《概率统计A》本总复习资料

合集下载

概率统计试卷复习资料

概率统计试卷复习资料

总复习一、填空题(每题3分)1、已知事件A 与B 独立,且5.0)(=A P ,7.0)(=B P ,则=)(AUB P2、设X 服从正态分布)3.2(2N ,且21C) X (=≤P ,则=C 3、设每次试验中成功的概率为P )1(<<P o ,则在二次重复独立试验中,至少失败一次的概率为 。

4、评价估计量优劣的三条标准是无偏性,一致性和 性。

5、已知随机变量X 服从),(2σμN ,则X 的概率密度函数为6、设X 1,…,X n 是总体X 的一个样本,且X 的期望μ=EX 和方差2σ=DX 均未知,则2σ的无偏估计是=∧2σ7、设X 服从二项分布),(p n B ,则)(X E =8、若X 与Y 独立,且6)(=X D ,3)(=Y D ,则)2(Y X D -=9、设X 服从),(2σμN ,则≤≥-)3(σμX P10、一口袋中装有8只球,在这6只球上分别标有-1,1,1,1,1,3,,3,3这样的数字,现从这只口袋中任取一球,用随机变量X 表示取得的球上标明的数字,求:(1)X 的概率分布律;(2)X 的概率分布函数;(3))34(-X E .11.袋中有4个乒乓球, 其中3个是黄球, 1个是白球. 今有两人依次随机地从袋中各取一球, 取后不放回, 则第2个人取得黄球的概率是 . 12、对事件,A B 和C ,已知1()()()5P A P B P C ,()()0P AB P BC ,1()8P AC ,则,A B ,C 中至少有一个发生的概率是_________.13、已知随机变量X 在区间[ 5,15 ]上服从均匀分布,则EX= .14、中心极限定理告诉我们,若随机变量X 服从参数为1000,0.06的二项分布,则X 也近似服从参数为___ __和______的正态分布.15、设(X 1,X 2,...,X n )是取自正态总体N (μ,σ2)的简单随机样本,统计量∑==n i i X n T 121,则T 的数学期望ET=16、设X 表示独立射击目标10次所击中目标的次数,每次击中的概率为0.3,则X 2的数学期望E(X 2)= .17、设随机变量X 服从正态分布N(2,0.22),已知标准正态分布函数值 Φ(2.5)=0.9938,则P{2<X<2.5}=___ .18、设随机变量X 和Y 满足DX =25, DY =9, ρXY =0.4, 则D (X-Y) =19 、设总体X 的概率密度为,,020)(⎩⎨⎧<<=其它x Ax x f 则A=20、若随机变量X 服从参数为1=λ的分布,则大数定律告诉我们:∑=ni i X n 11依概率收敛于21 ,设总体X 服从),(2σμN 分布,X 1,…,X n 是X 的一个样本,则统计量n / X σμ- 服从分布;)(1_1222X XS nni i-=∑=οο 服从 分布;212)(1μο-∑=ni iX服从 分布二,单选1 .若随机变量X 具有性质)()(X D X E =,则X 服从 分布 a 、正态 b 、二项 c 、泊松 d 、均匀2、若)()(1)(B P A P B A P -=+,则A 与B a 、互不相容 b 、独立c 、为对立事件d 、为任意事件3、设随机变量X 服从)2,1(2N ,12-=X Y ,则Y 服从 分布 a 、)4,2(2N b 、)4,1(2N c 、)4,1(N d 、)4,2(N4、设A 与B 为两个随机事件,若0)(=AB P ,则下列命题正确的是 a 、A 、B 互不相容 b 、AB 未必是不可能事件 c 、A ,B 独立 d 、0)(=A P 或0)(=B P5、从总体X 中抽取样本X ,X 2,若X 服从)1,(θN 分布,则θ的估计量中,最有效的是a 、217671X X + b 、212121X X + c 、215451X X + d 、216561X X +6、“A 、B 、C 三事件恰有一个发生”可表为 a 、C U B U A b 、C B Ac 、ABCd 、C B A C B A C B U U A7、5.0)(=A P ,8.0)(=B P ,9.0)(=AUB P ,则B A 与的关系是 a 、互不相容 b 、独立 c 、B A ⊃ d 、A B ⊃8、设随机变量X 服从分布, 则2)] X [E() X (=D a 、均匀 b 、标准正态 c 、二项 d 、泊松9、设),(y x F 是随机变量Y), X (的分布函数,则下列式子 成立。

概率统计课程复习考试试题及答案卷

概率统计课程复习考试试题及答案卷

《概率统计》复习纲要A一、单项选择题1.对以往数据分析的结果表明,机器在良好状态时,生产的产品合格率为90%,而当机器有故障状态时,产品合格率为30%,每天开机时机器良好的概率为75%。

当某天开机后生产的第一件产品为合格品时,机器是良好状态的概率等于( )。

A 、 B 、 C 、 D 、 2.袋中有5个球(3个新球,2个旧球)。

现每次取一个,无放回地抽取两次,则第二次取到新球的概率是( )。

A 、3/5B 、3/4C 、1/2D 、3/10 3.事件A 与B 相互独立的充要条件为( )。

A 、P(B)P(A)B)P(A +=⋃B 、ΦAB ,ΩB A ==⋃C 、P(A)P(B)P(AB)=D 、P(B)P(A)B)P(A -=- 4.以A 表示事件“零件长度合格且直径不合格”,则A 的对立事件为( )。

A 、零件长度不合格且直径合格B 、零件长度与直径均合格C 、零件长度不合格或直径合格D 、零件长度不合格 5.对于任意两个事件A 与B ,则有P(A-B)为( )。

A 、P(A)-P(B)B 、P(A)-P(B)+P(AB)C 、P(A)-P(AB)D 、P(A)+P(AB) 6.设二维随机变量(X,Y )的分布律为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛41a1b 41010,已知事件{X=0}与{X+Y=1}相互独立,则a ,b 的值是( )。

A 、61b ,31a ==B 、31b ,61a ==C 、103b ,51a ==D 、81b ,83a ==7.设函数⎪⎪⎩⎪⎪⎨⎧>≤<≤=1x ,11x 0,2xx ,0(x)F ,则( )。

A 、F(x)是随机变量的分布函数B 、F(x)不是随机变量的分布函数C 、F(x)是离散型随机变量的分布函数D 、F(x)是连续型随机变量的分布函数 8.设随机变量()2,~σμN ξ,且{}{}c ξP c ξP >=≤,则c =( )。

A 、0 B 、μ C 、μ- D 、σ9.设ξ服从[0,1]的均匀分布,12+=ξη则( )。

概率统计总复习

概率统计总复习
例1、分发一副52张的扑克牌,发第10张牌是A的概率是 多少?头一个A正好出现在第10张的概率是多少?
例2、掷一枚骰子4次至少出现一次六点的概率是多少? 掷一双骰子24次至少出现一次双六点的概率是多少?
例3:将一枚均匀骰子掷两次,观察骰子面的出现情况以 及骰子点数之和出现的情况。
条件概率的计算:(包括三大公式) 例1、一批产品共有10个正品2个次品,从中任取两
F(x)
P{X
x}
1/ 3, 1/ 2,
0 x 1 1 x 2
1, x 2
P{X 1} F(1) 1 2 23
P{1
X
3} 2
P{X
3} P{X 2
1}
1 2
1 3
1 6
P{1 X 3} P{1 X 3} P{X 3} 1
2
2
26
0, x 0
F(x)
P{X
x}
则P(
A
B)
P(A B)
P(A B)
3、若P(AB)= ,且P(A)=1/3,求P(B)
4、P(若A事B )件 A与B互不相容,P(AP)(=A 0.B5) ,,P(AB)= 0.8、 则
设总体X 服从正态分布N (, 2 ) ,X1, X 2, , X n 为X 的一个样本。 当 2未知时,的估计区间为
随机变量的概率分布:
例 1 设 X 的概率分布为
X0
1
2
P 1/3 1/6 1/2
求:(1) X 的分布函数;
(2) P{ X 1}、 P{1 X 3}、 P{1 X 3}。
2
2
2
3
p X
EX
1
2
例2、设随机变量的概率密度为 f (x) Acosx

