(物理)物理牛顿运动定律练习题含答案及解析
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。
(物理)物理牛顿运动定律的应用练习题及答案及解析
(物理)物理牛顿运动定律的应用练习题及答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。
【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒解得:,A离左端距离,运动到左端历时,在A运动至左端前,木板静止,,解得B离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a向右加速:小车向右走位移接下来三个物体组成的系统以v共同匀速运动了小车在6s内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.如图所示,长木板质量M=3 kg,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg的物块A,右端放着一个质量也为m=1 kg的物块B,两物块与木板间的动摩擦因数均为μ=0.4,AB之间的距离L=6 m,开始时物块与木板都处于静止状态,现对物块A施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.4.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。
高一物理 牛顿运动定律 练习题1 (含答案)
牛顿运动定律 练习题11.质量为m 的三角形木楔A 置于倾角为θ的固定斜面上,它与斜面间的动摩擦因数为μ,一水平力F 作用在木楔A 的竖直平面上,在力F 的推动下,木楔A 沿斜面以恒定的加速度a 向上滑动,则F 的 大小为: A .θθμθcos )]cos (sin [++g a m B .)sin (cos )sin (θμθθ+-g a mC .)sin (cos )]cos (sin [θμθθμθ-++g a mD .)sin (cos )]cos (sin [θμθθμθ+++g a m 2.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图所示,已知人的质量为70kg ,吊板的质量为10kg ,绳及定滑轮的质 量、滑轮的摩擦均可不计。
取重力加速度g=10m/s 2。
当人以440N 的 力拉绳时,人与吊板的加速度a 和人对吊板的压力F 分别为 A. a=1.0m/s 2, F=260N B. a=1.0m/s 2,F=330N C. a=3.0m/s 2 F=110N D. a=3.0m/s 2 F=50N 3.根据牛顿运动定律,以下选项中正确的是A 人只有在静止的车厢内,竖直向上高高跳起后,才会落在车厢的原来位置。
B 人在沿直线匀速前进的车厢内,竖直向上高高跳起后,将落在经起点的后方C 人在沿直线加速前进的车厢内,竖直向上高高挑起后,将落在起跳点的后方D 人在沿直线减速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方4.三个完全相同的物块1、2、3放在水平桌面上,它们与桌面间的动摩擦因数都相同。
现用大小相同的外力F 沿图示方向分别作用在1和2上,用F 21的外力沿水平方向作用在3上,使三者都做加速运动。
令a 1、a 2、a 3分别代表物块1、2、3的加速度,则A .a 1=a 2=a 3B .a 1=a 2,a 2>a 3C .a 1>a 2,a 2<a 3D .a 1>a 2,a 2>a 35.下列哪个说法是正确的?A .体操运动员双手握住单杠吊在空中不动时处于失重状态;B .蹦床运动员在空中上升和下落过程中都处于失重状态;C .举重运动员在举起杠铃后不动的那段时间内处于超重状态;D .游泳运动员仰卧在水面静止不动时处于失重状态。
高中物理必修一 第4章第4节 牛顿运动定律的应用练习)解析版)
第四章运动和力的关系4. 5 牛顿运动定律的应用一、单选题1、航母“辽宁舰”甲板长300m,起飞跑道长100m,目前顺利完成了舰载机“歼-15”起降飞行训练。
“歼-15”降落时着舰速度大小约为70m/s,飞机尾钩钩上阻拦索后,在甲板上滑行50m左右停下,(航母静止不动)假设阻拦索给飞机的阻力恒定,则飞行员所承受的水平加速度与重力加速度的比值约为( )A.2B.5C.10D.50【答案】B【解析】根据速度和位移关系可知:v2−v02=2ax,解得:a=0−7022×50=−49m/s2,故ag=499.8=5,故B正确,A、C、D错误;故选B。
2、交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是15m,假设汽车轮胎与地面间的动摩擦因数恒为0.75,该路段限速60km/h,取g=10m/s2,则汽车刹车前的速度以及是否超速的情况是( )A.速度为7.5m/s,超速B.速度为15m/s,不超速C.速度为15m/s,超速D.速度为7.5m/s,不超速【答案】B【解析】设汽车刹车后滑动时的加速度大小为a,由牛顿第二定律得:μmg=ma解得:a=μg=7.5m/s2由匀变速直线运动的速度位移关系式有:v02=2ax可得汽车刹车前的速度为:v0==15m/s=54km/h<60km/h所以不超速.A.速度为7.5m/s,超速,与结论不相符,选项A错误;B.速度为15m/s,不超速,与结论相符,选项B正确;C.速度为15m/s,超速,与结论不相符,选项C错误;D.速度为7.5m/s,不超速,与结论不相符,选项D错误;3、一物体放在光滑水平面上,初速为零,先对物体施加一向东的恒力F,历时1s,随即把此力改为向西,大小不变,历时1s;,接着又把此力改为向东,大小不变,历时1s;如此反复,只改变力的方向,共历时1min,之后撤去该力。
物理牛顿运动定律的应用练习题20篇及解析
对
B: a2' /
s2
经分析,B 先停止运动,A 最后恰滑至 B 的最右端时速度减为零,故 v2 v2 L 2a1 2a2 ' 2
【详解】
(1)A、B 间恰要相对滑动的临界条件是二者间达到最大静摩擦力,
对 A,由牛顿第二定律可知,加速度 a 1g 2m / s2 ;
对 B,由牛顿第二定律可知, Fmin 2 m M g 1mg Ma ,
/
解得 Fmin 18N
(2)F=20N>18N,二者间会相对滑动,对 B,由牛顿第二定律;
(1)若 A、B 间相对滑动,F 的最小值;
(2)当 F=20N 时,若 F 的作用时间为 2s,此时 B 的速度大小;
/
(3)当 F=16N 时,若使 A 从 B 上滑下,F 的最短作用时间.
【答案】(1) Fmin 18N (2) v2 20m / s (3) t2 1.73s
【解析】
【分析】
(1)对铅块、木板根据牛顿第二定律求解加速度大小;(2)从开始到滑落过程,铅块和 木板的位移之差等于 L,求解时间;(3)根据两种临界态:到右端恰好共速以及共速后不 能从左侧滑下求解力 F 的范围; 【详解】
(1)铅块: 1mg ma1
解得 a1=4m/s2; 对木板: 1mg 2 (M m)g Ma2 解得 a2=2m/s2
1 2
a1t12
1 2
a2t12
1.25m
撤掉 F 后:物块相对于木板上滑,加速度仍未 a1=8m/s2,减速上滑
而木板: Mg sin 2 (M m)g cos 1mg cos Ma2
则: a2 12m/s2 ,方向沿斜面向下,减速上滑
由于: Mg sin 1mg cos 2 (M m)g cos
高一物理必修一第四章《牛顿运动定律》基础练习(最新整理含答案)
高一物理必修一第四章《牛顿运动定律》基础练习第1节牛顿第一定律一、选择题1.关于牛顿第一定律的说法中,正确的是()A.由牛顿第一定律可知,物体在任何情况下始终处于静止状态和匀速直线运动状态B.牛顿第一定律只是反映惯性大小的,因此也叫惯性定律C.牛顿第一定律反映了物体不受外力作用时的运动规律,因此,物体在不受力时才有惯性D.牛顿第一定律既揭示了物体保持原有运动状态的原因,又揭示了运动状态改变的原因2.关于惯性的大小,下列说法正确的是()A.物体的速度越大,其惯性就越大B.物体的质量越大,其惯性就越大C.物体的加速度越大,其惯性就越大D.物体所受的合力越大,其惯性就越大3.关于力和运动状态的改变,下列说法不正确的是()A.物体加速度为零,则运动状态不变B.只要速度大小和方向二者中有一个发生变化,或者二者都变化,都叫运动状态发生变化C.物体运动状态发生改变就一定受到力的作用D.物体运动状态的改变就是指物体的加速度在改变4.有M、N两个物体,M物体的速度从零均匀增加到5 m/s用了2 s的时间,N物体的速度从零均匀增加到5 m/s用了4 s的时间,则()A.M物体的惯性大B.N物体的惯性大C.M、N两个物体的惯性一样大D.无法判断5.关于惯性的大小,下面说法中正确的是()A.两个质量相同的物体,速度大的物体惯性大B.两个质量相同的物体,不论速度大小,它们的惯性的大小一定相同C.同一个物体,静止时的惯性比运动时的惯性大D.同一个物体,在月球上的惯性比在地球上的惯性小6.在水平的路面上有一辆匀速行驶的小车,车上固定一盛满水的碗.现突然发现碗中的水洒出,水洒出的情况如图所示,则关于小车在此种情况下的运动,下列叙述正确的是()A.小车匀速向左运动B.小车可能突然向左加速运动C.小车可能突然向左减速运动D.小车可能突然向右减速运动7.如图所示,在一辆表面光滑的小车上,有质量分别为m1和m2的两个小球(m1>m2)随车一起匀速运动,当车突然停止时,如不考虑其他阻力,设车足够长,则两个小球()A.一定相碰B.一定不相碰C.不一定相碰D.难以确定二、非选择题8.如图所示,为保护交通事故中司机的安全,一般要求司机开车时必须系上安全带,你知道这是为什么吗?9.一仪器中的电路如图所示,其中M是一个质量较大的金属块,左、右两端分别与金属制作的弹簧相连接.将仪器固定在汽车上,当汽车启动时,哪盏灯亮?当汽车急刹车时,又是哪一盏灯亮?为什么?第四章 第2节 实验:探究加速度与力、质量的关系一、选择题1.在“探究加速度与力、质量的关系”实验中,关于小车所受的合力,下列叙述中正确的是( )A .小车所受的合力就是所挂吊盘和砝码的重力B .小车所受的合力的大小等于吊盘与砝码通过细绳对小车施加的拉力C .只有平衡摩擦力后,小车所受合力才等于细绳对小车的拉力D .只有平衡摩擦力之后,且当小车的质量M 远大于吊盘与砝码的总质量m 时,小车所受合力的大小可认为等于吊盘与砝码的重力2.在“探究加速度与力、质量的关系”的实验中,关于平衡摩擦力的说法中正确的是( )A .“平衡摩擦力”的本质就是想法让小车受到的摩擦力为零B .“平衡摩擦力”的本质就是使小车所受的重力的下滑分力与所受到的摩擦阻力相平衡C .“平衡摩擦力”的目的就是要使小车所受的合力等于所挂钩码通过细绳对小车施加的拉力D .“平衡摩擦力”是否成功,可由小车拖动而由打点计时器打出的纸带上的点迹间距是否均匀而确定3.如图所示是“探究加速度与力、质量的关系”的实验方案之一,通过位移的测量来代替加速度的测量,即a 1a 2=x 1x 2.用这种替代成立的操作要求是( )A .实验前必须先平衡摩擦力B .必须保证两小车的运动时间相等C .两小车都必须从静止开始做匀加速直线运动D .小车所受的水平拉力大小可以认为是砝码(包括小盘)的重力大小4.如图所示是某些同学根据实验数据画出的图象,下列说法中正确的是( )A .形成图(甲)的原因是平衡摩擦力时长木板倾角过大B.形成图(乙)的原因是平衡摩擦力时长木板倾角过小C.形成图(丙)的原因是平衡摩擦力时长木板倾角过大D.形成图(丁)的原因是平衡摩擦力时长木板倾角过小5.如图所示,在研究牛顿第二定律的演示实验中,若1、2两个相同的小车所受拉力分别为F1、F2,车中所放砝码的质量分别为m1、m2,打开夹子后经过相同的时间两车的位移分别为x1、x2,则在实验误差允许的范围内,有()A.当m1=m2、F1=2F2时,x1=2x2B.当m1=m2、F1=2F2时,x2=2x1C.当F1=F2、m1=2m2时,x1=2x2D.当F1=F2、m1=2m2时,x2=2x16.