管壳式热交换器设计全解(5)

合集下载

管壳式热交换器讲解

管壳式热交换器讲解

目录1、设计任务及要求........................................2、设计方案的确定及流程说明...................... 2.1管壳式换热器的型式............................2.2换热器的流程................................2.3换热器的流程图 ................................3、换热器设计................................3.1确定物性数据............................3.2计算平均温差3.3计算热负荷3.4估算传热面积................................4、工艺结构尺寸..................................4.1选管子规格............................4.2总管数和总管程数............................4.3确定管子在管板上的排列方式.....................4.4管壳内径的确定.....................4.5绘管板布置图确定实际管子数目.....................4.6折流板的计算.....................4.7其他附件.....................4.8接管.....................5、管壳式换热器的核算.............................5.1传热温差的校正.....................5.2总传热系数K的计算.....................5.3传热面积校核.....................5.4壁温的计算.....................5.5阻力计算和核算压力降.....................6、设计成果总表..........................................7 分析讨论..................................8、换热器的设计图纸..................................9.、参考文献............................换热器课程设计任务书一、设计题目:设计一台换热器二、操作条件:1、苯:入口温度90℃,出口温度40℃。

管壳式热交换器设计全解共83页

管壳式热交换器设计全解共83页

管壳式热交换器设计全解
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

管壳式热交换器设计全解83页PPT

管壳式热交换器设计全解83页PPT
管壳式热交换器设计全解

6、黄金时代是在我们的前面,而不在 我们的 后面。
Байду номын сангаас

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!

管壳式换热器结构介绍

管壳式换热器结构介绍
下图为不同介质在不同设备类型中的允许压力降参考值:
3、管壳程流体的确定
主要根据流体的操作压力和温度、可以利用的压力降、结构和腐蚀 特性,以及所需设备材料的选择等方面,考虑流体适宜走哪一程。下面 的因素可供选择时考虑:
适于走管程的流体有水和水蒸气或强腐蚀性流体;有毒性流体;容易 结构的流体;高温或高压操作的流体等。
1、管壳式换热器结构介绍
管壳式换热器:是以封闭在壳体中管束的壁面作为传热面的间 壁式换热器,这种换热器结构较简单、操作可靠,可用各种结构材 料(主要是金属材料)制造,能在高温、高压下使用,是目前应用 最广的类型。(设计制造遵循标准:国外 TEMA ASME 国内 GB151、GB150)
换热器封头选取原则
换热器折流板
单弓形折流板:优点是可以达到最大的错流,缺点是压降较高,且窗口 的管束容易发生振动;设计要点是折流板圆缺率在17%-35%之间,折流 板间距在0.2-1.0倍的壳径。此种类型折流板适用于大部分场合。
NITW:该折流板窗口不布管,管少,需要的壳体直径大。设计要点:15%的 折流板圆缺率。适合的场合是气体振动和压降受限。
谢谢!
K型壳体:主要用于管程热介质,壳侧蒸发的工况,在废热回收条件下使 用。
X型壳体:冷热流体属于错流流动,其优点是压降非常小,当采用其他壳 体发生振动,且通过调整换热器参数无法消除该振动时可以使用此壳体 形式,其不足之处是流体分布不均匀,X型壳体并不经常使用。
在化工工艺手册中,I型壳体类型可EDR软件中的不是同一种壳体, 其形式见I1,它的使用方式仅有一种搭配,就是BIU,U型管换热器。
螺纹管性能特点
在管子类型中,螺纹管属于管外扩展表面的类型,在普通换热管外 壁轧制成螺纹状的低翅片,用以增加外侧的传热面积。螺纹管表面积比 光管可扩展1.6-2.7倍,与光管相比,当管外流速一样时,壳程传热热阻 可以缩小相应的倍数,而管内流体因管径的减小,则压力降会略有增大。 螺纹管比较适宜于壳程传热系数相当于管程传热系数1/3-3/5的工况。

