回流焊接工艺要求

合集下载

SMT加工之回流焊接工艺

SMT加工之回流焊接工艺

SMT加工之回流焊接工艺
1 设备:5温区热风回流焊
1.1 对动力的要求:电源:3相380V动力电,27kW;压缩空气:4 kgf/cm2~6 kgf/cm2。

1.2 对PCB的要求:宽度50mm~300mm(采用导轨运输方式)。

1.3 设备主要参数:温度控制范围:室温~350℃,升温时间35分钟,各温区温度独立控制,传送网带宽度390mm,长度3.8米,内配UPS电源,内配三点温度曲线测试系统和测试导线。

2 生产工艺标准
2.1 预热温度控制在120℃~150℃,预热时间应大于60秒,温升的速率要小于3℃/s(仅供参考,具体参见锡膏的规格书的规定)。

2.2 焊接温度控制在230℃~240℃,时间应为5~10秒,同样温升的速率要小于3℃/s(仅供参考,具体参见锡膏的规格书的规定)。

2.3 转产和每天上班前,读取温度曲线,确认满足要求后才可以开始生产。

2.4 PCB上同一条直线(该直线应与过炉方向垂直)上的各个焊盘温度的差异应小于5℃。

2.5 注意进炉的方向,否则会因为元件的两端焊脚因焊锡溶化和凝结时间的差异而容易形成吊桥(或称曼哈顿现象),即元器件的一端离开焊盘而向上方斜立或直立的现象。

3 工艺检验标准
3.1 浸润:焊料应在被焊金属表面铺展,其接触角必须小于90°;
3.2 焊料量:焊料量要适中,避免过多或过少;
3.3 焊点表面:应完整、连续和圆滑;
3.4 不允许有虚焊、脱焊、孔洞、桥接、拉尖、焊料球或吊桥的现象。

回流焊接工艺及无铅技术要求

回流焊接工艺及无铅技术要求

回流焊接工艺及无铅技术要求回流焊接是一种常见的电子组装工艺,旨在通过在电路板上加热的同一区域内同时完成焊接和热残留的去除。

回流焊接工艺的目的是确保焊接质量,并尽量减少热应力对电子器件造成的损害。

无铅焊接是一种环保型的回流焊接工艺,旨在取代含铅焊料并减少对环境的污染。

下面将详细介绍回流焊接工艺和无铅技术要求。

回流焊接工艺通常包括以下几个步骤:预热、焊接、冷却和清洗。

首先是预热阶段,通过加热电路板上的焊盘和元件至预定温度,以准备焊接。

焊接阶段是回流焊接的关键步骤,焊盘和元件表面的焊膏会熔化并形成焊点。

在此过程中,需要控制好温度和焊接时间,以确保焊接的质量。

冷却阶段是将焊点迅速冷却至室温,以固化焊膏。

最后是清洗阶段,通过去除焊接过程中产生的流动剂和焊膏残留物,以使电路板达到可靠的电气和机械性能。

无铅焊接是对传统含铅焊接的替代方案,以减少对环境的污染和人体健康的影响。

无铅焊料通常使用锡和其他合金元素的组合,以替代传统含铅焊料。

由于无铅焊料的熔点较低和流动性相对较差,需要对回流焊接工艺进行调整。

以下是无铅焊接技术的一些要求:1.温度控制:无铅焊接的温度一般较高,通常在240-260摄氏度之间。

需要确保焊接区域的温度能够达到要求,并且在焊接过程中保持稳定。

2.施加力度:由于无铅焊料的流动性较差,需要增加施加于元件的重量,以确保焊盘和元件之间能够良好接触。

3.回流焊炉的设计:无铅焊接需要的温度较高,而焊炉的设计应考虑到这一点,以确保工艺的可行性。

4.元件的选择:无铅焊接对元件有一定的要求,不同的元件可能需要适用于无铅焊接的制造工艺。

5.环境和健康安全:无铅焊接强调环保和健康安全,需要遵守相关的法规和标准,并对焊接工艺进行有效的控制和监测。

总之,回流焊接是一种常见的电子组装工艺,无铅焊接是其环保型的变体。

为了确保焊接质量和减少环境污染,需要对回流焊接工艺进行调整,并且遵守无铅焊接技术的要求。

这些要求包括温度控制、施加力度、焊炉设计、元件选择以及环境和健康安全等方面。

倒装芯片回流工艺要求标准

倒装芯片回流工艺要求标准

倒装芯片回流工艺要求标准
芯片回流工艺要求标准包括以下几个方面:
1. 温度控制要求:回流工艺需要控制好回流炉的加热温度,通常要求在170°C至250°C之间,并且要能够精确控制温度的上升和下降速度,以避免芯片在回流过程中受到过高温度的损坏。