如图所示是根据探究加速度与力的关系的实验数据描绘的a-F图象,下列说法正确的是()A.三条倾斜直线所对应的小车和砝码的质量相同B.三条倾斜直线所对应的小车和砝码的质量不同C.直线1所对应的小车和砝码的质量最大D.直线3所对应的小车和砝码的质量最大7.在保持小车质量M不变,探究a与F的关系时,小车质量M和小盘及砝码质量m 分别选取下列四组值.若其他操作都正确,那么在选用哪一组值测量时,所画出的a-F图线较准确()A.M=500 g,m分别为50 g、70 g、100 g、125 gB.M=500 g,m分别为20 g、30 g、40 g、50 gC.M=200 g,m分别为50 g、70 g、100 g、125 gD.M=100 g,m分别为30 g、40 g、50 g、60 g二、非选择题8.在“探究加速度与力、质量的关系”的实验中,备有下列器材:A.电火花计时器;B.天平;C.秒表;D.交流电源;E.电池;F.纸带;G.细绳、砝码、滑块(可骑在气垫导轨上);H.气垫导轨(一端带定滑轮);I.毫米刻度尺;J.小型气泵(1)实验中应选用的器材有__________________________________________;实验的研究对象_______________________________________________________.(2)本实验分两大步骤进行:①__________________________________________;②________________________________________________________________________.(2)①研究a与F的关系(m一定)②研究a与1/m的关系(F一定)9.在做“探究加速度和力、质量的关系”的实验中,保持小车和砝码的总质量不变,测得小车的加速度a和拉力F的数据如表所示(1)(2)图象斜率的物理意义是________________________________.(3)小车和砝码的总质量为________________kg .(4)图线(或延长线)与F轴截距的物理意义是_____________________________.第四章 第3节 牛顿第二定律一、选择题1.关于速度、加速度、合外力之间的关系,正确的是( )A .物体的速度越大,则加速度越大,所受的合外力也越大B .物体的速度为零,则加速度为零,所受的合外力也为零C .物体的速度为零,但加速度可能很大,所受的合外力也可能很大D .物体的速度很大,但加速度可能为零,所受的合外力也可能为零2.如图所示,质量为10 kg 的物体拴在一个被水平拉伸的轻质弹簧一端,弹簧的拉力为5 N 时,物体处于静止状态.若小车以1 m/s 2的加速度水平向右运动,(g =10 m/s 2),则( )A .物体相对小车仍然静止B .物体受到的摩擦力增大C .物体受到的摩擦力减小D .物体受到的弹簧拉力增大3.质量为1 kg 的物体受3 N 和4 N 的两个共点力的作用,物体的加速度可能是( )A .5 m/s 2B .7 m/s 2C .8 m/s 2D .9 m/s 24.高层住宅与写字楼已成为城市中的亮丽风景,电梯是高层住宅与写字楼必配的设施.某同学将一轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂一个小铁球,如图所示.在电梯运行时,该同学发现轻弹簧的伸长量比电梯静止时的伸长量小了,这一现象表明( )A .电梯可能是在下降B .该同学对电梯地板的压力等于其重力C .电梯的加速度方向一定是向下D .该同学对电梯地板的压力小于其重力5.如图所示,质量为m 的小球固定在水平轻弹簧的一端,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为( )A .0B .g C.233g D.33g 6.“蹦极”就是跳跃者把一端固定的长弹性绳绑在踝关节等处,从几十米高处跳下的一种极限运动.某人做蹦极运动,所受绳子拉力F的大小随时间t变化的情况如图所示.将蹦极过程近似为在竖直方向的运动,重力加速度为g.据图可知,此人在蹦极过程中最大加速度约为()A.g B.2g C.3g D.4g7.如图所示,轻弹簧竖直放置在水平面上,其上放置质量为2 kg的物体A,A处于静止状态.现将质量为3 kg的物体B轻放在A上,则B与A刚要一起运动的瞬间,B对A的压力大小为(取g=10 m/s2)()A.30 N B.18 N C.0 D.12 N二、非选择题8.一个人用一条质量可不计的细绳从井中竖直向上提一桶水,细绳所能承受的最大拉力为300 N.已知水桶装满水后,水与水桶的总质量为20 kg.则人向上提升的最大加速度为多大?9.如右图所示,在水平地面上有一匀速行驶的车,车内用绳AB与绳BC拴住一个小球,BC绳水平,AB绳与竖直方向夹角θ为37°,小球质量为0.8 kg,小球在车中位置始终未变(g取10 N/kg,sin37°=0.6,cos37°=0.8).求:(1)小球对AB绳的拉力大小;(2)当BC拉力为零时车的加速度a.第四章 第4节 力学单位制一、选择题1.下列说法中,正确的是( )A .在力学单位制中,若采用cm 、g 、s 作为基本单位,力的单位是NB .在力学单位制中,若力的单位是N ,则是采用m 、kg 、s 为基本单位C .牛顿是国际单位制中的一个基本单位D .牛顿是力学单位制中采用国际单位的一个导出单位2.下列说法中正确的是( )A .质量是物理学中的基本物理量B .长度是国际单位制中的基本单位C .kg·m/s 是国际单位制中的导出单位D .时间的单位——小时是国际单位制中的导出单位3.在国际单位制中,力的单位“牛”是导出单位,用基本单位表示,正确的是( )A .m/sB .m/s 2C .kg·m/sD .kg·m/s 24.在近代社会,各国之间的经济贸易、政治往来以及科学文化的沟通非常频繁,对度量衡单位统一的呼声越来越高,于是出现了国际单位制.在下列所给单位中,用国际单位制中基本单位表示加速度的单位的是( )A .cm/s 2B .m/s 2C .N/kgD .N/m5.关于功的单位,下列各式中能表示的是( )A .JB .N·mC .kg·m 2/s 3D .kg·m 2/s 26.以下结论正确的是( )A .若合力F =2 N ,加速度a =2 cm/s 2,则质量为m =F a=1 kg B .若合力F =4 N ,质量m =20 g ,则加速度a =F m=0.2 m/s 2 C .若已知m =20 kg ,a =2 cm/s 2,则合力为F =ma =40 ND .若已知m =2.0 kg ,a =2 m/s 2,则合力为F =ma =4 N7.我们在以后要学习一个新的物理量——动量p =m v ,关于动量的单位,下列各式中正确的是( )A .kg·m/sB .N/s C.N m/s ·m sD .N·m二、非选择题8.如图所示,两个用轻线相连的位于光滑水平面上的物块,质量分别为m1=1 kg,m2=2 kg,拉力F1=10 N,F2=7 N,与轻线在同一直线上,试求在两个物体运动过程中轻线的拉力为多大?9.如图所示,滑雪运动员质量m=75 kg,沿倾角θ=30°的山坡匀加速滑下,经过2 s 的时间速度由2 m/s增加到8 m/s,g=10 m/s2,求:(1)运动员在这段时间内沿山坡下滑的距离和加速度大小;(2)运动员受到的阻力(包括摩擦和空气阻力).第四章第5节牛顿第三定律一、选择题1.关于作用力、反作用力和一对平衡力的认识,正确的是()A.一对平衡力的合力为零,作用效果相互抵消,一对作用力与反作用力的合力也为零、作用效果也相互抵消B.作用力和反作用力同时产生、同时变化、同时消失,且性质相同,平衡力的性质却不一定相同C.作用力和反作用力同时产生、同时变化、同时消失,且一对平衡力也是如此D.先有作用力,接着才有反作用力,一对平衡力都是同时作用在同一个物体上2.如图所示,一物体在粗糙水平地面上受斜向上的恒定拉力F作用而做匀速直线运动,则下列说法正确的是()A.物体可能只受两个力作用B.物体可能受三个力作用C.物体可能不受摩擦力作用D.物体一定受四个力3.物体在水平地面上向前减速滑行,如图所示,则它与周围物体间的作用力与反作用力的对数为()A.1B.2C.3D.44.甲、乙两队用一条轻绳进行拔河比赛,甲队胜,在比赛过程中()A.甲队拉绳子的力大于乙队拉绳子的力B.甲队与地面间的摩擦力大于乙队与地面间的摩擦力C.甲、乙两队与地面间的摩擦力大小相等,方向相反D.甲、乙两队拉绳子的力大小相等,方向相反5.按照我国载人航天“三步走”发展战略,我国于2011年下半年先后发射“天宫1号”和“神舟8号”,实施首次空间飞行器无人交会对接实验.下面关于飞船和火箭上天情况的叙述正确的是()A.火箭尾部向外喷气,喷出的气体对火箭产生一个向上的推力B.火箭受的推力是由于喷出的气体对空气产生一个作用力,空气的反作用力作用于火箭而产生的C.火箭飞出大气层后,由于没有了空气,火箭虽向后喷气也不会产生推力D.飞船进入轨道后,和地球间存在一对作用力与反作用力6.对于静止在地面上的物体,下列说法中正确的是()A.物体对地面的压力与物体受到的重力是一对平衡力B.物体对地面的压力与物体受到的重力是一对作用力与反作用力C.物体对地面的压力与地面对物体的支持力是一对平衡力D.物体对地面的压力与地面对物体的支持力是一对作用力与反作用力7.一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15 kg 的重物,重物静止于地面上,有一质量m=10 kg的猴从绳子另一端沿绳向上爬,如图所示,不计滑轮摩擦,在重物不离开地面条件下,(重力加速度g=10 m/s2)猴子向上爬的最大加速度为()A.25 m/s2B.15 m/s2 C.10 m/s2D.5 m/s2二、非选择题8.如图所示的装置中α=37°,当整个装置以加速度2 m/s2竖直加速上升时,质量为10 kg的光滑球对斜面的压力多大?竖直板对球的压力多大?(g取10 m/s2)9.如图所示,一只质量为m的小猴,沿竖直方向的直杆,以a的加速度向上爬,求小猴对杆的作用力.第四章第6节用牛顿运动定律解决问题(一)一、选择题1.在光滑水平面上以速度v运动的物体,从某一时刻开始受到一个跟运动方向共线的力的作用,其速度图象如图(1)所示.那么它受到的外力F随时间变化的关系图象是图(2)中的()2.同学们小时候都喜欢玩滑梯游戏,如图所示,已知斜面的倾角为θ,斜面长度为L,小孩与斜面的动摩擦因数为μ,小孩可看成质点,不计空气阻力,则下列有关说法正确的是()A.小孩下滑过程中对斜面的压力大小为mg cosθB.小孩下滑过程中的加速度大小为g sinθC.到达斜面底端时小孩速度大小为2gL sinθD.下滑过程小孩所受摩擦力的大小为μmg cosθ3.如图甲所示,某人正通过定滑轮将质量为m的货物提升到高处.滑轮的质量和摩擦均不计,货物获得的加速度a与绳子对货物竖直向上的拉力T之间的函数关系如图乙所示.由图可以判断()A .图线与纵轴的交点P 的值a P =-gB .图线与横轴的交点Q 的值T Q =mgC .图线的斜率等于物体的质量mD .图线的斜率等于物体质量的倒数1m4.利用传感器和计算机可以研究快速变化的力的大小.实验时让某消防员从一平台上跌落,自由下落2 m 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5 m ,最后停止.用这种方法获得消防员受到地面冲击力随时间变化的图线如图所示,根据图线所提供的信息,以下判断正确的是( )A .t 1时刻消防员的速度最大B .t 2时刻消防员的速度最大C .t 3时刻消防员的速度最大D .t 4时刻消防员的加速度最小5.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查.如图所示为一水平传送带装置示意图,紧绷的传送带AB 始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,AB 间的距离为2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速度平行于传送带运动去取行李,则( )A .乘客与行李同时到达B B .