多元统计分析对应分析

合集下载

多元统计分析——对应分析

多元统计分析——对应分析

多元统计分析——对应分析多元统计分析是指在研究中同时考虑两个或多个自变量对因变量的影响,并通过统计方法进行分析。

对应分析是多元统计分析的一种方法,用于确定两个或多个分类变量之间的关联性。

对应分析可以帮助人们理解变量之间的相关性,并提供用于可视化和解释数据的工具。

在本文中,我们将详细介绍对应分析的概念、原理、应用以及一些重要的注意事项。

对应分析的应用非常广泛。

它可以用于数据挖掘、市场研究、生态学、社会科学等领域。

在市场研究中,对应分析可以用于确定消费者对产品的喜好和需求,帮助企业调整产品定位和市场战略。

在生态学中,对应分析可以用于研究不同物种之间的相互作用,并帮助我们了解生态系统的结构和动态。

在社会科学中,对应分析可以用于研究不同社会群体之间的关系,例如分析不同年龄段人群的消费行为和购买偏好。

然而,对应分析也需要注意一些重要的事项。

首先,对应分析是一种描述性的分析方法,不能确定因果关系。

其次,对应分析对数据的分布假设了一定的要求,例如对称分布、线性关系等。

如果数据的分布不满足这些假设,结果可能会不准确。

最后,对应分析通常在两个分类变量之间进行,而不适用于连续变量或混合类型的变量。

在总结中,对应分析是多元统计分析的一种方法,用于确定两个或多个分类变量之间的关联性。

它可以帮助我们理解变量之间的相关性,并提供用于可视化和解释数据的工具。

对应分析有着广泛的应用领域,但也需要注意一些重要的事项。

通过理解对应分析的原理和应用,我们可以更好地利用这一方法来分析和解释数据。

多元统计分析-对应分析

多元统计分析-对应分析

03
列联表检验的零假设是两变量 X和Y 相互独立,计算一个卡方统计量,与列联表中频数取值 和零假设下期望取值之差有关,当卡方 很大时否定零假设。
BA
患慢性支 未患慢性 气管炎 支气管炎
吸烟
43
162
不吸烟
13
121
为了探讨吸烟与慢性支气管炎有无关系, 调查了339人,情况如表所示:
设想有两个随机变量A,B:A:1表示吸 烟,
对应分析
对应分析基本步骤: 建立列联表
利用对应图解释结 果。
1
2
3
一.获取对应分析 数据 确定研究目的, 选择对应分析 所需数据,应 该包括的背景 资料。
对应分析
4
5
二、对应分析 的原理
01
由于R型因子分析和 02
设原始数据矩阵为:
Q型因子分析是反映
一个整体的不同侧面,
R型因子分析是从列
来讨论(对变量),
k
特征根。
Zu k
设 1 2…
三、对应图u 1u 11u 21 A和l(0Bu <的p 1 i<非m零in特(n征,p根)),为其矩相阵应 u 2u 12u 22 的特征u p 向2量为
v 1 v 1 1v 2 1 v n 1 v 2 v 1 2 v 2 2 v n 2
我们知道因子载荷矩阵的含义是原始变量与公共因子之间的 相关系数,所以如果我们构造一个平面直角坐标系,将第一 公共因子的载荷与第二个公共因子的载荷看成平面上的点, 在坐标系中绘制散点图,则构成对应图。
Q型因子分析是从行
来讨论(对样品),
因此 在的
他们之
联 x系1。1

存在
x12

多元统计分析(聚类分析,判别分析,对应分析)

多元统计分析(聚类分析,判别分析,对应分析)

