应力应变分析

合集下载

材料力学:第八章-应力应变状态分析

材料力学:第八章-应力应变状态分析
Ds x ,t x , E s y ,t y
t
C OE
s 2 , 0
s 1 , 0
D
C
sO
E
s 2 , 0
s 1 , 0
D
s
结论:所画圆确为所求应力圆
应力圆的绘制与应用4
应力圆的绘制
已知 sx , tx , sy ,
画相应应力圆
先确定D, E两点位置, 过此二点画圆即为应力圆
Ds x ,t x , E s y ,t y
证: 1. 据纯剪切斜截面应变公式求e45。
2. 据广义胡克定律求 e45。
纯剪切时主应力在45度方向,
3. 比较
例 8-3 边长 a =10 mm 正方形钢块,置槽形刚体内, F = 8 kN,
m 0.3,求钢块的主应力
解:
因二者均为压应力, 故
§8 电测应力与应变花
应力分析电测方法 应变花
已知 sa , ta , sa+90 , ta +90 ,画应力圆
应力圆绘制 先确定D, E两点位置, 过此二点画圆即为应力圆
ta+90 sa+90
t
sa ,ta
D
t
sa ,ta
D
sa
ta
O
C
sO
E
sa+90 ,ta+90
C
s
E
sa+90 ,ta+90
应力圆的绘制方法(3): 由主应力画应力圆
适用范围: 各向同性材料,线弹性范围内
主应力与主应变的关系
主应变与主应力的方位重合 最大、最小主应变分别发生在最大、最小主应力方位
最大拉应变发生在最大拉应力方位 如果 s1 0,且因 m < 1/2,则

第七章应力和应变分析

第七章应力和应变分析
2
tg20
2 xy x
y
mm
ax in
x
y
±
(x
2
y
2
)2
2 xy
0 0极值正应力就是主应力!
明德 砺志 博学 笃行
max在剪应力相对的项限内,
且偏向于x 及y大的一侧。
y
2
主 单元体
x
令:d d
0
1
tg212xxy y
y
xy 1
Ox
mmainx
± (x
y
2
)2 2 xy
014 , 即极值剪应力面与主面 成450
(4)最大切应力
max
1
2
2
22.1MPa
明德 砺志 博学 笃行
§7-4 二向应力状态分析——图解法
y
n
x
2
y
x
2
y
c
os2
xysin2
y
xy
x
x
2
y
s
in2
xyc
os2
Ox
对上述方程消去参数(2),得:
x
y
xy
x
2
y
2
2
x
2
y
2
2 xy
n
明德 砺志 博学 笃行
y n 二、应力圆的画法
明德 砺志 博学 笃行
例 分析受扭构件的破坏规律。
解:确定危险点并画其原
C
yx
始单元体
M
C
xy
x y 0
xy
T WP
xy
求极值应力
y
yx
m m
ax in

材料力学应力与应变分析

材料力学应力与应变分析
主应力和次应力
在复杂应力状态下,物体内部某一点处的主应力表示该点处最主要 的应力,次应力则表示其他较小的应力。
应力表示方法
应力矢量
应力矢量表示应力的方向和大小,通常用箭头表示。
应力张量
在三维空间中,应力可以用一个二阶对称张量表示,包括三个主应力和三个剪切 应力分量。
主应力和剪切应力
主应力
在任意一点处,三个主应力通常是不相等的,其中最大和最小的主应力决定了材料在该点的安全程度 。
采用有限元分析方法,建立高 层建筑的三维模型,模拟不同 工况下的应力与应变分布。
结果
通过分析发现高层建筑的关键 部位存在较高的应力集中,需
要进行优化设计。
结论
优化后的高层建筑结构能够更 好地承受各种载荷,提高了安
全性和稳定性。
THANKS FOR WATCHING
感谢您的观看
不同受力状态下的变形行为。
06 实际应用与案例分析
实际应用场景
航空航天
飞机和航天器的结构需要承受高速、高海拔和极端温度下 的应力与应变,材料力学分析是确保安全的关键。
汽车工业
汽车的结构和零部件在行驶过程中会受到各种应力和应变 ,材料力学分析有助于优化设计,提高安全性和耐久性。
土木工程
桥梁、大坝、高层建筑等大型基础设施的建设需要精确的 应力与应变分析,以确保结构的稳定性和安全性。
剪切应力
剪切应力是使物体产生剪切变形的力,其大小和方向与剪切面的法线方向有关。剪切应力的作用可以 导致材料产生剪切破坏。
04 应变分析
应变定义
定义
应变是描述材料形状和尺寸变化的物理量, 表示材料在外力作用下发生的形变程度。
单位
应变的单位是1,没有量纲,常用的单位还有微应变 (με)和工程应变(%)。

