六年级数学下册知识点汇总

合集下载

六年级数学下册知识点汇总(可编辑打印思维导图)

六年级数学下册知识点汇总(可编辑打印思维导图)
株数段数1全长株距1全长株距株数1株距全长株数12封闭线路上的植树问题的数量关系如下株数段数全长株距全长株距株数株距全长株数盈亏问题盈亏两次分配量之差参加分配的份数大盈小盈两次分配量之差参加分配的份数大亏小亏两次分配量之差参加分配的份数相遇问题相遇路程速度和相遇时间相遇时间相遇路程速度和速度和相遇路程相遇时间追及问题追及距离速度差追及时间追及时间追及距离速度差速度差追及距离追及时间流水问题顺流速度静水速度水流速度逆流速度静水速度水流速度静水速度顺流速度逆流速度2水流速度顺流速度逆流
2、能根据统 计 图 提供的信息,做出正确的判断或简 单 预 测 。
五、数学广角
1、经 历 “抽屉 原理”的探究过 程,初步了解“抽屉 原理”,会用“抽屉 原理”解决简 单 的实 际 问 题 。 2、通过 “抽屉 原理”的灵活应 用感受数学的魅力。
六、整理和复习
1、比较 系统 地掌握有关整数、小数、分数和百分数、负 数、比和比例、方程的基础 知 识 。能比较 熟练 地进 行整数、小数、分数的四则 运算,能进 行整数、小数加、减、乘、 除的估算,会使用学过 的简 便算法,合理、灵活地进 行计 算;会解学过 的方程;养成检 查
1.准确数:在实 际 生活中,为 了计 数的简 便,可以把一个较 大的数改写成以万或亿 为 单 位的数。改写后的数是原数的准确数。 例如把 1254300000
改写成以万做单 位的数是 125430 万;改写成 以亿 做单 位 的数 12.543 亿 。
2.近似数:根据实 际 需要,我们 还 可以把一个较 大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿 后面的尾数是 13 亿 。
3.小数的读 法:读 小数的时 候,整数部分按照整数的读 法读 ,小数点读 作“点”,小数 部分从左向右顺 次读 出每一位数位上的数字。

小学六年级下册数学重点知识点整理

小学六年级下册数学重点知识点整理

小学六年级下册数学重点知识点整理六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如,把化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1去除以这个数,例如,1/等于4 ,所以的倒数4 ,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

