第6章构件受力变形及其应力分析

合集下载

工程力学第6章剪切变形剖析

工程力学第6章剪切变形剖析

Fpc A
c
பைடு நூலகம்
(挤压许用应力)
4.挤压许用应力:由模拟实验测定
塑性材料,比如钢材。许用挤压应力与材料拉 伸许用应力的关系:
[σc]=(1.7[σ]为拉伸许用应力2.0)[σ]
应用
挤压强度条件也可以解决强度计算的三类问题。当 联接件与被联接件的材料不同时,应对挤压强度较 低的构件进行强度计算。
1、校核强度:


P
P
P
b
P
(1)、 铆钉受力 外力的作用线通过铆钉群中心,故每一个铆钉受力相等;
设每一个铆钉受力为Q, Q P / 4 20KN
(2)、铆钉剪切计算 取单个铆钉进行受力分析;
Q Q
铆钉为单剪,剪切面为铆钉的横截面;
FS Q 4 99.5MPa
A d 2
铆钉满足剪切强度。
(3)挤压强度计算
钢板与铆钉的材料相同,故二者的挤压应力相等;
bs
F Abs
Q Abs
P 4 dt
125 MPa [ bs ]
接头满足挤压强度。
(4)钢板的拉伸强度计算
取上板为研究对象进行受力分析;
在每一个铆钉孔处承受Q=P/4力的作 用
轴力图
P/4 P/4
P/4 上 P
危险面
FN P/4 3P/4
P
+
位于有两个孔的截面处或者右端有一个铆钉孔的截面处;
剪切的强度计算 步骤: (1)根据构件的受力,确定剪切面。 (2)利用截面法求出剪切面上的剪力 FQ。
(3)采用实用计算方法,计算剪切面上的切应力 。
假设剪切面上,切应力均匀分布。
(4)建立剪切强度条件。
Q

构件受力变形及其应力分析

构件受力变形及其应力分析

例题6-1 如图为一吊梁,AB为木杆,其AAB=104mm2, [σ]AB=7MPa, BC为钢杆,其ABC=600mm2, [σ ]BC=160MPa,
试求B处可承受的最大许可荷载[F]。
A
B
30
解 : 1.
根据结点 B的受力图(图b),得平衡方程:
FNAB FNBC cos 30 0 FNBC sin 30 F 0
21
低碳钢的塑性指标: 伸长率
l1 l 100 % l
l1
20% ~ 30% (通常 >5%的材料称为塑性材料) Q235钢:
断面收缩率:
A A1 100% A
A1——断口处最小横截面面积。 Q235钢:≈60%
22
三. 拉伸和压缩时的许用应力与强度条件
塑性材料:屈服极限σs 做为破坏的极限应力 脆性材料:强度极限σ b作为破坏的极限应力
2.横截面B, C及端面D的纵向位移与各段杆的纵向总变
形是什么关系?
26
F FN 图 +
F +
F
各段杆的变形及杆的总变 形: F (l / 3) l AB lCD EA F (l / 3) l BC EA
l l AB lCD l BC F (l / 3) EA
只有两杆同时满足强度条件才能安全,所以取较小者, [F]=40.4KN
32
总结 强度计算的三种类型
(1) 强度校核 已知拉(压)杆材料、横截面尺寸及所
受荷载,检验能否满足强度条件 max [ ]; 对于等截面直 FN ,max 杆即为 max [ ] A (2) 截面选择 已知拉(压)杆材料及所受荷载,按强
度条件求杆件横截面面积或尺寸。 FN ,max A [ ] (3) 计算许可荷载 已知拉(压)杆材料和横截面尺寸,

工程力学第六章杆件的应力

工程力学第六章杆件的应力

DB
D

上述变形现象表明:微体ABCD既无轴向正应变,也无横 向正应变,只是相邻横截面ab与cd之间发生相对错动,即产生 剪切变形;而且,沿圆周方向所有的剪切变形相同。由于管壁 很薄,故可近似认为管的内外变形相同,则可认为仅存在的垂
直于半径方向的切应力t沿圆周大小不变。
26
剪应力在截面上均匀分布,方向垂直于半径 与周线相切
5
B A su
A s B
平均线应变:
e u
s
线应变:
e lim u
s0 s
6
dy
dx
角应变 g
7
练习
8
一 拉压胡克定律
实验表明,在比例极限范围内,正应力与 正应变成正比,即
引入比例系数E,则
胡克定律 比例系数E称为弹性模量
9
二 剪切胡克定律
g
在纯剪状态下,单元体 相对两侧面将发生微小 的相对错动,原来互相 垂直的两个棱边的夹角 改变了一个微量g。
t dx
t t
29
• 剪应力互等定理 : 在相互垂直的两个平面上, 剪应力一定成对出现,其数值相等,方向同 时指向或背离两平面的交线。
30
6-5 圆轴扭转时横截面上的应力
一、扭转切应力的一般公式
从三方面考虑:变形几何关系 物理关系 静力学关系
31
1.变形几何关系
观察到下列现象:
(1)各圆周线的形状、大小以及两圆周线间的距离没有 变化
一 基本假设
用较易变形的材料制成的矩形截面等直梁作纯弯曲试验:
纯弯曲:梁横截面上 只有弯矩而无剪力时 的弯曲。
46
• 观察到以下变形现象: • (1)aa、bb弯成弧线,aa缩短,bb伸长

材料力学-第6章梁的应力分析与强度计算(A)

材料力学-第6章梁的应力分析与强度计算(A)