概率统计总复习

概率统计总复习
0 0
X 0 T ~ T (n 1) S n
接受域
x 0 s n
t
2

( 2未知)
待估参数
枢轴量及其分布 置信区间
T X 0 ~ T (n 1) S n

( x t
2
( 2未知)
s x t ) 2 n
s , n
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
s s /m s /n
2 0 2 x 2 y
第八章 1. 方差分析 基本概念(因子、水平、指标); 方差分析表; 总均值、各水平均值、误差方差的 点估计; 各水平均值的区间估计。
2. 一元线性回归分析 线性回归模型; 拟合回归方程; 回归方程的显著性; 回归系数的经济含义。
未知 m,n充 分大
1 , 2
1 2 1 2 1 2
1 2 u 1 2 1 2
x y
2 2 sx s y m n
{u u1 } {u u } {| u | u1 / 2 }
近似 t检 验
未知 m,n不 很大
2 2
右侧检验
(V V1 )
根据样本值计算,并作出相应的判断.
1. 正态总体参数的假设检验 单个正态总体 两个正态总体
2. 大样本检验 单个总体 两个总体
假设检验与置信区间对照
原假设 备择假设 检验统计量及其在 H0为真时的分布 H1 H0 接受域
x 0 u1
0
《数理统计》复习
各 章比 重
第 五 章
(20)
第 六 章
(35)
第 七 章
(15)
第 八 章

概率统计A复习提纲完整ppt

概率统计A复习提纲完整ppt

• 两个随机变量的简单函数的分布的计算; P86T22,36
(离散型:和、差、最大最小值;连续型:和)
• 随机变量的期望、方差、相关系数的计算; P110T2,6,7,9,22,29,32,35
• 总体参数的矩估计、最大似然估计、区间估计;P169T2,4(1),11,12,16
• 单一正态总体参数的假设检验;
答疑安排:周一至周五
--- 期末考试试题中,将会有一定数量的直接考查概念理解的题目。
可参考大作业中的部分客观题。
3
2. 领会、掌握如下基本结论或原理: • 随机事件的基本运算,概率的基本性质基本运算公式;
(包括古典求概公式)
• 随机变量分布的基本性质,五种常用的分布及其特点; • 二维随机变量的联合分布、边缘分布、条件分布三者的关系; • 两个独立的连续性随机变量的和的概率密度的计算公式; • 期望、方差及相关系数的基本性质,常用分布的数字特征值; • 一般总体的样本均值与方差的分布,正态总体的常用抽样分布,
单单一一正 正态态总总体体•参参随数数的的机假假设设变检检验验量;;的联合分布、条件分布、相互独立;边缘分布; •数学期望,方差,相关系数,矩; 二维随机变量的分布的基本性质的相关应用;
备择假设,显著性检验,两类易犯的错误,拒绝域,检验统计量;
历随年机考 变题量,随•机校简变园量网单的精分品随布课,程机分“样布概的率本论与分,数位理点统统;计计”量,样本矩,样本方差,抽样分布;
P24T2,3,6,14,19,30
两简个单随 随机机变样量本•的,估简统单计计函量数,量的样分本,布矩无的,计样偏算本;方估差,计抽样,分布有;效估计,置信区间,枢轴量;
二维随机变量的联合分布、边缘分布、条件分布三者的关系;

概率统计A题库(1)

概率统计A题库(1)

概率统计A 复习题一一、选择题(共8题,每小题3分)1.设A 与B 相互独立, P(A) =0.2,P(B)==0. 4,则P (|)A B =( ) A.0.2 B. 0.4 C. 0.6 D. 0. 82.下列各函数可作为随机变量分布函数的是( )A .F 1(x )=B .F 2(x )=C .F 3(x )=.D .F 4(x )=.3.设随机变量X 的概率密度为 f (x )=则P {-1<X <1}=( ) A .41 B .21 C .43D .1 4.设连续型随机变量X~N (1,4),则21-X ~( ) A .N (3,4) B .N (0,2)C .N (0,1)D .N (1,4)5.设二维随机变量(X ,Y )具有联合密度函数, 0<<1,0<y<1;(,)0, cx x f x y ⎧=⎨⎩其他.则常数C =( ) A .1 B.2C.3D.46.设二维随机变量则P{XY=2}=( )A .15B.310C.12 D.357.设随机变量X 服从参数为2的指数分布,则E (2X -1)=( ) A.0 B.1 C.3D.48.设随机变量X 与Y 不相关,则以下结论中错误..的是( ) A .E(X+Y)=E(X)+E(Y)B.D(X+Y)=D(X)+D(Y)C.E(XY)=E(X)E(Y)D.D(XY)=D(X)D(Y)二、填空题(共8题,每小题3分)9.设随机事件A 与B 相互独立,且()0.5,()0.3P A P AB ==,则()P B =______. 10.设A ,B 为随机事件,()0.5,()0.4,()0.8P A P B P A B ===,则()P B A =______.11、随机变量X 的分布函数为⎩⎨⎧>-=-其他0)1()(2x e A x F x ,常数A= 。