六年级下册数学全部知识点总结

六年级下册数学全部知识点总结

六年级下册数学全部知识点总结
1.分数运算:
-分数加减法:同分母、异分母分数的加减法则及其混合运算。

-分数乘法:分数与整数、分数与分数的乘法法则,理解倒数概念,掌握分数乘法的简便算法。

-分数除法:分数除以整数、分数除以分数的运算规则,以及分数除法转化为乘法运算的方法。

2.比和比例:
-比的意义和性质,比的基本性质,求比值和化简比。

-比例的意义,比例的基本性质,解比例方程,正比例和反比例的概念及应用。

3.百分数:
-百分数的意义,百分数与小数、分数之间的互化。

-百分数的应用,如折扣、税率、利率等问题的解决。

4.圆:
-圆的基本概念,直径、半径、周长、面积的计算公式。

-圆心角、弧、扇形、圆锥和圆柱的相关计算。

-圆周率π的认识和应用。

5.统计与概率:
-复式统计表和复式条形统计图的理解和绘制。

-可能性的大小比较,简单事件发生的可能性计算。

6.平面图形与立体图形:
-平行四边形、梯形的性质和面积计算。

-三角形、平行四边形、梯形的高线定义和画法。

-长方体、正方体、圆柱、圆锥的体积和表面积计算。

7.代数初步:
-用字母表示数,列含未知数的等式(方程)解决问题。

-解简易方程,包括一步方程和两步方程。

8.解决问题策略:
-应用所学知识解决生活中实际问题,如行程问题、工程问题、浓度问题等。

六年级数学下册总复习知识点整理版

六年级数学下册总复习知识点整理版

六年级数学下册总复习知识点整理版常用的数量关系式:1.每份数×每份数=总数;总数÷每份数=份数;总数÷份数=每份数。

2.速度×时间=路程;路程÷速度=时间;路程÷时间=速度。

3.单价×数量=总价;总价÷单价=数量;总价÷数量=单价。

4.工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率。

5.加数+加数=和;和-一个加数=另一个加数。

6.被减数-减数=差;被减数-差=减数;差+减数=被减数。

7.因数×因数=积;积÷一个因数=另一个因数。

8.被除数÷除数=商;被除数÷商=除数;商×除数=被除数。

小学数学图形计算公式:1.正方形(C:周长;S:面积;a:边长):周长=边长×4;C=4a;面积=边长×边长;S=a×a。

2.正方体(V:体积;a:棱长):表面积=棱长×棱长×6;S表=a×a×6;体积=棱长×棱长×棱长;V=a×a×a。

3.长方形(C:周长;S:面积;a:边长):周长=(长+宽)×2;C=2(a+b);面积=长×宽;S=ab。

4.长方体(V:体积;S:面积;a:长;b:宽;h:高):表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh);体积=长×宽×高;V=abh。

5.三角形(S:面积;a:底;h:高):面积=底×高÷2;S=ah÷2;三角形高=面积×2÷底;三角形底=面积×2÷高。

6.平行四边形(S:面积;a:底;h:高):面积=底×高;S=ah。

人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点人教版小学六年级数学下册知识点一:比例1.理解比例的意义和基本性质,会解比例。

2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7.比例的意义:表示两个比相等的式子叫做比例。

如:2:1=6:8.组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1。

5=y×1。

2可知x:y=1.2:1.5。

10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

11.正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④y=5x,y和x成正比例,因为:y÷x=5(一定)。

六年级数学下册知识点汇总(可编辑打印思维导图)

六年级数学下册知识点汇总(可编辑打印思维导图)
利润 =售出价-成本 利润 率=利润 ÷成本×100%=(售出价÷成本-1)×100%
涨 跌金额 =本金×涨 跌百分比
利润 与折扣问 题
溶质 的重量+溶剂 的重量=溶液的重量 溶质 的重量÷溶液的重量×100%=浓 度
溶液的重量×浓 度=溶质 的重量 溶质 的重量÷浓 度=溶液的重量
浓 度问 题
顺 流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺 流速度+逆流速度)÷2 水流速度=(顺 流速度-逆流速度)÷2
百分数
六年级 数学下册
一、负 数:
1、在熟悉的生活情境中初步认 识 负 数,能正确的读 、写正数和负 数,知道0既不是正数 也不是负 数。
2、初步学会用负 数表示一些日常生活中的实 际 问 题 ,体验 数学与生活的密切联 系。
3、能借助数轴 初步学会比较 正数、0和负 数之间 的大小。
二、圆 柱和圆 锥
相遇问 题 盈亏问 题
株数=段数+1=全长 ÷株距-1
全长 =株距×(株数-1)
⑴如果在非封闭 线 路的两端都要植树 ,那么:
株距=全长 ÷(株数-1)
株数=段数=全长 ÷株距
全长 =株距×株数
⑵如果在非封闭 线 路的一端要植树 ,另一端不要植树 ,那么:
1 非封闭线路上的植树问题主要可分为以下三种情形:
三、比例
1、理解比例的意义 和基本性质 ,会解比例。
2、理解正比例和反比例的意义 ,能找出生活中成正比例和成反比例量的实 例,能运用 比例知识 解决简 单 的实 际 问 题 。
3、认 识 正比例关系的图 像,能根据给 出的有正比例关系的数据在有坐标 系的方格纸 上 画出图 像,会根据其中一个量在图 像中找出或估计 出另一个量的值 。

