望
展望计算流体力学在工程和科学领域的未来应用及 其潜在影响。
了解隐式求解器的优势和使用 场景,以及它们在稳态和不可 压缩流体问题中的应用。
流体力学 水力学 流体动力学 ppt课件
C ,t5
6 1.5 6 8 4 12.9m / s2
5
2
PPT课件
12
例:已知速度场 u 4y 6xt i 6y 9xt j。试问:
(1)t=2s时,在(2,4)点的加速度是多少?
(2)流动是恒定流还是非恒定流?(3)流动
是均匀流还是非均匀流?
C
uA
当t 5s时,uc t5 6m / s
2m
B uB
x
aC
t 0
u t
C ,t 0 uC
u l
C ,t 0
6 1.5 1.5 2 1
5
2
1.65m / s2
PPT课件
11
ac
u t
c uc
u
l
c
u t
C ,t5
uC
u l
PPT课件
9
旅客抵达北京时,感受到的气温变化是:
dT T T l dt t l t
T u T t l
1 C / d 2000km / d 4 C 2000km
3 C / d
PPT课件
10
流动场中速度沿流程均匀地增加并随
时间均匀地变化 。A点和B点相距2m,C点在
动能改变:
Eu
1 2
mu22
1 2
mu12
外力:重力和动水压力。
PPT课件
34
dE
dm
1 2
u22
dm
1 2
u12
dQdt (u22 u12 )
22
dQdt ( u22 u12 )
工程流体力学的计算方法CFD基础课件
详细描述
云计算技术使得大规模CFD模拟成为 可能,同时提供了灵活的计算资源和 数据管理方式。未来,云计算技术将 进一步优化,以降低计算成本和提高 计算效率。
THANKS
CFX
工业标准的CFD软件
CFX是全球公认的工业标准的CFD软件之一,广泛应用于能源、化工、航空航天、汽车等领域。它具 有强大的求解器和先进的物理模型,能够模拟复杂的流体流动和传热问题,并提供丰富的后处理功能 。
OpenFOAM
开源CFD软件
OpenFOAM是一款开源的CFD软件,由C编写,具有高度的灵活性和可定制性。它提供了丰富的工具包和案例库,适用于各 种流体动力学模拟,包括复杂流动、传热、化学反应等问题。
粘性。
热传导
流体在温度梯度作用下会产生 热传导现象。
流体动力学基本方程
质量守恒方程
表示流体质量随时间的变化规律 。
动量守恒方程
表示流体动量随时间的变化规律。
能量守恒方程
表示流体能量随时间的变化规律。
流体流动的分类
层流流动
均匀流动和非均匀流动
流体质点仅沿流线方向作有规则的线 运动,互不混杂。
根据流动是否具有空间均匀性进行分 类。
06
CFD未来发展与挑战
高精度算法与求解器
总结词
随着计算能力的不断提升,高精度算法和求解器在 CFD领域的应用将更加广泛。
详细描述
高精度算法和求解器能够提供更精确的流场模拟结果 ,有助于更深入地理解流体动力学现象。未来,高精 度算法和求解器将进一步优化,以适应更复杂、更高 要求的CFD模拟。
多物理场耦合模拟
有限体积法的优点在于能够很好地处 理流体流动中的非线性特性和复杂边 界条件,因此在工程流体力学中得到 了广泛应用。
