第七章应力和应变分析

合集下载

材料力学带答疑

材料力学带答疑

第七章应力和应变分析强度理论1.单元体最大剪应力作用面上必无正应力答案此说法错误(在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。

拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为σ/2。

)2. 单向应力状态有一个主平面,二向应力状态有两个主平面答案此说法错误(无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零)3. 弯曲变形时梁中最大正应力所在的点处于单向应力状态答案此说法正确(最大正应力位于横截面的最上端和最下端,在此处剪应力为零。

)4. 在受力物体中一点的应力状态,最大正应力作用面上切应力一定是零答案此说法正确(最大正应力就是主应力,主应力所在的面剪应力一定是零)5.应力超过材料的比例极限后,广义虎克定律不再成立答案此说法正确(广义虎克定律的适用范围是各向同性的线弹性材料。

)6. 材料的破坏形式由材料的种类而定答案此说法错误(材料的破坏形式由危险点所处的应力状态和材料的种类综合决定的)7. 不同强度理论的破坏原因不同答案此说法正确(不同的强度理论的破坏原因分别为:最大拉应力、最大线应变、最大剪应力、形状比能。

)二、选择1.滚珠轴承中,滚珠与外圆接触点为应力状态。

A:二向; B:单向C:三向D:纯剪切答案正确选择C(接触点在铅垂方向受压,使单元体向周围膨胀,于是引起周围材料对接触点在前后、左右方向的约束应力。

)2.厚玻璃杯因沸水倒入而发生破裂,裂纹起始于。

A:内壁 B:外壁 C:内外壁同时 D:壁厚的中间答案正确选择:B (厚玻璃杯倒入沸水,使得内壁受热膨胀,外壁对内壁产生压应力的作用;内壁膨胀使得外壁受拉,固裂纹起始于外壁。

)3. 受内压作用的封闭薄壁圆筒,在通过其壁上任意一点的纵、横两个截面中。

A:纵、横两截面均不是主平面; B:横截面是主平面、纵截面不是主平面;C:纵、横二截面均是主平面; D:纵截面是主平面,横截面不是主平面;答案正确选择:C (在受内压作用的封闭薄壁圆筒的壁上任意取一点的应力状态为二向不等值拉伸,其σx =pD/4t、σy=pD/2t。

工程力学7第七章应力状态和应变状态分析

工程力学7第七章应力状态和应变状态分析

x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
0
x y
2
(
x y
2
)
2
2
2 x
y
y
y
2
090
0
x y
2
(
x y
2
2、为什么要研究一点的应力状态 单向应力状态和纯剪切应力状态的强度计算
σmax≤ [σ] τ
max≤[τ
]
梁截面上的任意点的强度如何计算?
分析材料破坏机理
F F F F T
T
3、怎么研究一点的应力状态
单元体
•各面上的应力均匀分布





• 相互平行的一对面上 应力大小相等、符号相同
满足:力的平衡条件 切应力互等定理
§7-2 平面应力状态分析
一、解析法:
1.任意斜面上的应力 y

y

y
y
y
n
y

x
a
x

e
d
x

x
x
bz
x
x

x
e
x
x




y


f
yy
x
x

b


c
y

y

y
f t
应力的符号规定同前 α角以从x轴正向逆时针 转到斜面的法线为正
(设ef的面积为dA)
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2

第七章应力状态及应变状态分析

第七章应力状态及应变状态分析

第七章 应力状态及应变状态分析第一节 概 述在第一章中将应力定义为内力的集度或单位面积的内力值。

应力又分正应力σ和剪应力τ两种。

前面各章的知识表明,受力杆件中任一点的应力是随截面位置及点的位置的不同而不同,如7-1(a )中a 、b 两点分别在两个截面上,其应力是不同的。

同一截面上的各点,如图7-1(b )中b 、c 两点的应力一般情况下也是不同的。

同一点不同方向的应力也是不同的。

过一点各个方向上的应力情况称为该点的应力状态....,应力状态分析就是要研究杆件中某一点(特别是危险点)各个方向上的应力之间的关系,确定该点处的最大正应力和最大剪应力,为强度计算提供重要依据。