乘客提前0.5 s 到达BC .行李提前0.5 s 到达BD .若传送带速度足够大,行李最快也要2 s 才能到达B6.在有空气阻力的情况下,以初速度v 1竖直上抛一物体,经过时间t 1到达最高点,又经过时间t 2,物体由最高点落回到抛出点,这时物体的速度为v 2,则( )A .v 2=v 1,t 2=t 1B .v 2>v 1,t 2>t 1C.v2<v1,t2<t1D.v2<v1,t2>t17.两物体A,B静止于同一水平面上,与水平面间的动摩擦因数分别为μA,μB,它们的质量分别为m A,m B,用平行于水平面的力F拉动物体A,B,所得加速度a与拉力F的关系如图所示,则()A.μA=μB,m A>m B B.μA>μB,m A<m BC.μA=μB,m A=m B D.μA<μB,m A>m B二、非选择题8.如图所示,一儿童玩具静止在水平地面上,一个幼儿沿与水平面成53°角的恒力拉着它沿水平面运动,已知拉力F=4.0 N,玩具的质量m=0.5 kg,经过时间t=2.0 s,玩具移动了距离x=6 m,这时幼儿松开手,玩具又滑行了一段距离后停下.(取g=10 m/s2.sin53°=0.8,cos53°=0.6)(1)全过程玩具的最大速度是多大?(2)玩具与水平面的动摩擦因数是多少?(3)松开手后玩具还能运动多远?9.质量m=20 kg的物体,在水平恒力F的作用下,沿水平面做直线运动.已知物体开始向右运动,物体的v-t图象如图所示.g取10 m/s2.(1)画出物体在0~4 s内的两个运动过程的受力示意图;(2)求出这两个过程中物体运动的加速度和方向;(3)求出水平恒力F的大小和方向及物体与水平面的动摩擦因数μ.第四章 第7节 第1课时 共点力的平衡条件一、选择题1.如图所示,光滑半球形容器固定在水平面上,O 为球心.一质量为m 的小滑块在水平力F 的作用下静止于P 点.设滑块所受的支持力为F N ,OP 与水平方向的夹角为θ,则下列关系正确的是( )A .F =mgtan θB .F =mg tan θC .F N =mgtan θD .F N =mg tan θ2.如图所示,地面上斜放着一块木板AB ,上面放一个木块,木块相对斜面静止.设斜面对木块的支持力为F N ,木块所受摩擦力为F f .若使斜面的B 端缓慢放低时,将会产生下述的哪种结果( )A .F N 增大,F f 增大B .F N 增大,F f 减小C .F N 减小,F f 增大D .F N 减小,F f 减小3.如图所示,倾角为θ的斜面体C 置于水平地面上,物体B 放在斜面体C 上,并通过细绳跨过光滑的定滑轮与物体A 相连接,连接B 的一段细绳与斜面平行,已知A 、B 、C 都处于静止状态.则( )A .物体B 受到的摩擦力一定不为零 B .斜面体C 受到地面的摩擦力一定为零C .斜面体C 有向右滑动的趋势,一定受到地面向左的摩擦力D .将细绳剪断,若B 依然静止在斜面上,此时地面对C 的摩擦力为零4.如图所示,A 球和B 球用轻绳相连,静止在光滑的圆柱面上,若A 球的质量为m ,则B 球的质量为( )A.34mB.23mC.35m D.m 25.如图所示,在倾角为θ的固定光滑斜面上,质量为m 的物体受外力F 1和F 2的作用,F 1方向水平向右,F 2方向竖直向上.若物体静止在斜面上,则下列关系正确的是( )A .F 1sin θ+F 2cos θ=mg sin θ,F 2≤mgB .F 1cos θ+F 2sin θ=mg sin θ,F 2≤mgC .F 1sin θ-F 2cos θ=mg sin θ,F 2≤mgD .F 1cos θ-F 2sin θ=mg sin θ,F 2≤mg6.如图所示,质量分别为m 1、m 2的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(m 1在地面,m 2在空中),力F 与水平方向成θ角.则m 1所受支持力N 和摩擦力f 正确的是( )A .N =m 1g +m 2g -F sin θB .N =m 1g +m 2g -F cos θC .f =F cos θD .f =F sin θ7.有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑.AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图所示.现将P 环向左移动一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力F N 和摩擦力f 的变化情况是( )A .F N 不变, f 变大B.F N不变,f变小C.F N变大,f变大D.F N变大,f变小二、非选择题8.如图所示,用不可伸长的轻绳AC和BC吊起一质量不计的沙袋,绳AC和BC与天花板的夹角分别为60°和30°.现缓慢往沙袋中注入沙子.重力加速度g取10 m/s2.(1)当注入沙袋中沙子的质量m=10 kg时,求绳AC和BC上的拉力大小F AC和F BC;(2)若AC能承受的最大拉力为150 N,BC能承受的最大拉力为100 N,为使绳子不断裂,求注入沙袋中沙子质量的最大值M.9.如图所示,一根水平的粗糙直横杆上套有两个质量均为m的铁环,两铁环上系着两根等长的细线,共同拴住一质量为M=2m的小球.若细线与水平横杆的夹角为θ时,两铁环与小球均处于静止状态,则水平横杆对其中一铁环的弹力为多大?摩擦力为多大?第7节第2课时超重和失重从动力学看自由落体运动一、选择题1.如图所示,一木箱置于电梯中,并随电梯一起向上运动,电梯底面水平,木箱所受重力和支持力大小分别为G和F.则此时()A.G<F B.G=F C.G>F D.以上三种说法都有可能2.质量为60 kg的人,站在升降机内的台秤上,测得体重为480 N,则升降机的运动可能是()A.匀速上升或匀速下降B.加速下降C.减速下降D.减速上升3.某同学想在电梯内观察超重与失重现象,他将一台体重计放在电梯内并且站在体重计上观察,在电梯某段运行中他发现体重计的示数是静止时示数的4/5,由此可以判断(g取10 m/s2)()A.电梯此时一定向下运动B.电梯此时一定向上运动C.电梯此时可能以2 m/s2的加速度加速上升D.电梯此时可能以2 m/s2的加速度加速下降4.在以加速度a匀加速上升的电梯中,有一个质量为m的人,下述说法中哪些是正确的()A.此人对地球的吸引力为m(g+a) B.此人对电梯的压力为m(g-a)C.此人受到的重力为m(g+a) D.此人的视重为m(g+a)5.如图所示,在压力传感器的托盘上固定一个倾角为30°的光滑斜面,现将一个重4 N 的物块放在斜面上,让它自由滑下,则下列说法正确的是()A.测力计的示数和没放物块时相比增大2 3 NB.测力计的示数和没放物块时相比增大1 NC.测力计的示数和没放物块时相比增大2 ND.测力计的示数和没放物块时相比增大3 N6.某物体以30 m/s的初速度竖直上抛,不计空气阻力,g取10 m/s2,5 s内物体的() A.路程为65 m B.位移大小为25 m,方向向上C.速度改变量的大小为10 m/s D.平均速度大小为13 m/s,方向向上7.如图所示,A为电磁铁,C为胶木托盘,C上放一质量为M的铁片B,A和C(包括支架)的总质量为m,整个装置用轻绳悬挂于O点,当电磁铁通电后,在铁片被吸引上升的过程中,轻绳上拉力F的大小()A.F=mg B.mg<F<(M+m)g C.F=(M+m)g D.F>(M+m)g二、非选择题8.某同学设计了一个测量长距离电动扶梯加速度的实验,实验装置如图1所示.将一电子健康秤置于水平的扶梯台阶上,实验员站在健康秤上相对健康秤静止.使电动扶梯由静止开始斜向上运动,整个运动过程可分为三个阶段,先加速、再匀速、最终减速停下.已知电动扶梯与水平方向夹角为37°.重力加速g取10 m/s2,sin37°=0.6,cos37°=0.8.某次测量的三个阶段中电子健康秤的示数F随时间t的变化关系,如图2所示.(1)画出加速过程中实验员的受力示意图;(2)求该次测量中实验员的质量m;(3)求该次测量中电动扶梯加速过程的加速度大小a1和减速过程的加速度大小a2.9.在细线拉力F作用下,质量m=1.0 kg的物体由静止开始竖直向上运动,v-t图象如图所示,取重力加速度g=10 m/s2,求:(1)在这4 s内细线对物体拉力F的最大值;(2)在F-t图象中画出拉力F随时间t变化的图线.第四章 专题 整体法和隔离法的应用一、选择题1.如右图所示,长木板静止在光滑的水平地面上,一木块以速度v 滑上木板,已知木板质量是M ,木块质量是m ,二者之间的动摩擦因数为μ,那么,木块在木板上滑行时( )A .木板的加速度大小为μmg /MB .木块的加速度大小为μgC .木板做匀加速直线运动D .木块做匀减速直线运动2.为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图所示.当此车减速上坡时,乘客( )A .座椅的支持力小于乘客的重力B .受到向前(水平向右)的摩擦力作用C .受到向前(水平向左)的摩擦力作用D .所受力的合力沿斜坡向上3.如图,机车a 拉着两辆拖车b ,c 以恒定的牵引力向前行驶,连接a ,b 间和b ,c 间的绳子张力分别为T 1,T 2,若行驶过程中发现T 1不变,而T 2增大,则造成这一情况的原因可能是( )A .b 车中有部分货物落到地上B .c 车中有部分货物落到地上C .b 车中有部分货物抛到c 车上D .c 车上有部分货物抛到b 车上4.如右图所示,两个质量相同的物体A 和B 紧靠在一起,放在光滑的水平桌面上,如果它们分别受到水平推力F 1和F 2作用,而且F 1>F 2,则A 施于B 的作用力大小为( )A .F 1B .F 2 C.12(F 1+F 2)D.12(F 1-F 2)。
高三物理牛顿运动定律试题答案及解析
高三物理牛顿运动定律试题答案及解析1.某兴趣小组对一辆自制遥控小车的性能进行研究。
他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v―t图象,如图所示(除2s―10s时间段图象为曲线外,其余时间段图象均为直线)。
已知在小车运动的过程中,2s―14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行。
小车的质量为1.0kg,可认为在整个运动过程中小车所受到的阻力大小不变。
则A.小车所受到的阻力大小为1.5NB.小车匀速行驶阶段发动机的功率为9WC.小车在加速运动过程中位移的大小为48mD.小车在加速运动过程中位移的大小为39m【答案】AB【解析】小车在14s-18s内在阻力作用下做匀减速运动,加速度由牛顿定律可知,小车所受到的阻力大小为f=ma=1.5N,选项A 正确;小车匀速行驶阶段发动机的功率为P=Fv=fv=1.5×6W=9W,选项B正确;在0-2s匀加速阶段的位移为,在2-10s 内由动能定理:,解得x2=39m所以小车在加速运动过程中位移的大小为3m+39m=42m,选项CD 错误。
【考点】v-t图线;牛顿定律的应用及动能定理。
2.洗车档的内、外地面均水平,门口的斜坡倾角为θ 。
质量为m的Jeep洗完车出来,空挡滑行经历了如图所示的三个位置。
忽略车轮的滚动摩擦,下列说法正确的是A.在三个位置Jeep都正在做加速运动B.在乙位置Jeep正在做匀速运动C.在甲位置Jeep受到的合力等于mgsinθD.在丙位置Jeep的加速度小于gsinθ【答案】BD【解析】甲图和丙图中Jeep的前轮和后轮分别在斜坡上,所以是加速运动,而乙图中Jeep的前后轮均在水平面上,所以做运动运动,选项B正确,A错误;在甲位置和丙位置Jeep受到的合力均小于mgsinθ ,加速度均小于gsinθ, D正确,C错误。
【考点】牛顿定律的应用。
3.如图1所示,质量为m=2kg的小滑块放在质量为M=1kg的长木板上,已知小滑块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2,开始小滑块和长木板均处于静止状态,现对小滑块施加向右的水平拉力F,水平拉力F随时间的变化规律如图2所示,已知小滑块始终未从长木板上滑下且μ1=0.2,μ2=0.1,g=10m/s2。
高一物理牛顿运动定律练习及答案.