2. 焊接时间要求:芯片回流的焊接时间需要根据具体的芯片类型和尺寸来确定,一般要求在几秒钟到几十秒之间,以确保焊点能够充分熔化和连接。

3. 焊接质量要求:回流工艺要求焊点的质量良好,焊点应该均匀、完整,不应该出现短路、断路、冷焊等质量问题。

4. 焊接渗透性要求:焊接时,焊料需要能够充分渗透到焊接点的表面,以确保焊点的可靠性和稳定性。

5. 焊接剂要求:回流工艺需要使用符合环保要求的焊接剂,同时还要保证焊接剂的挥发性低,以避免对芯片的损害。

6. 焊接设备要求:回流工艺需要使用专业的回流设备,设备要具备良好的温度控制、运行稳定性、加热均匀性等特点,以确保回流工艺的稳定性和可靠性。

这些要求标准可以确保芯片回流工艺的高质量和可靠性,保证
焊点的质量和稳定性,同时还能够最大限度地保护芯片不受到过高温度和其他损坏。

回流焊工艺参数管理规范

回流焊工艺参数管理规范

回流焊工艺参数管理规范一、引言回流焊是电子元器件制造过程中一种常用的表面贴装技术。

合理的工艺参数管理是确保回流焊质量稳定的关键。

本文将介绍回流焊工艺参数的管理规范,包括焊接温度、焊接时间、预热温度等方面的管理要求。

二、焊接温度管理1.回流焊的焊接温度应符合电子元器件的要求,一般根据焊接材料的熔点和热敏性来确定。

2.焊接温度的测量应使用质量可靠的温度计,并定期进行校准,以确保温度测量的准确性。

3.焊接温度的控制范围应在工艺要求的范围内,不可过高或过低。

三、焊接时间管理1.焊接时间应根据焊接材料和电子元器件的要求进行合理设置。

2.焊接时间的测量应使用可靠的计时器,并定期校准,以确保焊接时间的准确性。

3.焊接时间的控制应在工艺要求的范围内,不能过长或过短,以确保焊接质量。

四、预热温度管理1.预热温度是指将待焊接的电子元器件加热至设定温度的过程。

预热温度的控制十分重要,可以避免焊接温度的突变,减少焊接热冲击对元器件的损伤。

2.预热温度应根据焊接材料和元器件的要求进行合理设置。

3.预热温度的测量应使用可靠的温度计,并定期进行校准,以确保温度测量的准确性。

4.预热温度的控制应在工艺要求的范围内,不能过高或过低。

五、工艺参数记录和分析1.每一次回流焊都应记录焊接温度、焊接时间、预热温度等相关工艺参数,以及焊接结果的观察和评价。

2.工艺参数记录的目的是为了分析回流焊质量的稳定性,及时调整工艺参数,以提高焊接质量。

3.对于常见的焊接缺陷,如焊接不良、焊接温度过高等,应及时进行原因分析,找出改进工艺的措施。

六、培训和操作规程1.为了确保回流焊工艺参数的正确掌握和操作,应定期进行培训,提高员工的技术水平。

2.建立完善的操作规程,规定回流焊工艺参数设置的步骤和要求。

3.设立责任人,负责回流焊工艺参数的管理和监督。

七、结论回流焊工艺参数的管理规范对于保证电子元器件焊接质量的稳定性至关重要。

通过合理的焊接温度、焊接时间、预热温度的设置和控制,以及相关的记录和分析,能够提高回流焊的质量,减少焊接缺陷的发生,提高产品的可靠性和稳定性。

回流焊工艺参数管理规范

回流焊工艺参数管理规范

回流焊工艺参数管理规范一、引言回流焊是一种常用的电子组装焊接工艺,通过加热焊接件,使焊膏的焊锡熔化并与焊接的电子元件发生化学反应,从而实现焊接连接。

回流焊的质量受到焊接工艺参数的影响,因此,对于回流焊工艺参数的管理规范十分重要。

本文旨在提出回流焊工艺参数的管理规范,以确保焊接质量的稳定性和可靠性。

二、回流焊工艺参数的分类1.设备参数设备参数包括回流焊设备的温度曲线、过流速度、通风参数等。

这些参数是由焊接设备的技术规格决定的,应根据焊接产品的要求进行正确设置,并且定期进行校验和调整。

2.焊接参数焊接参数包括焊接温度、焊接时间、预热时间、升温速率等。

这些参数直接影响到焊接膏的流动性、焊接温度和焊接液态的保持时间,因此对焊接参数的管理十分重要。

1.制定焊接参数的标准制定具体的焊接参数标准是回流焊工艺参数管理的基础。

焊接参数标准应根据产品的要求以及焊接设备的技术规格进行制定,具体包括回流焊设备的温度范围、焊接温度、焊接时间等。

2.良品焊接样本的制作在制定焊接参数标准之前,需要制作良品焊接样本进行焊接试验。

焊接样本应包括不同焊接配置的电子组件,并且具有焊接接点的几何形状和尺寸符合要求。

通过焊接试验,确定最佳的焊接参数,并将其作为标准。

3.焊接参数的设定和记录根据焊接参数标准,对焊接设备进行参数的设定,包括参数的输入、设定和记录。

焊接参数的输入应根据产品要求进行,设定后应记录在焊接参数表中,以备查阅和分析。

4.焊接参数的监控和调整在焊接过程中,对焊接参数进行定期监控,并根据需要进行调整。

监控焊接参数可以通过温度曲线的监测、焊接液态的观察、焊接接点外观的检查等方法进行。

如果发现焊接参数不符合标准,则需要进行相应的调整。

5.焊接参数的追溯和记录对于每一次的焊接生产,应进行焊接参数的追溯和记录。

焊接参数的追溯可通过焊接参数表和焊接日志进行,用以分析工艺参数的稳定性和焊接质量的可靠性。

6.焊接参数的培训和教育对焊接工艺人员进行焊接参数管理的培训和教育是保证焊接质量的重要环节。

通孔回流焊工艺要求

通孔回流焊工艺要求

通孔回流焊工艺要求
通孔回流焊工艺是一种常用的电子制造工艺,用于将电子元件与PCB(印制电路板)连接。

在实施通孔回流焊工艺时,需要满足以下要求:
1. 温度曲线控制:通孔回流焊工艺要求在焊接过程中,加热和冷却速度要控制在合适的范围内,以避免对电子元件产生过大的热应力。

通常会采用预热、焊接和冷却三个阶段的温度曲线控制。

2. 焊接温度:焊接温度是通孔回流焊工艺中的一个重要参数。

一般情况下,焊接温度应根据PCB和电子元件的性质,选择适当的温度范围,以确保焊接质量和元件的安全性。

3. 焊接时间:焊接时间也是通孔回流焊工艺中需要控制的重要参数。

焊接时间过长可能导致焊接质量下降,焊接时间过短则可能无法达到良好的焊接效果。

一般情况下,会根据焊接温度和焊接表面积来确定焊接时间。

4. 焊接气氛:通孔回流焊工艺要求在焊接过程中,提供适当的气氛,以防止元件与焊接面的氧化和蒸发。

常见的焊接气氛包括氮气、氢气和惰性气体等。

5. 焊接通道设计:通孔回流焊工艺中的通道设计要合理,以确保热量能够均匀地传递到焊接区域,并且能够有效地移除焊接过程中产生的气体和挥发物。

总结而言,通孔回流焊工艺的要求主要包括温度曲线控制、焊接温度和时间的控制、焊接气氛和通道设计等。

通过合理的工艺参数设置,可以确保焊接质量和电子元件的安全性。

通孔回流焊工艺要求

通孔回流焊工艺要求

通孔回流焊工艺要求通孔回流焊是一种常见的表面贴装技术,在电子制造行业中广泛使用。

它通过将电子元件焊接到PCB板上进行连接,以实现电子设备的正常运行。

下面是通孔回流焊工艺的要求和相关参考内容。

1. 焊接温度控制:在通孔回流焊过程中,焊接温度是一个非常重要的参数。

焊接温度过高会导致元件损坏,焊接温度过低会导致焊接不良。

因此,对于不同类型的元件,应根据供应商提供的数据和规范来确定适当的焊接温度范围。

2. 焊接时间控制:除了焊接温度外,焊接时间也是影响焊接质量的重要因素。

焊接时间过长可能会导致焊接点过热,焊接时间过短可能会导致焊接不充分。

通常,焊接时间应根据焊接温度和元件类型进行调整,以确保焊接质量。

3. 焊接剂的选择:焊接剂在通孔回流焊工艺中起到重要的作用。

它可以帮助提高焊接质量,并防止氧化。

在选择焊接剂时,应根据焊接材料和工艺要求选择适合的类型和规格的焊接剂。

4. 焊接机器设备的选取:通孔回流焊需要使用专门的焊接设备,如回流焊炉。

在选购设备时,应考虑焊接速度、温度控制的精度、设备的稳定性等因素。

并且,设备的使用和维护也是确保焊接质量的关键。

5. PCB设计的要求:良好的PCB设计对于焊接质量的保证至关重要。

在PCB设计中,应考虑元件的布局、焊盘的大小和间距等因素,以便实现良好的焊接质量。

6. 焊接操作的执行:良好的焊接操作是保证焊接质量的重要保证。

操作人员应熟悉焊接工艺要求,并采取正确的焊接操作,包括元件的放置和固定、焊接温度和时间的控制、焊接剂的喷洒等。

7. 焊后检测的要求:焊接后的检测对于发现焊接缺陷和及时修复非常重要。

可以借助透光检查、高倍显微镜检查、飞针测试等方法来进行焊后检测。

8. 质量管理的要求:通孔回流焊工艺要求严格的质量管理,包括过程记录、检验记录、不良品管理等。

操作人员应按照质量管理程序要求进行操作,并确保焊接质量符合相关标准和规范。

综上所述,通孔回流焊工艺的要求包括焊接温度控制、焊接时间控制、焊接剂的选择、焊接机器设备的选取、PCB设计的要求、焊接操作的执行、焊后检测的要求和质量管理的要求。