研究应力状态的方法是过杆件中的任一点取出一个微小的六面体——单元..体.。

如图7-1(a )中过a 点取出的单元体放大如图7-2所示。

单元体三个方向的边长很小且趋于零,则该单元体代表一点,即a 点,互相平行的平面上的正应力相等,剪应力也相等。

杆件在任意荷载作用下,从中所取出的单元体表面上一般既有正应为又有剪应力,如图7-2所示。

当图7-2所示的单元体各面上的,0,0,0,0,0,0======zy zx yx yz xz xy ττττττ 即六个面上均没有剪应力作用时,这种面叫做特殊平面,并定义为主平面...。

该主(a)(b)图7-1各点的应力情况平面上作用的正应力称为主应力...,用,,,321σσσ表示(,321σσσ≥≥),如图7-3所示。

各面均为主平面的单元体,称为主单元体....。

三个主应力中若有两个等于零一个不等于零,该单元体称为单向应力状态......,如图7-4(a );三个主应力中有一个等于零,两个不等于零,该单元体称为二向应...力状态...,如图7-4(b );三个主应力均不等于零,该单元体称为三向应力状态......,如7-3。

单向应力状态和二向应力状态属平面应力状态,三向应力状态属空间应力状.....态.。

材料力学应力与应变分析

材料力学应力与应变分析
主应力和次应力
在复杂应力状态下,物体内部某一点处的主应力表示该点处最主要 的应力,次应力则表示其他较小的应力。
应力表示方法
应力矢量
应力矢量表示应力的方向和大小,通常用箭头表示。
应力张量
在三维空间中,应力可以用一个二阶对称张量表示,包括三个主应力和三个剪切 应力分量。
主应力和剪切应力
主应力
在任意一点处,三个主应力通常是不相等的,其中最大和最小的主应力决定了材料在该点的安全程度 。
采用有限元分析方法,建立高 层建筑的三维模型,模拟不同 工况下的应力与应变分布。
结果
通过分析发现高层建筑的关键 部位存在较高的应力集中,需
要进行优化设计。
结论
优化后的高层建筑结构能够更 好地承受各种载荷,提高了安
全性和稳定性。
THANKS FOR WATCHING
感谢您的观看
不同受力状态下的变形行为。
06 实际应用与案例分析
实际应用场景
航空航天
飞机和航天器的结构需要承受高速、高海拔和极端温度下 的应力与应变,材料力学分析是确保安全的关键。
汽车工业
汽车的结构和零部件在行驶过程中会受到各种应力和应变 ,材料力学分析有助于优化设计,提高安全性和耐久性。
土木工程
桥梁、大坝、高层建筑等大型基础设施的建设需要精确的 应力与应变分析,以确保结构的稳定性和安全性。
剪切应力
剪切应力是使物体产生剪切变形的力,其大小和方向与剪切面的法线方向有关。剪切应力的作用可以 导致材料产生剪切破坏。
04 应变分析
应变定义
定义
应变是描述材料形状和尺寸变化的物理量, 表示材料在外力作用下发生的形变程度。
单位
应变的单位是1,没有量纲,常用的单位还有微应变 (με)和工程应变(%)。