管壳式热交换器设计全解

管壳式热交换器设计全解
两流体的流程中通道数不一定相等 习惯上以(流程×通道数)来表示流程板片的组合
1 4 1 4
23 23
1 4 2 2
44
1 4 2 2
1×4表示甲流体为单流程、四通道 2×2表示乙流体为两流程、两通道
b 密封垫圈
密封作用,防止介质漏出(外漏)
在两板片间造成一定的间隙,形成介质的流道(内漏)
高效就是换热效率高,结构紧凑 即在增加换热器的传热面积的同 时,也要减小换热器的体积 “紧凑性”—热交换器的单位体 积中所包含的传热面积的大小, m2/m3 紧凑式热交换器:>700m2/m3 非紧凑性热交换器:<700m2/m3
3
第一节 螺旋板式热交换器
螺旋板式换热器
螺旋板式换热器由两块金属薄板焊接在一块分隔板上并卷制成螺 旋状而构成的。卷制后,在器内形成两条相互隔开的螺旋形通道, 在顶、底部分别焊有封头和两流体进出口接管。其中有一对进出 口接管是设在园周边上,而另一对进出口则设在圆鼓的轴心上。 换热时,冷、热流体分别进入两条通道,在器内作严格的逆流流 动。 4
具有的共同特点
位缺口; ⑥板片组装后保持流道一定的间 隙、并使流层“网状”化的触点, 可使板片在两侧介质有压差情况 下减少板片的变形; ⑦使介质能均匀沿板片流道宽度 分布的导流槽;
37
介质在板片间的流动
单边流 对角流
单边流
对角流
换向板片:根据流程的需要,相应不冲出某些角孔,介质遇 到盲孔即拐弯,进行换向,增加介质的流程
操作压力和温度不能太高,尤其是所能承受的压力比较低,操作 压力只能在20atm以下,操作温度约在300-400℃以下。
不易检修,整个换热器已被卷制焊接为一个整体,一旦发生中间 泄漏或其他故障,设备即告报废。

管壳式换热器设计

管壳式换热器设计
浮头式换热器的特点: 1.3.1.2.1 优点: 1)管束可以抽出,以方便清洗管程、壳程; 2)壳程壁与管壁不受温差限制; 3)可在高温、高压下工作,一般温度T≤450℃,P
≤6.4MPa;
4)可用于结垢比较严重的场合; 5)可用于管程腐蚀场合. 1.3.1.2.2 缺点: 1)浮头端易发生内漏; 2)金属材料耗量大,成本高20%; 3)结构复杂.。 1.3.1.2.3 可用的场合: 1)管壳程金属温差很大场合; 2)壳程介质易结垢要求经常清洗的场合;
一、 概述
1.1 换热器的应用 使热量从热流体传递到冷流体的设备称为换热
设备。它是化工、炼油、动力、食品、轻工及其它 许多工业部门广泛使用的一种通用设备。在化工厂 中,换热设备的投资约占总投资的10%-20%。 在工业生产中,换热设备的主要作用是使热量 由温度较高的液体传递给温度较低的流体,使流体 温度达到工艺流程规定的指标,以满足工艺流程上 的需要。此外,换热设备也有回收余热、废热特别 是低位热能的有效装置。如:转化器夹套冷却水因 带走设备的反应热后使其从进入时的温度60-80℃ 上升到近100 ℃,从夹套流出的热水进入一个冷凝 器,加热工业水,从而提高热能的总利用率,降低 燃料消耗和电耗,提高工业生产经济效益。
1.3.1.1.2 缺点:
1)不适用于换热管与壳程圆筒的热膨胀变形差很大的场 合,管板与管头之间易产生温差应力而损坏;(为了减少 热应力,通常在固定管板式换热器中设置柔性元件.如: 设置膨胀节.来吸收热膨胀差)
2)壳程无法机械清洗,不适用于壳程结垢的场合;
3)管子腐蚀后造成连同壳体报废,壳体部件寿命决定于 管子寿命,故设备寿命相对较低。
1.3.1.1.3 适用的场合:
1)设备需要尽少使用法兰密封面的场合;

管壳式换热器设计说明书

管壳式换热器设计说明书

1.设计题目及设计参数 (1)1.1设计题目:满液式蒸发器 (1)1.2设计参数: (1)2设计计算 (1)2.1热力计算 (1)2.1.1制冷剂的流量 (1)2.1.2冷媒水流量 (1)2.2传热计算 (2)2.2.1选管 (2)2.2.2污垢热阻确定 (2)2.2.3管内换热系数的计算 (2)2.2.4管外换热系数的计算 (3)2.2.5传热系数K计算 (3)2.2.6传热面积和管长确定 (4)2.3流动阻力计算 (4)3.结构计算 (5)3.1换热管布置设计 (5)3.2壳体设计计算 (5)3.3校验换热管管与管板结构合理性 (5)3.4零部件结构尺寸设计 (6)3.4.1管板尺寸设计 (6)3.4.2端盖 (6)3.4.3分程隔板 (7)3.4.4支座 (7)3.4.5支撑板与拉杆 (7)3.4.6垫片的选取 (7)3.4.7螺栓 (8)3.4.8连接管 (9)4.换热器总体结构讨论分析 (10)5.设计心得体会 (10)6.参考文献 (10)1.设计题目及设计参数1.1设计题目:105KW 满液式蒸发器 1.2设计参数:蒸发器的换热量Q 0=105KW ; 给定制冷剂:R22;蒸发温度:t 0=2℃,t k =40℃,冷却水的进出口温度: 进口1t '=12℃; 出口1t "=7℃。