第5章 梁的应力分析与强度计算(A)
为什么要研究截面的几何性质
第6章 梁的应力分析与强度计算(A)
为什么要研究截面的几何性质
◆ 实际构件的承载能力与变形形式有关,不同 变形形式下的承载能力,不仅与截面的大小有关, 而且与截面的几何形状有关。 ◆ 不同的分布内力系,组成不同的内力分量时, 将产生不同的几何量。这些几何量不仅与截面的 大小有关,而且与截面的几何形状有关。

A
ydA A
zC
Sy A
zdA
A
A
如果轴通过图形形心,则图形对这一 轴的静矩等于零。 如果图形对轴的静矩等于零,则这 一轴通过图形形心。
第6章 梁的应力分析与强度计算(A)
为什么要研究截面的几何性质
静矩、形心及其相互关系
S z A1 y C1 A2 y C 2 An y Cn Ai y Ci i 1 n S y A1 z C1 A2 z C 2 An z Cn Ai z Ci i 1
d
第6章 梁的应力分析与强度计算(A)
惯性矩、极惯性矩、惯性半径
例题2 y
dA
dy
已知:矩形截面b× h 求:Iy, Iz 解:取平行于x轴和y轴的微元 面积
dA bdy
A
dA
y
C z dz
h
z
I z y 2dA
h 2 h 2
3 bh y 2bdy 12
b
dA hdz
I y z dA
2 A b 2 b 2
hb z hdz 12
2
3
第6章 梁的应力分析与强度计算 (A)

材料力学——第6章(应力状态分析及强度理论)

材料力学——第6章(应力状态分析及强度理论)

t min
2t x tan 2 0 = s x s y
t max s max s min = R半 径 = 2 t min
s x s y 2 2 ( ) t x 2
25
[例6-4]求 ⑴图示单元体α =300 斜截面上的应力 ⑵主应力、主平面(单位:MPa)。
40
§6–1 应力状态概述
§6-2 平面应力状态分析
§6-3 三向应力状态分析 §6-4 广义胡克定律 §6-5 工程中常用的四种强度理论
1
拉压
扭转
弯曲
y
y
y
C
s max 压 s max 拉 s max
截面 应力 危险点
应力状态
C
o
FN
s=smax smax
MT
t max
M
t max
2
S平面
n
F
1

sx 面上的应力(s ,t )
tx
y x t n D( s , t C O B(sy ,ty) 2 O
面的法线
两面夹角 两半径夹角2 ; 且转向一致。 x
A(sx ,tx)
s
23
ty
sy s t
n
t D = DC sin[ 180 ( 2 0 2 )]
O
sx sy
图2
ty
px t
同理: t = p x sin p y cos
= s x cos t y sin sin t y cos s y sin cos
经简化 得
s x s y t = sin 2 t x cos 2 2
s
sx sy

材料力学第六章 应力状态理论和强度理论

材料力学第六章 应力状态理论和强度理论

单元体的各个面均为主平面,其上的主应力为: 单元体的各个面均为主平面,其上的主t
9
工程力学
Engineering mechanics
§6-1 应力状态理论的概念 和实例
3、三向应力状态(空间应力状态) 、三向应力状态(空间应力状态) 定义:三个主应力均不为零。 定义:三个主应力均不为零。 例如:导轨与滚轮接触点处,取导轨表面任一点 的单元体 的单元体, 例如:导轨与滚轮接触点处,取导轨表面任一点A的单元体, 它各侧面均受到压力作用,属于三向应力状态。 它各侧面均受到压力作用,属于三向应力状态。
工程力学
Engineering mechanics
第六章 应力状态理论 和强度理论
1
工程力学
Engineering mechanics


前面的分析结果表明, 前面的分析结果表明,在一般情况下杆件横截面上不同点 的应力是不相同的,过一点不同方向面上的应力也是不相同的。 的应力是不相同的,过一点不同方向面上的应力也是不相同的。 因此,当提及应力时,必须明确“哪一个面上哪一点” 因此,当提及应力时,必须明确“哪一个面上哪一点”的应力或 哪一点哪一个方向面上”的应力。 者“哪一点哪一个方向面上”的应力。 如果危险点既有正应力,又有切应力,应如何建立其强度 如果危险点既有正应力,又有切应力, 条件? 条件? 如何解释受力构件的破坏现象? 如何解释受力构件的破坏现象? 对组合变形杆应该如何进行强度计算? 对组合变形杆应该如何进行强度计算? 要全面了解危险点处各截面的应力情况。 要全面了解危险点处各截面的应力情况。
2
工程力学
Engineering mechanics
§6-1 应力状态理论的概念 和实例
一、一点的应力状态 定义:过受力体内一点所有方向面上应力的集合。 定义:过受力体内一点所有方向面上应力的集合。 一点的应力状态的四要素 四要素: 一点的应力状态的四要素: )、应力作用点的坐标 (1)、应力作用点的坐标; )、应力作用点的坐标; )、过该点所截截面的方位 (2)、过该点所截截面的方位; )、过该点所截截面的方位; )、应力的大小 (3)、应力的大小; )、应力的大小; )、应力的类型 (4)、应力的类型。 )、应力的类型。 二、研究应力状态的目的 对受到轴向拉伸(压缩)、扭转、弯曲等基本变形的杆件, 对受到轴向拉伸(压缩)、扭转、弯曲等基本变形的杆件, )、扭转 其危险点处于单向应力状态或纯剪切应力状态,受力简单, 其危险点处于单向应力状态或纯剪切应力状态,受力简单,可直 接由相应的试验确定材料的极限应力,建立相应的强度条件。 接由相应的试验确定材料的极限应力,建立相应的强度条件。