第七章 应力状态、应变分析和强度理论

第七章 应力状态、应变分析和强度理论

§7-3 平面应力状态分析--解析法
二、 正应力极值
1 1 ( x y ) ( x y ) cos 2 xy sin 2 2 2 d ( x y ) sin 2 2 xy cos 2 d
设α=α0 时,上式值为零,即
2
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念
3、三向(空间)应力状态 三个主应力1 、2 、3 均不等于零
2 1
3 1
3 2
1 0, 2 0, 3 0
§7-1 应力状态的概念
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态
1
1
1
1
3
3
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念 2、二向(平面)应力状态 三个主应力1 、2 、3 中有两个不等于零
3 2 3 2
3
2
1
3
1
1
1
1 0, 2 0, 3 0
Ft 0
dA ( x dAcos )cos ( x dAcos )sin ( y dAsin )sin ( y dAsin )cos 0
§7-3 平面应力状态分析--解析法
一、任意斜截面上的应力公式 已知: x , y , x , y , dA 求: ,
sin 2 xy cos 2
2 xy 2 ( 50) tan 2 0 1 x y 40 60 2 0 45 135

y =60 MPa xy = -50MPa =-30°

应力应变分析与强度理论

应力应变分析与强度理论

ax in




m
ax
2

m in
极值切应力等于极值正应力差的一半。
材料力学电子教案 C 机械工业出版社
§7.2 平面应力状态分析的解析法
三、极值切应力和主平面夹角
注意到 则 所以
tan
2 0

2 xy x
y
tan
21


x 2 xy
y
tan
20

第7章 应力应变分析与强度理论
§7.1 应力状态的概念 §7.2 平面应力状态分析的解析法 §7.3 平面应力状态分析的图解法 §7.4 三向应力状态简介 §7.5 平面应力状态的应变分析 §7.6 广义胡克定律 §7.7 强度理论概述 §7.8 四个常用的强度理论 §7.9 莫尔强度理论
材料力学电子教案 C 机械工业出版社
7.2.3 极值切应力及其作用面 一、极值切应力方位角
d 0 d
( x y ) cos 2 2 xy sin 2 0

tan
21


x 2 xy
y
二、最大、最小切应力

m m
ax in




x

2
y
2

2 xy

m m
主应力通常用1、 2 和 3 表示,它们的顺序按代 数值大小排列,即 1 2 3 。
材料力学电子教案 C 机械工业出版社
§7.1 应力状态的概念
7.1.4 应力状态的分类 1. 单向应力状态 (简单应力状态 ) 三个主应力中,只有一个不等于零 2. 二向应力状态 (复杂应力状态 ) 有两个应力不等于零 3. 三向应力状态 (复杂应力状态 ) 三个主应力都不等于零

材料力学-应力状态与应变状态分析

材料力学-应力状态与应变状态分析

s2 引起 1 s 2 E 2 s 2 E 3 s 2 E
s3 引起 1 s 3 E 2 s 3 E 3 s 3 E
小变形 i i i i i 1,2,3
1
1 E
s1
(s 2
s 3 )
广
2
1 E
s 2
(s 3
s1 )
义 虎 克 定
3
1 E
s 3
(s 1
s 2)
t T = 1 πD3 (1-a4) 16
1

1 E
[s1-
(s2+s3)]

1+
E
t
T=8.38 kN·m
二、体积应变
单元体边长:dx、dy、dz
体积:V0 = dx·dy·dz
dy
dx → dx +△dx = dx + 1dx = (1 + 1) dx
dy → dy +△dy = dy + 2dy = (1 + 2) dy
体积的绝对增量:△V = V-V0 = V0 (1+ 2+ 3)
单位体积增量:
V V0
1 2
3
体积应变 体积的相对增量
1 2
E
(s1
s2
s
3)
讨论:
V V0
1 2
E
(s1 s 2
s 3)
⒈ 若 s1 + s2 + s3>0,
则 >0 →△V >0,即体积增大;
若 s1 + s2 + s3<0,
s2
s3 dsz 1
dx
dz → dz +△dz = dz + 3dz = (1 + 3) dz