应力与应变状态分析

应力与应变状态分析

ma x
min
x y 2
(x 2y)2x2 y ——主应力的大小
1 ; 2 ; 3 ; m ;am x;i0 n
最大正应力(σmax)与X轴的夹角规定用“α0 ” 表示。 简易判断规律:由τ的方向判断。
α0 α0
2、 τ的极值及所在平面
x 2ysi2n xy co 2s
d 0 d
tg21
3、三向应力状态:三向主应力都不等于零的应力状态。
平面应力状态:单向应力状态和二向应力状态的总称。 空间应力状态:三向应力状态 简单应力状态:单向应力状态。 复杂应力状态:二向应力状态和三向应力状态的总称。 纯剪切应力状态:单元体上只存在剪应力无正应力。
§8-2 平面应力状态分析——解析法
一、任意斜面上的应力计算
主应力排列规定:按代数值由大到小。 1 2 3
10 σ1=50 MPa ;
50
30 σ2=10 MPa ; σ3=-30 MPa 。
单位:MPa
10 σ1=10 MPa ;
30 σ2=0 MPa ; σ3=-30 MPa 。
8、画原始单元体: 例 :画出下列图中的 a、b、c 点的已知单元体。
二、σ、τ的极值及所在平面(主应力,主平面)
1、 σ的极值及所在平面(主应力,主平面)
x 2 y x 2 yc2 o s xs y 2 i n d d 0 x 2 ys2 i n 0 xc y 2 o 0 s0 0 0
tg20
2xy x y
——主平面的位置
( 0;
0 0900 )
F
F a
x
a
x
x
F A
y b C
z
y b
C z
M F L

工程力学中的应力和应变分析

工程力学中的应力和应变分析

工程力学中的应力和应变分析工程力学是应用力学原理解决工程问题的学科,它研究物体受外力作用下的力学性质。

应力和应变是工程力学中的重要概念,它们对于分析材料的强度和变形特性具有重要意义。

本文将就工程力学中的应力和应变进行详细分析。

一、应力分析应力是指物体单位面积上的内部分子间相互作用力。

根据作用平面的不同,可以分为法向应力和剪切应力两种。

1. 法向应力法向应力是指力作用垂直于物体某一截面上的应力。

根据物体受力状态的不同,可以分为拉应力和压应力两种。

- 拉应力拉应力是指作用于物体截面上的拉力与截面面积的比值。

拉应力的计算公式为:σ = F/A其中,σ表示拉应力,F表示作用力,A表示截面面积。

- 压应力压应力是指作用于物体截面上的压力与截面面积的比值。

压应力的计算公式与拉应力类似。

2. 剪切应力剪切应力是指作用在物体截面上切向方向上的力与截面面积的比值。

剪切应力的计算公式为:τ = F/A其中,τ表示剪切应力,F表示作用力,A表示截面面积。

二、应变分析应变是指物体由于外力的作用而产生的形变程度。

根据变形情况,可以分为线性弹性应变和非线性应变。

1. 线性弹性应变线性弹性应变是指物体在小应力下,应变与应力成正比,且随应力消失而恢复原状的应变现象。

线性弹性应变的计算公式为:ε = ΔL/L其中,ε表示线性弹性应变,ΔL表示物体的长度变化,L表示物体的原始长度。

2. 非线性应变非线性应变是指物体在较大应力下,应变与应力不再呈线性关系的应变现象。

非线性应变的计算公式较为复杂,需要根据具体情况进行分析。

三、应力和应变的关系应力和应变之间存在一定的关系,常用的关系模型有胡克定律和杨氏模量。

1. 胡克定律胡克定律是描述线性弹性材料的应力和应变之间关系的基本模型。

根据胡克定律,拉应力和拉应变之间的关系可以表示为:σ = Eε其中,σ表示拉应力,E表示弹性模量,ε表示拉应变。

2. 杨氏模量杨氏模量是描述材料抵抗拉伸或压缩变形能力的物理量。

2应力应变分析

2应力应变分析

JJ J
1 2
应该是单值的,不随坐标
3
而变,因此把
JJ J
1 2
3
分别称为应力张量的
第一、第二和第三不变量,存在不变量也是张
量的特性之一。
15
例题
• 设某点的应力状态如图所示,试求其主应力(应力 单位:牛顿/平方毫米)
16
• 解:

x
yx
zx
2; 3;
4;
ij
xy y


2
2
2
2
xy
yz
zx
x
yz
y
xz
z
xy
2
2
2
18
• 将应力张量不变量带入应力状态特征方程中得:
J 1 J 2 J 3 0
3 3 2

9;