12、设X ~N (3,4),常数c 满足P {X<c }=P {X>c },则常数c= 。

概率论与数理统计(A)期末复习资料

概率论与数理统计(A)期末复习资料

《概率论与数理统计(A )》期末复习资料一、选择题:1.设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B2.设B A ,为两个随机事件,若0)(=AB P ,则( ).(A)A 和B 两事件互不相容(互斥); (B)AB 是不可能事件; (C)AB 未必是不可能事件; (D)0)(=A P 或0)(=B P . 3.如果0)(=AB P ,则( ).(A))()(A P B A P =-; (B)A 与B 不相容; (C)A 与B 不相容; (D))()()(B P A P B A P -=-. 4.如果1)()(=+B P A P ,则( ).(A)1)(=⋃B A P ; (B)0)(=⋂B A P ; (C))()(B A P B A P ⋂=⋂; (D))()(B A P B A P ⋃=⋂. 5.设A 和B 相互独立,则下列结论错误的是( ).(A)B ,A 独立; (B)B ,A 独立; (C))()()(B P A P B A P =; (D)φ=AB .6.设B A ⊂且相互独立,则( ).(A)0)(=A P ; (B)1)(0)(==B P A P 或; (C)1)(=A P ; (D)上述都不对. 7.设随机变量~(2,)X B p ,若()159X P ≥=,则p =( ). (A)32; (B)21; (C)31; (D)2719.8.设随机变量X 概率分布为,,2,1)1()( =+==k k k ak X P ,则a 为( ).(A)0; (B)1; (C)2; (D)3.9.设随机变量X 服从泊松分布,且(1)(2)P X P X ===,则λ=( ). (A)2; (B)1; (C)4; (D)0.5.10.若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=b ax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()11.设随机变量),(~2σμN X ,且022=++X x x 无实根的概率为0.5,=μ( ). (A)-1; (B)0; (C)1; (D)2.12.随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<=其他,0,20,20,),(y x cx y x f ,则c 为( ).(A)0.25; (B)1; (C)2; (D)4.13.设随机变量Y X ,相互独立,它们的密度函数分别为⎩⎨⎧≤>=-000x ,;x ,e )x (f x X ,⎩⎨⎧≤>=-00022y ,;y ,e )y (f y Y ,则=>)Y X (P ( ).(A)31; (B)21; (C)32; (D)43.14.设X ~)4,2(N 且b aX +~)1,0(N ,则( ). (A)22-==b a ,; (B)12-=-=b a ,; (C)121==b a ,; (D)121-==b a ,.15.设)1(~P X ,)2(~P Y ,且X 与Y 相互独立,则~Y X +( ). (A) (1,2)b (B) (3)P (C) (1.5)P(D) (2,1)b16.设随机变量)6.0,20(~b X ,)6.0,10(~b Y ,且X 与Y 相互独立,则~Y X +( ). (A) (10,0.6)b (B) (20,0.6)b (C) b(30,0.6) (D) (18)P17.设),(~p n b X 且6 3.6EX DX ==,,则有()(A) 100.6n p ==, (B) 200.3n p ==,(C) 150.4n p ==, (D) 120.5n p ==, 18.设12,,n X X X 是取自正态总体X ~)1,0(N 的样本,2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)X ~)1,0(N ; (B)X n ~)1,0(N ; (C)S X /~)1(-n t ; (D)∑=ni i X 12~)(2n χ.19.设n X X X 21,是取自正态总体X ~),(2σμN 的样本(2>n ), 2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)1--n SX μ~)1(-n t ; (B)22)(S X n μ-~)1,1(-n F ; (C)22σS ~)1(2-n χ; (D)122X X -~),(2σμN .20.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211(())1ni i S X X n ==--∑ X 分别为样本方差和样本均值,则下面结论中不正确的是( ). (A)2~(,)X N n σμ ;(B)22()E S σ=; (C)22()1nE S n σ=-; (D)222(1)/~(1)n S n σχ--. 21.已知随机变量X 与Y 相互独立,且2~(40)X χ,2~(80)Y χ,则~/2Y X ().(A)2(40)χ (B) (20,40)F (C) (40,80)F (D) 2(80)χ22.设n X X X ,,,21 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321X X X ++ (B) 321525252X X X ++ (C) 321515151X X X ++ (D) 321535151X X X ++23.对正态总体),(2σμN 的假设检验问题中,Z 检验解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值(C) 已知均值,检验方差 (D) 未知均值,检验方差24.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,则下列各式中( )不是统计量.(A)1X (B) μ+X(C)221σX (D)1X μ25.设n X X X ,,,21 是正态总体),(~2σμN X (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α 26.在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差 27.假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小二、填空题:1.设B A ,是两个事件,且=)(B A P 1,则=-)(A B P .2.设()0.7P A =,()0.3P A B -=,则()AB P = ,()B A P = .3.设事件B A ,和B A ⋃的概率分别为0.2,0.3和0.4,则=)(A B P _______.4.设B A ,是两个随机事件,()0.4()0.3P A P B ==,,若B A ,相互独立,则()P A B ⋃= ,则()P B A = .5.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为 .6.设甲、乙两人投篮命中率分别为0.7和0.8,每人投篮3次,则有人投中的概率为 .7.从0,1,2,,9这10个数字中任意选出3个不同的数字,则3个数字中不含0或5的概率为 .8.某工厂一个班组共有男工9人,女工5人,现在要选出3个代表,则选的3 个代表中至少有1个女工的概率为 .9.设随机变量X 服从参数为λ的泊松分布,且()2D X =,则(1)p X ==________. 10.设随机变量),(N ~X 42,则~X Y 22-=. 11.设随机变量Y 在]5,0[上服从均匀分布,则关于x 的一元二次方程02442=+++Y xY x 有实根的概率为 .12.设)(1x F 与)(2x F 分别是任意两个随机变量分布函数,令=)(x F)()(21x bF x aF +,则下列各组数中使)(x F 为某随机变量的分布函数的有 =a , =b .13.已知连续随机变量X 的分布函数为1,0()0,0x e x F x x λ--≥=<⎧⎨⎩,0λ>,则其密度函数为 ,(2)P x ≤= ;已知随机变量X 的密度函数⎩⎨⎧≤≤=其它 , 010,2)(x x x f 则:)5.15.0(<<X p = .14.设随机变量X 分布律为令,12+=X Y 则随机变量X 分布律为 ;=)(Y E _________.15.若二维随机变量(,)X Y 具有分布律:则(21)P Y X ===________. 16.设随机变量X 分布列如下表则E (X )=________,D (X )=________.17.两独立随机变量X Y 和都服从正态分布,且()()~3,4~2,9X N Y N ,,则()D X Y +=________;又两个相互独立的随机变量~(3),V ~P(2)U E ,则(22)D U V ++=________.18.设X 服从[-1,2]上的均匀分布,令⎩⎨⎧<-≥=,01,01X X Y ,,则=)(Y E ,=)(Y D .19.设相互独立的随机变量X ,Y 均服从参数为5的指数分布,则当0,0x y >>时,(,)X Y 的概率密度(,)f x y =________.20.设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则~X .21.设总体2~(0,)X N σ,921,X X X 为总体的一个样本,则)(9196521X X X X X X ++++++= 分布为 .22.设),(21n X X X 是取自参数为λ泊松分布的样本,则统计量i ni X Y ∑==1服从分布.23.设12n X X X ,,,为来自总体X 的样本,且~(0,1)X N ,则统计量21~nii X=∑ .24.设12,,,n X X X 是来自总体)1,0(~N X 的简单随机样本,则21()ni i X X =-∑服从的分布为 .25.设n X X X 21,是来自正态总体X ~N (μ,2σ)的样本,即它们是独立同分布,则~X ,~)1(22σS n - .26.在单边假设检验中,原假设为0H :μ≤0μ,则其备择假设为1H :_______________.27.设总体X 服从正态分布2(,)N μσ,其中2σ未知,12,,n X X X 为其样本.若假设检验问题为0010:,:,H H μμμμ=≠则采用的检验统计量表达式应为_______________.三、计算题1.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.2.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.3.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.4.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).5.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.6.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?8.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.9.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率; (3)F (x ).10.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.11.由某机器生产的螺栓长度(cm )~(10.05,0.062)X N ,规定长度在10.050.12±内为合格品,求一螺栓为不合格品的概率..12.设一工厂生产的电子管寿命X (小时)服从正态分布),160(2δN ,若要求{}8.0200120≥≤<X P ,允许δ最大不超过多少?13.设X ~N (3,22),(1)求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }.14.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.(2)求(X ,Y )的边缘分布律; (3)求W =X +Y 的分布律.16.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<--=.,0,42,20),6(,其他y x y x k y x f (1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5}; (4)求P {X +Y ≤4}.17.设二维随机变量(X ,Y )的联合分布函数为()⎩⎨⎧>>--=--.,0,0,0),e 1)(e 1(,24其他y x y x F y x求(X ,Y )的联合分布密度.18.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤-+=.,0,10 ,1,01 ,1其他x x x x x f求)()(X D X E ,.19.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,其他x x x x x f求)()(X D X E ,.20.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<=.,0,0,10,,其他x y x k y x f 试确定常数k ,并求)(XY E .21.设X ,Y 是相互独立的随机变量,其概率密度分别为()⎩⎨⎧≤≤=;,0,10,2其他x x x f X ()(5)e ,5,0,.y Y y f y --⎧>=⎨⎩其他 求E (XY ).22.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩估计.23.设总体X 的密度函数()2(x )2,,f x e x R μμ--=∈X 1,X 2,…,X n 为其样本,试求参数μ的矩估计. 24.设12,,,n x x x 为来自正态总体2~N(,)X μδ的一个样本的X1,X2, (X)观测值,试求总体未知参数2,μδ的极大似然估计.25.设总体X 的密度函数为⎩⎨⎧<<=-.,0,10,),(1其他x x x f θθθn X X X 21,为其样本,求θ 的极大似然估计.26.某车间生产的螺钉,其直径2~N(,)X μδ,由过去的经验知道2δ=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 求μ的置信概率为0.95的置信区间.27.来自正态总体2~N(,)X μδ的一个样本为X 1,X 2,…,X n ,并且2μδ未知,已知,求μ的置信概率为1α-的置信区间.28.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差2s =0.1(2g ).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).。