应力和应变分析

应力和应变分析

应力和应变分析应力和应变分析是材料力学中非常重要的一项内容,它们研究材料在外力作用下的变形行为。

应力是表征材料单位面积内的力的大小,而应变则是描述材料单位长度内的变形程度。

应力和应变的分析可以帮助我们理解材料的强度和刚度,以及材料在不同条件下的变形和破坏机制。

本文将从应力和应变的定义、材料的本构关系和应变测量等方面进行探讨。

首先,应力的定义为单位面积内的力的大小,常用符号为σ,其计算公式为σ=F/A,其中F为施加力的大小,A为力作用的面积。

应力的单位通常为帕斯卡(Pa),1Pa等于1N/m^2、根据作用力的不同方向,应力又可以分为正应力和剪应力。

正应力是垂直于材料截面的力,剪应力则是在材料截面上平行于切平面的力。

其次,应变是材料受力后发生的形变程度,常用符号为ε,其计算公式为ε=ΔL/L0,其中ΔL为长度的增量,L0为力作用前的长度。

应变的单位为无量纲。

类似于应力,应变也有正应变和剪应变之分。

正应变是材料在力作用下产生的沿体积方向的变化,剪应变则是在截面上平行于剪切力方向的变化。

应力和应变之间的关系可以通过材料的本构关系来描述。

材料的本构关系是材料在应力与应变之间的函数关系,通常以应力-应变曲线的形式表示。

根据材料的性质不同,应力-应变曲线可以分为线性区、弹性区、屈服区、塑性区和断裂区。

在线性区内,应力和应变呈线性关系,材料具有良好的弹性行为。

在弹性区内,材料回复到原始形状,没有永久性变形。

当应力超过一定的值时,材料进入屈服区,出现塑性变形。

塑性区内,材料的应变增大,但没有太大的应力增加。

当材料无法再承受应力引起继续塑性变形时,出现断裂。

最后,应变的测量是应力和应变分析的重要一环。

常用的应变测量方法包括拉伸试验、剪切试验、压缩试验等。

拉伸试验是最常见的应变测量方法之一,通过施加拉力来测量材料在不同应力下的应变。

剪切试验则是通过施加剪切力来测量材料的剪切应变。

压缩试验则是将材料压缩后测量其压缩应变。

材料力学第七章知识点总结

材料力学第七章知识点总结
研究应力状态的目的:找出一点处沿不同方向应力的变化
规律,确定出最大应力,从而全面考虑构件破坏的原因,建 立适当的强度条件。
材料力学
3、一点的应力状态的描述
研究一点的应力状态,可对一个 包围该点的微小正六面体——单 元体进行分析
在单元体各面上标上应力 各边边长 dx , dy , dz
——应力单元体
三、几个对应关系
点面对应——应力圆上某一点的坐标值对应着单元体某一截面
上的正应力和切应力;
y
σy
n
τ
H (σα ,τα )
τ yxHτ xy来自αxσx
(σy ,Dτyx)
2α A (σx ,τxy)
c
σ
σx +σ y
2
转向对应——半径旋转方向与截面法线的旋转方向一致; 二倍角对应——半径转过的角度是截面法线旋转角度的两倍。
α =α0
=
−2⎢⎡σ x

−σ y
2
sin 2α0
+τ xy
cos

0
⎤ ⎥

=0
=
−2τ α 0
τα0 = 0
tg
2α 0
=
− 2τ xy σx −σ y
可以确定出两个相互垂直的平面——主平面,分别为
最大正应力和最小正应力所在平面。
主平面的方位
(α0 ; α0′ = α0 ± 900 )
主应力的大小
材料力学
四、在应力圆上标出极值应力
τ
τ max
x
R
O σ min
2α12α0A(σx ,τxy)
c
σ
σ
max
(σy ,τyx) D