2设计计算 2.1热力计算 2.1.1制冷剂的流量根据资料【1】,制冷剂的lgp-h 图:P 0=0.4MPa ,h 1=405KJ/Kg ,h 2=433KJ/Kg ,P K =1.5MPa ,h 3=h 4=250KJ/Kg ,kgm04427.0v 31=,kgmv 3400078.0=图2-1 R22的lgP-h 图制冷剂流量skg skg h h Q q m 667.0250405105410=-=-=2.1.2冷媒水流量水的定性温度t s =(12+7)/2℃=9.5℃,根据资料【2】附录9,ρ=999.71kg/m 3,c p =4.192KJ/(Kg ·K)smsmt Q P 333'210vs 10011.5)710(192.471.999105)t (c q -⨯=-⨯⨯=-=‘ρ2.2传热计算 2.2.1选管为提高冷媒侧的对流换热系数,采用外螺纹管,根据资料【3】p71换热管用低翅片管序号3,规格φ16×1.5,如图所示:mm 25.1s f = mm 86.15d t = mm 5.1h = mm 11d i = mm 86.12d b =,每米管长管外表面积mm15.0a 2of =,螺纹管增强系数35.1=ϕ,铜管导热系数)·m (39802C W=λ图2-2 外螺纹管结构图 2.2.2污垢热阻确定冷媒水平均温度C t o s 5.9=,制冷剂C t o 20=,水的流速取s m s m u 15.1>=,根据资料【1】p198表9-1,管内污垢系数W C o2i m 000045.0=γ 管外污垢系数W C o2o m 00009.0=γ2.2.3管内换热系数的计算冷媒水的定性温度C t o s 5.9=,查物性表得:371.999mkg=ρ,7275.9=r p ,s m10330.126-⨯=υ ,)m (10285.572K W ⋅⨯=-λ,暂取水的流速smu 7.1=,管程设计为2程,每流程管子数317.11114.350114d q 422vs=⨯⨯⨯==uZ iπ,当Z=31时,冷媒水的实际流速为smsmzd q u ivs702.1311114.310011.544232=⨯⨯⨯⨯==π,1407710330.11011702.1Re 63=⨯⨯⨯==--υiud根据资料【2】6-15,828.947275.914077023.0r e 023.0u 3.08.03.08.0=⨯⨯==P R N ,)·m (4938)·(101110285.57828.94d ·o2o232iC WC m WNu a i =⨯⨯⨯==--λ2.2.4管外换热系数的计算平均传热对数温差:C C t t t t t Oo m 213.7510ln 510'"ln'"=-=∆∆∆-∆=∆管外换热系数45.0082.0002.3P θα=,其中20000-=-=w w t t t θ2.2.5传热系数0K 计算传热过程分成两部分:第一部分是热量经过制冷剂的传热过程,其传热温差为0θ;第二部分是热量经过管外污垢层、关闭、管内污垢层以及冷媒水的传热过程。

管壳式热交换器计算

管壳式热交换器计算

列管式换热器的设计计算列管式(管壳式)换热器的设计计算1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。

(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。

(3) 压强高的流体宜走管内,以免壳体受压。

(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。

(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。

(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。

(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。

在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。

2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。

但是流速增加,又使流体阻力增大,动力消耗就增多。

所以适宜的流速要通过经济衡算才能定出。

此外,在选择流速时,还需考虑结构上的要求。

例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。

管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。

这些也是选择流速时应予考虑的问题。

3. 流体两端温度的确定若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。

若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。

例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。

换热器设计的说明

换热器设计的说明

图10-7 管壳式换热器示意图折流板壳程流体入口壳程流体出口换热管管壳管程流体出口管程流体入口管壳式换热器设计的相关说明换热管规格常用换热管规格有ф19×2 mm 、ф25×2 mm(1Crl8Ni9Ti)、ф25×2.5 mm(碳钢10)。