回流焊技术通用规范最新

回流焊技术通用规范最新

回流焊技术通用规范最新回流焊技术是一种常用的表面贴装技术,具有高效、高精度、高可靠性等优势,广泛应用于电子制造行业。

为确保回流焊工艺的质量稳定和产品可靠性,制定通用规范是非常重要的。

下面是回流焊技术通用规范的最新版本。

一、材料准备1. 务必使用符合要求的焊接材料和组装材料。

2. 确保所有材料的储存条件符合要求,避免材料受潮、变质等现象。

二、设备维护和校准1. 确保回流焊设备处于正常工作状态。

2. 定期检查和维护回流焊设备,确保设备的稳定性和精度。

三、焊接工艺参数1. 确定适当的回流焊工艺参数,包括预热温度、焊接温度、焊接时间等。

2. 针对不同的组装材料和焊接要求,调整相应的工艺参数。

四、焊接过程控制1. 严格控制焊接过程中的温度曲线,确保焊接温度和焊接时间的稳定性。

2. 检查焊接过程中的温度分布情况,确保焊接质量均匀稳定。

五、焊接质量检验1. 定期对焊接产品进行抽样检验,检查焊点外观、焊接质量等指标是否符合要求。

2. 对不合格的产品进行返修或重新焊接,确保产品的可靠性和质量。

六、焊接记录保存1. 记录每一批焊接产品的焊接工艺参数、焊接质量检验结果等相关信息。

2. 保存焊接记录,便于产品质量追溯和工艺改进。

七、员工培训和技能提升1. 定期组织焊接技术培训,提高员工的焊接技能和工艺水平。

2. 培养员工对焊接技术和工艺的理解和掌握,提升工作的效率和质量。

以上是回流焊技术通用规范的最新版本,通过严格遵守以上规范,可以确保回流焊工艺的稳定性和产品的可靠性。

在实际应用中,还应根据具体情况进行更加详细和具体的规范制定,以满足不同领域和产品的要求。

回流焊操作使用规范

回流焊操作使用规范

回流焊操作使用规范回流焊是一种常用的电子元器件焊接工艺,广泛用于电子产品制造中。

回流焊具有效率高、焊接质量可靠、适用于批量生产等优点,但在操作过程中需要遵循一定的规范,以确保焊接质量和工作安全。

以下是回流焊操作的一些常规规范。

1.焊接环境准备:-确保焊接区域干净整洁,避免灰尘、油污等杂物污染焊接表面。

-预热回流焊炉至适当温度,并进行温度校准。

2.焊接器材准备:-使用合适的焊锡丝,焊锡丝直径和焊接元件尺寸匹配。

-准备好适量的流动剂,根据焊接要求选择合适的流动剂类型。

3.焊接工作准备:-根据焊接工艺要求,选择适当的焊接温度曲线和时间参数。

-将要焊接的元器件按照焊接顺序排列好,确保焊接的连续性和高效性。

4.焊接操作:-在焊接之前,使用酒精或其他清洁溶剂清洁焊接表面,确保无油污和氧化物,保证焊接的质量。

-使用适当的工具和设备,将焊锡丝固定在焊枪上,并设置合适的焊锡丝进给速度。

-将焊枪和焊接点靠近,并在合适的角度下进行焊接,确保焊锡充分接触焊接点。

-控制焊接时间和温度,避免过长或过热导致元件损坏或焊接不良。

-注意焊接的连续性,避免焊接点之间出现间隙或变形。

5.焊接质量检查:-在焊接完成后,对焊接点进行外观检查,确保焊接质量。

焊接点应呈现光亮、平整的外观。

-使用显微镜检查焊接点,确保焊锡充分覆盖焊接点和焊盘,并且没有焊锡球等问题。

-使用合适的测试设备检测焊接点的电气连接性。

6.安全注意事项:-身穿防静电服和手套,以避免静电带来的电子元件损坏。

-在焊接过程中,避免直接吸入焊锡烟,使用排风设备和口罩保护呼吸系统。

-炭化的焊锡丝不能和水接触,应安全处理避免火灾和环境污染。

回流焊操作规范范文

回流焊操作规范范文

回流焊操作规范范文回流焊是一种常用的表面贴装技术,它能够高效地焊接电子元器件到印刷电路板(PCB)上。

为了确保焊接质量和工作安全,下面将介绍回流焊操作规范。

1.装备和环境准备(1)确保所有焊接设备处于正常工作状态,检查炉温计、传送带、过渡装置等部件是否完好,对于有损坏的部件应进行及时修理或更换。

(2)确保焊接区域的环境整洁,无杂物和易燃物品。

(3)检查和确保所有的材料准备就绪,包括PCB板、焊锡膏、元器件等。

2.设置和校准(1)根据焊接工艺要求,设置炉温、传送速度等参数。

设置时应参考焊锡膏和元器件的生产规范。

(2)检查并校准炉温计和传送速度计,确保其准确度。

3.PCB板准备(1)预处理电路板,包括清洗和干燥,确保表面无油、污垢和氧化物。

(2)检查电路板是否有破损或变形,使用损坏的电路板会影响焊接质量。

4.焊锡膏和元器件安装(1)准确地量取和涂布适量的焊锡膏于电路板焊接区域,确保焊锡膏的均匀性和适量。

(2)精确地安装元器件到焊锡膏涂布的区域,避免偏移或覆盖其他元器件。

5.焊接流程(1)将装有焊锡膏和元器件的电路板置于传送带上,通过预热、焊接、冷却等过程进行焊接。

(2)监测焊接温度和传送速度,确保焊接质量的稳定和一致性。

(3)检查焊接区域是否有焊接不良,如虚焊、偏移、气泡等。

6.焊接后处理(1)焊接完成后,及时将板取下,避免过度焊接导致元器件损坏。

(2)对焊接不良的区域进行修理,如重新加焊、更换元器件等。

7.焊接质量检查(1)对焊接完成的电路板进行质量检查,包括外观缺陷、焊接点强度等。

(2)对焊接不良的电路板进行整改,如重新焊接、更换元器件等。

(3)记录并分析焊接不良原因,进行改进。

8.安全措施(1)在焊接区域周围设置警示标识,以提醒他人注意安全。

(2)使用防静电设备,避免静电损坏元器件。

(3)坚持穿戴防护用品,如手套、护目镜等,确保自身安全。

回流焊工艺参数

回流焊工艺参数

回流焊是一种常用的电子元器件表面贴装工艺,用于将焊锡膏涂覆在PCB (Printed Circuit Board)上,并对元器件进行焊接。

回流焊工艺参数是指在回流焊过程中所设置的一些参数,包括温度、时间和通风等。

温度:回流焊的温度是一个关键参数,通常分为预热区、焊接区和冷却区。

预热区温度一般在100-150℃之间,用于去除PCB表面的水分和挥发性物质。