第七章 应力与应变分析 强度理论4

第七章 应力与应变分析 强度理论4

2 x
29.8MPa 3.72 MPa
(单位 MPa)
1 29.28MPa, 2 3.72MPa, 3 0
1 29.28MPa < 30MPa
某结构上危险点处的应力状态如图所示,其中σ= 116.7MPa,τ=46.3MPa。材料为钢,许用应力[σ]= 160MPa。试校核此结构是否安全。
3)强度理论:
材料的破坏与上述因素有关(某一方面),在长期的实践 中,对材料失效的原因提出各种不同的假设,形成各种不 同的判断准则,统称为强度理论(关于构件失效的假说) 4)意义: 找出失效原因 解决实际问题 提出强度理论
用简单的试验模拟
四、介绍四种强度理论
1、关于断裂失效的强度理论 ------适用于脆性材料 1)最大拉应力理论 十七世纪(1638年)由伽利略提出来的关于强度判断 的理论,亦称第一强度理论 认为: 材料失效的原因是由于材料内部的最大拉应力引 起的,无论应力状态如何,只要拉应力达到某一 限值,材料断裂。 模拟: 用简单的试验模拟,如单向拉伸。
2 50MPa
max 1 3
2
3 50MPa
65MPa
例2 已知如图所示过一点两个平
面上的应力。试求:
(1)该点的主应力及主平面;
(2)两平面的夹角。
1.四个常用的古典强度理论的相当表达式分 为 、 、 、 。 2.当矩形截面钢拉伸试样的轴向拉力F = 20 kN时,
三向拉应力, 1 2 3>0且相差不大时,发生脆 性破坏,尽管材料可能是塑性的。选择第一、二强度 理论。 三向压应力, 1 2 3<0 且相差不大时,发生 塑性破坏,尽管材料可能是脆性的。选择第三、四强 度理论。

第七章 应力状态与应变状态分析

第七章  应力状态与应变状态分析

§7–1 应力状态的概念
铸铁
P P
2、组合变形杆将怎样破坏? M
2、State of stress at a point:
There are countless sections through a point. The gathering of stresses in all sections is called the state of stress at this point. 3、Element:Element— Delegate of a point in the member. It is a infinitesimal geometric body enveloping the studied point. In common use it is a correctitude cubic
A
P
sx
A
sx
t yx
P
M x
sx
tzx
B
z
C
txz
sx
C
t xy
六、原始单元体(已知单元体):
[例1] P 画出下列图中的A、B、C点的已知单元体。 A P
sx
A
sx t yx
y
B z P M
sx
tzx
C
x
B
txz
sx
C
t ห้องสมุดไป่ตู้y
7、Principal element、principal planes、principal stresses:
量,则两个面上的这两个剪应力分量一定等值、方向相对或相
离。
证明 : 单元体平衡
sy
y
M
z
0
(t xydydz)dx(t yxdzdx)dy0

材料力学——应力分析

材料力学——应力分析

,则α1
405(τx0) 405(τx0)
7-2 二向应力状态分析--解析法
例题1:一点处的平面应力状态如图所示。
已知 x 60MP,a txy 30MPa, y 40MP,a 30。
试求(1) 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
y t xy
x
目录
7-2 二向应力状态分析--解析法
t
ty(xdsAin)co sy(dsAin)sin0
y
Ft 0
td Atx(ydc Ao )sco sx(dc Ao )ssin ty(xdsAin)siny(dsAin)co s0
目录
7-2 二向应力状态分析--解析法
{ 利用三角函数公式
co2 s 1(1co2s)
2
sin 21(1co2s)
d d (x y)si2 n2 txc y o 2 s
设α=α0 时,上式值为零,即
t (xy )s2 i0 n 2xc y 2 o 0 s 0
2 (x σ 2 σ y) si0n τ x 2 c yα o0s 2 2α α 0 τ 0
即α=α0 时,切应力为零 目录
2
2 s ic n o s si2 n
并注意到 t yx t xy 化简得
t 1
1
2 (xy) 2 (xy)c2 o s xs y 2 in
t1 2(xy)si2 ntxy co 2s
目录
7-2 二向应力状态分析--解析法
3. 正应力极值和方向
确定正应力极值
t 1 2 (xy ) 1 2 (xy )c2 o s xs y 2 in
(2)主平面的位置
tg2α0
2τ xy σx σy