第6章梁的应力分析与强度计算

第6章梁的应力分析与强度计算

第6章梁的应力分析与强度计算梁是一种常见的结构构件,在建筑、桥梁、机械等领域都有广泛的运用。

在使用梁时,需要对其进行应力分析与强度计算,以确保其安全运行。

本章将介绍梁的应力分析与强度计算的基本原理和方法。

1.梁的应力分析梁的应力分析是指对梁内部各点的应力状态进行分析。

应力是指单位截面上受力的大小,常用的应力有轴力、弯矩和剪力。

对于梁的应力分析,主要有两个基本的方程:平衡方程和应变-位移关系。

1.1平衡方程平衡方程是指在梁内力平衡的条件下,梁内部各点的受力平衡。

对于梁来说,平衡方程可以表示为:∑Fx=0∑Fy=0∑M=0其中,∑Fx和∑Fy分别表示横截面上各点受力在X和Y方向的合力,∑M表示横截面上各点受力对横截面上其中一点产生的力矩。

通过求解平衡方程可以得到梁内力的分布情况。

1.2应变-位移关系应变-位移关系是指梁内部各点的应变与位移之间的关系。

梁的应变可以分为轴向应变、横向应变和剪应变三种,位移则可以分为平移位移和旋转位移。

应变-位移关系可以表示为:εx = du/dxεy = dv/dyγxy = (dudv + dvdx)/2其中,εx和εy分别表示横截面上各点的轴向应变,γxy表示横截面上各点的剪应变,du和dv分别表示横截面上各点的位移在X和Y方向上的微分。

2.梁的强度计算梁的强度计算是指根据应力分析的结果,对梁的强度进行评估。

梁的强度主要包括弯曲强度、剪切强度和扭转强度。

2.1弯曲强度弯曲强度是指梁在受到弯矩作用时的抗弯承载能力。

根据弯曲的理论,可以得到梁的最大正应力和最大剪应力。

对于矩形截面的梁来说,最大正应力和最大剪应力可以分别表示为:σmax = M * y / Iτmax = T * Q / It其中,M表示弯矩,y表示梁离中性轴的距离,I表示梁的惯性矩,T表示剪力,Q表示横截面的剪力传递量,It表示横截面的扭转惯性矩。

2.2剪切强度剪切强度是指梁在受到剪力作用时的抗剪承载能力。

材料力学习题第六章应力状态分析答案详解

材料力学习题第六章应力状态分析答案详解

材料⼒学习题第六章应⼒状态分析答案详解第6章应⼒状态分析⼀、选择题1、对于图⽰各点应⼒状态,属于单向应⼒状态的是(A )。

20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点。

2、在平⾯应⼒状态下,对于任意两斜截⾯上的正应⼒αβσσ=成⽴的充分必要条件,有下列四种答案,正确答案是( B )。

(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。

3、已知单元体AB 、BC ⾯上只作⽤有切应⼒τ,现关于AC ⾯上应⼒有下列四种答案,正确答案是( C )。

(A )AC AC /2,0ττσ==;(B )AC AC /2,/2ττσ==;(C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。

4、矩形截⾯简⽀梁受⼒如图(a )所⽰,横截⾯上各点的应⼒状态如图(b )所⽰。

关于它们的正确性,现有四种答案,正确答案是( D )。

(b)(a)(A)点1、2的应⼒状态是正确的;(B)点2、3的应⼒状态是正确的;(C)点3、4的应⼒状态是正确的;(D)点1、5的应⼒状态是正确的。

5、对于图⽰三种应⼒状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。

τ(a) (b)(c)(A)三种应⼒状态均相同;(B)三种应⼒状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图⽰主应⼒单元体的最⼤切应⼒作⽤⾯有下列四种答案,正确答案是( B )。

(A) (B) (D)(C)解答:maxτ发⽣在1σ成45o的斜截⾯上7、⼴义胡克定律适⽤范围,有下列四种答案,正确答案是( C )。

(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适⽤于( C )。

钢结构基础第六章 轴心受力构件-稳定

钢结构基础第六章 轴心受力构件-稳定
ANSYS (Mindlin eight-node isoparametric layered element (SHELL 99))
第六章 轴心受力构件
局部失稳产生的背景:
1.3 1.2 1.1 Isolated Local Mode

kL
PL ( EI )
PE PL
Brown Dede Tomblin Trovillion Zureick Euler Local Column Eq. 1
2 z 2 0
第六章 轴心受力构件
2. 弯扭屈曲
单轴对称截面
第六章 轴心受力构件
开口截面的弯扭屈曲临界力Nxz ,可由下式计算:
i0 N Ex N xz N z N xz N xz e0 0
2 2 2
NEx为关于对称轴x的欧拉临界力。 引进弯扭屈曲换算长细比xz:

2 xz
1 2

2 x

2 z

1 22 x2 2 z
2 e0 41 2 i0
2 2 x z
第六章 轴心受力构件
6.5 杆端约束对轴心受压构件整体稳定性的影响
实际压杆并非全部铰接,对于任意支承情况的压杆,其临 界力为:
N cr
EI
2
1. 轴心受压柱的实际承载力
压杆的压力挠度曲线
第六章 轴心受力构件
轴心受压柱按下式计算整体稳定:
N f
A

cr
fy
式中 N 轴心受压构件的压力设计值; A 构件的毛截面面积;
f 轴心受压构件的稳定系数 ; N
cr
fy
f 钢材的抗压强度设计值 。

第六章弯曲变形分析

第六章弯曲变形分析

第六章 弯曲变形分析梁是机械与工程结构中最常见的构件。

本章内容包括梁的内力、平面弯曲中横截面上的正应力和切应力分布规律,以及梁的变形计算。

6.1 梁的内力● 梁的概念当杆件受到矢量方向垂直于轴线的外力或外力偶作用时,其轴线将由直线变为曲线,如图6–1(a)。

以轴线变弯为主要特征的变形形式称为弯曲,凡是以弯曲变形为主的杆件,工程上称为梁,如车辆的轮轴、房屋的梁及桥梁等。

在分析计算中,通常用梁的轴线代表梁,如图6–1(b)。

在工程实际中,大多数梁都具有一个纵向对称面;而外力也作用在该对称面内。

在这种情况下,梁的变形对称于纵向对称面,且变形后的轴线也在对称图6–1 梁 图6–2 对称弯曲图6–3 梁的约束 图6–4 三类静定梁面内,即所谓的对称弯曲,如图6–2。

它是弯曲问题中最基本、最常见的情况。

本章只讨论梁的对称弯曲。

图6–3表示了梁的三种常见约束形式及相应的约束力:可动铰支座(图6–3(a)),固定铰支座(图6–3(b))和(平面)固定端约束(图6–3(c))。

在以上三种约束方式下,有三种常见的梁形式,如图6–4所示。

图6–4(a)为简支梁,两端分别为固定铰支座和活动铰支座;图6–4(b)为悬臂梁,一端固定端约束,一端自由;图6–4(b)为外伸梁,它是具有一个或两个外伸部分的简支梁。

这三种梁都是静定梁。

作用在梁上的外载荷,常见的有集中力偶M (图6–5(a))、分布载荷q (图6–5(b))和集中力F (图6–5(c))。

在实际问题中,q 为常数的均布载荷较为常见。

● 梁的剪力与弯矩在4.2中已经介绍了求杆件内力的通用方法,即截面法。

具体到梁,其内力分量为剪力和弯矩,规定当剪力相对于横截面的转向为顺时针为正,使杆件发生上凹下凸的弯矩为正,如图4–5(b)和(c)。

例6–1:如图6–6所示悬臂梁,受均布载荷q ,在B 点处受矩为2qa M =的力偶作用,试绘梁的剪力图与弯矩图。

解:设固定端的约束力和约束力偶为C R 和C M ,则由平衡方程00=-=∑qa R F C y ,qa R C =05.102=--⋅=∑C C M qa qa a m ,221qa M C = 以杆件左端为坐标原点,以B 为分界面,将梁分为AB 和BC 两段。

材料力学习题 应力状态分析答案详解

材料力学习题 应力状态分析答案详解
解析: 与 无关
13、在图示梁的A点测得梁在弹性范围内的纵横方向的线应变 、 后,所能算出的材料常数有( D )。
(A)只有E;(B)只有v;(C)只有G;(D)E、v和G均可算出。
解析:中间段为纯弯曲,A点为单向拉伸,

14、纯剪应力状态下,各向同性材料单元体的体积改变有四种答案,正确答案是( C )。
解答:
确定 , 确定
6、 物体内某一点,载荷系统Ⅰ和载荷系统Ⅱ单独作用时产生的应力状态分别如图(a)和(b)所示。试求两载荷系统同时作用时(仍处于弹性小变形)的主单元体和主应力。
解答:
7、构件上某点处的应力状态如图所示。试求该点处的主应力及最大切应力之值,并画出三向应力状态的应力圆。
解答:
8、图示单元体,已知 、 及该点的最大主应力 。求该点的另外两个主应力 、 及最大切应力 。
解答:
确定
确定
2、已知应力状态如图。试求主应力及其方向角,并确定最大切应力值。
解答:
确定
所以 确定
3、图示单元体,求:(1)指定斜截面上的应力:(2)主应力大小,并将主平面标在单元体图上。
解答:
确定
所以 确定
4、用解析法求图示单元体ab面上的应力( ),并求 及主应力。
解答:
5、试求图示单元体主应力及最大切应力,并将主平面在单元体上标出。
由第三强度理论 安全
10、直径为20mm的圆截面折杆受力情况如图所示,已知:F=0.2kN,材料的许用应力为 。试用第三强度理论确定折杆的长度a的许用值。
解答:
在危险截面A上危险点在七上下边缘
由第三强度理论

11、AB、CD两杆互相垂直,在水平面内,C点的集中力2F及D点的集中力F与刚架平面垂直。已知F=20kN,l=1m,各杆直径相同d=10cm, 。试按最大切应力强度理论校核强度。