六年级下册数学1到4单元总结

六年级下册数学1到4单元总结

六年级下册数学1到4单元总结六年级下册数学1 - 4单元总结(人教版)1. 知识点。

- 负数的定义:比0小的数叫做负数,负数与正数表示意义相反的量。

例如:在温度计上,0℃以上为正数,0℃以下为负数;海拔高度中,海平面以上为正数,海平面以下为负数。

- 负数的读写法。

- 读负数时,先读“负”字,再读数。

例如:-5读作“负五”。

- 写负数时,先写“ - ”,再写数。

如:负八写作“ - 8”。

- 数轴。

- 数轴是规定了原点(0点)、正方向和单位长度的直线。

- 在数轴上,负数在0的左边,正数在0的右边,从左到右的顺序就是数从小到大的顺序。

例如: - 3<0<2。

2. 重点与难点。

- 重点:理解负数的意义,能正确读写负数,会用数轴表示正负数。

- 难点:理解负数的大小比较规则,以及在实际情境中运用负数表示相反意义的量。

1. 知识点。

- 折扣。

- 折扣的意义:商店有时降价出售商品,叫做打折扣销售,通称“打折”。

几折就表示十分之几,也就是百分之几十。

例如:八折就是原价的80%,七五折就是原价的75%。

- 折扣问题的计算:原价×折扣 = 现价。

例如:一件商品原价100元,打八折后的价格是100×80% = 80元。

- 成数。

- 成数表示一个数是另一个数的十分之几,通称“几成”。

例如:一成就是10%,三成五就是35%。

- 成数问题的计算:例如,去年小麦产量是100吨,今年比去年增产二成,今年产量就是100×(1 + 20%)=120吨。

- 税率。

- 税率是应纳税额与各种收入(销售额、营业额等)的比率。

- 应纳税额的计算:应纳税额 = 各种收入×税率。

例如:某商店营业额为10000元,税率为3%,应纳税额为10000×3% = 300元。

- 利率。

- 利率是单位时间内利息与本金的比率。

- 利息的计算:利息 = 本金×利率×存期。

例如:本金1000元,年利率为2.1%,存期2年,利息为1000×2.1%×2 = 42元。

六年级下册数学书知识点

六年级下册数学书知识点

六年级下册数学书知识点六年级下册数学书知识1第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高,且高的长度都相等。

(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。

3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。

4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。

圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。

圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。

5、圆柱的体积:一个圆柱所占空间的大小。

6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。

拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。

所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。

小学六年级下册全册知识点

小学六年级下册全册知识点

小学六年级下册全册知识点第一章:数与运算1.1 整数与小数- 整数的概念和表示法- 小数的概念和表示法- 整数和小数的相互转换1.2 加法与减法- 加法的定义和性质- 减法的定义和性质- 加减法的运算法则1.3 乘法与除法- 乘法的定义和性质- 除法的定义和性质- 乘除法的运算法则1.4 运算顺序- 括号的运用- 运算顺序的规定- 复杂运算式的计算第二章:分数与比例2.1 分数的概念与表示- 分数的基本概念- 真分数和假分数的区别- 分数的读法和表示法2.2 分数的加减运算- 分数的加法原则- 分数的减法原则- 分数的加减计算步骤2.3 分数的乘除运算- 分数的乘法原则- 分数的除法原则- 分数的乘除计算步骤2.4 比例的认识与运用- 比例的概念和表示法- 比例与图形的关系- 比例的计算方法第三章:图形与计算3.1 运用倍数和约数- 倍数的概念和计算- 整除与倍数的关系- 约数的概念和判断方法3.2 计算长度、面积和容量- 长度的换算方法- 面积的计算公式- 容量的换算和计算3.3 图形的边和顶点- 图形的基本概念- 点、线、面的定义- 图形的分类与特征3.4 计算图形的周长和面积- 不规则图形的周长计算- 正方形和长方形的面积计算- 三角形和梯形的面积计算第四章:数据与概率4.1 数据的收集与整理- 数据的来源和收集方法- 数据的整理和表达方式- 数据的图表表示4.2 数据的分析与运用- 数据的中位数和众数- 数据的极差和平均数- 数据的运用与预测4.3 概率的认识与计算- 概率的基本概念- 事件的可能性及计算- 基于概率的决策第五章:时间与空间5.1 时间的计算和换算- 时间的单位和换算- 时、分、秒的关系- 时间的加减运算5.2 日历和闰年- 日历的基本组成- 判断闰年的方法- 日期的推算和计算5.3 方位与坐标- 方位词的理解和运用- 坐标的概念和计算- 方位与坐标的关系5.4 空间图形的认识- 点、线、面的空间概念- 立体图形的特征和分类- 空间图形的展开和组合以上是小学六年级下册的全册知识点概述,通过掌握和理解这些知识,可以帮助同学们更好地应对学习中的数学、几何等问题,并提高解决问题的能力。