1
15 60 54 0
2
9 6 6 0
2 2

3 3;
ζ
ζ η ζ
ζ 主剪切应力平面
21
• 一对相互垂直的主剪应力平面,它们分别与一个主平面 垂直并与另两个主平面成45度,而且每对正交主剪平面 上的主剪应力都相等。如下图所示:
22
三个主剪应力为: τ σ σ 2 23 2 3
τ 31 σ 3 σ1 2
τ12 σ1 σ 2 2
张量的特性:一个对称张量有三个相互垂直的方向, 叫做主方向,在主方向上,下标不同的分量均为零, 只剩下下标相同的分量,叫做主值。
在应力张量中,主值就是主方向上的三个正应力, 叫做主应力;与三个主方向垂直的微分面叫主平面, 主平面上没有剪应力。也就是说τ=0。

第八章2应力应变状态分析

第八章2应力应变状态分析

第八章2应力应变状态分析应力应变状态分析是研究材料或结构在外力作用下所产生的应力和应变的过程。

应力是单位面积上的内力,用于描述材料或结构对外力的抵抗能力。

而应变是形变相对于初始状态的变化量,用于描述材料或结构的变形程度。

针对材料或结构的应力应变状态进行分析,可以帮助我们了解其力学性能和稳定性,为工程实践提供重要依据。

应力应变状态分析是弹性力学的基本内容之一、根据材料的力学性质和外力的作用,可以得到不同的应力应变状态。

在弹性力学中,线弹性和平面应变假定是常用的简化假设。

线弹性假定材料仅在拉伸和压缩的方向上有应力,而在横截面上的应力是均匀分布的。

一维拉伸和挤压是线弹性应力应变状态的基本类型。

平面应变假定材料在一个平面内有应力,而在垂直于该平面的方向上无应力。

二维平面应变是平面应变应力应变状态的基本类型。

在应力应变状态分析中,我们通常关注应力和应变之间的关系。

最常见的是材料的应力-应变曲线。

应力-应变曲线描述了材料在外力作用下的力学行为,可以帮助我们了解材料的强度、塑性和韧性等性能。

在弹性阶段,应力-应变曲线呈线性关系,符合胡克定律。

而在屈服点之后,材料会发生塑性变形,应力不再是线性关系。

当应力达到最大值时,材料会发生破坏。

除了应力-应变曲线外,还有一些其他重要的参数和指标可用于描述应力应变状态。

例如,弹性模量是描述材料刚度的重要参数,表示单位应力引起的单位应变量。

剪切弹性模量描述了材料抵抗剪切变形的能力。

同时,杨氏模量和泊松比也是用于描述材料力学性质的常用参数。

应力应变状态分析在材料工程、结构工程以及土木工程等领域具有重要应用。

通过对材料和结构的应力应变状态进行分析,可以帮助我们评估其性能和强度,并且对设计和优化具有指导意义。

例如,在结构工程中,通过应力应变状态分析可以确定材料的承载能力和极限状态,从而确保结构在设计荷载下的安全运行。

然而,应力应变状态分析也面临一些挑战。

首先,材料的力学性质和变形行为往往是非线性的,需要使用复杂的数学模型进行描述。

第八章 应力应变状态分析

第八章 应力应变状态分析

o
C
(σ x + σ y ) / 2
σ
半径为
Rσ = (
σ x −σ y
2
2 )2 + τ x
目录
应力圆(图解法) §8.3 应力圆(图解法)
二.应力圆的绘制与应用
σy σα τα σy τy
n
τ
σα τα
H(任意斜截面α) D(x截面对应)
τx
τx
t
-τ x
σx
α

C
σx
τx=τy DF=EG
将第一式移项后两边平方与第二式两边平方相加
σ x +σ y
σ x −σ y
(σ α −
σ x +σ y
2
) =(
2
σ x −σ y
2
cos 2α − τ x sin 2α ) 2
τα = (
2
σ x −σ y
2
sin 2α + τ x cos 2α ) 2
目录
应力圆(图解法) §8.3 应力圆(图解法)
τ max σ x −σ y 2 2 = ±CK = ± ( ) +τ x τ min 2
所在截面互相垂直,并与正应力极值截面呈45 °夹角。
目录
§8.4 极值应力与主应力
二.主应力
由图可知,正应力极值所在截面的切应力为零。 ab,bc,cd,da 均为主平面。 微体的前、后 两面不受力, 切应力也为零。 主平面:切应力为零的截面。 主平面微体:三对互相垂直的主平面所构成的微体。
三.纯剪切状态的最大应力与圆轴扭转破坏分析
σ 3 = −τ
τ τ A(0,τ)
−45