材料力学第七章应力应变分析

材料力学第七章应力应变分析

x
y
2
x
2
y
cos 2
xy sin 2
x
y
2
sin 2
xy cos 2
1、最大正应力的方位

d d
2[
x
y sin 2
2
xy cos 2 ] 0
tg 2 0
2 xy x
y
0 0
90
0 和 0+90°确定两个互相垂直的平面,一个是最大正应 力所在的平面,另一个是最小正应力所在的平面.
的方位.
m
m a
A
l
解: 把从A点处截取的单元体放大如图
x 70, y 0, xy 50
A
tan 20
2 xy x y
2 50 1.429
1
3
(70) 0
0
A
x
0
27.5 62.5
3
1
因为 x < y ,所以 0= 27.5° 与 min 对应
max min
x
2
y
(
x
2
y )2
三、应力状态的分类
1、空间应力状态
三个主应力1 、2 、3 均不等于零
2、平面应力状态
三个主应力1 、2 、3 中有两个不等于零
3、单向应力状态
三个主应力 1 、2 、3 中只有一个不等于零
2 3
2
1
1
1
1
1
3 2
2
1
例题 1 画出如图所示梁S截面的应力状态单元体.
F
5
S平面
4
3
l/2
2
l/2 1
任意一对平行平面上的应力相等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
tg20
2 xy x
y
mm
ax in
x
y
±
(x
2
y
2
)2
2 xy
0 0极值正应力就是主应力!
明德 砺志 博学 笃行
max在剪应力相对的项限内,
且偏向于x 及y大的一侧。
y
2
主 单元体
x
令:d d
0
1
tg212xxy y
y
xy 1
Ox
mmainx
± (x
y
2
)2 2 xy
014 , 即极值剪应力面与主面 成450
(4)最大切应力
max
1
2
2
22.1MPa
明德 砺志 博学 笃行
§7-4 二向应力状态分析——图解法
y
n
x
2
y
x
2
y
c
os2
xysin2
y
xy
x
x
2
y
s
in2
xyc
os2
Ox
对上述方程消去参数(2),得:
x
y
xy
x
2
y
2
2
x
2
y
2
2 xy
n
明德 砺志 博学 笃行
y n 二、应力圆的画法
明德 砺志 博学 笃行
例 分析受扭构件的破坏规律。
解:确定危险点并画其原
C
yx
始单元体
M
C
xy
x y 0
xy
T WP
xy
求极值应力
y
yx
m m
ax in
x
y
2
( x
2
y
)2
2 xy
Ox
2 xy
明德 砺志 博学 笃行
1 ; 20; 3
tg20
2 xy x
y
0
45
max min
平面应力状态的普遍形式:在常见的受力
构件中,在两对平面上既有正应力σ又有 切应力τ。可将该单元体用平面图形来表
示。
y
x xy
明德 砺志 博学 笃行
σ、τ正负号规定:
y
σ——拉为正,压为负;
τ——以对微单元体内任意一点取矩 为顺时针者为正,反之为负;
x xy
单元体各面上的已知应力分量 x 、 xy 和 y 、 yx ,
( x
2
y
)2
2 xy
tg212xxy y 010
破坏分析
低碳钢 : s 240 MPa ; s 200 MPa
低碳钢
灰口铸铁: Lb 98 ~ 280MPa yb 640 ~ 960MPa;b 198 ~ 300MPa
铸铁
明德 砺志 博学 笃行
例 图示应力状态(单位:Mpa),求:(1)斜截 面上的应力;(2)主应力的大小;(3)主平面方位, 并在单元体上绘出主平面位置和主应力方向;(4) 最大切应力。
确定任一斜截面上的未知应力分量,从而确定该点 处的主应力和主平面。
明德 砺志 博学 笃行
一、任意斜截面上的应力
规定: 截面外法线同向为正; a绕研究对象顺时针转为正; 逆时针为正。
y
n
x
y
xy
Ox
x
y xy
明德 砺志 博学 笃行
y 设:斜截面面积为A,由分离体平衡得:
n
x
Fn 0
y
xy
A x A cos2 xy A cos sin
Ox
y Asin 2 yx Asin cos 0
x
y
2
x
y
2
cos2
xy sin 2
x
同理:
y xy
n
x
y
2
sin 2
xy
cos2
二、极值应力
明德 砺志 博学 笃行
令 : d
d
0
x y
sin 20 2 xy cos20 0
由此的两个驻点:

01
( 01
)和两各极值:
重要结论
不仅横截面上存在应力, 斜截面上也存在应力;不仅要 研究横截面上的应力,而且也 要研究斜截面上的应力。
明德 砺志 博学 笃行
应力
指明
哪一个截面上? 哪一点?
过一点不同方向面上应力的集 合,称之为这一点的应力状态。
明德 砺志 博学 笃行
应力表示——单元体:
①dx、dy、dz(微小的正六面体) ②单元体某斜截面上的应力就代表了构件内
解:(1)易知 30
x 40MPa xy 10MPa
y 20MPa

1 2
(
x
y
)
1 2
(
x
y ) cos2
x sin 2
26.4MPa
1 2
(
x
y )sin 2
x cos2
13.66MPa
明德 砺志 博学 笃行
(2)主应力大小
max
1 2
(
x
y)
( x
y )2
明德 砺志 博学 笃行
第七章 应力和应变分析
§7-1 应力状态概述
§7-2
二向和三向应力状态的实例
§7-3 二向
应力状态分析——解析法
§7-4 二向应力
状态分析——图解法
§7-5 三向应力状

§7-8 广义胡克定律
§7-9 复杂应力状态的应变能密度
§7-
10 强度理论概论
§7-11
四种常用强度理论
明德 砺志 博学 笃行
对应点同方位截面上的应力。
P B
A
B
D
C
dz
dx
dy
C
B、C——单向受力,τ=0
A——纯剪切, σ=0
D
D——既有 σ,又有τ
明德 砺志 博学 笃行
主平面——单元体的三个相互垂直的面上都无切应 力。 主应力——主平面上的正应力(也是单元体内各截 面上正应力的极值)。 通过结构内一点总可找到三个相互垂直的截面皆为 主平面。
对应的有三个主应力,相应的用 1 、 2 、 3 来
表示,它们按代数值的大小顺序排列,即
1 2 3
明德 砺志 博学 笃行
简 单 应 力 状 态— 单 向 应 力 状 态 ( 只 有 一个 不 等 于 零 的 主 应 力





态—
平 面 应 力 状 态 ( 有 两 个不 等 于 零 的 主 应 力 )
a xy x
建立应力坐标系,如下图所 示,(注意选好比例尺)
y
在坐标系内画出点A( x,
Oa n D(xa , a)
4
x2
44.1MPa
min
1 2
(xy)来自( xy )24
x2
15.9MPa
故,1 44.1MPa, 2 15.9MPa, 3 0MPa
(3)主平面方位
tan 20
2 x x y
1
0 67.5 或157 .5
法线与x轴夹角为67.5º的主平面上对应的是2。
明德 砺志 博学 笃行
§7-1 应力状态概述
问题的提出: 为什么塑性材料拉伸时会出现滑移线? 为什么脆性材料扭转时沿45º螺旋面断开?
明德 砺志 博学 笃行
p cos 0 cos2
p
sin
0
2
sin 2
单向应力状态
明德 砺志 博学 笃行
sin 2 cos 2
纯剪切应力状态
明德 砺志 博学 笃行
空 间 应 力 状 态 ( 三 个 主应 力 都 不 等 于 零 )
明德 砺志 博学 笃行
§7-2 二向和三向应力状态的实例
F
D 2
p D2
p 44
D
FN
0
pl D sind
2
plD
2 l plD 0
pD 2
明德 砺志 博学 笃行
明德 砺志 博学 笃行
§7-3 二向应力状态分析——解析法
相关文档
最新文档