焊接区温度一般在200-260℃之间,用于熔化焊锡膏并完成焊接。

冷却区温度一般在100℃以下,用于快速冷却焊接后的PCB。

时间:回流焊的时间也是一个重要参数。

预热区时间一般在1-5分钟之间,焊接区时间一般在10-60秒之间,冷却区时间一般在1-3分钟之间。

具体的时间设置根据焊接的元器件类型和尺寸而定。

通风:回流焊过程中需要保证良好的通风条件,以排除焊接过程中产生的有害气体。

通风系统应具备足够的风量和排气能力,以确保工作环境的安全和舒适。

PCB布局:回流焊工艺参数还与PCB的布局有关。

合理的PCB布局可以提高焊接质量和效率,减少焊接缺陷。

例如,应尽量避免焊盘之间的相互遮挡,避免焊接过程中的热量不均匀。

以上是回流焊工艺参数的一些常见设置,具体的参数还需要根据实际情况和设备要求进行调整和优化。

回流焊操作工艺规程

回流焊操作工艺规程

回流焊操作工艺规程回流焊是一种常用的电子产品焊接工艺,它能够高效地完成PCB电路板上的焊接工作,并且能够保证焊接质量,因此在电子制造行业得到了广泛的应用。

为了保证回流焊质量和生产效率,制定回流焊操作工艺规程是非常重要的。

下面是一个1200字以上的回流焊操作工艺规程:一、回流焊工艺的基本要求:回流焊是一种通过传导和传导的热量来完成焊接的工艺,它要求焊接温度和时间的控制,以保证焊接质量。

回流焊操作工艺规程应遵循以下基本要求:1.确定正确的焊接温度曲线:回流焊需要在一个特定的温度区间内进行,过高或过低的温度都会影响焊接质量。

因此,应根据焊接器件和电路板材料的特性,确定合适的焊接温度曲线。

2.控制好焊接时间和速度:焊接时间和速度也会影响焊接质量。

焊接时间过长可能会导致电路板和焊接器件的损坏,而焊接时间过短则可能导致焊点不牢固。

因此,应根据实际情况,控制好焊接时间和速度。

3.保证焊接区域的平整度:焊接区域的平整度对焊接质量起着重要作用,可以通过调整传送带的速度、压力和焊接温度来保证焊接区域的平整度。

4.保证焊接点的一致性:焊接点的一致性是焊接质量的关键,要保证每个焊点的大小和形状一致。

可以通过控制焊接温度、焊接时间和焊接速度,以及选用合适的焊接剂来实现焊接点的一致性。

5.做好焊后检测和维护:焊后检测是确保焊接质量的关键,应定期对焊接点进行可视检查和电性测试,以发现焊接质量问题并及时解决。

同时,要定期对焊接设备进行维护,保持设备的良好状态。

二、回流焊操作工艺规程的制定:为了保证回流焊质量和生产效率,需要制定一套完整的回流焊操作工艺规程。

下面是一套可以参考的回流焊操作工艺规程:1.准备工作a.确定焊接温度曲线:根据焊接器件和电路板材料的特性,确定合适的焊接温度曲线。

b.设置传送带速度:根据焊接区域的大小和焊接时间要求,设置合适的传送带速度。

c.检查回流焊设备:确保焊接设备的工作状态良好,如传送带的运行平稳、加热区域的加热元件正常工作等。

回流焊工艺参数

回流焊工艺参数

回流焊工艺参数回流焊是一种常见的电子组装工艺,用于在电路板上连接和固定电子元件。

良好的焊接质量直接关系到电子产品的性能和可靠性。

以下是回流焊工艺的一些关键参数,对于正确进行回流焊操作具有重要意义。

1. 温度曲线:回流焊的第一个关键参数是温度曲线。

温度曲线描述了在整个焊接过程中的温度变化情况。

它一般包含预热、焊接和冷却阶段。

这些阶段的温度和时间的设定需要根据焊接材料和元件的要求进行合理的选择。

预热阶段通常在低温下,以避免热冲击和元件损坏。

焊接阶段则需要足够高的温度以实现焊点的熔化和连接。

冷却阶段则需要适当的时间进行冷却,以防止焊接点过早冷却造成的应力和变形。

2. 焊接时间:焊接时间是影响焊接质量的另一个关键因素。

焊接时间需要根据元件的尺寸和焊点的要求进行合理的设定。

时间过长可能导致过度加热和熔化,而时间过短则可能无法实现良好的焊点连接。

合理的焊接时间可以使焊点达到最佳的熔化和湿润状态,从而确保焊点牢固可靠。

3. 焊接温度:焊接温度直接决定了焊料的熔点和熔化状态。

选择合适的焊接温度对于保证焊接质量至关重要。

温度过高会造成焊料的过度熔化和氧化,从而降低焊接质量。

温度过低则可能导致焊点的不良连接或不完全熔化。

在选择焊接温度时应考虑焊料的特性以及元件的最高耐热温度。

4. 焊接压力:焊接压力是指在焊接过程中施加在元件和电路板上的力度。

适当的焊接压力可以使焊料充分湿润焊点,形成均匀的连接。

过大的压力可能导致损坏元件或电路板,而过小的压力则可能导致接触不良和焊点质量下降。

在设定焊接压力时,需要考虑元件的尺寸、焊点的要求以及焊接设备的能力。

5. 焊接气氛:焊接气氛指的是焊接过程中焊接区域的环境气氛。

焊接气氛的选择对于保证焊接质量和防止氧化非常重要。

常见的焊接气氛有空气、氮气和惰性气体等。

空气中的氧气可能会导致焊点的氧化,影响焊接质量。

氮气和惰性气体则可以有效地防止氧化并提供良好的焊接环境。

选择适当的焊接气氛可以根据具体的焊接要求进行决定。

标准的SMT回流炉焊接工艺规范

标准的SMT回流炉焊接工艺规范

SMT回流焊接工艺规范编号:版次: 发布:实施:页次:编制:审核:批准:1范围本规范规定了回流焊接工艺的基本内容和要求,确定了回流焊接过程中的质量控制程序,使回流焊接过程中影响质量的各个因素得到有效控制。

本标准适用于SMT生产线的回流焊接生产过程。

2设备、工具和材料2.1 设备使用XXXX系列全热风回流焊炉。

2.2 工具KIC 温度曲线测试仪、热电偶。

2.3 材料高温胶带、高温链条润滑油、焊膏的技术特性表。

3 技术要求3.1 传送宽度对于厚度在1.6mm以上,长度和宽度在150~300mm的PCB,一般采用链条传送方式;对于厚度小于 1.6mm,尺寸较小,不便于使用链条传送或采用拼板方式的PCB,为防止变形,可采用网带传送方式。