第六章 应力应变状态分析

第六章 应力应变状态分析
tg 2 0 2 xy
x y
2 300 3 200 200 2
min
2 0 2 0
max

0 28.2 0或 - 151.8 0
Dx 200,300, D y 200,300
Dx
14

x y x y cos2 xy sin 2 2 2
x y sin 2 xy cos 2 2
max x y min 2
x y 2 xy 2
2
2 xy 1 0 arctan tan 2 0 2 x y y x
D13
D12
D23 D3
D2
D1

2
max 13
1 3
2
13作用面?
答: bdhf
a
b f d h
c
e
g
1
3
18
例题3-1:图示单元体,求:(1)主应力和最大切应力; (2)画出三向应力圆。 y
40Mpa x
z
解: 1.先把它转化为一个平面应力状态
x 120MPa , y 40MPa , xy 30MPa
2
E
1 1 11 12 13 1 2 3 E 1 2 21 22 23 2 3 1 E 1 3 31 32 33 3 1 2 E




x y x y 2 2 2
2
2 xy 面存在一一对应关系。

应力与应变分析材料力学

应力与应变分析材料力学

(
20)sin
60
o
单位:sM" Pa
t
a
30
2
40
sin
60
o
(
20
)cos60o
20.3MPa
2)ss'''
30 2
40
30 40 2
2
202
35.3MPa 45.3MPa
s1 s' 35.3MPa ,s 2 0,s 3 s'' 45.3MPa
tg2a
0
20 30 40
a0 14.9o,主单元体如上
第一节 应力状态的概念
应力与应变分析
一、一点的应力状态
1.一点的应力状态:通过受力构件一点处各个不同截面
上的应力情况。
2.研究应力状态的目的:找出该点的最大正应力和剪应力
数值及所在截面的方位,以便研究构件破坏原因并进行失效分 析。
二、研究应力状态的方法—单元体法
1.单元体:围绕构件内一所截取的微小正六面体。
t—使微元产生顺时针转动趋势者为正,反之为负
3.主应力及其方位:
①由主平面定义,令t
=0,得:
tan 2a0
2t xy sx sy
可求出两个相差90o的a0值,对应两个互相垂直主平面。
②令
ds a da
0
得: tan 2a0
2t xy sx s
y
即主平面上的正应力取得所有方向上的极值。
③主应力大小:
sy z
Z sz
应力与应变分析
tzy tzx
txy
tyx
tyz
txz
O
txy
sx