概率统计公式大全复习重点)

概率统计公式大全复习重点)

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,?为不可能事件。

不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A 等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

《工程数学》(概率统计)期末复习提要共12页word资料

《工程数学》(概率统计)期末复习提要共12页word资料

《工程数学》(概率统计)期末复习提要工科普专的《工程数学》(概率统计)课程的内容包括《概率论与数理统计》(王明慈、沈恒范主编,高等教育出版社)教材的全部内容 . 在这里介绍一下教学要求,供同学们复习时参考 .第一部分:随机事件与概率⒈了解随机事件的概念学习随机事件的概念时,要注意它的两个特点:⑴在一次试验中可能发生,也可能不发生,即随机事件的发生具有偶然性;⑵在大量重复试验中,随机事件的发生具有统计规律性 .⒉掌握随机事件的关系和运算,掌握概率的基本性质要了解必然事件、不可能事件的概念,事件间的关系是指事件之间的包含、相等、和、积、互斥(互不相容)、对立、差等关系和运算 .在事件的运算中,要特别注意下述性质:概率的主要性质是指:①对任一事件,有③对于任意有限个或可数个事件,若它们两两互不相容,则⒊了解古典概型的条件,会求解简单的古典概型问题在古典概型中,任一事件的概率为其中是所包含的基本事件个数,是基本事件的总数 .⒋熟练掌握概率的加法公式和乘法公式,理解条件概率,掌握全概公式⑴加法公式:对于任意事件,有特别地,当时有⑵条件概率:对于任意事件,若,有称为发生的条件下发生条件概率 .⑶乘法公式:对于任意事件,有(此时),或(此时) .⑷全概公式:事件两两互不相容,且,则⒌理解事件独立性概念,会进行有关计算若事件满足(当时),或(当时),则称事件与相互独立 . 与相互独立的充分必要条件是.第二部分:随机变量极其数字特征⒈理解随机变量的概率分布、概率密度的概念,了解分布函数的概念,掌握有关随机变量的概率计算常见的随机变量有离散型和连续型两种类型 . 离散型随机变量用概率分布来刻画,满足:连续型随机变量用概率密度函数来刻画,满足:随机变量的分布函数定义为对于离散型随机变量有对于连续型随机变量有⒉了解期望、方差与标准差的概念,掌握求随机变量期望、方差的方法⑴期望:随机变量的期望记为,定义为(离散型随机变量,是的概率分布),(连续型随机变量,是的概率密度) .⑵方差:随机变量的方差记为,定义为(离散型随机变量),(连续型随机变量) .⑶随机变量函数的期望:随机变量是随机变量的函数,即,若存在,则在两种形式下分别表示为(离散型随机变量,是的概率分布),(连续型随机变量,是的概率密度),由此可得方差的简单计算公式⑷期望与方差的性质①若为常数,则;②若为常数,则;③若为常数,则.⒊掌握几种常用离散型和连续型随机变量的分布以及它们的期望与方差,熟练掌握正态分布的概率计算,会查正态分布表(见附表)常用分布:⑴二项分布的概率分布为特别地,当时,,叫做两点分布;⑵均匀分布的密度函数为⑶正态分布的密度函数为其图形曲线有以下特点:① ,即曲线在x 轴上方;② ,即曲线以直线为对称轴,并在处达到极大值;③在处,曲线有两个拐点;④当时,,即以轴为水平渐近线;特别地,当时,,表示是服从标准正态分布的随机变量 .将一般正态分布转化为标准正态分布的线性变换:若,令,则,且Y 的密度函数为服从标准正态分布的随机变量的概率为那么一般正态分布的随机变量的概率可以通过下列公式再查表求出常见分布的期望与方差:二项分布:;均匀分布:;正态分布:;⒋了解随机变量独立性的概念,了解两个随机变量的期望与方差及其性质对于随机变量,若对任意有则称与相互独立 .对随机变量,有若相互独立,则有第三部分:统计推断⒈理解总体、样本,统计量等概念,知道分布,分布,会查表所研究对象的一个或多个指标的全体称为总体,组成整体的基本单位称为个体,从总体中抽取出来的个体称为样品,若干个样品组成的集合称为样本 . 样本中所含的样品个数称为样本容量 .统计量就是不含未知参数的样本函数 .⒉掌握参数的最大似然估计法最大似然估计法:设是来自总体(其中未知)的样本,而为样本值,使似然函数达到最大值的称为参数的最大似然估计值 . 一般地,的最大似然估计值满足以下方程⒊了解估计量的无偏性,有效性概念参数的估计量若满足则称为参数的无偏估计量 .若都是的无偏估计,而且,则称比更有效 .⒋了解区间估计的概念,熟练掌握方差已知条件下单正态总体期望的置信区间的求法,掌握方差未知条件下单正态总体期望的置信区间的求法当置信度确定后,方差已知条件下单正态总体期望的置信区间是其中是总体标准差,是样本均值,是样本容量,由确定 .方差未知条件下单正态总体期望的置信区间是其中称为样本标准差,满足.⒌知道假设检验的基本思想,掌握单正态总体均值的检验方法,会作单正态总体方差的检验方法单正态总体均值的检验方法包括检验法和检验法:⑴ 检验法:设是正态总体的一个样本,其中未知,已知 . 用检验假设(是已知数),。

概率统计总复习

概率统计总复习
(a)当 时, ;
(b)当 时, ;
(c)当 时, .
; .
例7. .2; .1; .3.
例8. .1; .1; .4.(期望、方差是数值,不是函数)
例9. .1, 3; .4; .1, 3.(完整书写分段函数)
例10.已知一大批产品的次品率为0.005,任取10000件.问有50至90件次品的概率近似值是多少?
3.设 ,则其分布律为_________________________________.
4.设随机向量 ,则 服从_________________;
服从___________________________(要求写出具体分布).
5.随机地抽查某校的8名男生,测得他们的身高(单位m)分别为:
课程代码:720090学分/学时数3 / 48任课教师
课程性质:必修□、限选□、任选□考试形式:开卷□、闭卷√
适用年级/专业_____全校各专业________考试时间_____120___________分钟
…………………………………………………………………………………………………………
学号姓名任课教师_______________(必填)
八.(14分)从某工厂生产的一批滚珠中随机地抽取9个,测得直径(单位mm)分别为:9.9,10.1,9.7,9.6,10.2,8.9,10.7,11.0,10.1.设总体 .
1.试求 的置信水平为0.95的置信区间;
2.试在显著性水平 下检验假设: ; .
2006/2007学年第一学期《概率论与数理统计》课程考核试卷A√、B□
待 查 数 据
(0.025)=0.51, (0.033)=0.5133, (0.1)=0.5398, (0.5)=0.6915, (1.0)= 0.8413,