相关习题:(牛顿运动定律)一、牛顿第一定律练习题一、选择题1.下面几个说法中正确的是[ ]A.静止或作匀速直线运动的物体,一定不受外力的作用B.当物体的速度等于零时,物体一定处于平衡状态C.当物体的运动状态发生变化时,物体一定受到外力作用D.物体的运动方向一定是物体所受合外力的方向2.关于惯性的下列说法中正确的是[ ]A.物体能够保持原有运动状态的性质叫惯性B.物体不受外力作用时才有惯性C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性D.物体静止时没有惯性,只有始终保持运动状态才有惯性3.关于惯性的大小,下列说法中哪个是正确的?[ ]A.高速运动的物体不容易让它停下来,所以物体运动速度越大,惯性越大B.用相同的水平力分别推放在地面上的两个材料不同的物体,则难以推动的物体惯性大C.两个物体只要质量相同,那么惯性就一定相同D.在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小4.火车在长直的轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到原处,这是因为[ ]A.人跳起后,车厢内空气给他以向前的力,带着他随火车一起向前运动B.人跳起的瞬间,车厢的地板给人一个向前的力,推动他随火车一起运动C.人跳起后,车继续前进,所以人落下必然偏后一些,只是由于时间很短,偏后的距离不易观察出来D.人跳起后直到落地,在水平方向上人和车具有相同的速度5.下面的实例属于惯性表现的是[ ]A.滑冰运动员停止用力后,仍能在冰上滑行一段距离B.人在水平路面上骑自行车,为维持匀速直线运动,必须用力蹬自行车的脚踏板C.奔跑的人脚被障碍物绊住就会摔倒D.从枪口射出的子弹在空中运动6.关于物体的惯性定律的关系,下列说法中正确的是[ ]A.惯性就是惯性定律B.惯性和惯性定律不同,惯性是物体本身的固有属性,是无条件的,而惯性定律是在一定条件下物体运动所遵循的规律C.物体运动遵循牛顿第一定律,是因为物体有惯性D.惯性定律不但指明了物体有惯性,还指明了力是改变物体运动状态的原因,而不是维持物体运动状态的原因7.如图所示,劈形物体M的各表面光滑,上表面水平,放在固定的斜面上.在M的水平上表面放一光滑小球m,后释放M,则小球在碰到斜面前的运动轨迹是[ ] A.沿斜面向下的直线B.竖直向下的直线C.无规则的曲线D.抛物线二、填空题8.行驶中的汽车关闭发动机后不会立即停止运动,是因为____,汽车的速度越来越小,最后会停下来是因为____。
物理牛顿运动定律的应用练习题20篇及解析
(2)滑块在 B 点时的速度大小为 滑块从 B 点运动到 C 点过程中,由牛顿第二定律有: 可得加速度 设滑块到达 C 点时的速度大小为 vC,有: 解得:
此过程所经历的时间为: 故滑块通过传送带的过程中,以地面为参考系,滑块的位移 x1=L=6m, 传送带的位移 x2=vt=4m; 传送带和滑块克服摩擦力所做的总功为: 代入数据解得: 【点睛】 此题需注意两点,(1)要利用滑块沿 BC 射入来求解滑块到 B 点的速度;(2)计算摩擦力对物 体做的功时要以地面为参考系来计算位移。
4.如图所示,长 L=10m 的水平传送带以速度 v=8m/s 匀速运动。质量分别为 2m、m 的小 物块 P、Q,用不可伸长的轻质细绳,通过固定光滑小环 C 相连。小物块 P 放在传送带的最 左端,恰好处于静止状态,C、P 间的细绳水平。现在 P 上固定一质量为 2m 的小物块(图中 未画出),整体将沿传送带运动,已知 Q、C 间距大于 10 m,重力加速度 g 取 10m/s2.求:
由牛顿第二定律得:F=m vB2 r
解得:F=5 2 N
由牛顿第三定律知小球对细管作用力大小为 5 2 N,
6.如图所示,在竖直平面内有一倾角 θ=37°的传送带 BC.已知传送带沿顺时针方向运行的 速度 v=4 m/s,B、C 两点的距离 L=6 m。一质量 m=0.2kg 的滑块(可视为质点)从传送带上 端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC 方向滑人传送 带,滑块与传送带间的动摩擦因数 μ=0.5,取重力加速度 g=10m/s2 ,sin37°= 0.6,cos 37°=0.8。求:
(1)经历多长时间 A 相对地面速度减为零;
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.一长木板置于粗糙水平地面上,木板右端放置一小物块,如图所示。
木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4。
t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1s 时,木板以速度v 1=4m/s 与墙壁碰撞(碰撞时间极短)。
碰撞前后木板速度大小不变,方向相反。
运动过程中小物块第一次减速为零时恰好从木板上掉下。
已知木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2。
求:(1)t=0时刻木板的速度;(2)木板的长度。
【答案】(1)05/v m s =(2)163l m =【解析】【详解】(1)对木板和物块:()()11M m g M m a μ+=+令初始时刻木板速度为0v 由运动学公式:101v v a t =+代入数据求得:0=5m/s v(2)碰撞后,对物块:22mg ma μ= 对物块,当速度为0时,经历时间t ,发生位移x 1,则有21112v x a =,112v x t = 对木板,由牛顿第二定律:()213mg M m g Ma μμ++=对木板,经历时间t ,发生位移x 2221312x v t a t =- 木板长度12l x x =+代入数据,16=m 3l2.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N;(3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆=【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+ 解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5ma g s μ==,且方向向右 板产生的加速度220.5mgm a s M μ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -= 此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--= 故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-= 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-= 代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ;(3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1,则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--=''3210.5m v v at s=-= 碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-= 故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.3.如图所示,小红和妈妈利用寒假时间在滑雪场进行滑雪游戏。
高一物理牛顿运动定律试题答案及解析
高一物理牛顿运动定律试题答案及解析1.如图所示,台秤上放有一杯水,杯内底部处用线系着一小木球浮在水中,若细线突然断开,试分析在小木球上浮的过程中,台秤的示数如何变化?A.增大B.减小C.不变D.以上三种情况都有可能【答案】B【解析】若细线突然断开,小木球上浮的过程中,水向下运动,有向下的加速度,系统处于失重状态,台秤的示数减小,B正确。
2.关于力和运动的关系,下列选项中正确的是A.若物体的速度不断增大,则物体所受的合力一定不为0B.若物体的位移不断增大,则物体所受的合力一定不为0C.若物体的位移与时间的平方成正比,则物体所受的合力一定为0D.若物体的加速度不变,则物体所受合力一定为0【答案】A【解析】只要物体速度变化,则一定存在加速度,所以合外力一定不为零;A对,D错。
位移增大,不一定速度变化,可以是匀速运动,所以合力可以为零,B错;位移与时间的平方成正比,则物体肯定不是做匀速运动,所以加速度一定不为零,合力一定不为零,C错;3.如图所示,空间存在着场强为E=2.5×102 N/C、方向竖直向上的匀强电场,在电场内一长为L =0.5 m的绝缘细线,一端固定在O点,另一端拴着质量为m=0.5 kg、电荷量为q=4×10-2 C 的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动到最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.取g=10 m/s2.求:(1)小球的电性;(2)细线能承受的最大拉力;(3)当细线断裂后,小球继续运动到与O点水平方向距离为L时(仍在匀强电场中),小球距O点的高度.【答案】(1)正(2)(3)0.625 m【解析】(1)由小球运动到最高点可知,小球带正电.(2)设小球运动到最高点时速度为v,对该过程由动能定理有,①在最高点对小球进行受力分析,由圆周运动和牛顿第二定律得,②由①②式解得,(3)小球在细线断裂后,在竖直方向的加速度设为a,则③设小球在水平方向运动位移为L的过程中,所经历的时间为t,则④设竖直方向上的位移为x,则⑤由①③④⑤解得x=0.125 m所以小球距O点的高度为x+L=0.625 m【考点】考查了牛顿第二定律,圆周运动,动能定理4.如图所示,用细绳把小球悬挂起来,当小球静止时,下列说法中正确的是()A.小球对细绳的拉力和细绳对小球的拉力是一对作用力和反作用力B.小球受到的重力和小球对细绳的拉力是一对作用力和反作用力C.小球受到的重力和细绳对小球的拉力是一对平衡力D.小球受到的重力和小球对细绳的拉力是一对平衡力【答案】AC【解析】解:对小球受力分析,受地球对其的重力,细线对其向上的拉力,小球保持静止状态,加速度为零,合力为零,故重力和拉力是一对平衡力;细线对小球的拉力的反作用力是小球对细线的向下的拉力,这两个力是一对相互作用力,故AC正确,BD错误故选:AC.【考点】作用力和反作用力.分析:一对平衡力与“作用力与反作用力“的共同的特点:二力都是大小相等,方向相反,作用在同一条直线上.一对平衡力与“作用力与反作用力“的区别:作用力与反作用力描述的是两个物体间相互作用的规律,二力平衡描述的是一个物体在二力作用下处在平衡状态.点评:本题涉及三力,重力、细线对小球的拉力和小球对细线的拉力,其中重力和细线对小球的拉力是平衡力(因为小球处于平衡状态),细线对小球的拉力和小球对细线的拉力是相互作用力;平衡力和相互作用力是很容易混淆的,要注意其最明显的区别在于是否同体.5.(12分)如图所示为某高楼电梯上升的速度-时间图像,试求:(1)在t1=5s、t2=8s时刻的速度;(2)求出各段的加速度;(3)画出电梯上升的加速度-时间图像.【答案】(1)v1=10m/s;v2=5m/s(2)0s~2s :5m/s2;2s~5s :0m/s2;5s~8s :-1.7m/s2;(3)图线如图:【解析】(1)由图线可知在t1=5s时的速度是10m/s;在t2=8s时刻的速度是5m/s;(2)0s~2s :5m/s2;2s~5s :a2=0m/s2;5s~8s :;(3)电梯上升的加速度-时间图像:【考点】v-t图线.【名师】此题考查了v-t图线在实际生活中的应用问题;要了解图线的物理意义:斜率大小等于物体的加速度大小,斜率的符号反映加速度的方向;图线与坐标轴围成的面积等于物体的位移;做题时要会分段处理;此题难度不大.6.两物体都做匀变速直线运动,在给定的时间间隔t内()A.加速度大的,其位移一定大B.初速度大的,其位移一定大C.末速度大的,其位移一定大D.平均速度大的,其位移一定大【答案】D【解析】解:A、根据x=知,加速度大,位移不一定大,还与初速度有关.故A错误.B、根据x=知,初速度大的,位移不一定大,还与加速度有关.故B错误.C、末速度大,位移不一定大,还与初速度有关.故C错误.D、根据,时间一定,平均速度大,位移一定大.故D正确.故选D.【考点】匀变速直线运动的速度与时间的关系;匀变速直线运动的位移与时间的关系.分析:根据匀变速直线运动位移时间公式x=和平均速度公式去判断一定时间内的位移大小.点评:解决本题的关键掌握匀变速直线运动的位移时间公式x=和平均速度公式.7.如图所示,为做直线运动质点的v﹣t图象,则下列说法正确的是()A.质点在0~2s内做匀加速直线运动B.质点在2~6s内处于静止状态C.质点t=8s时的位移为零D.质点在8~10s内做匀加速直线运动【答案】AD【解析】解:A、质点在0~2s内速度均匀增大,做匀加速直线运动.