采用链条传送方式时,设置PCB的长、宽尺寸,设备自动调整宽度后,检查链条的实际宽度与PCB的宽度是否匹配,二者应有1~2mm的间隙。

3.2 温度曲线设置影响温度曲线的参数主要有两个:链条速度和各温区温度设置。

设定温度曲线需要根据所使用焊膏的技术要求,综合考虑链条速度和各温区温度。

链条速度应根据整条生产线的生产节拍来确定,温度曲线通常分为四个区:预热区、保温区、焊接区、冷却区。

升温速率应小于3℃/S,峰值温度通常应在210℃~230℃,在183℃以上的回流时间应为60(±15)S,冷却速率应在3℃/S~4℃/S,一般,较快的冷却速率可得到较细的颗粒结构和较高强度与较亮的焊接点。

故超过每秒4℃会造成温度冲击。

温度曲线设置时,可先根据经验资料进行设置,再用一块样板或与待焊PCB相近的一块PCB实测,测温度曲线时,KIC的热电偶放置应选择PCB中间、PCB边缘、大器件边缘、耐热要求严格的器件附近选取测试点,热电偶可用高温胶带固定在测试点上,温度曲线采样完成后,利用KIC的分析功能,主要检查峰值温度、升温速率、回流时间、温差,然后根据焊膏的技术要求调整回流焊炉的设置,下面以典型的Sn63Pb37锡铅锡膏为例,回流曲线性能规范要求如下图:预热区(100—150℃)时间:60—120Sec;升温速率:<2.5℃/Sec;保温区(150—183℃)时间:30—90Sec;升温速率:<2.5℃/Sec;回流区(>183 ℃)时间:40—80Sec;峰值温度:210-235℃;冷却区————降温速率:1℃/Sec≤Slope≤4℃/Sec。

回流焊工艺要求

回流焊工艺要求

回流焊工艺要求回流焊工艺是电子制造领域中一种重要的焊接技术,广泛应用于SMT(表面贴装技术)生产中。

回流焊工艺通过加热熔化预先涂布在电路板上的焊膏,将电子元件与电路板连接起来。

下面是回流焊工艺的要求:1.焊膏选择:回流焊工艺需要使用适合的焊膏,根据焊接材料、焊接温度和元件的耐热性等因素进行选择。

焊膏的粘度、润湿性、触变性等特性需根据具体的焊接要求进行选择。

2.焊膏涂布:将选好的焊膏按照一定的方式涂布在电路板上,涂布量要适中,过多或过少的焊膏都会影响焊接质量。

焊膏涂布通常采用手动或自动涂布设备完成。

3.元件放置:将电子元件按照电路设计要求放置在涂有焊膏的电路板上,元件的放置要准确、稳定,避免出现偏移或倾斜。

4.回流炉设定:将电路板放入回流炉中进行加热,设定合适的温度曲线,保证焊膏在适当的温度下熔化并充分润湿元件和电路板表面。

温度曲线包括预热、升温、保温和冷却等阶段,需根据具体的焊接要求进行设定。

5.温度控制:回流焊工艺要求温度控制精确,以保证焊接质量和元件的可靠性。

温度过高可能导致元件受损或焊接不良,温度过低则可能导致焊接不完全或形成冷焊。

因此,回流炉的温度设定和控制在整个工艺中具有至关重要的作用。

6.清洁和环境控制:回流焊工艺要求保持生产环境的清洁,以避免灰尘、杂质等对焊接质量的影响。

同时,要控制好湿度、温度等环境因素,确保生产过程的稳定性和焊接质量的可靠性。

7.质量检测:回流焊工艺完成后,需要对焊接质量进行检测,包括外观检查、电气性能测试等。

对于存在缺陷或不良的焊接点,需要进行修复或重新进行回流焊工艺。

8.工艺优化:回流焊工艺要求不断进行工艺优化,以提高生产效率、降低成本并提升焊接质量。

通过对不同产品、不同材料的焊接试验和数据分析,不断优化温度曲线、焊膏选择等工艺参数,实现生产过程的持续改进。

9.人员培训:操作人员的技能和经验对回流焊工艺的质量具有重要影响。

因此,需要对操作人员进行定期的培训和技能评估,确保他们熟悉回流焊工艺的基本原理、操作流程和质量控制要求。

回流焊接工艺介绍

回流焊接工艺介绍

回流焊接工艺介绍回流焊接是一种常见的电子制造工艺,广泛应用于电路板和表面贴装技术中。

它是一种基于热的焊接方法,通过在预定温度范围内加热并将组件与基板焊接在一起。

回流焊接的原理是利用焊接材料的熔点和电子元器件的引脚排列方式,将元器件粘贴于PCB(Printed Circuit Board)或FPC(FlexiblePrinted Circuit)上,通过预热、热焊和冷却三个阶段实现焊接效果。

1.准备工作:准备焊接所需的元器件、焊接材料和工具,清洁和检查PCB表面。

2.布线:根据电路图进行布线,确定元器件的位置和排列方式,确保焊点间的间距和间隙满足要求。

3.前期热处理:将PCB置于预热炉中,升温至预定温度,以去除PCB表面的水汽,防止焊接时产生气泡。

4.粘贴:将元器件放置在PCB上,使用黏合剂或钢网印刷技术固定元器件的位置,确保元器件与PCB之间的准确排列。

5.回流焊接:将装配好的PCB置于回流焊炉中,通过加热区域的传导、对流和辐射三种方式使元器件上的焊接材料熔化。

熔化的焊料填满焊盘孔洞,同时与焊盘上的导电垫触点发生化学反应,实现焊接连接。

6.冷却:在回流焊接完成后,将PCB缓慢冷却至环境温度。

冷却过程中焊接材料逐渐凝固,形成坚固的焊点。

回流焊接工艺的优点包括高生产效率、操作简单、焊接连接可靠,并且适用于大规模生产。

它还具有灵活性,可适应不同尺寸和类型的元器件。

然而,回流焊接也存在一些挑战,如焊接过程中可能产生焊接缺陷、压力控制不当可能导致元器件损坏等。

为了确保回流焊接质量,需要控制以下几个关键参数:1.温度控制:回流焊接温度需要根据元器件和焊接材料的特性进行调整,过低的温度可能导致焊点无法形成,过高的温度可能损坏元器件。

2.时间控制:焊接时间取决于焊接材料的特性和焊接连接的要求,过长或过短的时间都可能影响焊接质量。

3.气氛控制:在回流焊接过程中,需要控制焊接区域的气氛,如氮气保护或流通气体,以防止氧化和焊接缺陷的产生。

回流焊接工艺参数设置与调制规范

回流焊接工艺参数设置与调制规范

回流焊接工艺参数设置与调制规范回流焊接是一种常见的电子元件焊接工艺,常用于SMT(表面贴装技术)组装过程中,其主要工艺参数设置和调整规范对于焊接质量和电路板可靠性至关重要。