标准管子的长度常用的有1.0m ,1.5m ,2.0m ,2.5m ,3.0m ,4.5m ,6.0m ,7.5m ,9.0m ,12.0m 等。

各组统一选用ф19×2 mm 的管子,管材的导热系数43.2W/(m·K) 流速的确定当流体不发生相变时,介质的流速高,换热强度大,从而可使换热面积减少、结构紧凑,成本降低,一般也可抑止污垢的产生。

但流速大也会带来一些不利的影响,诸如压降ΔP 增加,泵功率增大,且加剧了对传热面的冲刷。

热交换器常用流速的范围见表2-1。

推荐的管内流速0.6-1.2m/s 壳侧流速0.5-1 m/s总管数、管程数、壳程数的确定(1)单程管子根数的确定根据选定的流速u 和管子内径计算单根管子的流量ρπ⨯⨯='u d q i m241单程管子的根数mm q q n '=/1 应取整数,最后还应该按照实际布置的方便性进行调整。

(2)若按单程设计每根管子的长度 可根据估算的传热面积计算od n Al π=' (3)管程数的确定根据上面计算的长度,再选取合适的标准管子的长度 如选取管长为l ''m ,则 管程数l l m '''=管程数应取2的倍数,且不亦过大。

(4)换热器的管子数,1n m n ⨯= 壳体直径壳体内径应不小于管板直径,初步设计中,可以按下式确定 b n P D c t '+-=2)1(式中 D —— 壳体内径,mm P t 两管子中心的距离称为管心距(或管间距),在此用P t 表示,一般是管外径的1.25倍。

管壳式热交换器(PPT课件)

管壳式热交换器(PPT课件)

管外纵流条件下,管外传热系数为光管的1.6倍.
传递热量相同,泵功率相同,取代光管,节约材 料30%-50%
螺旋槽

主要用于强化管内气体或液体的传热,强化管内液
体的沸腾或管内外蒸气的冷凝,管内传热系数为光管 传热系数的1.5-2.0倍;管外传热系数为光管传热系数 的1.5倍.
缩放管
波纹管


波纹管优点
(4)填料函式换热器
填料函式换热器 1.纵向隔板;2.浮动管板;3.活套法兰;4.部分剪切环;5.填 料压盖;6.填料;7.填料函
填料函式密封
缺点:填料处易泄漏。 优点:结构简单,加工制造方便,造价低,管内和管
间清洗方便 适用场合:4MPa 以下,且不适用于易挥发、易燃、易 爆、有毒及贵重介质,使用温度受填料的物性限制。

带膨胀节的固定管板式换热器 图7-3 带补偿器的固定管板式换热器
(2) U形管式换热器
U形管式换热器 1.中间挡板;2.U形换热管;3.排气口;4.防冲板;5.分程隔板
U形管式换热器
U型管式换热器 图7-6 U形管式换热器 优点:结构简单,价格便宜,承受能力强,不会产生热应力。 缺点:布板少,管板利用率低,管子坏时不易更换。 适用场合:特别适用于管内走清洁而不易结垢的高温、高压、 腐蚀性大的物料。
第二章 管壳式热交换器
间壁式热交换器

管式热交换器
管壳式、套管式、螺旋管式等

板式热交换器


延伸表面热交换器
蓄热式热交换器
管壳式换热器
2.1 管壳式换热器的分类
基本类型 固定管板式换热器
U形管式换热器 浮头式换热器 填料函式换热器
(1)固定管板式换热器