六年级下册数学全册知识点

六年级下册数学全册知识点

六年级下册数学全册知识点一、整数运算1. 整数的概念和表示方法2. 整数的加法和减法运算3. 整数的乘法和除法运算4. 整数的混合运算二、小数与分数1. 小数的基本概念和表示方法2. 小数的加法和减法运算3. 小数的乘法和除法运算4. 分数的基本概念和表示方法5. 分数的加法和减法运算6. 分数的乘法和除法运算7. 分数与小数的相互转化三、平方根和立方根1. 正数的平方根和立方根的概念2. 平方根和立方根的计算方法3. 估算平方根和立方根的大小四、图形的性质和计算1. 平行四边形、矩形、正方形、三角形的性质和区分方法2. 长方体、正方体的性质和计算公式3. 圆的概念和相关计算公式4. 直角坐标系的基本概念和图形的坐标表示五、比例与百分数1. 等比例和不等比例的关系2. 比例的概念和解题方法3. 百分数的概念和转化4. 百分数的应用:利息、折扣、增长率等六、统计与概率1. 数据的收集和整理2. 极差、中位数、众数和平均数的计算方法3. 直方图和折线图的绘制和解读4. 概率的基本概念和计算方法七、二次根式1. 平方数和完全平方根的概念2. 二次根式的计算方法和化简3. 二次根式的加法和减法运算4. 二次根式的乘法和除法运算八、初步代数1. 代数式的概念和建立2. 代数式的加法和减法运算3. 代数式的乘法和除法运算4. 代数式的应用:简单方程的解法以上是六年级下册数学全册的知识点概述,通过学习这些知识,可以帮助孩子们更好地理解和掌握数学的基本概念和运算方法。

在学习中要多做习题和实际问题的应用,提高自己的数学思维和解决问题的能力。

六年级数学下册知识点(整理6篇)

六年级数学下册知识点(整理6篇)

六年级数学下册知识点〔整理6篇〕篇1:六年级下册数学知识点第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。

所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

假设一个数小于0,那么称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数假设一个数大于0,那么称它是一个正数。

正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限6、比拟两数的大小:①利用数轴:负数篇2:六年级下册数学知识点第二单元百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是非常之几,也就是百分之几十。

解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进展解答。

商品如今打八折:如今的售价是原价的80﹪商品如今打六折五:如今的售价是原价的65﹪2、成数:几成就是非常之几,也就是百分之几十。

解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进展解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一局部缴纳给国家。

(2)纳税的意义:税收是国家财政收入的主要来之一。

六年级数学下册(人教版)全册笔记 超详细

六年级数学下册(人教版)全册笔记 超详细

六年级数学下册(人教版)全册笔记超详细第一章有理数
1.1 正数与负数
- 正数:大于0的数,例如1、2、3等
- 负数:小于0的数,例如-1、-2、-3等
- 零:等于0的数
1.2 有理数的比较
- 有理数可以通过大小进行比较,大小两者关系如下:
- 正数 > 零 > 负数
- 绝对值大的数较小
- 绝对值相等时,正数较大
1.3 有理数的四则运算
- 加法:
- 同号相加:保留符号,绝对值相加
- 异号相加:符号取绝对值大的数,绝对值相减
- 减法:
- 减去一个数等于加上这个数的相反数
- 乘法:
- 同号相乘为正,异号相乘为负
- 除法:
- 除以一个非零数等于乘以这个数的倒数
1.4 有理数的应用
- 有理数在日常生活中的应用很广泛,例如温度的正负、海拔的正负等。