91.500
358.500
95.000
357.000
输出的第一部分对应表是由原始数据学号与科目 分类的列联表,可以看出观测总数n=40,说明原 始数据中没有记录缺失,有效边际为行列数的总 和。
维数 1 2 3 总计
汇总 惯量比例
置信奇异值
奇异值 .075 .052
惯量 .006 .003
解释 .548 .264
2 -.143 -.427 .065 -.013
概述列点a
惯量 .002 .003 .005 .000 .010
点对维惯量
1 .000
2 .099
.022
.880
.975
.021
.003
.001
1.000
1.000
贡献
1 .000 .047 .989 .039
维对点惯量 2 .135 .887 .010 .006
(列)的每一状态对每一维度(公共因子)特
征值的贡献及每一维度对行(列)各个状态的
特征值等贡献。如第一维度中,外语对应的数 值最大,为0.975,说明外语这一状态对第一维 度的贡献最大。
对应分析
由以上两张坐标表可以得出如下的叠加散点图,也是输出 的最后一部分,是学号各状态与科目各状态同时在一张二 维图上的投影。在图上既可以看到每一变量内部各状态之 间的相关关系,又可以同时考察两变量之间的相关关系。
对应分析
结果分析
学号 1 2 3 4
语文 82.000 81.000 83.000 72.000
对Байду номын сангаас表
数学 120.000 119.000 115.000 115.000
科目 外语 71.000 77.000 69.000 75.000

对应分析方法与对应图解读方法

对应分析方法与对应图解读方法

对应分析方法与对应图解读方法——七种分析角度对应分析是一种多元统计分析技术,主要分析定性数据Category Data方法,也是强有力的数据图示化技术,当然也是强有力的市场研究分析技术。

这里主要介绍大家了解对应分析的基本方法,如何帮助探索数据,分析列联表和卡方的独立性检验,如何解释对应图,当然大家也可以看到如何用SPSS操作对应分析和对数据格式的要求!对应分析是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。

交互表的信息以图形的方式展示。

主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。

适用于两个或多个定类变量。

主要应用领域:概念发展(Concept Development)新产品开发 (New Product Development)市场细分 (Market Segmentation)竞争分析 (Competitive Analysis)广告研究 (Advertisement Research)主要回答以下问题:谁是我的用户?还有谁是我的用户?谁是我竞争对手的用户?相对于我的竞争对手的产品,我的产品的定位如何?与竞争对手有何差异?我还应该开发哪些新产品?对于我的新产品,我应该将目标指向哪些消费者?数据的格式要求对应分析数据的典型格式是列联表或交叉频数表。

常表示不同背景的消费者对若干产品或产品的属性的选择频率。

背景变量或属性变量可以并列使用或单独使用。

两个变量间——简单对应分析。

多个变量间——多元对应分析。

案例分析:自杀数据分析上面的交互分析表,主要收集了48961人的自杀方式以及自杀者的性别和年龄数据!POISON(毒药)GAS(煤气)HANG(上吊)DROWN(溺水)GUN(开枪)JUMP(跳楼)(我们就不翻译成中文了,读者可以把六个方式想象成品牌或别的什么)当然,我们拿到的最初原始数据可能是SPSS数据格式记录表,其中,性别取值1-male 2-female,年龄取值1-5,分别表示不同年龄段。

多元统计对应分析

多元统计对应分析

车主de车型及车主特征
产地 1 = "American" 2 = "Japanese" 3 = "European";
轿车的尺寸 1 = "Small" 2 = "Medium" 3 = "Large";
车型 1 = "Family" 2 = "Sporty" 3 = "Work";
拥有方式 1 = "Own" 2 = "Rent";
代码 Name1 Name2 Name3 Name4 Name5 Name6 Name7 Name8
含义 玉泉 雪源 春溪 期望 波澜 天山绿 中美纯 雪浪花
代码 Product1 Product2 Product3 Product4 Product5 Product6 Product7 Product8
两个定类或定序变量分布的描述和分析通常使用列联表, 并采用 检验检验变量之间是否幸福独立。
(2) 列联表(contingency table)的构造
1)由两个或两个以上变量进行交叉分类的频数分布表。
2)行变量的类别数用 r 表示, 列变量的类别数用 c
表示。 3)由行变量和列变量的所有可能组合的频数构成的表 格,称为列联表。
这项研究是为了考察汉字具有的抽象图形符 号的特性能否会促进儿童空间和抽象思维能力。 该数据以列联表形式展示在表中:
人们可以对这个列联表进行前面所说的c2检验来考 察行变量和列变量是否独立。结果在下面表中(通过 Analyze-Descriptive Statistics-Crosstabs)
如何用象因子分析的载荷图那样的直观 方法来展示这两个变量各个水平之间的关 系呢?这就是本章要介绍的对应分析 (correspondence analysis)方法。