概率统计每章知识点总结

概率统计每章知识点总结

概率统计每章知识点总结第一章:基本概念1.1 概率的概念1.2 随机变量及其分布1.3 大数定律和中心极限定理第一章主要介绍了概率统计的基本概念,包括概率的定义、随机变量的概念以及大数定律和中心极限定律。

概率是描述事物发生可能性的数学工具,是对随机事件发生规律的度量和描述。

随机变量是描述随机现象的数学模型,可以用来描述随机现象的特征和规律。

大数定律和中心极限定律则是概率统计中重要的两个定律,它们描述了大量独立随机变量的和的分布规律。

第二章:随机事件的概率计算2.1 古典概型2.2 几何概型2.3 等可能概型2.4 条件概率2.5 独立性第二章主要介绍了随机事件的概率计算方法,包括古典概型、几何概型、等可能概型、条件概率和独立性。

古典概型是指实验的样本空间是有限的且每个样本点的概率相等的情形,可以直接计算出随机事件的概率。

几何概型是指随机事件的概率与其所在的几何形状有关,需要通过几何方法来计算。

等可能概型是指实验的样本空间是有限的,但不同样本点的概率不一定相等,需要通过计算总体概率来计算随机事件的概率。

第三章:随机变量及其分布3.1 随机变量及其分布3.2 数学期望3.3 方差3.4 常用离散型随机变量的分布3.5 常用连续型随机变量的分布第三章主要介绍了随机变量及其分布的知识,包括随机变量的概念、数学期望、方差以及常用的离散型和连续型随机变量的分布。

随机变量是描述随机现象的数学模型,可以是离散型的也可以是连续性的。

数学期望和方差是描述随机变量分布特征的重要指标,它们能够描述随机变量的集中程度和离散程度。

离散型随机变量常用的分布包括伯努利分布、二项分布、泊松分布;连续型随机变量常用的分布包括均匀分布、正态分布、指数分布等。

第四章:多维随机变量及其分布4.1 二维随机变量4.2 多维随机变量4.3 边际分布4.4 条件分布4.5 独立性第四章主要介绍了多维随机变量及其分布的知识,包括二维随机变量、多维随机变量、边际分布、条件分布和独立性。

概率论与统计原理复习资料全

概率论与统计原理复习资料全

《概率论与统计原理》复习资料一、填空题1、设A,B,C为三个事件,则下列事件“B发生而A与C至少有一个发生”,“A,B,C中至少有两个发生”,“A,B,C中至少有一个发生”,“A,B,C中不多于一个发生”,“A,B,C中恰好有一个发生”,“A,B,C中恰好有两个发生”分别可表示为、、、、、。

参考答案:B(A+C,AB+AC+BC,A +B+C,CB+BA+CA,AB C+AC B+A BC,ABA+CBCA+CB考核知识点:事件的关系及运算2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为、、。

参考答案:0.04,0.02,0.1考核知识点:古典型概率3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率为,恰好有2枚正面向上的概率为。

参考答案:1/8,3/8考核知识点:古典型概率4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为。

参考答案:0.6考核知识点:古典型概率5、假设某商店获利15万元以下的概率为0.9,获利10万元以下的概率为0.5,获利5万元以下的概率为0.3,则该商店获利5~10万元的概率为,获利10~15万元的概率为。

参考答案:0.2,0.4考核知识点:概率的性质6、设袋中有6个球,其中4白2黑。

用不放回两种方法取球,则取到的两个球都是白球的概率为;取到的两个球颜色相同的概率为;取到的两个球中至少有一个是白球的概率为。

参考答案:0.4,7/15,14/15考核知识点:古典型概率和概率的性质7、设事件A,B互不相容,已知P(A)= 0.6,P(B)= 0.3,则P (A+B)= ;P(A+B)= ;P(A B)= ;P(BA)= 。

参考答案:0.9,0.4,0.3,0.1考核知识点:概率的性质8、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为0.5,0.6,0.8,则恰有一人中靶的概率为;至少有一人中靶的概率为。

《概率论与数理统计》总复习资料

《概率论与数理统计》总复习资料

《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。

例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。

若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。

其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。

因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。

例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。

《概率论与数理统计》复习-知识归纳整理

《概率论与数理统计》复习-知识归纳整理

《概率论与数理统计》复习大纲第一章 随机事件与概率基本概念随机试验E----指试验可在相同条件下重复举行,试验的结果具有多种可能性(每次试验有且仅有一个结果闪现,且事先知道试验可能闪现的一切结果,但不能预知每次试验确实切结果。

样本点ω ---随机试验E的每一具可能闪现的结果样本空间Ω----随机试验E的样本点的全体随机事件-----由样本空间中的若干个样本点组成的集合,即随机事件是样本空间的一具子集。

必然事件---每次试验中必然发生的事件。

不可能事件∅--每次试验中一定不发生的事件。

事件之间的关系包含A⊂B相等A=B对立事件,也称A的逆事件互斥事件AB=∅也称不相容事件A,B相互独立P(AB)=P(A)P(B)例1事件A,B互为对立事件等价于( D )A、A,B互不相容B、A,B相互独立C、A∪B=ΩD、A,B构成对样本空间的一具剖分例2设P(A)=0,B为任一事件,则(C )A、A=∅B、A⊂BC、A与B相互独立D、A与B互不相容事件之间的运算事件的交AB或A ∩B 例1设事件A、B满足A B¯=∅,由此推导不出(D)A、A⊂BB、A¯⊃B¯C、A B=BD、A B=B例2若事件B与A满足B – A=B,则一定有(B)A、A=∅B、AB=∅C、AB¯=∅D、B=A¯事件的并A∪B事件的差A-B 注意:A-B= A B= A-AB = (A∪B)-BA1,A2,…,An构成Ω的一具完备事件组(或分斥)−−指A1,A2,…,An两两互不相容,且∪i=1nAi=Ω运算法则交换律A∪B=B∪A A∩B=B∩A结合律(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C)分配律(A∪B)∩C=(AC)∪(BC) (A∩B)∪C=(A∪C)∩(B∪C) 对偶律A∪B=A∩B A∩B=A∪B文氏图事件与集合论的对应关系表记号概率论集合论Ω样本空间,必然事件全集∅不可能事件空集ω基本事件元素A 事件全集中的一具子集A A的对立事件A的补集A⊂B 事件A发生导致事件B发生A是B的子集A=B 事件A与事件B相等A与B相等A∪B 事件A与事件B至少有一具发生A与B的并集AB 事件A与事件B并且发生A与B的交集知识归纳整理A-B事件A 发生但事件B 不发生A 与B 的差集 AB=∅ 事件A 与事件B 互不相容(互斥) A 与B 没有相同的元素古典概型 古典概型的前提是Ω={ω1,ω2, ω3,…, ωn ,}, n 为有限正整数,且每个样本点ωi 出现的可能性相等。