第6章受扭构件扭曲截面承载力ppt课件

第6章受扭构件扭曲截面承载力ppt课件

下限条件
受扭构件最小配箍率
sv
Asv bs
sv,min
0.28
ft f yv
受扭纵筋最小配筋率
tl
Astl bh
tl ,min
0.85
ft fy
V——剪力设计值,对纯扭构件V=1.0
当T 0.7 ftWt
可不进行计算,仅需按构造要求来 配筋,满足上述最小配筋率的要求
第6章 受扭构件扭曲截面承载力
u cor —— 截面核芯部分的周长, ucor 2(bcor hcor )
第6章 受扭构件扭曲截面承载力
由于受扭钢筋由箍筋和受扭纵筋两部分组成,其受扭性能及其极 限承载力不仅与总配筋量有关,还与两部分钢筋的配筋比有关,
如果一种钢筋过多,另一种钢筋太少,前一种钢筋就可能不屈服,
而出现部分超配筋的情况。故设计中用配筋强度比ζ来控制,防止
第6章 受扭构件扭曲截面承载力
由于配置钢筋数量的不同,受扭构件的破坏形态可分为: 适筋破坏、少筋破坏和超筋破坏
(1)适筋破坏 当箍筋和纵筋数量配置适当
时,在受压区混凝土被压坏前, 与临界斜裂面相交的钢筋都能达 到屈服,这种破坏具有一定的延 性,与适筋梁的情况类似。
设计中应当使受扭构件设计 成适筋构件。
例题 (Example)
已知:
矩形截面纯扭构件,承受扭矩设计值T =8.6 kN·m ,截面
尺寸b=200 mm ,h=350 mm,保护层厚度 C=30 mm。 混凝土强度等级选用C20,钢筋为HPB235级。 ( fc =9.6 N/mm2 , ft =1.10 N/mm2 , fy =210 N/mm2 ) 求解:
T Wte
ft
按塑性理论,对理想弹塑性材料,截面 上某一点达到强度时并不立即破坏,而 是保持极限应力继续变形,扭矩仍可继 续增加,切应力重分布,直到截面上各 点应力均达到极限强度,才达到极限承

工程力学(第二版)章图文 (6)

工程力学(第二版)章图文 (6)
跳板,木板横截面尺寸b=500 mm,h=50 mm,木板材料的许 用应力[σ]=6 MPa 。 试求:
(1) 一体重为700 N (2) 要求两名体重均为700 N的工人抬着1500 N的货物安全 走过,木板的宽度不变,重新设计木板厚度h。
第6章 弯 曲
解 (1) 计算弯矩的最大值Mmax。当工人行走到跳板中央
(2) 横截面上的弯矩在数值上等于该截面左侧(或右侧)所 有外力对该截面形心的力矩的代数和。
第6章 弯 曲
为了使所求得的剪力与弯矩符合前面的符号规定,按此 规律计算剪力时,截面左侧梁上外力向上取正值,向下取负 值,截面右侧梁上外力向下取正值,向上取负值;计算弯矩 时,截面左侧梁上外力对该截面形心的力矩顺时针转向取正 值,逆时针转向取负值,截面右侧外力对该截面形心的力矩 逆时针转向取正值,顺时针转向取负值。可以将这个规则归 纳为一个简单的口诀:左上右下,剪力为正;左顺右逆,弯 矩为正。
第6章 弯 曲 图 6.10
第6章 弯 曲 解 设截面m-m与B端之间的距离为x,取m-m截面的右段
为研究对象,画出受力图,如图6.10(b)所示。 根据平衡条件:
由Fs=qx可绘出剪力图,如图6.10(c)所示;由 描点可绘出弯矩图,如图6.10(d)
第6章 弯 曲
6.3 弯曲时的正应力与强度计算
m,材料的许用应力[σ]=150 MPa, 求此悬臂梁的许可载荷。
图 6.15
第6章 弯 曲 解 绘出悬臂梁的弯矩图,如图6.15(b)所示。 图中,Mmax=Fl=4000F 梁的横截面抗弯截面系数为
由梁的弯曲正应力强度条件得
因此, 悬臂梁的许可载荷为F=25 000 N。
第6章 弯 曲 【例6.5】 某建筑工地上, 用长l=3 m的矩形截面木板做

第6章 拉压杆件的应力变形分析与强度设计

第6章 拉压杆件的应力变形分析与强度设计

第6章拉压杆件的应力变形分析与强度设计工程力学学习指导第6章拉压杆件的应力变形分析与强度设计6.1 学习要求与学习目标1. 知道并且能够记住杆件拉伸或压缩时:1) 横截面上的轴力与轴力图;2) 横截面上的正应力;3) 斜截面上的应力;4) 伸长与缩短变形。

2. 掌握并能正确应用拉伸和压缩时杆件横截面上正应力的计算公式。

3. 掌握并能正确应用拉伸和压缩时杆件的变形计算公式。

4. 正确理解并掌握拉伸和压缩时,杆件的强度设计准则,正确应用强度设计准则解决三类强度设计问题。

5. 正确理解拉伸与压缩超静定问题的概念,会应用平衡、变形协调和物性关系求解简单的超静定问题。

6.2理 论 要 点6.2.1拉伸与压缩杆件的应力与变形1. 应力计算当外力沿着杆件的轴线作用时,其横截面上只有轴力一个内力分量——轴力F N。

与轴力相对应,杆件横截面上将只有正应力。

在很多情形下,杆件在轴力作用下产生均匀的伸长或缩短变形,因此,根据材料均匀性的假定,杆件横截面上的应力为均匀分布,如图6-3所示。

这时横截面上的正应力为AF N =σ 式中,F N 为横截面上的轴力,由截面法求得;A 为横截面面积。

2. 变形计算(1) 绝对变形 弹性模量设一长度为l 、横截面面积为A 的等截面直杆,承受轴向载荷后,其长度变为l 十Δl ,其中Δl 为杆的伸长量(图6-1a)。

试验结果表明:如果所施加的载荷使杆件的变形处于弹性范围内,杆的伸长量Δl 与杆所承受的轴向载荷成正比,如图6-1b 所示。

写成关系式为EAl F l N Δ±= 这是描述弹性范围内杆件承受轴向载荷时力与变形的胡克定律。

其中,F N 为杆横截面上的轴力,当杆件只在两端承受轴向载荷F P 作用时,F N =F P ;E 为杆材料的弹性模量,它与正应力具有相同的单位;EA 称为杆件的拉伸(或压缩)刚度;式中“+”号表示伸长变形;“-”号表示缩短变形。