应力和应变分析

应力和应变分析

应力和应变分析应力和应变分析是材料力学中非常重要的一项内容,它们研究材料在外力作用下的变形行为。

应力是表征材料单位面积内的力的大小,而应变则是描述材料单位长度内的变形程度。

应力和应变的分析可以帮助我们理解材料的强度和刚度,以及材料在不同条件下的变形和破坏机制。

本文将从应力和应变的定义、材料的本构关系和应变测量等方面进行探讨。

首先,应力的定义为单位面积内的力的大小,常用符号为σ,其计算公式为σ=F/A,其中F为施加力的大小,A为力作用的面积。

应力的单位通常为帕斯卡(Pa),1Pa等于1N/m^2、根据作用力的不同方向,应力又可以分为正应力和剪应力。

正应力是垂直于材料截面的力,剪应力则是在材料截面上平行于切平面的力。

其次,应变是材料受力后发生的形变程度,常用符号为ε,其计算公式为ε=ΔL/L0,其中ΔL为长度的增量,L0为力作用前的长度。

应变的单位为无量纲。

类似于应力,应变也有正应变和剪应变之分。

正应变是材料在力作用下产生的沿体积方向的变化,剪应变则是在截面上平行于剪切力方向的变化。

应力和应变之间的关系可以通过材料的本构关系来描述。

材料的本构关系是材料在应力与应变之间的函数关系,通常以应力-应变曲线的形式表示。

根据材料的性质不同,应力-应变曲线可以分为线性区、弹性区、屈服区、塑性区和断裂区。

在线性区内,应力和应变呈线性关系,材料具有良好的弹性行为。

在弹性区内,材料回复到原始形状,没有永久性变形。

当应力超过一定的值时,材料进入屈服区,出现塑性变形。

塑性区内,材料的应变增大,但没有太大的应力增加。

当材料无法再承受应力引起继续塑性变形时,出现断裂。

最后,应变的测量是应力和应变分析的重要一环。

常用的应变测量方法包括拉伸试验、剪切试验、压缩试验等。

拉伸试验是最常见的应变测量方法之一,通过施加拉力来测量材料在不同应力下的应变。

剪切试验则是通过施加剪切力来测量材料的剪切应变。

压缩试验则是将材料压缩后测量其压缩应变。

材料力学 应力与应变分析

材料力学 应力与应变分析

sy
tyx
PART B 二向应力状态分析的解析法
1、截面上的应力 F n 0
dA
txy d A cos sin cos s dA s d A cos x 0 tyx d A sin cos syd A sin sin d A s d A cos sin t d A cos cos F 0 t x xy t
一点应力状态:指构件内任一点处所有不同方位截面上的应力情况。
研究应力状态的目的:确定危险截面危险点处不同方位截面上的应力变化规 律,确定在那个方向正应力最大,那个方向切应力最 大,从而全面考虑构件破坏的原因,建立适当的强度 条件。 单元分析法:在所要研究点处取一微小的正六面体——单元体
单元体的应力状态就代表了该点处的应力状态。
FP l Mz 4
1
t2
1
s
x1
2
t2
s x2
3
t3
取单元体示例二
l
y
1
S 截面
S截面
FP
a
4
z
2
3
x
y
1
t1
s
Mz Wz
FQy
M W
x p
1
x1
4
2 3
Mz
x
3
Mx t3 Wp
Mz Wz
Mx 4
M t3 W
sx
3
x p
二向和三向应力状态的实例
Fp
D 2
4
D2
主平面:切应力为零的平面。 主应力:主平面上的正应力。
过一点总存在三对相互垂直的主平面,对应三个主应力
注:应力状态的分类,是根据主应力不等于零的个数来确定。

工程力学中的应变与应力分析

工程力学中的应变与应力分析

工程力学中的应变与应力分析工程力学是研究物体静力学和动力学的一门学科,它在工程设计和结构力学分析中起着重要的作用。

在工程力学中,应变与应力是两个基本概念,也是进行结构分析和材料力学计算的关键参数。

本文将从应变和应力的定义、计算公式、应变与应力的关系等方面进行介绍与分析。

一、应变的概念与计算应变是物体在受到力的作用下,发生形变的程度的度量。

应变可分为线性应变和切变应变两种。

1. 线性应变线性应变是指物体在受力作用下,其形变呈现线性关系。

常见的线性应变有拉伸应变和压缩应变。

拉伸应变是指物体在拉伸力作用下的伸长变化程度,压缩应变是指物体在压缩力作用下的压缩变化程度。

线性应变的计算公式如下:ε = ΔL / L其中,ε表示线性应变,ΔL表示长度变化量,L表示物体的初始长度。

2. 切变应变切变应变是指物体在受到剪切力作用下,产生的剪切变形程度。

切变应变的计算公式如下:γ = θ * r其中,γ表示切变应变,θ表示切变角度,r表示物体上两点间的距离。

二、应力的概念与计算应力是物体内部受力作用下单位面积上的力的大小。

常见的应力有拉应力、压应力和剪应力等。

应力的计算公式如下:1. 拉应力和压应力拉应力是指垂直于物体横截面的拉力作用下,单位面积上的力的大小,压应力是指垂直于物体横截面的压力作用下,单位面积上的力的大小。