多元统计分析的重点和内容和方法

多元统计分析的重点和内容和方法

一、什么是多元统计分析❖多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广。

❖多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律的一门统计学科。

二、多元统计分析的内容和方法❖1、简化数据结构(降维问题)将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。

(1)主成分分析(2)因子分析(3)对应分析等❖2、分类与判别(归类问题)对所考察的变量按相似程度进行分类。

(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。

(2)判别分析:判别样本应属何种类型的统计方法。

例5:根据信息基础设施的发展状况,对世界20个国家和地区进行分类。

考察指标有6个:1、X1:每千居民拥有固定电话数目2、X2:每千人拥有移动电话数目3、X3:高峰时期每三分钟国际电话的成本4、X4:每千人拥有电脑的数目5、X5:每千人中电脑使用率6、X6:每千人中开通互联网的人数❖3、变量间的相互联系一是:分析一个或几个变量的变化是否依赖另一些变量的变化。

(回归分析)二是:两组变量间的相互关系(典型相关分析)❖4、多元数据的统计推断点估计参数估计区间估计统 u检验计参数 t检验推 F检验断假设相关与回归检验卡方检验非参秩和检验秩相关检验❖1、假设检验的基本原理小概率事件原理❖ 小概率思想是指小概率事件(P<0.01或P<0.05等)在一次试验中基本上不会发生。

反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立;反之,则认为假设成立。

❖ 2、假设检验的步骤 (1)提出一个原假设和备择假设❖ 例如:要对妇女的平均身高进行检验,可以先假设妇女身高的均值等于 160 cm (u=160cm )。

这种原假设也称为零假设( null hypothesis ),记为 H 0 。

多元统计分析——对应分析

多元统计分析——对应分析

一般,若总体中的个体可按两个属性 与 一般 若总体中的个体可按两个属性A与 若总体中的个体可按两个属性 B分类,A有n类A1,A2,…,An,B有p类 分类, 有 类 分类 , 有 类 B1,B2,…,Bp, 属于 和Bj的个体数目为 属于Ai和 的个体数目为 nij(i=1,2, …,n;j= 1,2, …,p),nij称为 ( ) 称为 频数,则可形成n× 的二维列联表 的二维列联表, 频数,则可形成 ×p的二维列联表,简 称n×p表。 × 表 若所考虑的属性多于两个, 若所考虑的属性多于两个,也可按类似 的方式作出列联表,称为多维列联表 称为多维列联表。 的方式作出列联表 称为多维列联表。
列联表中列出了表格单元频数和在零假设下 的期望频数,可以看出, 的期望频数,可以看出,吸烟人中患病的数 目比期望数目大。 目比期望数目大。检验的结果只要看后面的 统计量部分的Chi-Square一行,其值为 一行, 统计量部分的 一行 7.469,p值为 值为0.006,所以应否定零假设,吸 , 值为 ,所以应否定零假设, 烟与患慢性支气管炎是不独立的。 烟与患慢性支气管炎是不独立的。
pij pij n 1 ∑ E( )= . pi. = p. j = i =1 p pi. p. j p. j p. j i.
N个点的重心为: ( P.1 , P.2 ⋯ P. p ) 个点的重心为: 个点的重心为
列联表
B1 A1 n11 A2 n21 B2 n12 n22 Bj Bp
… n1j
n2j

n1p n2p
n 1. n 2.
Ai ni1
ni2
nij
nip
ni.
An nn1 n.1
nn2 n.2
nnj n.j

多元统计分析笔记附实例

多元统计分析笔记附实例

多元统计分析笔记附实例1.主成分分析,因⼦分析,对应分析可以⽤来简化数据结构⼜不会损失太多信息2.聚类分析和判别分析是对所考察的变量按相似程度进⾏分类。

3.回归分析⽤来判断⼀些变量的变化是不是依赖于另外⼀些变量的变化,如果是,建⽴变量之间的定量关系式,并⽤于预测4.典型相关分析⽤来分析两组变量之间的相互关系5.多元数据的统计推断参数估计假设检验6.参数估计:⽤样本值估计总体X中的某些参数。