故A正确.B、质点在2~6s内速度不变,做匀速直线运动,故B错误.C、根据面积表示位移,可知质点t=8s时的位移为 x=m=36m,故C错误.D、质点在8~10s内沿负方向做匀加速直线运动,故D错误.故选:AD【考点】匀变速直线运动的图像.【分析】v﹣t图象中倾斜的直线表示匀变速直线运动,平行于时间轴的直线表示匀速直线运动.图象与坐标轴所围的面积表示位移.由此分析.【点评】本题的解题关键是抓住两个数学意义来分析和理解图象的物理意义:速度图象的斜率等于加速度、速度图象与坐标轴所围“面积”大小等于位移.明确v﹣t图象中倾斜的直线表示匀变速直线运动,平行于时间轴的直线表示匀速直线运动.8.一物体以20m/s的速度沿光滑斜面向上做匀变速直线运动,加速度大小为a=5m/s2.如果斜面足够长,那么当速度大小变为10m/s时物体所通过的路程可能是多少?【答案】物体通过路程可能为30m,可能为50m.【解析】解:当末速度的方向与初速度方向相同,根据速度位移公式得,物体通过的路程s=.若末速度的方向与初速度方向相反,则物体向上做匀减速运动的位移,向下做匀加速运动的位移,则路程s=x1+x2=40+10m=50m.答:物体通过路程可能为30m,可能为50m.【考点】匀变速直线运动的位移与时间的关系.【分析】当末速度的方向与初速度方向相同,直接结合匀变速直线运动的速度位移公式求出物体通过的路程.当末速度的方向与初速度方向相反,根据速度位移公式分别求出向上匀减速运动的位移和向下匀加速运动的位移,从而得出路程.【点评】解决本题的关键掌握匀变速直线运动的速度位移公式,并能灵活运用,注意末速度的方向可能与初速度方向相同,可能与初速度方向相反.9.跳伞运动员从300m高空无初速度跳伞下落,他自由下落4s后打开降落伞,以恒定的加速度做匀减速运动,到达地面时的速度为4.0m/s,g=10m/s2.求:(1)运动员打开降落伞处离地面的高度;(2)运动员打开伞后运动的加速度;(3)运动员在空中运动的总时间.【答案】(1)运动员打开降落伞处离地面的高度为220m;(2)运动员打开伞后运动的加速度为﹣3.6m/s2;(3)运动员在空中运动的总时间为14s.【解析】解:竖直向下方向为正方向.(1)运动员自由下落4s的位移为运动员打开降落伞处离地面的高度为:h2=h﹣h1=300﹣80m=220m(2)运动员自由下落4s末的速度为:v1=gt1=10×4m/s=40m/s打开降落伞后做匀减速直线运动,根据速度位移关系有:2可得加速度==﹣3.6m/s2(3)打开降落伞后做匀减速时间达到地面的时间为:所以运动在空中下落的总时间为:t=t1+t2=4+10s=14s答:(1)运动员打开降落伞处离地面的高度为220m;(2)运动员打开伞后运动的加速度为﹣3.6m/s2;(3)运动员在空中运动的总时间为14s.【考点】匀变速直线运动的位移与时间的关系;匀变速直线运动的速度与时间的关系.【分析】(1)根据自由落体运动的规律求得物体下落4s的高度,从而求得离地面的高度;(2)根据匀减速运动的速度位移关系求得打开伞后的加速度;(3)求得匀减速下落的时间和自由落体运动的时间即为在空中下落的总时间.【点评】掌握匀变速直线运动的位移时间关系和速度时间关系是正确解题的关键,不难属于基础题.10.某研究性学习小组,为探究电梯起动和制动时的加速度大小,董趣同学站在体重计上乘电梯从1层到10层,之后又从10层返回到1层,并用照相机进行记录,请认真观察分析下列图片,得出正确的判断是()A.根据图乙和图丙,可估测电梯向上起动时的加速度B.根据图甲和图乙,可估测电梯向上制动时的加速度C.根据图甲和图戊,可估测电梯向下制动时的加速度D.根据图丁和图戊,可估测电梯向下起动时的加速度【答案】C【解析】解:A、图2表示电梯加速上升时这位同学超重时的示数,图3,表示向上减速时的示数,由此两图不能够求出的是电梯向上起动时的加速度,所以A错误.B、图1表示电梯静止时的示数,图2显示加速上升时的示数,此时能够求出的是电梯向上加速时的加速度,所以B错误.C、图1表示电梯静止时的示数,图5表示电梯减速下降时的示数,此时能够求出的是电梯向下减速时的加速度,所以C正确.D、图4表示电梯加速下降时的示数,图5表示电梯减速下降时的示数,此时不能够求出电梯向下起动时的加速度,所以D错误.故选C【考点】加速度.【分析】图甲表示电梯静止时体重计的示数,乙图表示电梯加速上升时这位同学超重时的示数,丙图表示电梯减速上升时这位同学失重时的示数,丁图表示电梯加速下降时这位同学失重时的示数,戊图表示电梯减速下降时这位同学超重时的示数,根据牛顿第二定律可以应用图甲和另外某一图示求出相应状态的加速度.【点评】本题主要考查了对超重失重现象的理解,人处于超重或失重状态时,人的重力并没变,只是对支持物的压力变了.11.(20分)下列是《驾驶员守则》中的安全距离图示(如图)和部分安全距离表格.请根据图表计算:(1)如果驾驶员的反应时间一定,请求出表格中的A 的数据; (2)如果路面情况相同,请求出表格中的B 、C 的数据;(3)如果路面情况相同,一名喝了酒的驾驶员发现前面50 m 处有一队学生正在横过马路,此时他的车速为72 km/h.而他的反应时间比正常时慢了0.1 s ,请问他能在50 m 内停下来吗? 【答案】(1)20;(2)40;60;(3)不能 【解析】(1)反应时间为,即解得A =20 m.因路面情况相同,故知刹车时的加速度相同, 由v 2 =2ax 得 对第一组刹车数据分析,加速度为分析第三组数据知,刹车距离为:所以停车距离为:C =A +B =60 m. 正常情况下司机的反应时间为而喝酒情况下司机的反应距离为 由v 2=2ax 知,此时司机的刹车距离为L =s +x =52.4 m,52.4 m>50 m ,故不能在50 m 内停下来. 【考点】匀变速直线运动的规律12. 物体由A 向B 做匀变速直线运动,所用时间为t ,在时到达D 点,C 为AB 的中点,以v C 和v D 分别表示物体在C 点和D 点时的速度,以下叙述中正确的是:( ) A .若物体做匀加速运动,则v C >v D B .若物体做匀减速运动,则v C >v DC .不论物体做匀加速运动,还是做匀减速运动,都有v C <v DD .如果不确定物体做匀加速运动或匀减速运动,则无法比较v C 和v D 的大小【答案】AB【解析】根据匀变速直线运动的规律,物体在中间时刻D 的速度为;物体在中间位置C 的速度为:;由数学知识可知,恒成立,则v C >v D ,故选项AB 正确,CD 错误;故选AB.【考点】匀变速直线运动的规律13. (8分)跳伞运动员做低空跳伞表演,他离开飞机后先做自由落体运动,当距地面120 m 时打开降落伞,开伞后运动员以大小为12.5 m/s 2的加速度做匀减速运动,到达地面时的速度为5 m/s ,求:(1)运动员离开飞机瞬间距地面的高度;(2)离开飞机后,经多长时间到达地面.(g 取10 m/s 2) 【答案】(1)271.25 m ;(2)9.5 s【解析】(1)由v12-v2=2ah2解出v=55 m/s. (2分)又因为v02=2gh1解出h1=151.25 m. (2分)所以h=h1+h2=271.25 m. (1分)(2)又因为t1==5.5 s, (1分)t2==4 s, (1分)所以t=t1+t2=9.5 s,(1分)【考点】匀变速直线运动的规律【名师】本题难度较小,自由落体运动其实就是初速度为零的匀加速直线运动,灵活应用匀变速运动规律求解本题。
高一物理牛顿运动定律试题答案及解析
高一物理牛顿运动定律试题答案及解析1.(8分)汽车发动机的额定功率为60kW,汽车质量为5t,汽车在水平路面上行驶时,阻力是车重的0.1倍,g取10m/s2,问:(1)汽车保持额定功率从静止起动后能达到的最大速度是多少?(2)若汽车保持0.5m/s2的加速度做匀加速运动,这一过程能维持多长时间?【答案】(1)12m/s;(2)16s。
【解析】(1)因为v=m/s=12m/s;(2)做匀加速运动的最大速度为v′=m/s=8m/s;故这一过程的时间为t==16s【考点】汽车启动问题。
2.如图所示,光滑水平面上放有质量均为m的滑块A和斜面体C,在C的斜面上又放有一质量也为m的滑块B,用力F推滑块A使三者无相对运动地向前加速运动,则各物体所受的合力()A.滑块A最大B.斜面体C最大C.同样大D.不能判断谁大谁小【答案】C【解析】由于三者无相对运动地向前共同加速运动,且质量均相同,根据牛顿第二定律F=ma可知,F均相同,故C正确。
【考点】牛顿第二定律3.一辆以12m/s的速度在水平路面上行驶的汽车,在关闭油门后刹车过程中以3m/s2的加速度做匀减速运动,那么汽车关闭油门后2s内的位移是多少米?关闭油门后5s内的位移是多少米?【答案】(1)18m(2)24m【解析】汽车停下来的时间为,汽车在关闭油门后2s内的位移是由于汽车在4s末停止运动,所以前4s的位移等于5s末的位移故有关闭油门后5s内的位移是【考点】考查了匀变速直线运动规律的应用4.一辆值勤的警车停在公路边,当警员发现在他前面9m处以7m/s的速度匀速向前行驶的货车有违章行为时,决定前去追赶,经3.0s,警车发动起来,以加速度a=2m/s2做匀加速运动.求:(1)警车发动后经多长时间能追上违章的货车,这时警车速度多大;(2)在警车追上货车之前,何时两车间的最大距离,最大距离是多少.【答案】(1)t=10s,20m/s(2)【解析】①得 t=10s v=at=20m/s②当两车速度相等时,两车间距最大【考点】追击相遇问题【名师】关键是抓住位移关系,结合运动学公式灵活求解,知道速度相等时,相距最远,(1)根据位移关系,结合运动学公式求出追及的时间,根据速度时间公式求出警车的速度.(2)当两车的速度相等时,相距最远,根据速度时间公式求出相距最远的时间,根据位移公式求出相距的最远距离5.(10分)如图所示,小球在较长的斜面顶端,以初速度v=2m/s,加速度a=2m/s2向下滑,在到达底端的前1s内,所滑过的距离为,其中L为斜面长,则(1)小球在斜面上滑行的时间为多少?(2)斜面的长度L是多少?【答案】(1)3s;(2)15m【解析】设小球在斜面上运动的总时间为t,则由题意和公式 x=vt+at2得:解上面两个方程得:t=3s;L=15m【考点】匀变速直线运动的规律6.(10分)一列车A的制动性能经测定:当它以标准速度V=20m/s在平直轨道上行驶时,制动后需tA =40s才停下。
物理牛顿运动定律题20套(带答案)
物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,在光滑的水平面上有一足够长的质量M=4kg 的长木板,在长木板右端有一质量m=1kg 的小物块,长木板与小物块间的动擦因数μ=0.2,开始时长木板与小物块均静止.现用F=14N 的水平恒力向石拉长木板,经时间t=1s 撤去水平恒力F ,g=10m/s 2.求(1)小物块在长木板上发生相对滑幼时,小物块加速度a 的大小; (2)刚撤去F 时,小物块离长木板右端的距离s ; (3)撒去F 后,系统能损失的最大机械能△E . 【答案】(1)2m/s 2(2)0.5m (3)0.4J 【解析】 【分析】(1)对木块受力分析,根据牛顿第二定律求出木块的加速度;(2)先根据牛顿第二定律求出木板的加速度,然后根据匀变速直线运动位移时间公式求出长木板和小物块的位移,二者位移之差即为小物块离长木板右端的距离;(3)撤去F 后,先求解小物块和木板的速度,然后根据动量守恒和能量关系求解系统能损失的最大机械能△E . 【详解】(1)小物块在长木板上发生相对滑动时,小物块受到向右的滑动摩擦力,则:µmg=ma 1, 解得a 1=µg=2m/s 2(2)对木板,受拉力和摩擦力作用, 由牛顿第二定律得,F-µmg=Ma 2, 解得:a 2= 3m/s 2. 小物块运动的位移:x 1=12a 1t 2=12×2×12m=1m , 长木板运动的位移:x 2=12a 2t 2=12×3×12m=1.5m , 则小物块相对于长木板的位移:△x=x 2-x 1=1.5m-1m=0.5m .(3)撤去F 后,小物块和木板的速度分别为:v m =a 1t=2m/s v=a 2t=3m/s 小物块和木板系统所受的合外力为0,动量守恒:()m mv Mv M m v +=+' 解得 2.8/v m s ='从撤去F 到物体与木块保持相对静止,由能量守恒定律:222111()222m mv Mv E M m v +=∆'++ 解得∆E=0.4J 【点睛】该题考查牛顿第二定律的应用、动量守恒定律和能量关系;涉及到相对运动的过程,要认真分析物体的受力情况和运动情况,并能熟练地运用匀变速直线运动的公式.2.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
高中物理 必修一【牛顿运动定律整合】典型题(带解析)