管壳式热交换器

管壳式热交换器
• 理想管束:管子与折流板上的管孔之间、壳体内壁与 折流板的外缘之间、壳体内壁与管束外缘之间均无间 隙的换热管束
廷克(Tinker)壳侧流体流动模型
A-管孔泄漏
B-横向冲刷管束 的流路
C-管束最外层管 子与壳体间旁路
D-折流板与壳体 的间隙
E-分程隔板造成 的旁路
流路A:该流路相对管束轴,主要是平行流。对传热也 有效,因为它与传热管能有效地紧密接触。但B>A。
arccos(
Ds 2h DL
)
2
arccos(
Ds 2h DL
)
折流板切开中心角(单位:弧度)
2 arccos(1 2h ) Ds
正方形排列或正方形转角排列时,两折流板间错流的流通截面积:
Ac
ls
Ds
DL
( DL sn
do
)(s
do)
三角形排列时:
Ac
ls
Ds
2.1 管程流通截面积:管子尺寸、数目及 程数,管子排列方式确定;
2.2 壳体直径 2.3 壳程流通截面积:纵向隔板或折流板
数目与尺寸 2.4 进出口接管尺寸
2.1 管程流通截面积的计算
单管程流通截面积: 所需换热管管数: 所需换热管管长:
At = M t t wt n= 4At di2
L= F n d
4. 管壳式换热器的流动阻力计算
4.1 管程阻力计算 4.2 壳程阻力计算
表2.10 管壳式换热器允许的压降范围
换热器操作压力(Pa)
允许压降(Pa)
P<105(绝对压力)
ΔP=0.1P
P=0~105(表压)
ΔP=0.5P
P>105(表压)

管壳式热交换器设计分析

管壳式热交换器设计分析

管壳式热交换器设计分析发表时间:2019-09-21T23:27:30.610Z 来源:《基层建设》2019年第19期作者:何清凤[导读] 摘要:管壳式换热器的设计所涉及的相关设计参数极多,且难度也较强。

佛山神威热交换器有限公司 528000摘要:管壳式换热器的设计所涉及的相关设计参数极多,且难度也较强。

管壳式交换器实用一种用于各大领域的工业设备,对国民经济有着非常关键的作用,其设计工程的核心是管壳式换热器的换热效率。

关键词:管壳式;交换器;设计前言:热交换器是进行热交换操作的通用工艺设备,被广泛应用于各个工业部门,尤其在石油、化工生产中应用更为广泛。

换热器分类方式多样,按照其工作原理可分为:直接接触式换热器、蓄能换热器和间壁式换热器三大类,其中间壁式换热器用量最大,间壁式换热器又可以分为管壳式和板壳式换热器两类,其中管壳式换热器以其高度的可靠性和广泛的适应性。

本文主要阐述了管壳式热交换器的概念及设计原理。

1管壳式换热器概念管壳式换热器具备结构简单且牢固、操作弹性较大以及应用材料广泛等特性,现阶段仍是化工、石油以及石化行业汇总所运用的一种重要的热交换器,特别适用于高温、高压工况,甚至在较大型的换热设备中它也具有很大的应用优势。

管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。

在管壳转热器内进行换热的两种流体,一种在管内流动,其行程成为管程;一种在管外流动,其形成成为壳程。

管束的壁面即为传热面。

2设计原则在设计热交换器是必须正确选定那一种流体走管程,那一种流体走壳程。

这是要考虑下述一些原则:(1)要尽量提高使传热系数受到限制的那一侧的换热系数,使传热面两侧的传热条件尽量接近。

(2)尽量节省贵重金属材料,以降低制造成本。

(3)要便于清洁积垢,以保证运行可靠。

(4)在温度较高的热交换器中应减少热量损失,而在制冷设备中则应减少冷量损失。

管壳式热交换器设计全解5

管壳式热交换器设计全解5
18
壳程为单相清洁液体时,折流板缺口上下布置 通气口
过程设备设计
通液口
(b)
(a)
折流板缺口布置
19
过程设备设计
卧式换热器的壳程介质为气液相共存或液体中含有固 体颗粒时,折流板缺口应垂直左右布置,并在折流板 最低处开通液口
通液口
(c) 折流板缺口布置
20
折流板上管孔与换热管
过大—泄露严重,不利传热;
14
圆盘-圆环形折流板
15
图2-22 单弓形折流挡板
图2-24 圆盘—圆环形折流挡
16
17
布置原则: a.一般应按等间距布置 b.管束两端的折流板尽可能靠近壳程进出口接管
c.间距:Lmin不小于0.2管内径Di,且不小于 50mm; Lmax不大于Di;
折流板缺口布置原则: a.壳程为单相清洁流体时,折流板缺口 (卧式) 应水平上下布置。 若气体中含有少量液体, 应在缺口朝上的 折流板最低处开设通液口; 若液体中含有少量气体,应在缺口朝下 的折流板最高处开通气口; b.壳程介质为气液共存或液体中含有固体 颗粒时,折流板应垂直左右布置,并在 折流板最低处开通液口;
挡挡 板管
挡挡管 管
挡管结构
32
中间挡板
中间挡板
U形管束中心部分存在较大间隙 ,防止管间短路;
中间挡板一般与折流板点焊固定;
壳体DN≤500mm时→设置1块挡板
500<DN<1000mm时→设置2块挡板
DN≥1000mm时→设置不少于3块挡板
33
(5)壳程分程(纵向隔板)
目的: a.满足工艺设计要求 b.增大壳程流体传热系数
⑴壳体
①接管→焊在壳体上,供壳程流体进、出。 ②防冲挡板