《概率统计》知识点归纳总结(含答案)

《概率统计》知识点归纳总结(含答案)

《概率统计》知识点归纳总结1.加法公式结合独立性)()()()()(B P A P B P A P B A P -+=+例如:7.0)(,6.0)(==B P A P88.07.0*6.07.06.0)()()()()(=-+=-+=+B P A P B P A P B A P2. 分布函数的性质P39(其中分布函数)(x F 不是连续函数,非严格意义的单调递增性)3.方差的性质,二项分布)(p n B X ,~,泊松分布)(λπ~Y 的方差2,3.0,4===λp n44.312*97.0*3.0*4*16916)3()4()34(D =+=+=+=-DY DX Y D X D Y X4. ),(~2nN X σμ),N(~X 2σμ正态总体,b]U[a,~X 均匀总体),N(~X 2σμ正态总体,n X D X E 2)(,)(σμ==b]U[a,~X 均匀总体,n a b X D b a X E 12)()(,2)(2-=+=5总体均值()E X 的无偏估计量(系数相加等于1);P178:12(1)2121X 21X + ;5432151515151X 51X X X X ++++ 6加法公式结合独立性)()()()()(B P A P B P A P B A P -+=⋃减法公式结合独立性)()()()()()(B P A P A P AB P A P B A P -=-=-7.已知随机变量X 的分布律为记X 的分布函数为,则3F = 1 .8.平均值就是数学期望,P59:24; P117:11 9.置信区间10.假设检验中,犯第一类错误的概率就是显著性水平α犯第一类错误的概率,显著性水平α为 0.03,则在原假设 H 0成立的条件下,拒绝H 0的概率为___0.03________接受H 0的概率为______0.97_________ 11.A 和B 互斥(互不相容),A 和B 对立事件,P9,性质v12.概率等于0的事件,不一定是不可能的事件13.离散型随机变量,联合分布能唯一确定边缘分布,反之不成立14随机变量P143:(3.8),),1(~t 2n F15.显著性水平α是犯第I 类错误(弃真错误的概率)计算题: 16. 已知概率密度函数,利用概率密度函数求待定系数,分布函数,计算概率概率密度函数为⎩⎨⎧<≥=-0)(3x x Ae x f x 求{}01P X <<17.联合分布求边缘分布,判断独立性,判断是否相关,P7518.已知概率密度求方差(用方差的性质先化简),概率密度用P58:21(2),计算)13(XD19已知离散型随机变量的分布律求参数的最大似然估计值;P176:4(1),答案P6620全概率公式,贝叶斯公式的应用3. 已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.03.求(1)任意抽查一个产品,它被判为合格品的概率(2)一个经检查被判为合格的产品确实是合格品的概率.2、设A 表示合格品,A 表示次品,B 表示被检合格,则()0.95,()0.05,()1()0.98,()0.03P A P A P B A P B A P B A ===-== (1) 由全概率公式,得()=()()()()=0.950.98+0.050.03=0.9325P B P A P B A P A P B A +⨯⨯(2)由贝叶斯公式,得()()()()()()()P A P B A P A B P A P B A P A P B A =+=0.950.980.99840.950.980.050.03⨯=⨯+⨯3、某公司有甲、乙、丙三位秘书,让他们把公司文件的45%,40%,15% 进行归档,根据以往的经验,他们工作中出现错误的概率分别为0.01,0.02,0.05.现发现有一份文件归错档,试问该错误最有可能是谁犯的?解:设事件i A 表示“文件由第i 位秘书归档”()1,2,3i =,B 表示“文件归错档”. 依题意,()10.45P A =, ()20.4P A =, ()30.15P A =,()10.01P B A =, ()20.02P B A =,()30.05P B A =由全概率公式可知()()()()()()()112233P B P B A P A P B A P A P B A P A =++0.010.450.020.40.050.15=⨯+⨯+⨯0.02=()()()()1110.010.450.2250.02P B A P A P A B P B ⨯===()()()()2220.020.40.40.02P B A P A P A B P B ⨯===()()()()3330.050.150.3750.02P B A P A P A B P B ⨯===由此可见,这份文件由乙归错档的可能性最大.21. 正态分布计算概率;P59:28 答案P27。

最详细概率统计期末总复习精品PPT课件

最详细概率统计期末总复习精品PPT课件

第 五 章
1. 大数定律 2. 中心极限定理的应用
第 1. 统计量 总体 样本
六 2. 常用“三大分布”定义 性质

各分布分位点定义及查表
第 1. 点估计的两种方法

及评价标准
章 2. 参数的区间估计(重点:
单正态总体)
第 1. 假设检验的有关概念 八
章 2.参数的假设检验(重点:
单正态总体)
假设检验步骤(三部曲)
P(B | B0 ) 0 P(B | B1) 0.2 P(B | B2 ) 0.6 P(B | B3) 0.8
B0 A甲 A乙 A丙
P(B0) P A甲PA乙 PA丙 0.6 0.5 0.3 0.09
B1 A甲 A乙 A丙 A甲 A乙 A丙 A甲 A乙 A丙
P(B1) 0.4 0.5 0.3 0.6 0.5 0.3 0.6 0.5 0.7 0.36
1
0
( 2已知)
检验统计量
U X 0 / n
0
2
0
0
( 2未知)
t X 0 Sn* / n
2
2 0
3
2
2 0
2
2 0
(未知)
2
(n
1)Sn*2
2 0
备择假设H1
0 0 0
拒绝域
u u u u u u /2
0 0 0
2
2 0
2
2 0
2
2 0
t t (n 1) t t (n 1) t t /2(n 1)
① P(18 Y30 22) P( Y30 E(Y30) 2)

P(18 Y30
1 D(Y30)/ 4 0.7
22)

《概率论总复习》课件

《概率论总复习》课件

常见问题解答二:条件概率与独立性的关系?
总结词
条件概率与独立性是概率论中的重要概念,它们之间 存在密切的联系。
详细描述
条件概率是指在某个已知事件发生的条件下,另一个 事件发生的概率。而独立性则是指两个事件之间没有 相互影响,一个事件的发生不影响另一个事件的发生 。在条件概率中,如果两个事件在给定条件下是独立 的,那么它们同时发生的概率等于各自发生的概率的 乘积。因此,条件概率和独立性之间存在密切的联系 ,理解它们的概念和关系有助于更好地掌握概率论中 的相关内容。
04
概率论的应用
统计学中的概率论应用
统计推断
概率论为统计学提供了理论基 础,用于估计未知参数、检验 假设和进行预测。
随机抽样
概率论确保了随机抽样的公正 性和代表性,使得样本数据能 够反映总体特征。
统计决策
基于概率论的决策分析方法, 如贝叶斯决策和风险分析,帮 助决策者做出最优选择。
计算机科学中的概率论应用
100%
离散型随机变量的分布
离散型随机变量的分布通常由概 率质量函数或概率分布函数描述 。
80%
连续型随机变量的分布
连续型随机变量的分布由概率密 度函数描述,其总概率为1,即 ∫−∞∞f(x)dxF(x)=∫−∞∞f(x)dxF (x)=∫−∞∞f(x)dxF(x)=1。
02
概率论中的重要定理
贝叶斯定理
01
02
03
04
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。