点估计:区间估计:7.数学期望的置信区间分为⽅差已知和⽅差未知置信区间:估计参数的取值范围8.假设检验:对总体的分布律或分布参数作某种假设,根据抽样得到的值,俩判断假设是否成⽴。

9.假设检验分为参数检验和⾮参数检验。

参数检验是在总体分布类型已经知道情况下进⾏的,其⽬的是对总体的参数及其有关性质做出明确判断。

⾮参数检验这是总体分布类型未知的情况下进⾏的检验10.相关系数是⽤来描述两个变量间的线性相关程度的。

简单线性相关系数:Pearson11.标准化:(1)min-max标准化对原始数据进⾏线性变换适⽤于最⼤值和最⼩值已知⽬的是把所有制映射到[0,1] 区间。

(2)Z-zcore 标准化适⽤于最⼤值和最⼩值未知,或者超出取值范围的离群数据的值。

12. 聚类分析:分析-----分类—系统聚类---检验聚类分析显著性:/doc/f89672b26294dd88d0d26b9a.html/article/e8cdb32b7a2daf37052bade5.html⽤SPSS做相关分析的应⽤⽰例【例】表1是某市从1978年⾄1992年社会商品零售总额、居民收⼊和全市总⼈⼝统计数字表,试分析它们之间是否存在线性关系。

表1某市统计表第⼀步:建⽴数据⽂件。

定义变量:序号为Number,假设年份⽤y表⽰,零售总额⽤r表⽰,居民收⼊⽤i表⽰,全市总⼈⼝⽤p表⽰,输⼊数据,如下截图⽰:第⼆步:进⾏数据分析。

在数据⽂件管理窗⼝中,点击Analyze,展开下拉菜单,再点击Correlate中的Bivariate项,进⼊Bivariate Correlations对话框,请童鞋们看下图:(1)在左边的这个东东为源变量列框,右边的Variables框为待分析的变量列框,就是这个东东:(2)再看下边的Correlation Coefficients选项,也就是分析⽅法选择项,就是这个东东。

对应分析

对应分析

对应分析法一、简介对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,是一种多元统计分析技术,主要分析定性数据的方法,也是强有力的数据图示化技术。

对应分析是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。

交互表的信息以图形的方式展示。

主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系,适用于两个或多个定类变量。

对应分析是由法国人Benzenci于1970年提出的,起初在法国和日本最为流行,然后引入到美国。

对应分析法是在R型和Q型因子分析的基础上发展起来的一种多元统计分析方法,因此对应分析又称为R-Q型因子分析。

在因子分析中,如果研究的对象是样品,则需采用Q型因子分析;如果研究的对象是变量,则需采用R型因子分析。

但是,这两种分析方法往往是相互对立的,必须分别对样品和变量进行处理。

因此,因子分析对于分析样品的属性和样品之间的内在联系,就比较困难,因为样品的属性是变值,而样品却是固定的。

于是就产生了对应分析法。

对应分析就克服了上述缺点,它综合了R型和Q型因子分析的优点,并将它们统一起来使得由R型的分析结果很容易得到Q型的分析结果,这就克服了Q 型分析计算量大的困难;更重要的是可以把变量和样品的载荷反映在相同的公因子轴上,这样就把变量和样品联系起来便于解释和推断。

对应分析数据的典型格式是列联表或交叉频数表。

常表示不同背景的消费者对若干产品或产品的属性的选择频率。

背景变量或属性变量可以并列使用或单独使用。

两个变量间——简单对应分析;多个变量间——多元对应分析。

对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。

R语言版应用多元统计分析对应分析

R语言版应用多元统计分析对应分析

应用多元统计分析第8章 对应分析- 1-对应分析(Correspondence Analysis)是在因子分析的基础上发展起来的一种视觉化的数据分析方法,目的是通过定位点图直观地揭示样品和变量之间的内在联系。