【精品课件】管壳式热交换器设计全解

【精品课件】管壳式热交换器设计全解
方法 作图
牛顿迭代法。
在某一钢制立式管壳式热交换器中用饱和温度ts=111.38℃ 的蒸汽加热某种溶液,已知其管径为Φ32×2mm,管高l=1.5m, 材料的导热系数λ=52w/(m ℃),管内溶液的平均温度t2=68 ℃, 换热系数α2=3348w/(m2 ℃) 求蒸汽侧的管壁温度tw1。
解 溶液侧单位传热面的传热量
1.5 wn2
2
气体非等温流动 附加阻力△Pa
总阻力
内阻力△Ps
△P=△Pi+△Pl+△Pa + △Ps
对于多管程换热器,流体总阻力应等于各程直管阻力、
回弯阻力及进、出口阻力之和(通常忽略进、出口阻力):
p i p 1 p 2 F tN s N p
p1—流体流经直管的压力降,N/m2; p2—流体流经回弯管时的压力降,N/m2; Ft—结垢修正系数,25×2.5mm1.4,
T1,T2——两辐射物体的绝对温度
三、壁温的计算
放热侧壁温 吸热侧壁温
tw 1t1K 1rs,1 tmt1q 1rs,1
1
1
tw 2t2K 1rs,2 tmt2q 1rs,2
2
2
式中:
rs,1,rs,2——分别为放热侧、吸热侧污垢热阻
注意: K,α应在同一基准表面计算
进出口连接管阻力△PN
沿程阻力△Pi
Pi
L di
wt 2
2
i
式中: λ——莫迪圆管摩擦系数
wt——管内流体流速
φi——管内流体粘度校正因子
当Re>2100 φi=(μ/μw)-0.14
当Re<2100 φi=(μ/μw)-0.25
回弯阻力△Pr
Pr
4 wt2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流体1的放热量 流体2的吸热量
qm1C1 t1' t1''
qm2C2 t2'' t2'
热交换器的传热热量
A kt1 t2 dA
不考虑热交换器向外界散热热量
流体1的放热量 流体2的吸热量 热交换器的传热热量
qm1C1 t1' t1'' W1 t1' t1''
dF 微元传热面积, m2
K 整个传热面上的平
均传热系数,w/ (m2·℃)
F 传热面积, m2
t 在此微元传热面处两种 tm 两种流体之间的平
流体之间的温度差,℃
均温差,℃
Q 热交换器的热负荷,W
想求得 F ,必须已知 K 、tm 、Q 。
2、热平衡方程:
Q M1i1 i1 M 2 i2 i2
3 由 W1t1= W2t2 =Q,还可以知道,在热交换器内,热容量
越大的流体,温度变化值越小,热容量越小的流体,温度变
化值越大
4 计算流体的热容量时,M与c的单位必须一致
5 已知热交换器热负荷的条件下,热平衡方程可用于确定 流体的流量
2.2热交换器传热计算的基本方法:
平均温差法 效率(效能)-传热单元数法(η-NTU) 一、平均温差法
以及比热容C2,C1是常数;
(2)传热系数是常数;
t1
(3)换热器无散热损失;
(4)换热面沿流动方向的导热量可
以忽略不计。
要想计算沿整个换热面的平均温差,
t2
首先需要知道当地温差随换热面积的
变化,然后再沿整个换热面积进行平均。
t1 dt1 t1 t2 dt2 t2
在假设的基础上,并已知冷热流体的 进出口温度,现在来看图中微元换热 面dA一段的传热。温差为:
② 适用于任何流体
t1
t2
Q M1 C1dt1 M 2 C2dt2
t1
t2
适用于无相变流体
M1 M 2 分别为热流体与冷流体的质量流量 ,Kg/s
i1 i2 分别为热流体与冷流体的焓,J/Kg
C1 C2 分别为两种流体的定压质量比热,J/(Kg·℃)
Q M1c1 t1 t1t1 M1c1 t1 t2t1 M1c1t1 W1t1
t t1 t2 dt dt1 dt2
t1 t1 dt1 t1
在固体微元面dA内,两种流体的换 热量为:
d kdA t
t2 dt2 t2
t2