概率统计复习提纲(百度文库).pptx

概率统计复习提纲(百度文库).pptx

定义左连续或右连续只是一种习惯.有的书籍定义分布函数
左连续,但大多数书籍定义分布函数

右连续. 左连续与右连续的区别在于计算
时,
点的概率是否计算在内.对于连续型随机变量,由于
,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于
,则定义左连
续或右连续时
值就不相同,这时,就要注意对
定义左连续还是右连续.
概率密度函数具有以下性质:
,存在非负函数 的概率密度函数.
,使对于任一实数 ,有
(1)
; (2)

(3)
; (4)

(5)如果 在 处连续,则
.
常用连续型随机变量的分布:
(1)均匀分布:记为
,概率密度为
分布函数为
(2)指数分布:记为
,概率密度为
8
,则
分布函数为
学海无 涯
(3)正态分布:记为
,概率密度为

.
14
学海无 涯

为连续型随机变量,概率密度函数为
,则 的概率函数为:
.
(2)
的分布

为连续型随机变量,概率密度函数为
8.最大值与最小值的分布 则
. 3、分布函数及其性质
分布函数的定义:设 为随机变量, 为任意实数,函数
7
学海无 涯
称为随机变量 的分布函数. 分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:
(1)有界性

2 单调性 如果
,则

3 右连续, 即

(4)极限性

(5)完美性
.
4、连续型随机变量及其分布分布
如果对于随机变量 的分布函数 称 为连续型随机变量.函数 称为

《概率统计》公式符号汇总表及复习策略

《概率统计》公式符号汇总表及复习策略

《概率统计》公式、符号汇总表及各章要点及复习策略 (共4页) 第一章均独立。

与与与此时独立与B A B A B A B P A P AB P B A B P AB P B A P ,,);()()( )()()( (1)⋅=⇔=)()()()( )()()()()( )3()(1)( )()( A B )()()( )()()()()( )()()()( )2(11A P B P B A P A B P B P B A P B P B A P A P A P A P B P A P AB P A P B A P A P A B P B P B A P AB P AB P B P A P B A P i i i n n ⋅=⋅++⋅=-=-⊆-=-⋅=⋅=-+=第二、三章 一维随机变量及分布:X , i P , )(x f X , )(x F X二维随机变量及分布:),(Y X , ij P , ),(y x f , ),(y x F*注意分布的非负性、规范性(1)边缘分布:如:∑=j ij i p P ,⎰+∞∞-=dy y x f x f X ),()((2)独立关系:J I IJ P P P Y X =⇔独立与 或)()()(y f x f y x f Y X =,),,(11n X X 与),,(21n Y Y 独立),,(11n X X f ⇒与),,(21n Y Y g 独立(3)随机变量函数的分布(离散型用点点对应法、连续型用分布函数法)一维问题:已知X 的分布以及)(X g Y =,求Y 的分布二维问题:已知),(Y X 的分布,求Y X Z +=、{}Y X M ,m ax =、{}Y X N ,m in =的分布-*⎰⎰+∞∞-+∞∞--=-=dy y y z f dx x z x f z f Z ),(),()(M 、N 的分布--------离散型用点点对应法、连续型用分布函数法第四章 (1)期望定义:离散:∑=i i i p x X E )( 连续:⎰⎰⎰+∞∞-+∞∞-+∞∞-==dxdy y x xf dx x xf X E ),()()( 方差定义:)()(]))([()(222X E X E X E X E X D -=-=离散:∑-=i i i p X E x X D 2))(()( 连续:⎰+∞∞--=dx x f X E x X D X )())(()(2协方差定义:)()()())]())(([(),(Y E X E XY E Y E Y X E X E V X COV -=--=相关系数定义:)()(),(Y D X D Y X COV XY =ρK 阶原点矩定义:)( K k X E ∆μ K 阶中心矩定义:]))([( K k X E X E -∆σ(2)性质:C C E =)( ;)()(X CE CX E = ;)()()(Y E X E Y X E ±=±;)()( )(Y E X E Y X XY E 独立与 0)(=C D ;)()(2X D C CX D = ;)()( 2)(Y D X D Y X Y X COV Y D X D Y X D +±+=±独立与),()()()(),()()(,Y bdD Y X COV bc ad X acD dY cX bY aX COV +++=++)( 1≤XY ρ ; {}11=+=⇔=b aX Y p XY ρX 与Y 独立 0=⇒XY ρ 即X 与Y 线性无关,但反之不然 。

《概率论与数理统计》复习资料要点总结

《概率论与数理统计》复习资料要点总结

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机事件及其概率1.事件的关系及表示法,例1、设A 、B 、C 为三个事件, 试用A 、B 、C 表示以下事件:(1)这三个事件至少有一个出现为,(2)不多于两个出现为例2、在一批产品中取样三次,每次一件,记A i ={第i 次取到正品}(i =1,2,3),试用A i 表示以下事件:(1){只有第二次取到正品},(2){至少有一次取到次品}.2.古典概型P(A)=m/n例3、盒中放5个红球,3个白球,现任取三球,求以下事件的概率: (1)A ={取出的三球都是红球};(2)B ={取出的是2个红球,1个白球}。

3.加法公式P(A+B)=P(A)+P(B)-P(AB)4.条件概率、乘法公式P(B/A)=P(AB)/P(A) P(AB)=P(A)P(B/A)例4、盒中放有6个红球,4个白球,现进行不放回取样,每次取一球,连取两次,求以下事件的概率:则(1)A ={两次都取到红球};(2)B ={第二次才取到红球}。

例5、若A,B 独立且P (A )=0.4,P (A+B )=0.7,则P (B )= .例6、若P (A )= 0.4,P (B )= 0.3,P (AB )= 0.2,则 P (A+B )= )/(A B P = P(A-B) 5.全概率:∑==n i iiA B P A P B P 1)/()()(,贝叶斯:∑==ni iikkkA B P A P A B P A P A B P 1)/()()/()()/(例7、某厂有三条生产线生产同一种产品,三条生产线的产量之比为3:2:4,而三条生产线的次品率分别为0.02,0.03,0.04,生产的产品混合在一起,现在总产品中任取一件,求:(1)所取的产品为次品的概率;(2)若取到的是次品,问该次品来自第二条生产线的概率有多大?6.事件的独立性和贝努里概型:P(AB)=P(A)P(B ), kn k k n n q p C k P -=)(例8、三台机器独立运转,又知第1,2,3台机器工作正常的概率分别为0.9,0.8,0.7,试求三台机器工作全正常及至少有一台正常的概率.例9、甲乙两人独立地破译密码,已知他们能破译成功的概率分别为p,q ,求密码被破译的概率.例10、某射击手的命中率为0.8,现射击3枪,求(1)恰有2枪命中目标的概率;(2)至少有一枪命中目标的概率.例11、加工某零件需经过3道相互独立的工序,设第一、二、三道工序的次品率分别为0.01、0.02、0.03,求加工出来的零件的次品率。