R型因子分析是对变量(指标)进行因子分析,研究的是变量之间的相互关系;Q型因子分析是对样品作因子分析,研究的是样品之间的相互关系。

但无论是R型或Q型分析都不能很好地揭示变量和样品之间的双重关系。

而在许多领域错综复杂的多维数据分析中,经常需要同时考虑三种关系,即变量之间的关系、样品之间的关系以及变量与样品之间的交互关系。

法国学者苯参次(J.P.Benzecri)于1970年提出了对应分析方法,这个方法对原始数据采用适当的标度化处理,把R型和Q型分析结合起来,通过R型因子分析直接得到Q型因子分析的结果,同时把变量和样品反映到同一因子平面上,从而揭示所研究的样品和变量之间的内在联系。

在因子分析中,R型因子分析和Q型因子分析都是从分析观测数据矩阵出发的,它们是反映一个整体的不同侧面,因而它们之间一定存在内在联系。

对应分析就是通过某种特定的标准化变换后得到的对应变换矩阵Z将两者有机地结合起来。

具体地,就是首先给出变量的R型因子分析的协方差阵 和样品的Q型因子分析的协方差阵 。

由于矩阵 和 有相同的非零特征值,记为 ,如果 的对应于特征值 的标准化特征向量为 ,则容易证明, 的对应于同一特征值的标准化特征向量为当样本容量n很大时,直接计算矩阵 的特征向量会占用相当大的容量,也会大大降低计算速度。

利用上面关系式,很容易从 的特征向量得到 的特征向量。

并且由 的特征值和特征向量即可得到R 型因子分析的因子载荷阵A和Q型因子分析的因子载荷阵B,即有由于 和 具有相同的非零特征值,而这些特征值又是各个公因子的方差,因此设有p个变量的n个样品观测矩阵 ,这里要求所有元素 ,否则对所有数据同时加上一个适当的正数,以使它们满足以上要求。

多元统计分析介绍

多元统计分析介绍

多元统计分析介绍1.因子分析(Factor Analysis)因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。

运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。

2.主成分分析主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。

主成分分析一般很少单独使用:a,了解数据。

(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。

(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。

***************************************************************************************************** *************主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。

2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。

3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。

因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。

对应分析、典型相关分析、定性数据分析

对应分析、典型相关分析、定性数据分析

应用领域的拓展
对应分析的应用领域 拓展
随着数据科学和商业智能的不断 发展,对应分析的应用领域将不 断拓展,如市场细分、消费者行 为分析、社交网络分析等,对应 分析将为这些领域提供更有效的 分析和预测工具。
典型相关分析的应用 领域拓展
典型相关分析作为一种重要的多 元统计分析方法,其应用领域也 将不断拓展,如生物信息学、环 境科学、金融风险管理等,典型 相关分析将为这些领域提供更准 确的数据分析和预测工具。
典型相关分析
能够揭示两组变量之间的关联,但需要较大的样本量, 且对异常值敏感。
定性数据分析
能够挖掘数据中的模式和规律,但主观性强,需要经 验丰富的分析师进行操作。
05
对应分析、典型相关分析、定性数据分析的 未来发展
CHAPTER
新方法的出现
对应分析的新方法
随着数据科学和统计学的不断发展,对应分析的新方法将不断涌现,如基于机器学习的对应分析方法、网络分析方法 等,这些新方法将为对应分析提供更强大的工具和更广泛的应用领域。
心理学研究
在心理学研究中,对应分析可用于揭示人类行为和心理状态之间的关系。
例如,它可以用于研究不同性格类型或心理状态的人在不同情境下的行
为反应。
02 典型相关分析
CHAPTER
典型相关分析的定义
典型相关分析是一种多元统计分析方 法,用于研究两组变量之间的相关关 系。
它通过寻找两组变量之间的典型相关 变量,来解释两组变量之间的相互关 系。
市场调研
在市场调研中,定性数据分析可用于深入了解消费者需求、 态度和行为,为产品定位和市场策略提供依据。
01
社会学研究
在社会学研究中,定性数据分析常用于 探究社会现象、文化差异和群体行为等, 以揭示社会结构和动态。