对于热流体: 对于冷流体:
1 d qm1c1dt1 dt1 qm1c1 d
1 d qm2c2dt 2 dt2 qm2c2 d
dt
W1 W2 分别为热、冷流体的热容量,W/K
对应单位温度变化产生的流动流体的能量存储速率
讨论:
1 考虑热损失的情况下:Q1 Q2 QL 或 Q1L Q2
L 以放热热量为准的对外热损失系数,通常为0.97-0.982来自由式③可以知道 W1 W2
t 2 t1
冷流体的加热度 热流体的冷却度
可见 :两种流体在热交换器内的温度变化与他们的热容量成反比
平均传热系数Km 平均温差△tm
Km
1 A
KdA
A
1 1 d
tm
t1 t2
tm
1 A
A t1 t2 dA
二、 平均温差
流体的温度分布 1、等温有相变的传热 2、热流体等温冷凝、冷流体温度不断上升
冷流体等温沸腾、热流体温度不断下降。 3、没有相变顺流逆流 4、冷凝器(蒸发器)内温度变化情况 5、可凝蒸气和非凝结气体组成的热流体.
-1
t t ln t
t t ln t
t
t
t
顺流时:
u 1 1 1 1 qm1c1 q2c2 W 1 W2
u 0 tx t
表明:热流体从进口到出口方向上,两流体间的温 差总是不断降低的。
13
三、换热器中传热过程对数平均温差的计算
1 简单顺流及逆流换热器的对数平均温差 流动形式不同,冷热流体温差沿换热面的变化规律也不同.
传热方程的一般形式: kAtm
换热器中冷流体温度沿换热面是不断变化的,因此,冷却 流体的局部换热温差也是沿程变化的。
以顺流情况为例,作如下假设:
(1)冷热流体的质量流量qm2、qm1
dt1
dt2
1 qm1c1
d kdA t
1 qm2c2
d d 1 1
qm1c1 qm2c2
dt d kdAt
dt kdA
t
tx dt k Ax dA
t t
0
ln
tx t
k Ax
tx texp( kAx )
可见,当地温差随换热面呈指数变化,则沿整个换热面的平
均温差为:
tm
1 A
A 0
t xdAx
1 A
A 0
texp(kAx )dAx
tm
1 A
A 0
texp( kAx )dAx
t exp( kA) -1
(1)
k A
ln
tx t
k Ax
Ax A
ln t kA
t
(2)
t exp(kA)
(3)
t
(2)、(3)代入(1)中
对数平均温差
tm
t ln t
t t
Q
Q
M 2c2
M
t2
1
t
t21
C1dt1 M 2 C2dt2
M 2c2t2t2 W2t2
Q W1t1 W2t2 ③
t1 热流体在热换器内的温降值,也称冷却度,℃
t2 冷流体在热交换器内的温升值,也称加热度,℃
c1
c2
分别为热、冷流体在进、出口温度范围内的平
均定压质量比热,J/(Kg·℃)
qm2C2 t2'' t2' W2 t2'' t2'
t1
t1 dt1 t1
W qmC
t2 dt2 t2
t2
W : 流体热容量
意义:单位温度变化下产生的流动流体的能量储存
速率。
微元传热面传递的热流量: d K (t1 t2 )dA
A Kt1 t2 dA
工程上: Kmtm A
第二节 热交换器传热计算的 基本方法
本章要求掌握的内容:
传热过程的计算;对数平均温差的计算; 间壁式换热器的设计计算及校核计算。
热交换器热计算的基本原理
1.1 热计算基本方程 1.2平均温差法 1.3 效率—传热单元数法(传热有效度) 1.4热交换器热计算方法的比较 1.5流体流动方式的选择
1.1 热计算基本方程式
冷流体2
进口温度 t 2 流量 M 2 比热容 c 2
热流体1
进口温度t1 流量 M1 比热容 c1
热交换器的换热面积F
出口温度 t 2
出口温度 t1
两流体的进口温差 t
两流体的出口温差 t
1、传热方程式:
F
Q o ktdF
工程上
Q KFtm ①
k 热交换器任一微元传
热面处的传热系数, w/(m2·℃)
相关文档
最新文档