第二章几何图形
2.1 直角三角形
- 直角三角形有一个角度为90度的直角,其他两个角度之和为90度。

- 直角三角形的两条直角边可以通过勾股定理计算斜边的长度。

2.2 平行四边形
- 平行四边形的对边是平行线段,对角线相等且平分。

2.3 等边三角形
- 等边三角形三条边的边长相等。

第三章数据的整理与描述
3.1 表格的制作和填写
- 制作表格时,要保证表格清晰易读,标题明确。

3.2 概率与统计
- 概率是指某个事件在相同条件下重复进行多次试验时发生的
次数的频率。

- 统计是对收集到的数据进行整理和描述,包括频数、频率、中位数等。

以上是六年级数学下册(人教版)全册的超详细笔记,希望对您有帮助!。

六年级下册数学知识点归纳

六年级下册数学知识点归纳

六年级下册数学知识点归纳数学知识点归纳一、分数1.分数的定义及表示分数是指用一个整数表示出一个数分的几份,分子表示分出来的几份,分母表示每份分成的份数。

通常表示为:$$\frac{a}{b}$$2.分数的大小比较(1)分母相同时,分数大小由分子大小决定。

(2)分母不同时,先通分,再比较分子大小。

3.分数的化简分数的化简就是把分子和分母同时除以一个相同的数,使它们的最大公约数为1。

如:$$\frac{6}{8}=\frac{3}{4}$$4.分数的加减乘除(1)相加减:通分后,把分子相加减,分母不变。

(2)相乘:把两个分数的分子和分母分别相乘即可。

(3)相除:把被除数乘以除数的倒数,即把除数化为分数的分子倒放,分母在写下去,再进行相乘运算。

二、小数1.小数的定义及表示小数是指数分的几份,每份分成的量相等。

通常用小数点表示,小数点左边的数表示整数部分,右边表示小数部分,数字前面加0不影响其原来的大小。

2.小数的大小比较(1)相同位数,大小由高位数决定。

(2)位数不同时,以比较到的位数为准,不够0补齐。

3.小数的四则运算(1)相加减:保留相同位数,竖式相加减。

(2)相乘:先把小数变成整数,再按整数的乘法进行运算,最后把结果的小数点后移。

(3)相除:把被除数和除数都扩大10、100、1000……倍,使除数变成整数,然后按整数的除法进行运算,最后把结果的小数点前移。

三、倍数和约数1.倍数若a,b为正整数,其中a ≤ b,则b是a的倍数,a是b的因数。

一个数的倍数有无穷多个。

2.约数若a,b为正整数,其中a ≤ b,则a能整除b,称a是b的因数,b是a的倍数。

一个数的因数是有限多个。

四、整数1.正数、负数正整数和0,统称为正数,用“+”表示;负整数,用“-”表示。

2.整数的大小比较(1)一正一负,正数大。

(2)同号但绝对值不同时,绝对值大的数大。

(3)同号且绝对值相同时,大小相同。

3.绝对值表示一个数到原点的距离,用“|”表示。

六年级下核心考点清单

六年级下核心考点清单

六年级下核心考点清单
六年级下核心考点清单:
1. 小学数学知识的巩固和运用:加减乘除的运算技巧、分数、百分数、小数、单位换算等。

2. 图形的认识和性质:平行四边形、长方形、正方形、三角形、圆等图形的性质、面积和周长的计算。

3. 数据的处理和分析:图表的读取和分析、统计图的制作和解读、平均数的计算等。

4. 代数的初步学习:代数式的认识和运算、方程的解法、一元一次方程的解法等。

5. 几何图形的绘制和变换:几何图形的画法、图形的平移、旋转和翻折等基本变换。

6. 时、空和形的关系:时间的计算和换算、空间的方位和位置、立体图形的认识和展开等。

7. 逻辑思维和问题解决:逻辑思维的训练、问题解决的方法和策略、应用题的解题思路等。

8. 数学语言和表达:数学语言的运用、数学步骤和过程的书写、数学问题的表述等。

这些是六年级下学期数学的核心考点,学生需要掌握这些知识和技能,才能够顺利完成六年级的数学学习。

数学六年级下册的知识点归纳

数学六年级下册的知识点归纳

数学六年级下册的知识点归纳数学六年级下册的知识点一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。

例如:1/3×4/7表示求1/3的4/7是多少。

4×3/8表示求4的3/8是多少.(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、为了计算简便,能约分的要先约分,再计算。