云计算技术使得大规模CFD模拟成为 可能,同时提供了灵活的计算资源和 数据管理方式。未来,云计算技术将 进一步优化,以降低计算成本和提高 计算效率。
THANKS
CFX
工业标准的CFD软件
CFX是全球公认的工业标准的CFD软件之一,广泛应用于能源、化工、航空航天、汽车等领域。它具 有强大的求解器和先进的物理模型,能够模拟复杂的流体流动和传热问题,并提供丰富的后处理功能 。
OpenFOAM
开源CFD软件
OpenFOAM是一款开源的CFD软件,由C编写,具有高度的灵活性和可定制性。它提供了丰富的工具包和案例库,适用于各 种流体动力学模拟,包括复杂流动、传热、化学反应等问题。
粘性。
热传导
流体在温度梯度作用下会产生 热传导现象。
流体动力学基本方程
质量守恒方程
表示流体质量随时间的变化规律 。
动量守恒方程
表示流体动量随时间的变化规律。
能量守恒方程
表示流体能量随时间的变化规律。
流体流动的分类
层流流动
均匀流动和非均匀流动
流体质点仅沿流线方向作有规则的线 运动,互不混杂。
根据流动是否具有空间均匀性进行分 类。
06
CFD未来发展与挑战
高精度算法与求解器
总结词
随着计算能力的不断提升,高精度算法和求解器在 CFD领域的应用将更加广泛。
详细描述
高精度算法和求解器能够提供更精确的流场模拟结果 ,有助于更深入地理解流体动力学现象。未来,高精 度算法和求解器将进一步优化,以适应更复杂、更高 要求的CFD模拟。
多物理场耦合模拟
有限体积法的优点在于能够很好地处 理流体流动中的非线性特性和复杂边 界条件,因此在工程流体力学中得到 了广泛应用。
流体力学ppt课件-流体动力学
g
g
2g
水头
,
z
p
g
v2
2g
总水头, hw 水头损失
第二节 热力学第一定律——能量方程
水头线的绘制
总水头线
hw
对于理想流体,总水
1
v12 2g
2
v22 2g
头线是沿程不变的,
测压管水头线
p2
为一水平直线,对于
g
实际流体,总水头沿 程降低,但测压管水
p1 g
头线沿程有可能降低、
z2
不变或者升高。
z1
v2 A2 e2
u22 2
gz2
p2
v1A1 e1
u12 2
gz1
p1
微元流管即为流线,如果不 可压缩理想流体与外界无热 交换,热力学能为常数,则
u2 gz p 常数
2
这个方程是伯努利于1738年首先提出来的,命名为伯努利 方程。伯努利方程的物理意义是沿流线机械能守恒。
第二节 热力学第一定律——能量方程
皮托在1773年用一根弯成直角的玻璃管,测量了法国塞纳河 的流速。原理如图所示,在液体管道某截面装一个测压管和 一个两端开口弯成直角的玻璃管(皮托管),皮托管一端正 对来流,一端垂直向上,此时皮托管内液柱比测压管内液柱 高h,这是因为流体流到皮托管入口A点受到阻滞,速度降为 零,流体的动能变化为压强势能,形成驻点A,A处的压强称 为总压,与A位于同一流线且在A上游的B点未受测压管的影 响,其压强与A点测压管测得的压强相等,称为静压。
第四章 流体动力学
基本内容
• 雷诺输运公式 • 能量方程 • 动量方程 • 流体力学方程应用
第一节 雷诺输运方程
• 前面解决了流体运动的表示方法,但要在流 体上应用物理定律还有困难.