当拉、压杆有两个以上的外力作用时,需要先画出轴力图,然后按上式分段计算各段的变形,各段变形的代数和即为杆的总伸长量(或缩短量),即()∑=i ii i EA l F l N Δ (2) 相对变形 正应变对于杆件沿长度方向均匀变形的情形,其相对伸长量 Δl/l 表示轴向变形的程度,是这种情形下杆件的正应变,即El EA lF l l x x σε==N Δ= 需要指出的是,上述关于正应变的表达式只适用于杆件各处均匀变形的情形。

材料力学第6章应力状态与强度理论

材料力学第6章应力状态与强度理论
第6章 应 力 状 态 与 强 度 理 论 6.1 应 力 状 态 概 述
6.2 平 面 应 力 状 态 分析 6.3 三 向 应 力 状 态 分 析 6.4 广 义 胡 克 定 律 6.5 一般应力状态下的应变必能 6.6 工程中常用的四种强度理论
6.1 应 力 状 态 概 述
6.1.1、应力状态概念 (1)、铸铁与低碳钢的拉、压、扭试验现象 P M 低碳钢 铸铁拉伸
图c单元体的应变能为 : d: 畸变能密度 (Strain-Energy Density Corresponding to the Distortion)
1 2 2 2 ud s 1 s 2 s 2 s 3 s 3 s 1 6E —— 形状改变比能(歪形能) s 1 -s m
2t xy
s x s y
0 45
s x s y 2 2 t max ( )t xy t 2 t min
s x s y tg21 0 1 0 2t xy
破坏分析
低碳钢: s s 240MPa;
t s 200MPa
低碳钢
灰口铸铁 : s Lb 98 ~ 280MPa
6.5.2 线弹性体的应变能
作用在弹性杆件上的力,其加力点的位移,随着杆件受力和 变形的增加而增加,这种情形下,力所作的功为变力功。
0
FP
FP
Δ Δ
O
对于材料满足胡克定律、又在小变形条件下工作的弹性杆件, 作用在杆件上的力与位移成线性关系。 这时,力所作的变力功为 1 W FP Δ 2
不考虑加载过程中的能量损耗,则外力功将转化为弹性变形能
s x s y 0
t
s
2
xy

材料力学习题应力状态分析答案详解

材料力学习题应力状态分析答案详解
二、填空题
1、图示应力状态,按第三强度理论的强度条件为 。
(注: )
解答:
2、第三强度理论和第四强度理论的相当应力分别为 及 ,对于纯剪切应力状态,恒有 / = 。
解答:纯剪应力状态
3、一般情况下,材料的塑性破坏可选用最大剪应力或形状改变能密度强度理论;而材料的脆性破坏则选用最大拉应力或最大伸长线应变强度理论(要求写出强度理论的具体名称)。
解答:
17、一体积为10×10×10mm3的立方铝块,将其放入宽为10mm的刚性槽中,已知v(铝)=0.33,求铝块的三个主应力。
解答:
18、外径为D、内径为d的空心圆轴受扭转时,若利用一电阻应变片作为测力片,用补偿块作为温度补偿,采用半桥接线。问:(1)此测力电阻片如何粘贴可测出扭矩;(2)圆轴材料的E、v均为已知, 为测得的应变值,写出扭矩计算式。
解答:
7、构件上某点处的应力状态如图所示。试求该点处的主应力及最大切应力之值,并画出三向应力状态的应力圆。
解答:
8、图示单元体,已知 、 及该点的最大主应力 。求该点的另外两个主应力 、 及最大切应力 。
解答:
9、试确定图示单元体的最大切应力,以及图示斜截面上的正应力和切应力。
解答:
10、已知受力构件某处的 , , ,材料的E=200GPa,v=0.3。试求该点处的 、 。
解答:在危险截面A上危险点在七上下边缘
由第三强度理论
不安全
12、图示齿轮传动轴内电机带动,作用在齿轮上的力如图示,已知轴的直径d=30mm,P=0.8kN,Q=2kN,l=50mm,齿轮节圆直径D=200mm。试用第三强度理论校核轴的强度。已知轴的 。
13、图示传动轴,皮带轮Ⅰ直径D1=80cm,皮带轮Ⅱ直径D2=40cm,已知轴的许用应力 。试以第四强度理论设计轴的直径d,并指出危险截面位置,画出危险点的应力状态。

《混凝土结构设计原理》第六章-课堂笔记

《混凝土结构设计原理》第六章-课堂笔记

《混凝土结构设计原理》第六章受压构件正截面承载力计算课堂笔记♦主要内容受压构件的构造要求轴心受压构件承载力的计算偏心受压构件正截面的两种破坏形态及英判别偏心受压构件的N厂血关系曲线偏心受压构件正截面受压承载力的计算偏心受压构件斜截面受剪承载力的汁算♦学习要求1.深入理解轴心受压短柱在受力过程中,截而应力重分布的概念以及螺旋箍筋柱间接配筋的概念。

2.深入理解偏心受压构件正截而的两种破坏形式并熟练掌握其判别方法。

3.深入理解偏心受压构件的Nu-Mu关系曲线。

4.熟练掌握对称配筋和不对称配筋矩形截而偏心受压构件受压承载力的计算方法。

5.掌握受压构件的主要构造要求和规定。

♦重点难点偏心受压构件正截而的破坏形态及其判别;偏心受压构件正截面承载力的计算理论:对称配筋和不对称配筋矩形截面偏心受压构件受压承载力的计算方法:偏心受压构件的Nu-Mu关系曲线;偏心受压构件斜截面抗剪承载力的计算。