(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

(三)、乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律:( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。

(2)部分和整体的关系:画一条线段图。

六年级下册数学全册知识点

六年级下册数学全册知识点

六年级下册数学全册知识点一、数与代数数与代数的学习内容包括数的认识、数的运算、常见的量、式与方程、正比例和反比例、探索规律等。

1.数的认识主要包括进一步理解和掌握整数、小数、分数、百分数的意义以及十进制计数法,理解小数的性质与分数的基本性质之间的联系,体会整数、小数、分数、百分数等概念之间的联系与区别;理解和掌握自然数和整数、因数与倍数、质数与合数、公因数与公倍数等概念的含义;增强用数表达信息的意识和能力,发展数感。

⑴整数和小数都是采用十进制计数法,整理计数单位、相应的数位顺序、相邻计数单位之间的进率,再现整数、小数的数位顺序表。

结合数位顺序表,重点理解:数位、计数单位、进率以及位值原则。

⑵整数的读、写注意点包括:分级读、写,从高位到低位依次读、写,数中间“0”的读、写,数末尾“0”的读、写等。

小数的读、写要注意:先读整数部分、后读小数部分,而且整数部分的读法和小数部分的读法不同。

⑶数的改写与省略尾数求近似数,学生容易混淆,要注意其中的联系与区别:⑷奇数与偶数、质数与合数、公因数与公倍数等,都是“因数与倍数”范围里的概念。

这部分的知识较多,学生容易混淆。

建议要求孩子回顾相关知识点后,引导他们建构知识网络图,将知识结构化:⑸分母是10、100、1000……的分数可以用小数表示,小数是分母为10、100、1000……的特殊分数。

分数的基本性质是分子与分母乘或除以同一个不为零的数,大小不变;小数的基本性质简述为小数的末尾可以增减零,小数的大小不变,小数的这个性质也可以理解为分子与分母同时乘或除以相同的数,只是扩大与缩小的倍数是10倍、100倍……如0.3表示十分之三,0.30表示百分之三十。

去掉小数末尾的零即是分子与分母同时除以10。

所以说,分数的基本性质和小数的基本性质本质上是一致的,只是适用的范围不同。

⑹百分数是特殊的分数。

理解分数与百分数的意义,我们要弄清它们之间的联系和区别:小数、分数、百分数之间怎样进行互相改写呢?2.常见的量小学阶段我们学习过长度、面积、体积(容积)、时间、质量等单位。

六年级下数学重点知识点总结

六年级下数学重点知识点总结

六年级下数学重点知识点总结一、负数。

1. 负数的定义。

- 为了表示相反意义的量,如零上温度和零下温度、收入与支出等,我们引入负数。

像 -3、 -5.5、 -2/3等这样的数是负数,而以前学过的3、5.5、2/3等是正数,0既不是正数也不是负数。

2. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 在数轴上,从左到右的顺序就是数从小到大的顺序。

所有的负数都在0的左边,也就是负数都比0小;所有的正数都在0的右边,正数都比0大。

二、圆柱与圆锥。

1. 圆柱。

- 圆柱的认识。

- 圆柱有两个底面,是完全相同的圆;有一个侧面,是曲面,沿高展开后是一个长方形(或正方形),这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。