下面将详细介绍回流焊接工艺参数设置与调制规范。

1.焊接温度:焊接温度是回流焊接工艺中最关键的参数之一、它通常由预热阶段和焊接阶段组成。

预热阶段可分为升温和恒温两个阶段。

升温速率应适中,一般为1-2℃/s,以避免电路板因过快的温度变化而发生热冲击。

恒温阶段应保持在特定温度范围内,通常为150-200℃。

焊接阶段应保持在大约220-250℃的温度范围内,以确保焊锡可以充分熔化和流动。

2.焊接时间:焊接时间是指焊接阶段的时间长度。

它应根据焊接元件的尺寸、焊锡的熔点和焊接温度等因素来确定。

一般来说,焊接时间可以从5-30秒不等。

焊接时间过短可能导致焊点不完全熔化,而焊接时间过长则可能导致焊点过度熔化,从而影响焊点的可靠性。

3.回流焊炉传热与传质:为了确保焊接过程的均匀性,回流焊炉的传热和传质需要得到合理的控制。

传热主要通过加热区的热元件进行,因此加热区的温度控制非常重要。

传质则主要通过气流的对流传热和焊接炉内焊锡蒸气的扩散传质进行,因此气流速度和炉内的气流分布也需要得到合理的调整。

4.焊锡合金和焊膏:回流焊接中使用的焊锡合金和焊膏选择也是十分重要的。

焊锡合金的选择应根据焊接元件的要求、焊点的可靠性要求以及环境友好等因素进行综合考虑。

常用的焊锡合金有Sn60/Pb40、Sn63/Pb37等。

焊膏的选择应根据焊接元件和电路板的特性进行选择,并且需要验证其焊接性能、粘度以及可靠性等。

5.炉温控制和校正:为了确保焊接工艺的稳定性和可重复性,炉温控制和校正也是很重要的。

炉温应通过炉内和炉外的温度传感器进行实时监测,以确保焊接温度的准确度和稳定性。

此外,炉温控制器和传感器都需要进行定期的校正和检查,以保证其准确性。

综上所述,回流焊接工艺参数设置与调制规范对于焊接质量和电路板可靠性非常重要。

回流焊操作工艺规程

回流焊操作工艺规程

回流焊操作工艺规程回流焊是一种常见的电子焊接技术,广泛应用于电子制造业中。

为保证焊接质量和工艺的统一性,制定回流焊操作工艺规程是非常重要的。

下面是一份回流焊操作工艺规程,包括材料准备、设备设置、工艺参数设定、焊接操作步骤等内容。

一、材料准备1.焊接材料:包括焊锡、焊剂等。

焊锡应符合相关标准,焊剂应具备良好的润湿性和剪切性。

2.焊接零件:应对焊接零件进行检查,确保其表面干净,无油污和杂质。

3.焊接辅助材料:包括拖网、锡膏、镊子等。

二、设备设置1.回流焊机的设置:打开回流焊机,并将其预热至设定温度。

2.传送系统的设置:调整传送系统的速度,确保焊接零件在焊接区停留的时间符合要求。

3.传送带的清洁:检查传送带是否有油污或其他杂质,及时进行清洁。

三、工艺参数设定1.回流区温度控制:根据焊接材料和焊接零件的要求,调整回流区的温度曲线。

温度曲线应包括预热、焊接和冷却阶段,且每个阶段的温度应符合要求。

2.焊接时间和速度:根据不同的焊接零件和要求,设定焊接时间和传送速度。

确保焊接时间足够长,且焊接速度适中,以保证焊接质量。

3.焊接温度和压力:根据焊接材料和焊接零件的要求,设定焊接温度和焊接压力。

四、焊接操作步骤1.焊接前准备:检查焊接设备和工具是否完好,准备好焊接材料和辅助材料。

2.焊接材料涂敷:将锡膏涂敷在焊接零件的焊点位置。

3.零件固定:将焊接零件固定在传送带上,确保其位置准确。

4.回流焊:将焊接零件送入回流焊机,按设定的工艺参数进行焊接。

5.焊接检查:对焊接后的零件进行检查,确保焊点完整,无缺陷。

6.清理和保养:清理回流焊机和传送带,对设备和工具进行保养。

以上是一份回流焊操作工艺规程,通过严格执行这些规程,可以确保焊接质量和工艺的统一性。

同时,根据实际情况和特定要求,也可以对该规程进行适当的调整和改进。

回流焊工艺要求

回流焊工艺要求

文件编号更新时间作者4、常见的焊接不良及对策分析4.1 锡球与锡球间短路原因对策1. 锡膏量太多(≧1mg/mm) 使用较薄的钢板(150μm)开孔缩小(85% pad)2. 印刷不精确将钢板调准一些3. 锡膏塌陷修正Reflow Profile 曲线4. 刮刀压力太高降低刮刀压力5. 钢板和电路板间隙太大使用较薄的防焊膜6. 焊垫设计不当同样的线路和间距4.2有脚的SMD 零件空焊原因对策1. 零件脚或锡球不平检查零件脚或锡球之平面度2. 锡膏量太少增加钢板厚度和使用较小的开孔3. 灯蕊效应锡膏先经烘烤作业4. 零件脚不吃锡零件必需符合吃锡之需求文件编号更新时间作者4.3无脚的SMD 零件空焊原因对策1. 焊垫设计不当将锡垫以防焊膜分隔开,尺寸适切2. 两端受热不均同零件的锡垫尺寸都要相同3. 锡膏量太少增加锡膏量4. 零件吃锡性不佳零件必需符合吃锡之需求4.4 SMD 零件浮动(漂移)原因对策1. 零件两端受热不均锡垫分隔2. 零件一端吃锡性不佳使用吃锡性较佳的零件3. Reflow方式在Reflow 前先预热到170℃4.5 立碑 ( Tombstone) 效应文件编号更新时间作者<注>立碑效应发生有三作用力:1. 零件的重力使零件向下2. 零件下方的熔锡也会使零件向下3. 锡垫上零件外侧的熔锡会使零件向上原因对策1. 焊垫设计不当焊垫设计最佳化2. 零件两端吃锡性不同较佳的零件吃锡性3. 零件两端受热不均减缓温度曲线升温速率4. 温度曲线加热太快在Reflow 前先预热到170℃4.6冷焊( Cold solder joints)<注>是焊点未形成合金属( IntermetallicLayer) 或是焊接物连接点阻抗较高,焊接物间的剥离强度( Peel Strength ) 太低,所以容易将零件脚由锡垫拉起。

原因对策1. Reflow 温度太低最低Reflow 温度215℃2. Reflow 时间太短锡膏在熔锡温度以上至少10秒3. Pin 吃锡性问题查验Pin 吃锡性4. Pad 吃锡性问题查验Pad 吃锡性4.7 粒焊(Granular solder joints)文件编号更新时间作者原因对策1. Reflow 温度太低较高的Reflow 温度(≧215℃)2. Reflow 时间太短较长的Reflow 时间(>183℃以上至少10秒3. 锡膏污染新的新鲜锡膏4. PCB 或零件污染4.8 零件微裂(Cracks in components)(龟裂)原因对策1. 热冲击(Thermal Shock) 自然冷却,较小和较薄的零件2. PCB板翘产生的应力避免PCB弯折,敏感零件的方零件置放产生的应力向性,降低置放压力3. PCB Lay-out设计不当个别的焊垫,零件长轴与折板方向平行4. 锡膏量增加锡膏量,适当的锡垫。