6.1受压构件的一般构造要求结构中常用的柱子是典型的受压构件。

6.1.1材料强度混凝上:受压构件的承载力主要取决于混凝丄强度,一般应采用强度等级较髙的混凝上,目前我国一般结构中柱的混凝土强度等级常用C30-C40,在髙层建筑中,C50-C60级混凝上也经常使用。

6.1.2截面形状和尺寸柱常见截面形式有圆形、环形和方形和矩形。

单层工业厂房的预制柱常采用工字形截面。

圆形截面主要用于桥墩、桩和公共建筑中的柱。

柱的截面尺寸不宜过小,一般应控制在lo/b^30及l°/hW25°当柱截面的边长在800mm以下时,一般以50mm为模数,边长在800mm以上时,以100mm为模数。

6.1.3纵向钢筋构造纵向钢筋配筋率过小时,纵筋对柱的承载力影响很小,接近于素混凝土柱,纵筋不能起到防止混凝上受压脆性破坏的缓冲作用。

同时考虑到实际结构中存在偶然附加弯矩的作用(垂直于弯矩作用平面),以及收缩和温度变化产生的拉应力,规定了受压钢筋的最小配筋率。

第6章-受压构件的截面承载力-自学笔记

第6章-受压构件的截面承载力-自学笔记

第6章受压构件的截面承载力概述钢筋混凝土柱是典型的受压构件,不论是排架柱,还是框架柱(图6-1)在荷载作用下其截面上一般作用有轴力、弯矩和剪力。

图6-1 钢筋混凝土结构框架柱内力受压构件可分为两种:轴心受压构件与偏心受压构件,如图6-2所示。

(a) 轴心受压(b) 单向偏心受压(c) 双向偏心受压图6-2 轴心受压与偏心受压图实际工程中有没有真正的轴心受压构件?实际工程中真正的轴心受压构件是不存在的,因为在施工中很难保证轴向压力正好作用在柱截面的形心上,构件本身还可能存在尺寸偏差。

即使压力作用在截面的几何重心上,由于混凝土材料的不均匀性和钢筋位置的偏差也很难保证几何中心和物理中心相重合。

尽管如此,我国现行《混凝土规范》仍保留了轴心受压构件正截面承载力计算公式,对于框架的中柱、桁架的压杆,当其承受的弯矩很小时,可以略去不计,近似简化为轴心受压构件来计算。

偏心受压构件的三种情况:当弯矩和轴力共同作用于构件上,可看成具有偏心距e0 = M / N的轴向压力的作用,或当轴向力作用线与构件截面重心轴不重合时,称为偏心受压构件。

当轴向力作用线与截面的重心轴平行且沿某一主轴偏离重心时,称为单向偏心受压构件。

就是图6-2b这种情况。

当轴向力作用线与截面的重心轴平行且偏离两个主轴时,称为双向偏心受压构件。

就是图6-2c 这种情况。

§6.1受压构件的一般构造要求6.1.1截面形式及尺寸6.1.2材料强度要求6.1.3纵筋的构造要求6.1.4箍筋的构造要求本节内容较容易,主要是混凝土结构设计规范的一些相关规定,请同学自学掌握。

§6.2轴心受压构件的正截面承载力计算为了减小构件截面尺寸,防止柱子突然断裂破坏,增强柱截面的延性和减小混凝土的变形,柱截面配有纵筋和箍筋,当纵筋和箍筋形成骨架后,还可以防止纵筋受压失稳外凸,当采用密排箍筋时还可以约束核心混凝土,提高混凝土的延性、强度和抗压变形能力。

轴心受压构件根据配筋方式的不同,可分为两种基本形式:①配有纵向钢筋和普通箍筋的柱,简称普通箍筋柱,如图6-5(a)所示;②配有纵向钢筋和间接钢筋的柱,简称螺旋式箍筋柱,如图6-5(b)所示(或焊接环式箍筋柱),如图6-5(c)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
第6章构件受力变形及其应力分析
2
6.2 直杆的轴向拉伸与压缩
特点:直杆;所受外力的合力与杆轴线重合;沿轴线方向发生 伸长或缩短变形
一. 直杆轴向拉伸或压缩时的内力和应力
应力为正
第6章构件受力变形及其应力分析
应力为负
3
二. 材料在轴向拉伸或压缩时的机械性质