第4、7章 一维随机变量的分布及数字特征一、离散型:1.分布列n k n p p p P x x x X2121 [(1)0≥k p (2)∑∞==11k k p ]2.分布函数)()(x X P x F ≤=,3.数学期望EX k k kp x∑∞==1,)(X Eg k k k p x g ∑∞==1)(二、连续型:1.密度函数)(x f :[(1)⎰=≤≤badx x f b X a P )()(,(2)1)(=⎰+∞∞-dx x f ]2.分布函数⎰∞-=≤=xdx x f x X P x F )()()(,数学期望EX =dx x f x )(⎰+∞∞-,)(X Eg =dx x f x g )()(⎰+∞∞-三.期望的性质(1)cEX cX E =)( (2)EY EX Y X E +=+)( (3)EXEY XY E =)( (X ,Y 相互独立) 四.方差, 222)()(EX EX EX X E DX -=-=,协方差: ))())(((),cov(Y E Y X E X E Y X --=,相关系数:)()(),cov(,Y X Y X Y X σσρ=性质: (1)0=Dc ; (2)EX c cX D 2)(=; (3)DY DX Y X D +=+)( (X ,Y 相互独立) (4) ),cov(2)(Y X DY DX Y X D ±+=±五.重要分布:1.二项分布:kn k k n q p C k X P -==)(,记),(~p n B X ,EX=np,DY=npq.2.普哇松分布m me m m X P -==!)(λ,记)(~λP X , EX=DX=λ3.均匀分布),(~b a U X EX=?, DX=?4.标准正态分布)1,0(~N X5.非标准正态分布),(~2σμN X ,EX=μ,DX=2σ,)()(σμ-Φ=x x F6.指数分布)(~λE X EX=?, DX=?例1、设X 的分布列为:kp Xk16.002.01- ,求EX ;DX .例2、设X 的分布函数为⎩⎨⎧>+-=-其他,00,)1(1)(x e x x F x ,求X 的密度函数为=)(x f 及P (X >2)例3、设X ~⎩⎨⎧>=-其他,00,)(x e x f x ,求数学期望)(3X e E -.例4、设X~),2(2σN ,且P (2<X <4)=0.3,求P (X <0) 例5、设X 的概率密度为xkex f -=)(,求k ,P(0<X<1),EX.例6、在相同条件下独立射击8次,每次命中率为0.4,试求命中目标的次数X 的分布列,并求EX, DX 例7、已知某螺钉的长度X~ N (8.5,0.652),规定长度在范围(8.4, 8.65)内为合格品,求螺钉的合格品率. 例8、已知X~B(n,p), EX=6, DX=4.8 求n 和p例9、已知EX=DX=1, EY=DY=4,4.0,=Y X ρ,求E(2X-3Y+2), cov(X,Y), D(2X-Y) 五.中心极限定理:1:若X 1,X 2,…,X n ,相互独立,(n>>1),μ=i EX 2σ=i DX ,则:∑==ni in XY 1近似服从),(2σμn n N2若),(~p n B X (n>>1),则X 近似服从))1(,(p np np N -例10、某供电站供应该地区1000户居民的用电,各户用电相对独立,已知每户日用电量(单位:度)服从[0,10]上的均匀分布,求(1)这1000户居民日用电量超过5100度的概率;(2)若要以0.99的概率保证该地区居民用电正常,问每天应供点多少度?例11、在次品率为0.3的一大批产品中,任取400件,试利用中心极限定理计算取得的100件产品中次品数在110与125之间的概率.第5-6章二维随机变量、随机变量函数的分布 1.联合分布列及边缘分布:),(j i ij y Y x X P p === X 边缘分布率:)(.i i x X P p ===∑+∞=1j ijp; Y 边缘分布率:)(.i j y Y P p ===∑+∞=1i ijp例1、设(X,Y )的联合分布列:1.01.03.022.02.01.01321YX ,求E(X),E(Y),D(X),D(Y),Y X ,ρ 2.联合密度函数边际密度函数:设(X ,Y )得的联合密度函数为f (x ,y ) (1)X 的边缘密度函数:dy y x f x f X ⎰+∞∞-=),()((2)Y 的边缘密度函数:dx y x f y f Y ⎰+∞∞-=),()(数3.随机变量的独立性(1)对离散型:X,Y 相互独立j i ij p p p ..=⇔ (2)对连续型:X,Y 相互独立)()(),(y f x f y x f Y X =⇔例2、设二维随机变量(X,Y )~⎩⎨⎧>>=--其它,00,0,),(2y x Ae y x f y x ,求:(1)常数A; (2) 求边缘密度函数)(),(y f x f Y X 并判断X 与Y 的独立性; (3)概率)(X Y P ≤例3、设二维随机变量(X,Y )~⎩⎨⎧<<<<-=其它,00,10),2(8.4),(xy x x y y x f ,求(1)关于X 及Y 的边缘密度函数)(),(y f x f Y X ; (2)概率)41(X Y P ≥,(3)X 与Y 的协方差cov(X,Y)4.随机变量函数的分布定理:X ~)(x f X ,y=g(x)单调、连续可导,其反函数为x=h(y),则Y=g(X)~)())(()(y h y h f y f X Y '=例4、设X ~⎩⎨⎧≤≤=其他,010,2)(x x x f ,令Y=4X ,求Y 的密度函数为)(y f Y9章统计量的分布一、常用统计量:样本均值∑==n i i X n X 11、样本方差∑=-=n i i X X n S 122)(1,修正样本方差∑=--=n i i X X n S 122*)(11 二、正态总体下统计量的分布(1)nx U /σμ-=)1,0(~N (2)nS x n S x T /1/*μμ-=--=)1(~-n t (3))1(~2222-=n S nχσχ 第10-11章 估计一.矩估计kn i k i EX X n =∑=11 (k =1,2,…)二.极大似然估计1.构造样本的似然函数);,,,(21θn X X X L ,θ为待估计的参数 (1) 对连续型X ),(~θx f ,则:∏==ni in Xf X X X L 121),();,,,(θθ ,(2) 若X 为离散型,则 ∏==ni in XP X X X L 121),();,,,(θθ ,然后求出L 的极大点θˆ,则称θˆ为θ的极大似然估计 例1、设总体X 的密度函数为⎪⎩⎪⎨⎧∉∈-=]6,[,0]6,[,)6(1)(θθθx x x f ,现已知样本均值为5.2=x ,试求θ 的矩法估计值θˆ例2、已知θθx x f X )1()(~+=,试求θ的极大似然估计 三.估计的无偏性与有效性例3、设总体的均值为μ,方差为σ2,321,,X X X 是取自总体X 的样本,在下列三个估计量中,哪些是无偏估计量,哪个是最有效的估计量: )(31ˆ3211X X X ++=μ,3212216261ˆX X X ++=μ,3234141ˆX X +=μ 四.置信区间:设,样本为),,,(21n X X X ,,若αθθθ-=<<1)ˆˆ(21P ,称(1ˆθ,2ˆθ)为置信度1-α置信区间(只要求计算正态总体下参数2,σμ的双侧置信区间) 1.当),(~2σμN X 时,求μ的置信区间(1)σ已知,令nX U /σμ-=)1,0(~N n u X σα2/1[--⇒,n u X σα2/1-+](2)σ未知, 令n S X T /*μ-=)1(~-n t n S n t X *2/1)1([--⇒-α,nS n t X *2/1)1(-+-α2.),(~2σμN X 时,σ的置信区间使用)1(~2222-=n S n χσχ置信区间为[)1(,)1(22/222/12---n nS n nS ααχχ例4、设某零件的高度),(~2σμN X 现任取20只,x =32.3,S*=0.41试求(1)若σ=0.4,求μ的置信度0.95的双侧置信区间,(2)若σ未知,求μ的置信度0.95的双侧置信区间 (3)σ2的置信区间例5、某单位的日用水量X ~),(2σμN ,现抽查了25天的用水量,得样本均值为x =170度,修正样本标准差为*s =30度, 试求μ的双侧0.95置信区间。

相关文档
最新文档