高中物理必修一一、【牛顿运动定律】1.伽利略的斜面实验证明了()A.使物体运动必须有力的作用,没有力的作用,物体将静止B.使物体静止必须有力的作用,没有力的作用,物体将运动C.物体不受外力作用时,一定处于静止状态D.物体不受外力作用时,总保持原来的匀速直线运动状态或者静止状态解析:选D.伽利略的斜面实验证明了:运动不需要力来维持,物体不受外力作用时,总保持原来的匀速直线运动状态或静止状态,故D正确.2.关于运动状态与所受外力的关系,下面说法中正确的是()A.物体受到恒定的力作用时,它的运动状态不发生改变B.物体受到不为零的合力作用时,它的运动状态要发生改变C.物体受到的合力为零时,它一定处于静止状态D.物体的运动方向与它所受的合力方向一定相同解析:选B.力是改变物体运动状态的原因,只要物体受力(合力不为零),它的运动状态就一定会改变,A错误,B正确;物体受到的合力为零时,物体可能处于静止状态,也可能处于匀速直线运动状态,C错误;物体所受合力的方向可能与物体的运动方向相同或相反,也可能不在一条直线上,D错误.3.某同学为了取出如图所示羽毛球筒中的羽毛球,一只手拿着球筒的中部,另一只手用力击打羽毛球筒的上端,则()A.此同学无法取出羽毛球B.羽毛球会从筒的下端出来C.羽毛球筒向下运动过程中,羽毛球受到向上的摩擦力才会从上端出来D.该同学是在利用羽毛球的惯性解析:选D.羽毛球筒被手击打后迅速向下运动,而羽毛球具有惯性要保持原来的静止状态,所以会从筒的上端出来,D 正确.4.(多选)下列说法正确的是( )A .运动越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大B .同一物体在地球上不同的位置受到的重力是不同的,但它的惯性却不随位置的变化而变化C .一个小球竖直上抛,抛出后能继续上升,是因为小球运动过程中受到了向上的推力D .物体的惯性大小只与本身的质量有关,质量大的物体惯性大,质量小的物体惯性小 解析:选BD .惯性是物体本身的固有属性,其大小只与物体的质量大小有关,与物体的受力及运动情况无关,故选项B 、D 正确;速度大的汽车要停下来时,速度变化大,由Δv =at 可知需要的时间长,惯性未变,故选项A 错误;小球上抛时是由于惯性向上运动,并未受到向上的推力,故选项C 错误.5.夸克(quark)是一种基本粒子,也是构成物质的基本单元.其中正、反顶夸克之间的强相互作用势能可写为E p =-k 4αs 3r,式中r 是正、反顶夸克之间的距离,αs 是无单位的常量,k 是与单位制有关的常数,则在国际单位制中常数k 的单位是( )A .N ·mB .NC .J/mD .J ·m解析:选D .由题意有k =-3E p r 4αs,αs 是无单位的常量,E p 的国际单位是J ,r 的国际单位是m ,在国际单位制中常数k 的单位是J ·m ,D 正确,A 、B 、C 错误.6. (多选)如图所示,质量为m 的小球被一根橡皮筋AC 和一根绳BC 系住,当小球静止时,橡皮筋处在水平方向上.下列判断中正确的是( )A .在AC 被突然剪断的瞬间,BC 对小球的拉力不变B .在AC 被突然剪断的瞬间,小球的加速度大小为g sin θC .在BC 被突然剪断的瞬间,小球的加速度大小为g cos θD .在BC 被突然剪断的瞬间,小球的加速度大小为g sin θ解析:选BC .设小球静止时BC 绳的拉力为F ,AC 橡皮筋的拉力为T ,由平衡条件可得:F cos θ=mg ,F sin θ=T ,解得:F =mg cos θ,T =mg tan θ.在AC 被突然剪断的瞬间,BC上的拉力F也发生了突变,小球的加速度方向沿与BC垂直的方向且斜向下,大小为a=mg sin θ=g sin θ,B正确,A错误;在BC被突然剪断的瞬间,橡皮筋AC的拉力不变,小m=球的合力大小与BC被剪断前拉力的大小相等,方向沿BC方向斜向下,故加速度a=Fm gcos θ,C正确,D错误.7. (多选)搭载着“嫦娥三号”的“长征三号乙”运载火箭在西昌卫星发射中心发射升空,下面关于卫星与火箭升空的情形叙述正确的是()A.火箭尾部向下喷气,喷出的气体反过来对火箭产生一个反作用力,从而让火箭获得了向上的推力B.火箭尾部喷出的气体对空气产生一个作用力,空气的反作用力使火箭获得飞行的动力C.火箭飞出大气层后,由于没有了空气,火箭虽然向后喷气,但也无法获得前进的动力D.卫星进入运行轨道之后,与地球之间仍然存在一对作用力与反作用力解析:选AD.火箭升空时,其尾部向下喷气,火箭箭体与被喷出的气体是一对相互作用的物体.火箭向下喷气时,喷出的气体对火箭产生向上的反作用力,即为火箭上升的推动力.此动力并不是由周围的空气对火箭的反作用力提供的,因而与是否飞出大气层、是否存在空气无关,选项B、C错误,A正确;火箭运载卫星进入轨道之后,卫星与地球之间依然存在相互吸引力,即地球吸引卫星,卫星吸引地球,这就是一对作用力与反作用力,故选项D正确.8.如图,一截面为椭圆形的容器内壁光滑,其质量为M,置于光滑水平面上,内有一质量为m的小球,当容器受到一个水平向右的力F作用向右匀加速运动时,小球处于图示位置,此时小球对椭圆面的压力大小为()A .m g 2-⎝⎛⎭⎫F M +m 2B .m g 2+⎝⎛⎭⎫F M +m 2C .m g 2+⎝⎛⎭⎫F m 2D .(mg )2+F 2解析:选B .先以整体为研究对象,根据牛顿第二定律得:加速度为a =F M +m,再对小球研究,分析受力情况,如图所示,由牛顿第二定律得到:F N =(mg )2+(ma )2=m g 2+⎝ ⎛⎭⎪⎫F M +m 2,由牛顿第三定律可知小球对椭圆面的压力大小为m g 2+⎝ ⎛⎭⎪⎫F M +m 2,故B 正确.9.如图所示,将两个相同的条形磁铁吸在一起,置于桌面上,下列说法中正确的是( )A .甲对乙的压力的大小小于甲的重力的大小B .甲对乙的压力的大小等于甲的重力的大小C .乙对桌面的压力的大小等于甲、乙的总重力大小D .乙对桌面的压力的大小小于甲、乙的总重力大小解析:选C .以甲为研究对象,甲受重力、乙的支持力及乙的吸引力而处于平衡状态,根据平衡条件可知,乙对甲的支持力大小等于甲受到的重力和吸引力的大小之和,大于甲的重力大小,由牛顿第三定律可知,甲对乙的压力大小大于甲的重力大小,故A 、B 错误;以整体为研究对象,整体受重力、支持力而处于平衡状态,故桌面对乙的支持力等于甲、乙的总重力的大小,由牛顿第三定律可知乙对桌面的压力大小等于甲、乙的总重力大小,故C 正确,D 错误.10.如图所示为英国人阿特伍德设计的装置,不考虑绳与滑轮的质量,不计轴承、绳与滑轮间的摩擦.初始时两人均站在水平地面上,当位于左侧的甲用力向上攀爬时,位于右侧的乙始终用力抓住绳子,最终至少一人能到达滑轮.下列说法正确的是( )A.若甲的质量较大,则乙先到达滑轮B.若甲的质量较大,则甲、乙同时到达滑轮C.若甲、乙质量相同,则乙先到达滑轮D.若甲、乙质量相同,则甲先到达滑轮解析:选A.由于滑轮光滑,甲拉绳子的力等于绳子拉乙的力,若甲的质量大,则由甲拉绳子的力等于乙受到的绳子拉力,得甲攀爬时乙的加速度大于甲,所以乙会先到达滑轮,选项A正确,B错误;若甲、乙的质量相同,甲用力向上攀爬时,甲拉绳子的力等于绳子拉乙的力,甲、乙具有相同的加速度和速度,所以甲、乙应同时到达滑轮,选项C、D错误.11.如图所示,跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板上,随跳板一同向下做变速运动到达最低点,然后随跳板反弹,则()A.运动员与跳板接触的全过程中只有超重状态B.运动员把跳板压到最低点时,他所受外力的合力为零C.运动员能跳得高的原因从受力角度来看,是因为跳板对他的作用力远大于他的重力D.运动员能跳得高的原因从受力角度来看,是因为跳板对他的作用力远大于他对跳板的作用力解析:选C.运动员与跳板接触的下降过程中,先向下加速,然后向下减速,最后速度为零,则加速度先向下,然后向上,所以下降过程中既有失重状态也有超重状态,同理上升过程中也存在超重和失重状态,故A错误;运动员把跳板压到最低点时,跳板给运动员的弹力大于运动员受到的重力,合外力不为零,故B错误;从最低点到运动员离开跳板过程中,跳板对运动员的作用力做正功,重力做负功,二力做功位移一样,运动员动能增加,因此跳板对他的作用力大于他的重力,故C正确;跳板对运动员的作用力与运动员对跳板的作用力是作用力与反作用力,大小相等,故D错误.12.如图所示,甲、乙两人在冰面上“拔河”.两人中间位置处有一分界线,约定先使对方过分界线者为赢.若绳子质量不计,冰面可看成光滑,则下列说法正确的是()A.甲对绳的拉力与绳对甲的拉力是一对平衡力B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利解析:选C.根据牛顿第三定律可知甲对绳的拉力与绳对甲的拉力是一对作用力与反作用力,选项A错误;因为甲对绳的拉力和乙对绳的拉力作用在同一个物体(绳)上,故两力不可能是作用力与反作用力,故选项B错误;若甲的质量比乙大,则甲的惯性比乙的大,故运动状态改变比乙难,故乙先过界,选项C正确;“拔河”比赛的输赢只与甲、乙的质量有关,与收绳速度无关,选项D错误.13.(山东省2020等级考试) (多选)如图所示,某人从距水面一定高度的平台上做蹦极运动.劲度系数为k的弹性绳一端固定在人身上,另一端固定在平台上.人从静止开始竖直跳下,在其到达水面前速度减为零.运动过程中,弹性绳始终处于弹性限度内.取与平台同高度的O点为坐标原点,以竖直向下为y轴正方向,忽略空气阻力,人可视为质点.从跳下至第一次到达最低点的运动过程中,用v、a、t分别表示人的速度、加速度和下落时间.下列描述v与t、a与y的关系图象可能正确的是()解析:选AD.人在下落的过程中,弹性绳绷紧之前,人处于自由落体状态,加速度为g;弹性绳绷紧之后,弹力随下落距离均匀增加,人的加速度随下落距离先均匀减小后反向均匀增大,C 错误,D 正确;人的加速度先减小后反向增加,可知速度时间图象的斜率先减小后反向增加.B 错误,A 正确.14.(多选)某物体在光滑的水平面上受到两个恒定的水平共点力的作用,以10 m/s 2的加速度做匀加速直线运动,其中F 1与加速度的方向的夹角为37°,某时刻撤去F 1,此后该物体( )A .加速度可能为5 m/s 2B .速度的变化率可能为6 m/s 2C .1 秒内速度变化大小可能为20 m/sD .加速度大小一定不为10 m/s 2解析:选BC .根据牛顿第二定律得F 合=ma =10m ,F 1与加速度方向的夹角为37°,根据几何知识可知,F 2有最小值,最小值为F 2min =F 合sin 37°=6m ,所以当F 1撤去后,合力的最小值为F min =6m ,此时合力的取值范围为F 合≥6m ,所以最小的加速度为a min =F min m=6 m/s 2,故B 、C 正确. 15.如图所示,在倾角为θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m .物块A 静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 紧挨在一起,但A 、B 之间无弹力,已知重力加速度为g ,某时刻把细线剪断,当细线剪断瞬间,下列说法正确的是( )A .物块A 的加速度为0B .物块A 的加速度为g 3C .物块B 的加速度为0D .物块B 的加速度为g 2 解析:选B .剪断细线前,弹簧的弹力:F 弹=mg sin 30°=12mg ,细线剪断的瞬间,弹簧的弹力不变,仍为F 弹=12mg ;剪断细线瞬间,对A 、B 系统分析,加速度为:a =3mg sin 30°-F 弹3m =g 3,即A 和B 的加速度均为g 3,方向沿斜面向下. 16.(多选) 如图所示,两轻质弹簧a 、b 悬挂一质量为m 的小球,整体处于平衡状态,弹簧a 与竖直方向成30°,弹簧b 与竖直方向成60°,弹簧a 、b 的形变量相等,重力加速度为g ,则( )A .弹簧a 、b 的劲度系数之比为 3∶1B .弹簧a 、b 的劲度系数之比为 3∶2C .若弹簧a 下端松脱,则松脱瞬间小球的加速度大小为3gD .若弹簧b 下端松脱,则松脱瞬间小球的加速度大小为g 2解析:选AD .由题可知,两个弹簧相互垂直,对小球受力分析,如图所示,设弹簧的伸长量都是x ,由受力分析图知,弹簧a 中弹力F a =mg cos 30°=32mg ,根据胡克定律可知弹簧a 的劲度系数为k 1=F a x =3mg 2x ,弹簧b 中的弹力F b =mg cos 60°=12mg ,根据胡克定律可知弹簧b 的劲度系数为k 2=F b x =mg 2x,所以弹簧a 、b 的劲度系数之比为3∶1,A 正确,B 错误;弹簧a 中的弹力为32mg ,若弹簧a 的下端松脱,则松脱瞬间弹簧b 的弹力不变,故小球所受重力和弹簧b 弹力的合力与F a 大小相等、方向相反,小球的加速度大小a =F a m=32g ,C 错误;弹簧b 中弹力为12mg ,若弹簧b 的下端松脱,则松脱瞬间弹簧a 的弹力不变,故小球所受重力和弹簧a 弹力的合力与F b 大小相等、方向相反,故小球的加速度大小a ′=F b m=12g ,D 正确.二、【牛顿第二定律的应用】1. (多选)如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的水平轻弹簧,则当木块接触弹簧后,下列判断正确的是( )A .木块立即做减速运动B .木块在一段时间内速度仍增大C .当F 等于弹簧弹力时,木块速度最大D .弹簧压缩量最大时,木块速度为零但加速度不为零解析:选BCD .木块刚开始接触弹簧时,弹簧对木块的作用力小于外力F ,木块继续向右做加速度逐渐减小的加速运动,直到二力相等,而后,弹簧对木块的作用力大于外力F ,木块继续向右做加速度逐渐增大的减速运动,直到速度为零,但此时木块的加速度不为零,故选项A 错误,B 、C 、D 正确.2.质量为1 t 的汽车在平直公路上以10 m/s 的速度匀速行驶,阻力大小不变,从某时刻开始,汽车牵引力减少2 000 N ,那么从该时刻起经过6 s ,汽车行驶的路程是( )A .50 mB .42 mC .25 mD .24 m解析:选C .