CFD概念及应用 ppt课件
CFD概念及应用
目录
▪ 前言 ▪ CFD简介 ▪ CFD分析的基本步骤 ▪ CFD应用 ▪ 结论
PPT课件
2
前言
随着我国经济的不断发展,环保标准日趋严格,燃 煤电厂的粉尘排放浓度降低到50mg/Nm3。这样就 对除尘器的设计、制造、设备性能提出了更高的要 求。而对设备的优化设计离不开模型试验,但模型实 验往往是场地大、时间长、费用高。采用CFD数值 分析方法则可以减少模型实验次数,甚至不需要模 型实验就能解决一些因实验条件限制难以解决的问 题,为电除尘器的优化设计提供依据。
▲实验研究仍是研究工作的基石,数值研究 的许多方面都密切依赖于实验研究:实验提供数 据;计算结果需由实验验证;观察实验现象分析 实验数据以建立计算模型等等
▲数值模拟是特殊意义下的实验,也称数值实 验
PPT课件
5
CFD基本概念
★计算流体力学(Computation Fluid Dynamics, 简称CFD)就是在电子计算机上数值求解流体与气
(u)
t
div(uu)
p x
xx
x
yx
y
zx
z
Fx
(v)
t
div(vu)
p y
xy
x
yy
y
zy
z
Fy
( )
t
div(u)
p z
xz
x
yz
y
应用 CFD可以提高企业的竞争能力和设计水平; 是企业数值化的重要部分;带来了崭新的设计理念和 提供了新的途径。
PPT课件
目录
▪ 前言 ▪ CFD简介 ▪ CFD分析的基本步骤 ▪ CFD应用 ▪ 结论
PPT课件
2
前言
随着我国经济的不断发展,环保标准日趋严格,燃 煤电厂的粉尘排放浓度降低到50mg/Nm3。这样就 对除尘器的设计、制造、设备性能提出了更高的要 求。而对设备的优化设计离不开模型试验,但模型实 验往往是场地大、时间长、费用高。采用CFD数值 分析方法则可以减少模型实验次数,甚至不需要模 型实验就能解决一些因实验条件限制难以解决的问 题,为电除尘器的优化设计提供依据。
▲实验研究仍是研究工作的基石,数值研究 的许多方面都密切依赖于实验研究:实验提供数 据;计算结果需由实验验证;观察实验现象分析 实验数据以建立计算模型等等
▲数值模拟是特殊意义下的实验,也称数值实 验
PPT课件
5
CFD基本概念
★计算流体力学(Computation Fluid Dynamics, 简称CFD)就是在电子计算机上数值求解流体与气
(u)
t
div(uu)
p x
xx
x
yx
y
zx
z
Fx
(v)
t
div(vu)
p y
xy
x
yy
y
zy
z
Fy
( )
t
div(u)
p z
xz
x
yz
y
应用 CFD可以提高企业的竞争能力和设计水平; 是企业数值化的重要部分;带来了崭新的设计理念和 提供了新的途径。
PPT课件
计算流体动力学(CFD)简介ppt课件
槽 道入口处水流速度为0.1m/s。图中的黑色圆点标志几何区域的控制点,利 用这些控制点就可以确定计算区域的几何形状,O点为坐标原点。
1 6
图3-6 矩形截面管道示意图
图3-7 流体计算区域示意图
1 7
2.4.2 实例分析
当利用Fluent解决某一工程问题时,要详细考虑以下几个问题: (1) 确定计算目标; (2) 选择计算模型; (3) 确定物理模型; (4) 确定解的程序。
9
在以上介绍的Fluent软件包中,求解器Fluent6.2.16是应用范围最广的, 所以在以后的章节中我们会对它进行详细的介绍。这个求解器既可使用 结构化网格,也可使用非结构化网格。对于二维问题,可以使用四边形 网格和三角形网格;对于三维问题,可以使用六面体、四面体、金字塔 形以及契形单元,具体的网格见图3-1。Fluent6.2.16可以接受单块和
TGrid用于从现有的边界网格生成体网格,Filters可以转换由其他软件生 成的网格从而用于Fluent计算。与Filters接口的程序包括ANSYS、 I-DEAS、NASTRAN 、 PATRAN等。
(2)求解器: 它是流体计算的核心,根据专业领域的不同,求解 器主要分以下几种类型。