回流焊接工艺参数设置与调制规范

回流焊接工艺参数设置与调制规范

回流焊接工艺参数设置与调制规范回流焊接是一种常见的电子组装工艺,用于将电子元件焊接到印制电路板上。

在回流焊接过程中,合理的工艺参数设置和调制规范是确保焊接质量和产品可靠性的关键。

1.工艺参数设置(1)焊接温度:回流焊接的关键参数是焊接温度。

通常,焊接温度应根据焊膏和焊接元件的要求进行设置。

一般而言,焊接温度应低于元件的最高耐热温度,并保持在可靠焊接温度的区间内。

(2)预热段:在回流焊接过程中,预热段的目的是将电路板和元件加热至焊接温度。

预热时间和温度应根据电路板和元件的尺寸、厚度和材料进行设置。

过长的预热时间可能导致元件老化或过热,而过短的预热时间可能导致电路板温度分布不均匀。

(3)回流段:回流段是回流焊接过程的关键阶段,焊接温度应控制在设定的温度范围内。

焊接温度过高可能导致元件损坏或焊接不良,而温度过低可能导致焊接不完全。

回流段的时间应根据焊接质量和焊接要求进行设置。

(4)冷却段:冷却段是回流焊接过程的最后一步,其目的是使焊接后的电路板和元件冷却至室温。

冷却时间应根据焊接要求和产品的特性进行设置。

2.调制规范(1)设备校准:回流焊接设备应定期校准,确保温度、时间等参数的准确性。

校准应包括热电偶、温度控制仪表和传感器等设备的校验。

(2)焊膏选择:根据焊接要求和产品特性选择合适的焊膏。

焊膏应具有较低的挥发性,良好的附着性和湿润性,以确保焊接质量。

(3)应力控制:回流焊接过程中产生的热应力可能会影响电路板和元件的可靠性。

因此,应采取适当的措施来控制焊接过程中产生的应力,如通过控制预热段的温度和时间,使用合适的支撑结构等。

(4)质量检测:回流焊接后,应进行质量检测,以确保焊接的可靠性和一致性。

常用的质量检测方法包括目视检查、X射线检测、显微镜检测等。

(5)操作规范:操作人员应熟悉回流焊接工艺的要求和操作规范,严格按照工艺参数和调制规范进行操作,以确保焊接质量和产品可靠性。

综上所述,回流焊接的工艺参数设置和调制规范对焊接质量和产品可靠性至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回流焊接工艺要求大功率LED是一种节能环保的绿色照明器件,在日趋发展的当今社会中,人们越来越注重生活环境的保护,绿色环保,节能减排,逐渐变为商家的竞争发展的目的和商业利益的源头。

LED较传统白炽灯泡省电超过80%,相较一般路灯也有省电30%~50%的实证效果,在海外,已有许多案例显示LED户外照明方案在2~3年内即可回收投资成本。

但是在关于大功率LED光源的使用主要存在两个难题:第一,大功率LED的焊接制作方案。

第二,大功率LED的散热解决方案。

在大功率LED的散热问题许多灯饰制作都有其设计方案主要采取空气对流进行散热。

问题主要集中在大功率LED的焊接方法。

关于焊接现在主要采用三种方法进行焊接A.手工焊接B.恒温板加热焊接C.回流焊接在实际应用中手工焊接和恒温板焊接使用所有大功率LED的封装,虽然焊接效率很低,人力制作成本较高,但是焊接的大功率LED的工艺比较容易掌握,而且在后期的使用中问题点很少被大多数灯饰生产制作而采用。

回流焊接虽然效率高,制作快但是工艺制作要求高,技术难度大,而且本很多生产厂家否定。

回流焊接,什么是回流焊接?回流焊是英文Reflow Soldring的直译,是通过重新熔化预先分配到印制板焊盘上的膏装软钎焊料,实现表面组装元器件焊端或引脚与印制板焊盘之间机械与电气连接的软钎焊。

回流焊又称“再流焊”或“再流焊机”(Reflow Machine),它是通过提供一种加热环境,使焊锡膏受热融化从而让表面贴装元器件和PCB焊盘通过焊锡膏合金可靠地结合在一起的设备。

回流焊根据技术的发展分为:气相回流焊、红外回流焊、远红外回流焊、红外加热风回流焊和全热风回流焊。

另外根据焊接特殊的需要,含有充氮的回流焊炉。

目前比较流行和实用的大多是远红外回流焊、红外加热风回流焊和全热风回流焊。

根据形状可以分为台式回流焊炉和立式回流焊炉,简要介绍这两种。

1、台式回流焊炉台式设备适合中小批量的PCB组装生产,性能稳定、价格经济(大约在4-8万人民币之间),国内私营企业及部分国营单位用的较多。

2、立式回流焊炉立式备型号较多,适合各种不同需求用户的PCB组装生产。

设备高中低档都有,性能也相差较多,价格也高低不等(大约在8-80万人民币之间)。

国内研究所、外企、知名企业用的较多。

回流焊与波峰焊是对应的,都是将元器件焊接到PCB板材上,回流是对表面帖装器件的,而对插接件使用波峰焊。

回流焊的最简单的流程是丝印焊膏--贴片--回流焊,其核心是丝印的准确,对贴片是由机器的PPM来定良率,回流焊是要控制温度上升和最高温度及下降温度曲线(通常无铅的耐热讨论就是对这里来讲的)。

回流焊是靠热气流对焊点的作用,胶状的焊剂(锡膏)在一定的高温气流下进行物理反应达到SMD的焊接;因为是气体在焊机内循环流动产生高温达到焊接目的,所以叫“回流焊” 。

而波峰焊是让插件板的焊接面直接与高温液态锡接触达到焊接目的,其高温液态锡保持一个斜面,并由特殊装置使液态锡形成一道道类似波浪的现象,所以叫“波峰焊”。

回流焊的焊接中原理当PCB进入升温区(干燥区)时,焊膏中的溶剂、气体蒸发掉,同时,焊膏中的助焊剂润湿焊盘、元器件端头和引脚,焊膏软化、塌落、覆盖了焊盘、元器件端头和引脚与氧气隔离→PCB进入保温区时,PCB和元器件得到充分的预热,以防PCB突然进入焊接高温区而损坏PCB和元器件→当PCB进入焊接区时,温度迅速上升使焊膏达到熔化状态,液态焊锡对PCB的焊盘、元器件端头和引脚润湿、扩散、漫流或回流混合形成焊锡接点→PCB进入冷却区,使焊点凝固。

此时完成了再流焊。

回流焊技术在电子制造领域并不陌生,我们电脑内使用的各种板卡上的元件都是通过这种工艺焊接到线路板上的,这种设备的内部有一个加热电路,将氮气加热到足够高的温度后吹向已经贴好元件的线路板,让元件两侧的焊料融化后与主板粘结。

这种工艺的优势是温度易于控制,焊接过程中还能避免氧化,制造成本也更容易控制。

但是在对大功率LED的实际操作和相关的实验和很多生产厂家的技术主要集中在两点,1。

高温时间尽量短。

2。

不要快速降温。

第一点很多人知道,但是第二点不是很多人会注意到。

快速降温,可能会使灯珠的胶体龟裂,甚至应力作用拉伤内部的金线。

回流焊接是SMT生产过程中的关键工序,回流焊接工艺过程直接影响电子产品,因此,必须对回流焊接过程进行严格的控制。

在设置和调整回流焊接工艺参数时,需要了解回流焊接的各项工艺参数对回流焊接温度曲线的影响作用。

本文主要研究回流焊炉工艺参数对回流温度曲线关键指标的影响,为回流焊接工艺参数的设置和调整提供指导。

1简化加热模型分析回流焊接的过程本质上是一个热量传递的过程,在这个过程中,影响因素众多,如果对每个因素都进行精确的分析是非常复杂的,根据美国ACI研究院EMPF中心的研究结果,回流焊接的加热模型可以简化为[1]:Tt-Ti=(Ts-Ti)(1-e-tRC) (1)式中:Tt-当时间为t时,PCB的温度;Ti-PCB的初始温度;Ts-加热环境的温度;R-传热的热阻;C-PCB的热容。