拉应力和压应力的计算公式如下:σ = F / A其中,σ表示应力,F表示作用力的大小,A表示物体的横截面积。

2. 剪应力剪应力是指平行于物体横截面的剪切力作用下,单位面积上的力的大小。

剪应力的计算公式如下:τ = F / A其中,τ表示剪应力,F表示作用力的大小,A表示物体的横截面积。

三、应变与应力的关系应变与应力有着密切的关系,可以通过应变与应力的计算公式来解析他们之间的关系。

1. 杨氏模量杨氏模量是一种材料的特性参数,它是应力与应变之间的比值。

杨氏模量的计算公式如下:E = σ / ε其中,E表示杨氏模量,σ表示应力,ε表示应变。

工程力学中的应力和应变的分析

工程力学中的应力和应变的分析

工程力学中的应力和应变的分析工程力学是研究物体在外力作用下受力与变形规律的学科。

在工程力学中,应力和应变是两个重要的概念,用于描述物体受到外力作用后的力学响应和变形情况。

本文将对工程力学中的应力和应变进行深入的分析和探讨。

一、应力的概念和分类应力是描述物体单位面积内的内力或外力的物理量,用σ表示。

在力的作用下,物体的形状、大小和方向都会发生变化,而应力则用来描述物体内部各点受力状态的大小和方向。

应力可以分为正应力和剪应力两种类型。

1. 正应力:正应力是指垂直于物体截面的力在该截面上的作用效果。

正应力可分为拉应力和压应力两种情况。

拉应力是指垂直于物体截面的力使得截面上的物质向外扩张,压应力则是指垂直于物体截面的力使得截面上的物质向内收缩。

2. 剪应力:剪应力是指与物体截面平行的力在该截面上的作用效果。

剪应力是由于物体受到外部力的平行作用而引起的变形。

剪应力会使得物体的截面发生平行于力的方向的切变变形。

二、应变的概念和分类应变是描述物体相对于原始形状发生变形时各点之间相对位置的改变程度的物理量,用ε表示。

应变描述了物体受到外力作用后的变形程度和特征。

应变可分为线性应变和剪切应变两种类型。

1. 线性应变:线性应变是一种改变物体长度的应变形式,也称为伸长应变。

线性应变正比于物体所受力的大小,并与物体原始长度之比成正比。

线性应变的表达式为ε = ΔL / L0,其中ΔL为线段在力作用下伸长的长度,L0为线段的原始长度。

2. 剪切应变:剪切应变是一种改变物体形状的应变形式,也称为变形应变。

剪切应变是与物体所受剪力大小成正比,与物体的长度无关。

剪切应变的表达式为γ = Δx / h,其中Δx为剪切前后平行于力方向的线段之间的位移,h为物体在该方向上的高度。

三、应力和应变之间的关系应力和应变之间存在一定的关系,通常可以通过弹性模量来表示。

弹性模量是描述物体材料抵抗形变能力的物理量,用E表示。

主要用于刻画物体在受力作用后,恢复原始形状的能力。

应力与应变分析课件

应力与应变分析课件

03
边界元法
边界元法是一种基于边界积分方程的数值方法,适用于解决各种物理问
Байду номын сангаас
题。未来,边界元法将在更多领域得到应用,例如流体力学、电磁场等
问题。
考虑材料非线性的影响
材料非线性是指材料的应力-应变关系不是线性的,需要考虑 材料内部结构、相变等因素的影响。未来,研究人员将进一 步考虑材料非线性的影响,以更准确地预测材料的力学性能 。
解方程
通过加权残值法,求解方程中 的参数,使得残值的平方和最
小化。
05
应力与应变分析在工 程中的应用
结构优化设计
总结词
提高结构性能与稳定性
详细描述
应力与应变分析在结构优化设计中具有重要作用,通过分析可以评估结构的强 度、刚度和稳定性,发现潜在的薄弱环节,为结构设计和改进提供依据,从而 提高结构的性能与稳定性。
应力分类
根据作用力的来源和性质,应力 可以分为多种类型,如正应力、 剪应力、弯曲应力等。
应力与应变的关系
应力的作用
应力作用在物体上,会导致物体 内部发生形变,即应变。
应变分类
应变分为线应变和角应变,分别表 示物体形状和大小的改变。
弹性力学基本方程
描述应力与应变之间关系的方程, 如胡克定律(Hooke's law)。
应力应变关系。
04
应变分析的基本方法
直接方法
定义应变分量
根据物体的形状和受力情况,将物体分为多个小的单元,并定义 每个单元的应变分量。
建立方程
根据弹性力学方程和应变分量的定义,建立物体整体的应变方程。
解方程
根据方程的解,得到每个点的应变值。
最小二乘法
确定目标函数

材料力学第七章应力应变分析

材料力学第七章应力应变分析

x
y
2
x
2
y
cos 2
xy sin 2
x
y
2
sin 2
xy cos 2
1、最大正应力的方位

d d
2[
x
y sin 2
2
xy cos 2 ] 0
tg 2 0
2 xy x
y
0 0
90
0 和 0+90°确定两个互相垂直的平面,一个是最大正应 力所在的平面,另一个是最小正应力所在的平面.
的方位.
m
m a
A
l
解: 把从A点处截取的单元体放大如图
x 70, y 0, xy 50
A
tan 20
2 xy x y
2 50 1.429
1
3
(70) 0
0
A
x
0
27.5 62.5
3
1
因为 x < y ,所以 0= 27.5° 与 min 对应
max min
x
2
y
(
x
2
y )2
三、应力状态的分类
1、空间应力状态
三个主应力1 、2 、3 均不等于零
2、平面应力状态
三个主应力1 、2 、3 中有两个不等于零
3、单向应力状态
三个主应力 1 、2 、3 中只有一个不等于零
2 3
2
1
1
1
1
1
3 2
2
1
例题 1 画出如图所示梁S截面的应力状态单元体.
F
5
S平面
4
3
l/2
2
l/2 1
任意一对平行平面上的应力相等