①Fluent4.5:基于结构化网格的通用CFD求解器。 ②Fluent6.2.16:基于非结构化网格的通用CFD求解器。 ③ Fidap:基于有限元方法,并且主要用于流固耦合的通用CFD求 解器。 ④ Polyflow:针对粘弹性流动的专用CFD求解器。 ⑤ Mixsim:针对搅拌混合问题的专用CFD软件。 ⑥ Icepak: 专用的热控分析CFD软件。 (3)后处理器:Fluent求解器本身就附带有比较强大的后处理功 能。另外,Tecplot也是一款比较专业的后处理器,可以把一些数据可视 化,这对于数据处理要求比较高的用户来说是一个理想的选择。
1 6
图3-6 矩形截面管道示意图
图3-7 流体计算区域示意图
1 7
2.4.2 实例分析
当利用Fluent解决某一工程问题时,要详细考虑以下几个问题: (1) 确定计算目标; (2) 选择计算模型; (3) 确定物理模型; (4) 确定解的程序。
9
在以上介绍的Fluent软件包中,求解器Fluent6.2.16是应用范围最广的, 所以在以后的章节中我们会对它进行详细的介绍。这个求解器既可使用 结构化网格,也可使用非结构化网格。对于二维问题,可以使用四边形 网格和三角形网格;对于三维问题,可以使用六面体、四面体、金字塔 形以及契形单元,具体的网格见图3-1。Fluent6.2.16可以接受单块和
TGrid用于从现有的边界网格生成体网格,Filters可以转换由其他软件生 成的网格从而用于Fluent计算。与Filters接口的程序包括ANSYS、 I-DEAS、NASTRAN 、 PATRAN等。
(2)求解器: 它是流体计算的核心,根据专业领域的不同,求解 器主要分以下几种类型。
①Fluent4.5:基于结构化网格的通用CFD求解器。 ②Fluent6.2.16:基于非结构化网格的通用CFD求解器。 ③ Fidap:基于有限元方法,并且主要用于流固耦合的通用CFD求 解器。 ④ Polyflow:针对粘弹性流动的专用CFD求解器。 ⑤ Mixsim:针对搅拌混合问题的专用CFD软件。 ⑥ Icepak: 专用的热控分析CFD软件。 (3)后处理器:Fluent求解器本身就附带有比较强大的后处理功 能。另外,Tecplot也是一款比较专业的后处理器,可以把一些数据可视 化,这对于数据处理要求比较高的用户来说是一个理想的选择。
计算流体力学课件概述
2018/12/24
13
能源工业:图a是CFD模拟的500 [Mwe]电站煤粉锅炉炉内
燃烧。结果显示了在燃烧器喷流交叉形成的高温、高氧区, NOX生成速率大。
图b显示的是管壳换热器的流线及温度分布。同时考虑管外 流体、管内流体、以及管壁部分的耦合传热。
图c是模拟燃料电池中氧浓度的分布。用户开发了专门的电 化学反应模型,通过催化层的电化学反应速率模拟当地的电 流密度。
2018/12/24 8
CFD拥有包括流体流动、传热、辐射、多相流 、化学反应、燃烧等问题丰富的通用物理模 型;还拥有诸如气蚀、凝固、沸腾、多孔介 质、相间传质、非牛顿流、喷雾干燥、动静 干涉、真实气体等大批复杂
现象的实用模型。
2018/12/24
9
航空航天:图a为模拟美国F22战斗机的结果,图中 显示的是对称面上的马赫数分布。计算共采用了 260万个网格单元。模拟的升力、阻力及力矩系数 都与实验值吻合的很好。 图b是某飞机多段翼周围的压力分布 图c是美国J-31型涡轮喷气发动机的整机模拟。包 括进气道、压缩机、燃烧室、尾喷管四个部分。
图c 模拟出添加剂的浓度分布。改变添加剂的投放位置,用 CFD模拟来优化添加剂浓度分布,以达到最好的防腐效果
2018/12/24
15
冶金工业:图a 模拟的钢水铸造过程,图中显示的是铸造
模具内的流线及表面温度分布 图b是模拟连续加热炉,该炉采用直接加热方式,从图中温度 分布可以看出,钢带有一角的温度过高,这会影响钢产品的 质量。 图c是模拟优化铸造炉内烧嘴的类型和位置。很好地模拟出了 融池内因浮力驱动产生的二次流现象,及诸如回流区、涡、 表面波的发展、温度分布的不均匀性等设计缺陷。
2018/12/24
10
计算流体力学课件完整版
●真实可靠、是发现流动规律、检验理论和为流体机 械设计提供数据的基本手段。