屈服 阶段
强化 阶段
弹性变 形阶段
局部变 形阶段
第6章构件受力变形及其应力分析
24
(习题6-11):在厚度t=5mm的薄钢板上,冲出一个如图所示形状 的孔,钢板的极限剪应力b=320MPa,求冲床必须具有的冲力F。
10
(习题6-1):用截面法求如图所示杆件各段截面的内力
AB C D
A
BC
D
(习题6-2):已知等截面直杆面积A=500mm2,受轴向力作用如图
所示,F1=1000N, F2=2000N, F3=2000N。试求杆各段的内力 和应力。
RA
A
B
C
D
第6章构件受力变形及其应力分析
11
(习题6-3):一个总重W=1200N的电机,采用M8吊环螺钉(螺纹 大径为8mm,小径为6.4mm),如图所示。其材料是Q235钢, 许用应力[]=40MPa。试校核吊环螺钉的强度(不考虑圆环部分 重量)。
AAB=ABC=500mm2, CD段的截面面积为ACD=200mm2。杆的各段 长度及受力情况如图所示。已知钢杆的弹性模量E=20×104MPa,
其许用应力[]=100MPa。试求:(1)各段杆横截面上的内力和
应力;(2)校核钢杆的强度;(3)杆的总长度变形。
1
2
3
RA
D
1
2
3
第6章构件受力变形及其应力分析
第6章构件受力变形及其应力分析
16
一. 剪切作用的特点
6.3 剪切
特点:一对大小相等、方向相反的力作用在物体的两侧,两力作 用线间的距离相距很近,物体受上述两力作用后,受剪面发生相 对错动,成为剪切;
第6章构件受力变形及其应力分析
17
二. 剪切强度计算
Q
QF
剪切强度公式: Q [ ] A
第6章构件受力变形及其应力分析
t
第6章构件受力变形及其应力分析
22
(习题6-9):拖车挂钩靠销钉来联接,如图所示,已知销钉材料 的许用剪切力[]=20MPa,拖车的拉力F=15×103N,试选择销 钉的直径d。
第6章构件受力变形及其应力分析
23
(习题6-10):一螺栓联接如图所示。已知外力F=200×103N,螺 栓的许用剪切力[]=80MPa。试求螺栓所需的直径d。
第6章构件受力变形及其应力分析
12
(习题6-4):一钢制阶梯形直杆,其受力如图所示,已知
[]=260MPa,各段截面面积分别为A1=A3=300mm2, A2=200mm2, E=20×104MPa。试求:(1)各段的轴向力为多 少?最大轴向力发生在哪一段内?杆的强度是否安全?(2)计
算杆的总变形。
AAB=104mm2,许用应力[]AB=7MPa; BC为钢杆, ABC=600mm2, 许用应力[]BC=160MPa; 试求B处可吊的最大许可载荷F。
第6章构件受力变形及其应力分析
15
(习题6-7):气动夹具如图所示。已知气缸内径D=140mm,气 压p=0.6MN/m2,活塞材料为20号钢,其许用应力[]=80MPa。 试设计活塞杆的直径d(活塞杆的直径远小于活塞的直径)。
3
2
1
RA
A
Bห้องสมุดไป่ตู้
3
C
D
2
1
第6章构件受力变形及其应力分析
13
(习题6-5):如图所示为一托架,AC是圆杆。许用应力
[]AC=160MPa, BC是方杆,其许用应力[]BC=4MPa, F=60KN, 试确定圆钢杆横截面的直径d及木杆方截面的边长b。
第6章构件受力变形及其应力分析
14
(习题6-6):如图所示为一吊架,AB是木杆, 其截面面积
强度公式: N [ ]
A
第6章构件受力变形及其应力分析
6
四. 受拉(压)杆件的变形
刚度公式: l N l (虎克定律) EA
弹性模量E
E 应力和应变公式:
第6章构件受力变形及其应力分析
7
(例6-1):在图示的阶梯杆中,已知FA=10kN, FB=20kN, l =100mm,AB段与BC段的横截面面积分别为AAB=100mm2, ABC=200mm2,材料的弹性模量E=200GPa。试求杆的总伸长 量及端面A与D-D截面间的相对位移。
2 1
1
2
第6章构件受力变形及其应力分析
8
(例6-2):两钢杆各长50mm,用铰链联接,如图所示,B点作 用有向下的垂直力F,F=980N,[]=164MPa, E=205.8GPa, 在未受力前=30。求两杆横截面尺寸及B点的挠度(垂直位 移量)。
第6章构件受力变形及其应力分析
9
(习题6-8):如图所示为一阶梯形钢杆,AC段的截面面积为
20
(例6-4):冲床将钢板冲出直径d=25mm的圆孔,钢板厚度 t=10mm。剪切极限应力b=300MPa,试求所需的冲裁力F。
t
t
第6章构件受力变形及其应力分析
21
(附加习题1):冲床的最大冲力F=4×105N,冲头材料的许用应 力[]=440MPa,被冲剪的板的剪应力[]=360MPa,求在最大冲 力作用下所能冲剪的圆孔的最小直径d和板的最大厚度t 。
18
三. 挤压强度计算
挤压强度公式:
jy
F jy A jy
[ jy ]
A dt 第6jy章构件受力变形及其应力分析
19
(例6-3):图示销钉联接中,若已知F=20KN,t= 10mm,销钉 材料的许用剪应力[]=60MPa, [jy]=160MPa。试求所需销钉 的直径d。
第6章构件受力变形及其应力分析
变形
第6章构件受力变形及其应力分析
4
应力
屈服 极限
强度 极限
弹性 极限
第6章构件受力变形及其应力分析
应变
5
三. 强度条件
静载常温下延伸率大于5%的材料--结构钢、硬铝 塑性材料:屈服极限σs 做s 为破坏的极限应力 脆性材料:强度极限δb作b 为破坏的极限应力
静载常温下延伸率小于5%的材料--玻璃、灰铸铁
第6章 构件受力变形及其应力分析
一. 基本概念
6.1 概述
弹性变形:可恢复
变形
塑性变形:不可恢复
材料抵抗塑性变形和断裂的能力
刚度
材料抵抗弹性变形的能力
稳定性
构件保持其原有形态能力
二. 构件变形的情况----对象(直杆或梁)
1. 拉伸或压缩
2. 剪切
组合变形
3. 扭转
4. 弯曲
第6章构件受力变形及其应力分析
相关文档
最新文档