- 圆柱的表面积。

- 圆柱的表面积 = 侧面积+两个底面积。

侧面积 = 底面周长×高,用字母表示为S_侧=Ch(C = 2π r或C=π d),底面积S=π r^2,所以圆柱表面积S = 2π rh+2π r^2。

- 圆柱的体积。

- 圆柱的体积 = 底面积×高,用字母表示为V=π r^2h。

2. 圆锥。

- 圆锥的认识。

- 圆锥有一个底面,是圆;有一个侧面,是曲面,展开后是一个扇形。

圆锥只有一条高,从圆锥的顶点到底面圆心的距离是圆锥的高。

- 圆锥的体积。

- 圆锥的体积是与它等底等高圆柱体积的1/3,即V = 1/3π r^2h。

三、比例。

1. 比例的意义和基本性质。

- 比例的意义。

- 表示两个比相等的式子叫做比例。

如2:1 = 4:2。

- 比例的基本性质。

- 在比例里,两个外项的积等于两个内项的积。

例如在比例a:b = c:d中,ad = bc。

2. 正比例和反比例。

- 正比例。

- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

例如y/x = k(k一定),y和x成正比例关系。

六年级下册数学知识点归纳笔记

六年级下册数学知识点归纳笔记

以下是六年级下册数学知识点的归纳笔记:一、整数运算。

1.整数的加减法。

-同号相加减,异号相减加。

-加减法可以化为同号运算或异号运算。

-加法满足交换律和结合律,减法不满足交换律和结合律。

2.整数的乘除法。

-同号相乘为正,异号相乘为负。

-除法可以化为乘法运算。

3.整数的混合运算。

-先乘除后加减,先括号里的后括号外的。

-同级运算可以交换顺序。

二、小数运算。

1.小数的加减法。

-小数点对齐,按位相加减,注意进位借位。

2.小数的乘法。

-把小数转化为整数,计算完再将结果还原成小数。

3.小数的除法。

-把除数、被除数都变成整数,再进一步计算。

三、分数运算。

1.分数的加减法。

-通分后,按照整数的加减法进行运算。

2.分数的乘除法。

-分数的乘法,分子相乘,分母相乘。

-分数的除法,除数的倒数乘以被除数。

四、面积和周长。

1.长方形的面积和周长。

-面积为长乘以宽,周长为长加宽的两倍。

2.正方形的面积和周长。

-面积为边长的平方,周长为边长的四倍。

3.三角形的面积和周长。

-面积为底乘以高的一半,周长为三边之和。

4.平行四边形的面积和周长。

-面积为底乘以高,周长为底的两倍加上高的两倍。

五、几何变换。

1.平移。

-所有点同时沿着同一方向移动相同的距离。

2.旋转。

-将图形围绕一个点或轴心旋转。

3.翻折。

-将图形沿着一条直线对称。

4.对称和投影。

-对称:将图形对移到与原来位置对称的位置。

-投影:将图形沿着一条直线或面投影到相应的位置。

六、数据统计。

1.统计图。

-条形图、折线图、饼状图、扇形图,用于表示数据的数量、比例和变化趋势等。

2.中心倾向和散布度。

-中心倾向:平均数、中位数、众数,反映数据的集中程度。

-散布度:极差、方差、标准差,反映数据的离散程度。

以上就是六年级下册数学知识点的归纳笔记,希望可以对学生们的数学学习有帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学下册知识点汇总第一单元负数第一节:负数的认识1、正负数的意义:表示相反意义的两个量(如盈利亏损、收入支出.....,所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负等。

2、负数的认识:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

3、负数的写法:数前面加“-”号,负号不可以省略。

负数有无数个,其中有负整数,负分数和负小数。

4、理解0的特殊性:0既不是正数也不是负数,它是正数与负数的分界点。

5、正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数。

6、正数的写法:数字前面可以加“+”号,正号可以省略不写。

正数有无数个,其中有正整数,正分数和正小数。

第二节:解决问题在直线上表示正数、0和负数第二单元百分数第一节:折扣和成数1、折扣的意义:为了吸引顾客,促进顾客购物消费,商店有时降价出售商品,叫做打折扣销售,俗称“打折”。