●实验要受测量技术限制,实验周期长、费用高。
☆ 理论研究 ●在研究流体流动规律的基础上,建立了流体流动基 本方程。 ●对于一些简单流动,通过简化求出研究问题的解析 解。
计算流体力学
●对于实际流动问题,通常需运用流体力学基本方程, 借助于计算机求数值解(计算机数值模拟)— 计算流体力学CFD。
Z
skirt.plt X Y
75 50 25
0 -25 -50 -75
-2
Y(M) 0
2
0 2 4 6 10 8 X(M) 12 14
D) 16 Feb 2003 Velocity Vectors
4.5
4 velocity.plt
3.5
3
2.5
2
1.5
Z
Z
(3D) 16 Feb 2003 IJK-Ordered DZ ata
ijkcyl.plt X Y
Z
-0.4 -0.2 Y0 0.2 0.4
1
0.8
0.6
0.4
0.2
0 -0.4 -0.2 0 X 0.2 0.4
Z
jetflow.plXt Y
0.6 0.5 0.4 0.3 0.2 0.1
0 0 Y0.1 0.2
-0.6 -0.4 -0.2 0 X 0.2 0.4 0.6
轴流叶轮计算与实验叶片表面极限流线
计算流体力学
轴流叶轮计算与实验性能比较
计算流体力学
轴流叶轮计算与实验流场结构比较
计算流体力学
第二章 流体力学数值计算数学模型及定解条件
☆本章所涉及的基本方程有两类: ●流体力学基本方程,基本出发点:质量守恒、动量守恒和能
●实验要受测量技术限制,实验周期长、费用高。
☆ 理论研究 ●在研究流体流动规律的基础上,建立了流体流动基 本方程。 ●对于一些简单流动,通过简化求出研究问题的解析 解。
计算流体力学
●对于实际流动问题,通常需运用流体力学基本方程, 借助于计算机求数值解(计算机数值模拟)— 计算流体力学CFD。
Z
skirt.plt X Y
75 50 25
0 -25 -50 -75
-2
Y(M) 0
2
0 2 4 6 10 8 X(M) 12 14
D) 16 Feb 2003 Velocity Vectors
4.5
4 velocity.plt
3.5
3
2.5
2
1.5
Z
Z
(3D) 16 Feb 2003 IJK-Ordered DZ ata
ijkcyl.plt X Y
Z
-0.4 -0.2 Y0 0.2 0.4
1
0.8
0.6
0.4
0.2
0 -0.4 -0.2 0 X 0.2 0.4
Z
jetflow.plXt Y
0.6 0.5 0.4 0.3 0.2 0.1
0 0 Y0.1 0.2
-0.6 -0.4 -0.2 0 X 0.2 0.4 0.6
轴流叶轮计算与实验叶片表面极限流线
计算流体力学
轴流叶轮计算与实验性能比较
计算流体力学
轴流叶轮计算与实验流场结构比较
计算流体力学
第二章 流体力学数值计算数学模型及定解条件
☆本章所涉及的基本方程有两类: ●流体力学基本方程,基本出发点:质量守恒、动量守恒和能
计算流体力学基础ppt课件
可利用计算机进行各种数值试验,例如,选择不同流动参数进行 物理方程中各项有效性和敏感性试验,从而进行方案比较
它不受物理模型和实验模型的限制,省钱省时,有较多的灵活性, 能给出详细和完整的资料,很容易模拟特殊尺寸、高温、有毒、 易燃等真实条件和实验中只能接近而无法达到的理想条件。
8
数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适 用、适合于在计算机上进行计算的离散的有限数学模型,且最终结果 不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并 有一定的计算误差。
对于初始条件和边界条件的处理,直接影响计算结果的精度。
16
划分计算网 采用数值方法求解控制方程时,都是想办法将控制方程在空间区
域上进行离散,然后求解得到的离散方程组。要想在空间域上离 散控制方程,必须使用网格。现已发展出多种对各种区域进行离 散以生成网格的方法,统称为网格生成技术。