应力分析与应变分析

应力分析与应变分析

应力分析与应变分析概述应力分析和应变分析是材料力学与结构设计中重要的分析方法。

通过研究材料内部的应力和应变分布情况,可以评估材料的强度和稳定性,为结构设计提供依据。

本文将介绍应力分析和应变分析的基本概念、方法和应用领域。

应力分析应力的概念应力是材料内部的内力状态,是材料中单元体受到的单位面积上的力的大小。

常见的应力类型有正应力、剪切应力和法向应力。

正应力指的是垂直于面元的力,剪切应力指的是在面元平面上的切应力,法向应力是正应力的一种特殊情况。

应力分布材料内部的应力分布可以通过应力场来描述。

应力场是指空间中各点的应力分布情况。

常见的应力场模型包括均匀应力场、线性应力场和非线性应力场。

弹性力学弹性力学是研究材料受力后的变形和应力恢复的一门学科。

通过弹性力学理论,可以计算材料在受力后的应力分布和变形情况。

应力分析的应用应力分析在工程领域有广泛的应用。

例如,在结构设计中,可以通过应力分析来评估结构的强度和稳定性,确定合理的结构形式和尺寸。

此外,应力分析也用于材料疲劳寿命预测、断裂力学研究等领域。

应变分析应变的概念应变是材料内部形变程度的度量,是材料内部单位长度的变化量。

常见的应变类型有线性应变、剪切应变和体积应变。

线性应变指的是材料在受力后的线性变形;剪切应变是材料在受到切应力作用时沿切应力方向发生的形变;体积应变是材料在受力后发生的体积变化。

应变分布类似于应力分布,应变分布可以通过应变场来描述。

应变场是指空间中各点的应变分布情况。

应变分析的方法应变分析的常用方法包括拉伸试验、剪切试验、压缩试验和扭转试验等。

通过这些试验可以获取材料在不同受力状态下的应变数据,进而进行应变分析。

应变测量应变测量是应变分析中的重要环节。

常用的应变测量方法有电阻式应变计、光栅应变计和激光测量等。

这些方法可以准确地获取材料受力后的应变数据,并用于应变分析和应变场重构。

应变分析的应用应变分析在材料研究和工程设计中起着重要的作用。

应力应变分析

应力应变分析
§10 应力应变分析及应力应变关系
§10.1 应力的概念 一点处的应力状态
1.内力在变形体内某一截面上分布的描述
用截面法求某一截面上的内力,得出该截面上的
内力分量:FN , FS ,T , M ——截面分布内力系向截
y
FR FN
面形心简化后的等效力系 x
FS
T
为正确描述变形,应在 该截面上的每一点,描
Pi
2
注意
同理,某点的三个主应力中,任意二个主 应力都可找出一组切应力极值,分别为:
主切应力
P1
2
2
3
P2
1
3
2
P3
1
2
2
该点单元体的最大切应力应为三者当中的最大者,即
max
1
2
3
2
2
(10.5)
2
1
1
1
3 P3所在平面
3 P1 所在平面
3 P2 所在平面
而最大切应力所在平面的法向应为1,3两方向 的角平分线方向。

1,
2,

3
max
y
80
解: z 50MPa 为一个主应力
x
在 x,y 平面内
z
50
80 2
80 2 2
1 90MPa
2 10MPa
3 50MPa
302
40 50
9010MPa
50
Dy
10
C
max
1 3
2
70MPa
30
90
Dx
§11.6 应变分析
1. 某点处(单元体的)变形的描述——应变
x y
2
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x y 2
二. 求正应力极值及其作用面
, 均为 的函数,必存在极值。
d 显然有 令 0, 0 0 d 正应力的极值为主应力
方位角:
(确定主应力及主平面位置)
正应力极值:
至于 max , min 是第几主应力,
要求出具体数值与零排序而定。
三. 确定极值切应力及其所在平面


max
2
F




C
1 2 0 3
max

2

C

2 0 3 max
1

四 横力弯曲梁中的主应力及其分析 m m
F

M
FQ
m

3

1 2


1 1

3

2
3
1




1
4 5
x y 2 2
2
x y 2
两式平方相加 x y 2
2
( x a)

y R
2
2 xy
2
2
x y 2
( x a)
x y 2 2
F
l
FQ
M
A
z
F
max
Fl
切应力强度条件: max
正应力强度条件 : max
FQ My max max ht Iz
A
z
A
A
A A
问题:A点的强度条件如何建立?
总结: 1. 过一点处所有截面上应力的全部 情况称为一点处的应力状态。
2. 解决复杂受力点的强度计算问题, 分析引起构件破坏的原因 。通过应 力,应变分析,建立了强度理论, 从而解决组合变形下构件的强度计 算问题。

max
180


min 80
90
(160,40)
0 80 180 (100,-40)

单位:Mpa
max
1 3
2
1 180 2 80 30
90
2.空间问题的特殊情况
160
求出 max, min 与-40排队
不看已知主应力, 先解决平面问题。
只有一个主应力不为零-----单向应力状态
有二个主应力不为零-----二向应力状态
有三个主应力不为零-----三向应力状态