汽车匀速行驶时,F =F f ①,设汽车牵引力减小后加速度大小为a ,牵引力减少ΔF =2 000 N 时,F f -(F -ΔF )=ma ②,解①②得a =2 m/s 2,与速度方向相反,汽车做匀减速直线运动,设经时间t 汽车停止运动,则t =v 0a =102s =5 s ,故汽车行驶的路程x =v 02t =102×5 m =25 m ,故选项C 正确. 3. (多选)建设房屋时,保持底边L 不变,要设计好屋顶的倾角θ,以便下雨时落在房顶的雨滴能尽快地滑离屋顶,雨滴下滑时可视为小球做无初速度、无摩擦的运动.下列说法正确的是( )A .倾角θ越大,雨滴下滑时的加速度越大B .倾角θ越大,雨滴对屋顶压力越大C .倾角θ越大,雨滴从顶端O 下滑至屋檐M 时的速度越大D .倾角θ越大,雨滴从顶端O 下滑至屋檐M 时的时间越短解析:选AC .设屋檐的底角为θ,底边长度为L ,注意底边长度是不变的,屋顶的坡面长度为x ,雨滴下滑时加速度为a ,对雨滴受力分析,只受重力mg 和屋顶对雨滴的支持力F N ,垂直于屋顶方向:mg cos θ=F N ,平行于屋顶方向:ma =mg sin θ.雨滴的加速度为:a=g sin θ,则倾角θ越大,雨滴下滑时的加速度越大,故A正确;雨滴对屋顶的压力大小:F N′=F N=mg cos θ,则倾角θ越大,雨滴对屋顶压力越小,故B错误;根据三角关系判断,屋顶坡面的长度x=L2cos θ,由x=12g sin θ·t2,可得:t=2Lg sin 2θ,可见当θ=45°时,用时最短,D错误;由v=g sin θ·t可得:v=gL tan θ,可见θ越大,雨滴从顶端O下滑至M时的速度越大,C正确.4.如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量为m=2 kg的无人机,其动力系统所能提供的最大升力F=36 N,运动过程中所受空气阻力大小恒定,无人机在地面上从静止开始,以最大升力竖直向上起飞,在t=5 s时离地面的高度为75 m(g取10 m/s2).(1)求运动过程中所受空气阻力大小;(2)假设由于动力设备故障,悬停的无人机突然失去升力而坠落.无人机坠落地面时的速度为40 m/s,求无人机悬停时距地面高度;(3)假设在第(2)问中的无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上的最大升力.为保证安全着地,求飞行器从开始下落到恢复升力的最长时间.解析:(1)根据题意,在上升过程中由牛顿第二定律得:F-mg-F f=ma由运动学规律得,上升高度:h=12at2联立解得:F f=4 N.(2)下落过程由牛顿第二定律:mg-F f=ma1得:a1=8 m/s2落地时的速度v 2=2a 1H 联立解得:H =100 m.(3)恢复升力后向下减速,由牛顿第二定律得: F -mg +F f =ma 2 得:a 2=10 m/s 2设恢复升力后的速度为v m ,则有 v 2m 2a 1+v 2m2a 2=H 得:v m =4053 m/s由:v m =a 1t 1 得:t 1=553s.答案:(1)4 N (2)100 m (3)553s5.一质量为m =2 kg 的滑块能在倾角为θ=30°的足够长的斜面上以加速度a =2.5 m/s 2匀加速下滑.如图所示,若用一水平向右的恒力F 作用于滑块,使之由静止开始在t =2 s 内能沿斜面运动位移x =4 m .求:(g 取10 m/s 2)(1)滑块和斜面之间的动摩擦因数μ; (2)恒力F 的大小.解析:(1)对滑块,根据牛顿第二定律可得: mg sin θ-μmg cos θ=ma , 解得:μ=36. (2)使滑块沿斜面做匀加速直线运动,有加速度沿斜面向上和向下两种可能. 由x =12a 1t 2,得a 1=2 m/s 2,当加速度沿斜面向上时:F cos θ-mg sin θ-μ(F sin θ+mg cos θ)=ma 1,代入数据解得:F=7635N;当加速度沿斜面向下时:mg sin θ-F cos θ-μ(F sin θ+mg cos θ)=ma1,代入数据解得:F=437N.答案:(1)36(2)7635N或437N6.(多选)一个质量为2 kg的物体,在5个共点力作用下处于平衡状态.现同时撤去大小分别为15 N和10 N的两个力,其余的力保持不变,关于此后该物体的运动的说法中正确的是()A.一定做匀变速直线运动,加速度大小可能是5 m/s2B.一定做匀变速运动,加速度大小可能等于重力加速度的大小C.可能做匀减速直线运动,加速度大小是2.5 m/s2D.可能做匀速圆周运动,向心加速度大小是5 m/s2解析:选BC.根据平衡条件得知,其余力的合力与撤去的两个力的合力大小相等、方向相反,则撤去大小分别为15 N和10 N的两个力后,物体的合力大小范围为5 N≤F合≤25 N,根据牛顿第二定律a=Fm得:物体的加速度范围为2.5 m/s2≤a≤12.5 m/s2.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向不在同一直线上,物体做匀变速曲线运动,加速度大小可能为5 m/s2,故A错误.由于撤去两个力后其余力保持不变,则物体所受的合力不变,一定做匀变速运动,加速度大小可能等于重力加速度的大小,故B正确.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向相同时,物体做匀减速直线运动,故C正确.由于撤去两个力后其余力保持不变,在恒力作用下不可能做匀速圆周运动,故D错误.7.如图所示,几条足够长的光滑直轨道与水平面成不同角度,从P点以大小不同的初速度沿各轨道发射小球,若各小球恰好在相同的时间内到达各自的最高点,则各小球最高点的位置()A .在同一水平线上B .在同一竖直线上C .在同一抛物线上D .在同一圆周上解析:选D .设某一直轨道与水平面成θ角,末速度为零的匀减速直线运动可逆向看成初速度为零的匀加速直线运动,则小球在直轨道上运动的加速度a =mg sin θm =g sin θ,由位移公式得l =12at 2=12g sin θ·t 2,即l sin θ=12gt 2,不同的倾角θ对应不同的位移l ,但l sin θ相同,即各小球最高点的位置在直径为12gt 2的圆周上,选项D 正确.8.如图所示,B 是水平地面上AC 的中点,可视为质点的小物块以某一初速度从A 点滑动到C 点停止.小物块经过B 点时的速度等于它在A 点时速度的一半.则小物块与AB 段间的动摩擦因数μ1和BC 段间的动摩擦因数μ2的比值为( )A .1B .2C .3D .4解析:选C .物块从A 到B 根据牛顿第二定律,有μ1mg =ma 1,得a 1=μ1g .从B 到C 根据牛顿第二定律,有μ2mg =ma 2,得a 2=μ2g .设小物块在A 点时速度大小为v ,则在B 点时速度大小为v 2,由于AB =BC =l ,由运动学公式知,从A 到B :⎝⎛⎭⎫v 22-v 2=-2μ1gl ,从B到C ∶0-⎝⎛⎭⎫v 22=-2μ2gl ,联立解得μ1=3μ2,故选项C 正确,A 、B 、D 错误.9.有一个冰上滑木箱的游戏节目,规则是:选手们从起点开始用力推箱一段时间后,放手让箱向前滑动,若箱最后停在有效区域内,视为成功;若箱最后未停在有效区域内就视为失败.其简化模型如图所示,AC 是长度为L 1=7 m 的水平冰面,选手们可将木箱放在A 点,从A 点开始用一恒定不变的水平推力推木箱,BC 为有效区域.已知BC 长度L 2=1 m ,木箱的质量m =50 kg ,木箱与冰面间的动摩擦因数μ=0.1.某选手作用在木箱上的水平推力F =200 N ,木箱沿AC 做直线运动,若木箱可视为质点,g 取10 m/s 2.那么该选手要想游戏获得成功,试求:(1)推力作用在木箱上时的加速度大小; (2)推力作用在木箱上的时间满足的条件.解析:(1)设推力作用在木箱上时的加速度大小为a 1,根据牛顿第二定律得F -μmg =ma 1, 解得a 1=3 m/s 2.(2)设撤去推力后,木箱的加速度大小为a 2,根据牛顿第二定律得 μmg =ma 2, 解得a 2=1 m/s 2.推力作用在木箱上时间t 内的位移为x 1=12a 1t 2.撤去推力后木箱继续滑行的距离为x 2=(a 1t )22a 2.为使木箱停在有效区域内,要满足 L 1-L 2≤x 1+x 2≤L 1, 解得1 s ≤t ≤76s. 答案:(1)3 m/s 2 (2)1 s ≤t ≤76s 10.如图所示,一儿童玩具静止在水平地面上,一名幼儿用沿与水平面成30°角的恒力拉着它沿水平地面运动,已知拉力F =6.5 N ,玩具的质量m =1 kg ,经过时间t =2.0 s ,玩具移动的距离x =2 3 m ,这时幼儿将手松开,玩具又滑行了一段距离后停下.(g 取10 m/s 2)求:(1)玩具与地面间的动摩擦因数. (2)松手后玩具还能滑行多远?(3)幼儿要拉动玩具,拉力F 与水平方向夹角θ为多少时拉力F 最小? 解析:(1)玩具做初速度为零的匀加速直线运动,由位移公式可得 x =12at 2,解得a = 3 m/s 2, 对玩具,由牛顿第二定律得 F cos 30°-μ(mg -F sin 30°)=ma , 解得μ=33. (2)松手时,玩具的速度v =at =2 3 m/s松手后,由牛顿第二定律得μmg =ma ′, 解得a ′=1033m/s 2.由匀变速运动的速度位移公式得 玩具的位移x ′=0-v 2-2a ′=335 m.(3)设拉力与水平方向的夹角为θ,玩具要在水平面上运动,则 F cos θ-F f >0,F f =μF N , 在竖直方向上,由平衡条件得 F N +F sin θ=mg , 解得F >μmgcos θ+μsin θ.因为cos θ+μsin θ=1+μ2sin(60°+θ),所以当θ=30°时,拉力最小. 答案:(1)33 (2)335m (3)30°三、【动力学中的“板块”“传送带”模型】1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处 B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2L a= 2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:。
(物理)物理牛顿运动定律的应用练习题含答案及解析
(物理)物理牛顿运动定律的应用练习题含答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送带逆时针转动,运行速度v=1.0m/s。
【高考物理必刷题】牛顿运动定律(后附答案解析)
上的张力先增大后减小上的张力先增大后减小1D.的大小不变,而方向与角,物块也恰好做匀速直线运动,物块与桌面间的动摩擦因数为()2由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)3实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对4表示滑块下滑的加速度大小,用表示挡光片前端到达光电门时滑块的瞬时速度大的关系式为.,.(结果保留3位有效数字)56,放在静止于水平地面上的木板的两;木板的质量为,与地面间的动摩擦因数为两滑块开始相向滑动,初速度大小均为.、相遇时,与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小为.求:开始运动时,两者之间的距离.1上的张力先增大后减小上的张力先增大后减小的合力大小方向不变,且与先增后减,始终变大.2D.;由,可知摩擦力为:,代入数据为:联立可得:,故C正确.故选C.相互作用共点力平衡多个力的动态平衡由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)34实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对56开始运动时,两者之间的距离.考点时和板共速和板共速后得加速度:再经过,和板共速,(2)牛顿运动定律牛顿运动定律专题滑块问题。
高中物理牛顿运动定律练习题(含解析)
高中物理牛顿运动定律练习题学校:___________姓名:___________班级:___________一、单选题1.关于电流,下列说法中正确的是( )A .电流跟通过截面的电荷量成正比,跟所用时间成反比B .单位时间内通过导体截面的电量越多,导体中的电流越大C .电流是一个矢量,其方向就是正电荷定向移动的方向D .国际单位制中,其单位“安培”是导出单位2.2000年国际乒联将兵乓球由小球改为大球,改变前直径是0.038m ,质量是2.50g ;改变后直径是0.040m ,质量是2.70g 。