不同的问题采用不同数值解法时,所需要的网格形式是有一定区 别的,但生成网格的方法基本是一致的。目前,网格分结构网格 和非结构网格两大类。简单地讲,结构网格在空间上比较规范, 如对一个四边形区域,网格往往是成行成列分布的,行线和列线 比较明显。而对非结构网格在空间分布上没有明显的行线和列线。
数学模型就好理解了,就是对物理模型的数学描写。 比如N-S方程就是对粘性流体动力学的一种数学描写,值得注意的是,数学 模型对物理模型的描写也要通过抽象,简化的过程。
14
建立控制方程 确立初始条件及边界条件 划分计算网格,生成计算节点
建立离散方程
离散初始条件和边界条件
给定求解控制参数
解收敛否
否
显示和输出计算结果
21
给定求解控制参数 在离散空间上建立了离散化的代数方程组,并施加离散化的
它不受物理模型和实验模型的限制,省钱省时,有较多的灵活性, 能给出详细和完整的资料,很容易模拟特殊尺寸、高温、有毒、 易燃等真实条件和实验中只能接近而无法达到的理想条件。
8
数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适 用、适合于在计算机上进行计算的离散的有限数学模型,且最终结果 不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并 有一定的计算误差。
对于初始条件和边界条件的处理,直接影响计算结果的精度。
16
划分计算网 采用数值方法求解控制方程时,都是想办法将控制方程在空间区
域上进行离散,然后求解得到的离散方程组。要想在空间域上离 散控制方程,必须使用网格。现已发展出多种对各种区域进行离 散以生成网格的方法,统称为网格生成技术。
不同的问题采用不同数值解法时,所需要的网格形式是有一定区 别的,但生成网格的方法基本是一致的。目前,网格分结构网格 和非结构网格两大类。简单地讲,结构网格在空间上比较规范, 如对一个四边形区域,网格往往是成行成列分布的,行线和列线 比较明显。而对非结构网格在空间分布上没有明显的行线和列线。
数学模型就好理解了,就是对物理模型的数学描写。 比如N-S方程就是对粘性流体动力学的一种数学描写,值得注意的是,数学 模型对物理模型的描写也要通过抽象,简化的过程。
14
建立控制方程 确立初始条件及边界条件 划分计算网格,生成计算节点
建立离散方程
离散初始条件和边界条件
给定求解控制参数
解收敛否
否
显示和输出计算结果
21
给定求解控制参数 在离散空间上建立了离散化的代数方程组,并施加离散化的
流体动力学基础ppt课件
t
2020/2/10
12
由上述可知,采用欧拉法描述流体的流动,常常比采 用拉格朗日法优越,其原因有三。一是利用欧拉法得到的 是场,便于采用场论这一数学工具来研究。二是采用欧拉 法,加速度是一阶导数,而拉格朗日法,加速度是二阶导 数,所得的运动微分方程分别是一阶偏微分方程和二阶偏 微分方程,在数学上一阶偏微分方程比二阶偏微分方程求 解容易。三是在工程实际中,并不关心每一质点的来龙去 脉。基于上述三点原因,欧拉法在流体力学研究中广泛被 采用。当然拉格朗日法在研究爆炸现象以及计算流体力学 的某些问题中还是方便的。
则,分别将式(3-4)中三个速度分量对时间取全导数,
并将式(3-7)代入,即可得流体质点在某一时刻经过某
空间点时的三个加速度分量
2020/2/10
8
ax
u t
u
u x
v
u y
w
u z
v v v v a y t u x v y w z
(3-8)
(3-6)
2020/2/10
7
式(3-6)是流体质点的运动轨迹方程,将上式对时间 求导就可得流体质点沿运动轨迹的三个速度分量
u dx v dy w dz
dt
dt
dt
(3-7)
现在用欧拉法求流体质点的加速度。由于加速度定义
为在dt时刻内,流体质点流经某空间点附近运动轨迹上一
段微小距离时的速度变化率,于是可按复合函数的求导法
(3-4)
w=w (x,y,z,t)
式中,u,v,w分别表示速度矢量在三个 坐标轴上的分量: V ui vj wk
2020/2/10
6
P=p (x,y,z,t) Ρ=ρ(x,y,z,t)