其中,热阻R与回流焊炉的传热效率及PCB的结构特征有关,热容与PCB的材料特性有关。

通过这个简化的数学模型,可以很方便地对回流焊接加热过程中各因素的影响进行定性的分析。

2影响分析我们知道,加热区的温度设置、热风对流风扇的速度对于PCB的最终温度是有影响的,但在回流焊接过程中,PCB不是在一个特定的温度下持续加热,而是在以一个恒定的速度通过不同的温度的加热段,在这种情况下,PCB的运动速度对于PCB的最终温度也具有很大的影响。

我们可以对回流焊炉的三个主要工艺参数对回流温度曲线的关键指标的影响进行分析。

回流焊接工艺温度曲线无论回流焊接设备如何设计,有一条最基本的要求,那就是设备在焊接过程中。

焊接温度必须符合回流焊接工艺要求的温度曲线。

回流焊接工艺要求的典型温度曲线①预热段:该区域的目的是把室温的PCB尽快加热以达到第二个特定目标,在此过程中通常温度速率为1~3℃/s。

需时20~40℃/S。

②保温段:该过程是指温度从140℃~160℃。

主要目的是使PCB元件的温度趋于均匀,并保证焊膏中的助焊剂得到充分予熔化。

此阶段需要80~150s③回流段此阶段主要目的是使焊膏快速熔化,并将元件焊接于PCB板上,在此阶段的回流不能过长一般温度时向30~50 s 。

温度升为3 ℃/s,峰值温度一般为210~230℃,峰值时间为10~20 s,不同焊膏它的熔点温度不同,如63sn/37pb为183℃,62sn/36pb/2 Ag为179℃。

因此在设定参数时要考虑到焊膏的性能。

④冷却段:在此阶段应该尽可能快的速度来进行降温冷却,这样将有助于得到明亮的焊点。

冷却速率为2~3℃/s,一般要求冷却至100℃以下。

焊接温度曲线达到焊接工艺曲线要求,从而确保产品质量要求。

先进的显示技术,使得回流焊接工艺曲线通过设备的液晶屏动态显示出来。

根据不同的焊膏和PCB板情况可灵活修改回流焊接工艺参数,最终焊接出高质量产品。

回流焊接利用斜升式温度曲线缩短回流焊时间我们熟悉的回流焊温度曲线包括预热、浸润、回焊和冷却四个部分,工艺工程师们对此早已耳熟能详并深信不疑,但这些过程是不是都一定是必需的呢?本文作者在此提出一种新思路,采用斜升式温度曲线取消浸润区,不仅能保持焊点的质量,还能显著缩短回流焊时间。

设定温度曲线就是确定PCB组件在回流焊过程中所必须经历的一个温度-时间关系,这种关系由焊膏特性决定,如焊料合金成分、锡粉颗粒尺寸、金属含量以及焊膏中的化学成分等。

对具体装配组件而言,为达到所要求的温度曲线,回流焊炉各温区温度和传送速度的设定还必须考虑产品的大小、表面形状复杂性及基板的热传导性能,同时也要考虑炉子能否提供足够的热能。

炉子的热传递效率及操作者经验则只会影响到达温度曲线前反复实验的次数。

针对某种使用的焊膏其温度-时间关系通常都由制造商提供,一般在产品资料上可以找到。

毕竟焊膏是制造商的配方,他们知道什么样的温度曲线才能使之充分回焊。

装配组件能承受的最高温度是它上面所有零件或材料耐温值的最低值,将这个温度减去5℃可作为产品的最易受损温度T2(MVC),回焊时温度不能超过该值。

组件上温度的最大梯度为MVC减去合金熔化的液态温度T1,该温度也是理想的润湿、回流焊或完全液化温度,它一般比合金熔点高20到25℃。

既然回流焊的最高温度范围已经确定,那么也就能够定出产品允许的最大温度梯度(T2-T1)。

能否让温度曲线处在这个范围之内取决于产品的大小、表面形状复杂性、基板成分及所用炉子的热传递效率。

理想的状态是希望温度梯度尽量小,同时峰值温度尽可能接近T1,以缩短液态保持时间和产品在高温中的停留时间。

按传统做法,回流焊温度曲线的设定就是要让液态保持时间最短,并与焊膏制造商要求的温度-时间关系相符。

液态保持时间太长会导致焊点内部合金过度生长,对焊点的长期可靠性造成影响,并使基板和元件性能下降。

对于温升速率,很多业内人士采用每隔20秒取一点的方式进行量测,温升应在每秒4℃或更低。

一个比较好的做法是使冷却速率和加热速率一样或更低,以免对元件造成热冲击,也即爬升的速度与下降的一样。

常见回流焊温度曲线如图1。

前面100℃左右的加热区是人们常说的预热区,接下来板子进入回焊前的浸润区,温度基本保持不变(对Sn63/Pb37焊膏而言约为150~170℃),最后,组件进入温度高于熔点的回焊区,到达峰值温度然后离开炉子加热区域。

通过峰值温度以后,板子进入到冷却区。

泰瑞达的工艺工程师Rob Rowland,他对温度曲线中大多数人认为理所当然的浸润区提出了质疑,浸润区对获得良好焊点真的是不可缺少吗?回焊前的浸润区从热机械角度来看有其重要性,它可使板子上温度较低的部分能够赶上温度较高的部分达到温度均衡,并降低板子的温度梯度。

自从红外线回流焊出现后,它就成为回流焊工艺的主流,在对PCB组装件加热时,红外炉和对流/红外炉与汽相式传导焊接相比在传热能力上不是很够。

因此焊膏制造商在设计焊膏的配方时要适应这个停留时间,最初是用中等活性树脂(RMA)。

不过那时,我们正处于回流焊技术大变革的前夕,热风对流(强制对流)炉已开始出现,这种炉主要采用对流传热,比它们的前代产品热传递效率要高得多。

所以我们都认为,除非组装件非常非常大,需要浸润区来得到希望的温度梯度,否则为何一定要用这样的曲线模式?为何不直接从预热区直接爬升到回焊区?如图2所示的温度曲线那样?如今各厂家已全面使用强制对流炉,再使用“升温-浸润-回焊”温度曲线就显得有点本末倒置。

很多人相信焊膏中的助焊剂配比要求有一个浸润区,但实际上它只是为了适应旧的那种几乎不再应用的对流/红外炉。

拿起任何一本有关表面贴装制造的所谓权威性书籍,甚至包括最近的版本,他们仍不假思索地将“旧标准”的升温-浸润-回焊曲线画在里面,因此谬误一直在延续。

相关文档
最新文档