已知锅炉内径D,壁厚t,压力p 求炉壁内任意点处的应力。
轴向应力: p
环向应力:

p
外壁大气压 相对 x , 很小,可略。 内壁压力 p
可认为内壁处于二向受拉
100
40


-40

80


180
1 3 max 110 2
1 180 2 80 3 40
40
80

50


80
1 80 2 50 3 50
max
1 3
2
65

1
得极值切应力
1.3
1 3
2
2
1
2.用平行
3 的平面
3
切单元体, 得
1 2


组成的应力圆

3 2
1

得极值切应力
1.2
1 2
2



3 2
1 3
2
1

任意面应力在三个圆组成的黄色区域内
单元体
max
max max min 纯剪特点: t max max c max
3
max
1 tan 2 0
min
0 45 或135


max min 显然有: 1 2 0 3
{
1
2
应力分析的实质和前提
实质:由原始单元体, 求各截面上的应力
前提:从受力构件中正确 取出原始单元体
§7 .2 二向应力状态分析----解析法 y 设在受力构件中取出 x 二向应力状态的最一 般情况的原始单元体, xy
既已知面上的应力 x y ,xy 。
因已知一个主平面,可 将单元体用平面代替。








m
主应力迹线
应用于钢筋混 凝土的制做中
1. 1 0, 2 3 0 问题: . 1 2 3 0 2 3 . max ? 单元体 4.空间体( , , )面上应力
§7.4 三向应力状态分析
一. 一般情况
xx xy xz 可用六个独立
1 3 max 13 2
1 min 3
单向.二向可扩展到三向
三. 三向应力状态的特殊情况 应用平面应力分析的结论解三向应 力问题的必要条件: 1.平面问题,求出 max 后与0序, min 定: 已知一个主应力(主平面)
1 2 3
例:
160 100 40
y
xy
x
一. 确定平行于z轴的任意斜截面上 的应力 ,
y

{


xy
x
依截面法:切、取、代、平。
整理有:
f ( ) g()
x y 2 x y
2
cos 2 xy sin 2 sin 2 xy cos 2
分量表示 x
九个应力分量T yxyyyz
y
yz
z
xz
xy x
zx zy zz
y z xy yz xz
可求
{
, , )上的应力 任意面(
主应力
max
y
切应力的符号规定
xz
xz
:
z
x xy
x表示切应力作 用面外法线方 向 z表示的指向
二 . 三向应力圆



1


1



2 = 3 =
=0



=
2 = 3=




= 2 =0 3 =0



=





2 == 0 3 3

Байду номын сангаас
=0 2 =0
1

1




1

结论:

max
1 2 3
x y z
单元体与应力圆一一对应关系
——纵坐标 2
max (极值)
min
——横坐标
转向相同
面——点
相互垂直面—直径两端点
90
0
2 180
圆的半径
0
主应力——横坐标交点
(极值)
max—纵坐标最大值(圆半径)
—圆心坐标

应力圆与单元体点面对应关系口诀 圆上点,体上面, 直径两端两垂面;
已知主应力
2
1 2 3 ,作应力圆
3
1
2
1
3


1.用平行 1 的平面 切单元体, 得 2 3 组成的应力圆


3 2

得极值切应力
2.3
2 3
2
2
1
2.用平行
3
2 的平面 切单元体, 得 1 3


组成的应力圆
3 2
3. 截面法的应用 研究原始单元体其他面上的应 力情况应用截面法,可求任意 面上的应力情况。从而确定单 元体的最大正应力和最大切应 力。
三. 应力状态分类
的面-----主平面 主平面上的应力-----主应力 1 2 3 主单元体----三个主平面构成的单元体
1. 定义
0

2. 分类
难点: 取单元体
原始单元体 危险点 指定点
技巧:紧紧抓住横截面,及其上 的应力分布规律,应用切 应力互等定理。
二. 研究方法----单元体平衡
1. 取出原始单元体
x
x
单元体----六面体(微体) 原始单元体----面上的应力已知 2. 应力规定 单元体面上的应力均布 相对面上的应力相等 ----拉为正,压为负 + ----对单元体内任意点取矩
§7.1 应力状态概述
问题的提出:
1. 什么是应力状态?
2. 为什么要研究应力状态?
3. 怎样研究应力状态?
一. 一点处的应力状态
cos sin
2

2
max max
2
sin 2 cos 2
max min max
第七章 应力和应变分析 强度理论
§1 应力状态分析 §2 二向应力状态分析的解析法
§3 二向应力状态分析的图解法
§4 三向应力状态分析
§5 平面应力状态下的应变分析
§6 广义胡克定律 §7 复杂应力状态的变形比能 §8 强度理论的概念 §9 四种常用强度理论
§10 莫尔强度理论和双切应力强 度理论简介

2 1
2 0


1=60.7 2= 0 3 80.7
相关文档
最新文档