对此,下列说法正确的是( )A .球的直径大了,所以惯性大了,球的运动状态更难改变B .球的质量大了,所以惯性大了,球的运动状态更难改变C .球的直径大了,所以惯性大了,球的运动状态更容易改变D .球的质量大了,所以惯性大了,球的运动状态更容易改变3.在物理学的探索和发现过程中常用一些方法来研究物理问题和物理过程,下列说法错误的是( )A .在伽利略研究运动和力的关系时,采用了实验和逻辑推理相结合的研究方法B .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了理想化模型法C .在不需要考虑物体本身的大小和形状时用质点来代替物体,运用了理想化模型法D .比值定义包含“比较”的思想,例如,在电场强度的概念建立过程中,比较的是相同的电荷量的试探电荷受静电力的大小4.下列说法中正确的是( )A .物体做自由落体运动时没有惯性B .物体速度小时惯性小,速度大时惯性大C .汽车匀速行驶时没有惯性,刹车或启动时才有惯性D .惯性是物体本身的属性,无论物体处于何种运动状态,都具有惯性5.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为6N 时,物体处于静止状态。
若小车以20.8m /s 的加速度向右加速运动(取210m /s g ),则( )A .物体A 受到的弹簧拉力不变B .物体相对小车向左运动C .物体A 相对小车向右运动D .物体A 受到的摩擦力增大6.下列说法中错误的是( ) A .沿着一条直线且加速度存在且不变的运动,叫做匀变速直线运动B .为了探究弹簧弹性势能的表达式,把拉伸弹簧的过程分为很多小段,拉力在每一小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做微元法C .从牛顿第一定律我们得知,物体都要保持它们原来的匀速直线运动或静止的状态,或者说,它们都具有抵抗运动状态变化的“本领”D .比值定义法是一种定义物理量的方法,即用两个已知物理量的比值表示一个新的物理量,如电容的定义式Q C U=,表示C 与Q 成正比,与U 成反比,这就是比值定义的特点7.一辆货车运载着圆柱形光滑的空油桶。
牛顿运动定律的基本应用(解析版)—2025年高考物理必刷专题训练(全国通用)
牛顿运动定律的基本应用【考点一 牛顿第二定律的瞬时性问题】1.两种模型物体的加速度与其所受合力具有因果关系,物体的加速度总是随其所受合力的变化而变化,具体可简化为以下两种模型:2.求解瞬时性问题的一般思路求解瞬时性问题时应注意的一点物体的加速度能够随其所受合力的突变而突变,但物体速度的变化需要一个过程的积累,不会发生突变。
【考点二 动力学的两类基本问题】动力学的两类基本问题的解题步骤解决动力学两类基本问题的关键(1)两个分析:物体的受力情况分析和运动过程分析。
(2)两个桥梁:加速度是联系物体运动和受力的桥梁;衔接点的速度是联系相邻两个过程的桥梁。
【考点三 动力学中的图像问题】1.常见的动力学图像vt图像、at图像、Ft图像、Fa图像等。
2.图像问题的类型(1)已知物体受的力随时间变化的图像,分析物体的运动情况。
(2)已知物体的速度、加速度随时间变化的图像,分析物体的受力情况。
(3)由已知条件确定某物理量的变化图像。
3.解题策略(1)分清图像的类别:即分清横、纵坐标所代表的物理量,明确图像的物理意义。
(2)注意图像中的特殊点、斜率、面积所表示的物理意义:图线与横、纵坐标轴的交点,图线的转折点,两图线的交点,图线的斜率,图线与坐标轴或图线与图线所围面积等所表示的物理意义。
(3)明确能从图像中获得的信息:把图像与具体的题意、情境结合起来,应用物理规律列出与图像对应的函数表达式,进而明确“图像与公式”“图像与过程”间的关系,以便对有关物理问题作出准确判断。
【考点四 超重和失重的理解】1.超重和失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变。
(2)物体超重或失重多少由物体的质量m和竖直加速度a共同决定,其大小等于ma。
(3)在完全失重的状态下,一切由重力产生的物理现象都会完全消失。
(4)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解得 a1=9.6 m / s2
设滑块上滑位移大小为 L,则由 v02=2a1L ,解得 L=4.8 m
滑块沿斜面下滑过程,由牛顿第二定律: mgsin-mgcos=ma2 ,
解得 a2=2.4 m / s2
根据 v2=2a2L , 解得滑块回到出发点处的速度大小为 v=4.8 m / s
6.我国科技已经开启“人工智能”时代,“人工智能”己经走进千家万户.某天,小陈叫了外 卖,外卖小哥把货物送到他家阳台正下方的平地上,小陈操控小型无人机带动货物,由静 止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升 53s,最后再匀减速 1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在上升过程的最大 速度为 1m/s,高度为 56m.货物质量为 2kg,受到的阻力恒为其重力的 0.02 倍,重力加速 度大小 g=10m/s2.求 (1)无人机匀加速上升的高度; (2)上升过程中,无人机对货物的最大作用力. 【答案】(1)2.5m;(2)20.8N 【解析】 【详解】 (1)无人机匀速上升的高度:h2=vt2
(1)货物的质量 m; (2)货物上升过程中的最大动能 Ekm 及东东家阳台距地面的高度 h.
【答案】(1) m=2kg 【解析】
(2)
Ekm
1 2
mv2
1J
h=56m
【分析】
【详解】
(1)在货物匀速上升的过程中
由平衡条件得 F2=mg+f 其中 f=0.02mg
解得 m=2kg
(2)设整个过程中的最大速度为 v,在货物匀减速运动阶段
【答案】(1)2 m/s (2)6 m 【解析】
【分析】
在 0-1s 内拉力小于重力,物块静止不动,根据牛顿第二定律求出 1-2s 内的加速度,结合速 度时间公式求出 t=2s 时,物块速度的大小;根据牛顿第二定律求出 2-3s 内的加速度,根据 位移时间公式分别求出 1-2s 内和 2-3s 内的位移,从而求出物块上升的高度; 【详解】
(1)a0 多大?倾角 θ1 多大? (2)当倾角 θ 为 30°时,物块在力 F 作用下由 O 点从静止开始运动,2s 后撤去,求物块沿
斜面运动的最大距离?
【答案】(1)6m/s2, 37°;(2)2.4m。
【解析】
【详解】
(1)由图象可知,θ=0°,木板水平放置,此时物块的加速度为 a0 由牛顿第二定律:F 合=F=ma0
代入数据解得:μ= 9 0.13 . 70
【点睛】
本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即
可解题.本题也可以根据动量定理解答.
5.如图所示,斜面体 ABC 放在粗糙的水平地面上,滑块在斜面地端以初速度0 ,沿斜面 上滑。斜面倾角 370 ,滑块与斜面的动摩擦因数 。整个过程斜面体保持静止不动,
【解析】 【详解】
(1)若 0.8,滑块上滑过程中,由牛顿第二定律有: mgsin+mgcos=ma0 ,
解得滑块上滑过程的加速度大小 a0=12.4 m / s2 ,
上滑时间
t0=
v0 a0
1 s ,
上滑位移为
x
1 2
a0t02
6.2m
(2)若 0.45,滑块沿斜面上滑过程,由牛顿第二定律: mgsin+mgcos=ma1 ,
பைடு நூலகம்
试题分析:(1)公交车的加速度 a1
0 v12 2x1
4.5m / s2
所以其加速度大小为 4.5m / s2
(2)汽车从相遇处到开始刹车时用时: t1
x x1 v1
5 3
s
汽车刹车过程中用时: t2
0 v1 a1
10 3
s
张叔叔以最大加速度达到最大速度用时: t3
v3 v2 a2
2s
张叔叔加速过程中的位移:
解得 a0=6m/s2 由图象可知木板倾角为 θ1 时,物块的加速度 a=0
即:F=mgsinθ1
解得 θ1=37° (2)当木板倾角为 θ=30o 时,对物块由牛顿第二定律得:
F-mgsinθ=ma1 解得 a1=1m/s2
设木块 2s 末速度为 v1,由 v1=a1t 得 v1=2m/s
2s 内物块位移 s1= 1 a1t2=2m 2
且 x1+x2=100,
联立解得探测器自由落体运动的时间 t1=10s
9.一质量为 0.25 kg 的物块静止在水平地面上,从 t=0 s 时刻开始受到一个竖直向上的力 F 的作用,F 随时间 t 的变化规律如图乙所示,重力加速度 g 取 10 m/s2.求: (1)t=2 s 时,物块速度的大小: (2)t=0 到 t=3 s 的过程中,物块上升的高度.
x2
v2
2
v3 ·t3
7m
以最大速度跑到车站的时间 t4
x x2 v3
43 s 6
7.2s
因 t3 t4 t1 t2 10s ,张叔叔可以在汽车还停在车站时安全上车.
考点:本题考查了牛顿第二定律、匀变速直线运动的规律.
8.2019 年 1 月 3 日 10 时 26 分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆
50m.假设公交车在行驶到距车站 25m 处开始刹车.刚好到车站停下,停车 10s 后公交车 又启动向前开去.张叔叔的最大速度是 6m/s,最大起跑加速度为 2.5m/s2,为了安全乘上 该公交车,他用力向前跑去,求:
(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s2 (2)能 【解析】
已知小滑块的质量 m=1kg,sin37°=0.6,cos37°=0.8,g 取 10 m/s2。试求:
(1)若 0.8,0 12.4m / s ,求滑块从 C 点开始在 2s 内的位移。
(2)若 0.45,0 9.6m / s ,求滑块回到出发点时的速度大小。 【答案】(1) x 6.2m (2) v=4.8 m / s
阳台距地面的高度 h x1 x2 x3 56m
4.一长木板静止在水平地面上,木板长 l 5m ,小茗同学站在木板的左端,也处于静止
状态,现小茗开始向右做匀加速运动,经过 2s 小茗从木板上离开,离开木板时小茗的速度 为 v=4m/s,已知木板质量 M=20kg,小茗质量 m=50kg,g 取 10m/s2,求木板与地面之间的
在
2s
内人的位移为:x1=
1 2
a1t
2
代入数据解得:x1=4m
由于 x1=4m<5m,可知该过程中木板的位移:x2=l-x1=5-4=1m
对木板:x2=
1 2
a2
t
2
可得:a2=0.5m/s2
对木板进行分析,根据牛顿第二定律:f-μ(M+m)g=Ma2
根据牛顿第二定律,板对人的摩擦力 f=ma1
代入数据解得:f=100N
再次打开,探测器开始工作.探测器质量为 1.0×103kg.月球表面重力加速度 g 月
=1.6m/s2.求:
(1)探测器着陆前瞬间的动能.
(2)若探测器从距月面 100m 高度处开始先做自由落体运动,然后开启反推发动机做减速运
动,降落至月球表面时速度恰好为零.已知反推发动机使探测器获得的反推力大小为
A 板与地面间的最大静摩擦力为: f2 =2 M m g 2.4N
由于 f1 f2 ,故 A 静止不动
B 向右做匀减速直线运动.到达 A 的右端时速度为零,有:
v02 2aL 1mg ma1 解得木板 A 的长度 L 3m (2)A、B 系统水平方向动量守恒,取 vB 为正方向,有
mvB m M v
求:(1)木板 A 的长度 L; (2)若把 A 按放在光滑水平地面上,需要给 B 一个多大的初速度,B 才能恰好滑到 A 板的右 端; (3)在(2)的过程中系统损失的总能量.
【答案】(1) 3m (2) 2.4 10m / s (3) 5.4J
【解析】 【详解】
(1)A、B 之间的滑动摩擦力大小为: f1=1mg 1.8N
地内的冯·卡门撞击坑内。实现了人类探测器在月球背面首次软着陆,世界震惊,国人振
奋.嫦娥四号进入近月点 15km 的椭圆轨道后,启动反推发动机,速度逐渐减小,距月面
2.4km 时成像仪启动,扫描着陆区地形地貌并寻找着陆点.距月面 100 米左右,水平移动
选定着陆点,缓慢降落,离地面 3m 时关闭发动机,探测器做自由落体运动着陆,太阳翼
撤去 F 后,物块沿斜面向上做匀减速运动。设加速度为 a2 ,对物块由牛顿第二定律得:
mgsinθ=ma2 a2=gsin30°=5m/s2
撤去 F 后,物块继续向上运动的位移为 s2
v12 2a2
0.4m
则物块沿斜面运动的最大距离 s=s1+s2=2.4m
3.我国科技已经开启“人工智能”时代,“人工智能”已经走进千家万户.某天,东东呼叫了
外卖,外卖小哥把货物送到他家阳台正下方的平地上,东东操控小型无人机带动货物,由
静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升 53s,最后再匀减速 1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在加速、匀速、
减速过程中对货物的作用力 F1、F2 和 F3 大小分别为 20.8N、20.4N 和 18.4N,货物受到的阻 力恒为其重力的 0.02 倍.g 取 10m/s2.计算:
由牛顿运动定律得 mg+f – F3=ma3 由运动学公式得 0=v a3t3
解得 v 1m s
最大动能 Ekm
1 mv2 2
1J
减速阶段的位移
x3
1 2
vt3
0.5m
匀速阶段的位移 x2 vt2 53m 加速阶段,由牛顿运动定律得 F1 – mg – f =ma1 ,由运动学公式得 2a1x1 v2 ,解得 x1=2.5m