打折是一种商业用语。

2、折扣问题的解题方法(1)已知原价和折扣,求现价的方法:现价=原价×折扣(2)已知原价和折扣,求便宜的钱数:便宜的价钱=原价-原价×折扣或便宜的价钱=原价×(1-折扣)(3)已知现价和折扣,求原价:原价=现价÷折扣(4)已知原价和现价,求折扣:折扣的书写:百分数或几折(例如三折、七八折)折扣=现价÷原价3、成数的意义:成数表示一个数是另一个数的十分之几,通称“几成”。

4、成数问题解题方法解决成数问题时,先把成数转化为百分数,然后解题思路和解题方法与百分数问题完全相同。

第二节:税率和利率1、纳税的含义:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

2、纳税问题的解题方法(1)已知收入额和税率,求应纳税额的方法:应纳税额=收入额×税率(2)已知应纳税额和收入额,求税率的方法:税率=应纳税额÷收入额×100%(3)已知应纳税额和税率,求收入额的方法:收入额=应纳税额÷税率3、了解储蓄(1)储蓄的意义:把钱存入银行就是储蓄(2)储蓄的好处:可以支援国家建设、使个人钱财更安全、可以增加一些收入4、与储蓄有关的计算公式:本息=本金十利息利息=本金×年利率×存期本息=本金×(1+年利率×存期)第三单元圆柱和圆锥一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

圆柱也可以由长方形卷曲而得到。

两种方式:①以长方形的长为底面周长,宽为高;②以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆(2)侧面的特征:圆柱的侧面是一个曲面(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积: S底=πr²底面周长: C底=πd=2πr侧面积: S侧=2πrh表面积: S表=2S底+S侧=2πr²+2πrh体积: V柱=πr²h【考试常见题型】①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征: 圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征:圆锥有一条高。

4、圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh5、圆锥的相关计算公式:底面积: S底=πr²底面周长: C底=πd=2πr体积: V锥=1/3πr²h【考试常见题型】①已知圆锥的底面积和高,求体积,底面周长②已知圆锥的底面周长和高,求圆锥的体积,底面积③已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算三、圆柱和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高,体积相差2/3Sh【题型总结】①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)③横截面的问题④浸水体积问题: (水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体⑤等体积转换问题: 一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3第四单元比例1、比的意义(1)两个数相除又叫做两个数的比(2)":”是比号,读作"比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

(5)比的后项不能是零。

(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多5、比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。

这叫做比例的基本性质。

7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示×/y=k (一定)9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示××y=k (一定)10、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

11、比例尺:一幅图的图.上距离和实际距离的比,叫做这幅图的比例尺。

12、比例尺的分类(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺13、图上距离:图上距离/实际距离=比例尺实际距离×比例尺=图上距离图上距离+比例尺=实际距离14、应用比例尺画图的步骤:(1)写出图的名称(2)确定比例尺(3)根据比例尺求出图上距离(4)画图(画出单位长度)(5)标出实际距离,写清地点名称(6)标出比例尺15、图形的放大与缩小:形状相同,大小不同。

16、用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。

17、常见的数量关系式: (成正比例或成反比例)单价×数量=总价单产量×数量=总产量速度×时间=路程工效×工作时间=工作总量18、已知图上距离和实际距离可以求比例尺。

已知比例尺和图上距离可以求实际距离。

已知比例尺和实际距离可以求图上距离。

计算时图距和实距单位必须统一。

第五单元数学广角——鸽巢问题1、鸽巢原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用①什么是鸽巢原理,先从一个简单的例子入手,把3个苹果放在2个盒子里,共有四种不同的放法,如下表无论哪一种放法,都可以说“必有一个盒子放了两个或两个以上的苹果”。

这个结论是在“任意放法”的情况下,得出的一个“必然结果”。

类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。

如果有6封信,任意投入5个信箱里,那么一定有一个信箱至少有2封信。

我们把这些例子中的“苹果"、"鸽子”、“信"看作一种物体,把"盒子”、“鸽笼"、“信箱"看作鸽巢,可以得到鸽巢原理最简单的表达形式。

②利用公式进行解题:物体个数÷鸽巢个数=商……余数至少个数=商+12、摸2个同色球计算方法。

①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。

相关文档
最新文档