多元统计分析——对应分析实验报告

多元统计分析——对应分析实验报告

多元统计分析实验报告表2-2 对应分析数据(老龄化数据)三、实验过程在spss16.0软件中,对表2-2数据做对应分析。

首先应对个案进行加权操作。

选择【Date】—【Weight Cases】,出现表3对话框。

选择frequency作为加权,如图3-1所示。

图3-1 加权个案对个案加权后,开始做对应分析。

选择【Analyze】—【Date Reduction】—【Corespondence Analysis】,会出现图3-2对话画框。

图3-2 对应分析对话框接下来对行变量和列变量进行设置。

将selfassess(自评健康状况)选入Row,作为行变量,并选择【Define Range】,填写范围后点击【Update】—【Continue】,如图3-3所示;按同样的步骤,将independence(生活自理能力)选入Column(列变量),并设置列变量,如图3-4所示;最终设置结果如图3-5所示。

图3-3 行变量设置图3-4 列变量设置图3-5 对应分析设置结果点击【OK】,便可得到对应分析结果。

四、实验过程表4-1为对应分析的版本信息。

图中显示为1.1版本。

表4-1 对应分析版本信息表4-2是列联表,列示了在各个水平下的人数。

表4-2 列联表表4-3为对应分析总述表。

表中显示了奇异值(Singular Value),第一个维度的奇异值为0.253,第二个维度的奇异值为0.125;惯量(Inertia)为特征根,就是奇异值的平方;Chi Square 值为212.593,是总样本数除以总的Inertia 觉原假设,认为两个随机变量不是相互独立的,本例中就是自评健康状况和生活自理能力不是相互独立的;贡献率(Accounted for)显示,第一个维度解释了总变异的80.4%,第二个维度解释了19.6%,两个维度解释了所有的变异;接下来依次为累计贡献率(Cumulative)、奇异值的方差(Standard Deviation)、奇异值的相关系数(Correlation)。

第八章 对应分析 《应用多元统计分析》 ppt课件

第八章 对应分析 《应用多元统计分析》 ppt课件
1 2 m , 0 m min(p, n) ,
4
二、对应分析的基本思想
可以证明,如果 A 的特征根 i 对应的特征向量为 ui ,则 B 的特征根 i 对应的特征向量就 是 Zui vi 。根据这个结论就可以很方便地借助 R 型因子分析得到 Q 型因子分析的结果。
因为求出 A 的特征根和特征向量后很容易地写出变量点协差阵对应的因子载荷矩阵(记为 F ):
假定矩阵 X 的元素 xij 0 ,否则对所有的数据同加上一个适当的数,便可满足这个要
求 , 然 后 写 出 X 的 行 和 、 列 和 , 以 及 行 列 总 和 , 分 别 记 为 xi ( i 1, 2, , n ) ,
x j ( j 1, 2, , p )和 x ,如表 8.1 所示。
的非零特征根。
推论:如果 u 是 A ZZ 的特征向量,则 Zu 是 B ZZ 的特征向量。如果 v 是
(2)在处理实际问题中,样品容量往往较大, 使型因子分析的计算量非常巨大,比如有1000 个样品,就要计算1000×1000阶矩阵的特征根 和特征向量,计算代价相当之高。
2
一、什么是对应分析
(3)在进行数据处理时,为了将数量级相差很大的变量 进行比较,需要对变量进行标准化处理,然而这种只 按照变量列进行的标准化处理对于变量和样品是非对 等的,这给寻找型因子分析和型因子分析的联系带 来—定的困难。
1
一、什么是对应分析
(1)型因子分析和型因子分析是分开进行的。 当研究的对象是变量时,通常作型因子分析, 当研究的对象是样品时,则采用型因子分析, 而且把型和型看成两种分离的概念,无法使型 和型因子分析同时进行,这样将型和型割裂开 后就会损失很多有用的信息,而且还不能揭示 变量与样品之间的相关信息。

多元统计分析的几种方法

多元统计分析的几种方法

1. 目的不同:因子分析把诸多变量看成由对每一个变量都有作用的一些公共因子和仅对某一个变量有作用的特殊因子线性组合而成,因此就是要从数据中控查出对变量起解释作用的公共因子和特殊因子以及其组合系数;主成分分析只是从空间生成的角度寻找能解释诸多变量变异的绝大部分的几组彼此不相关的新变量(主成分)。

2. 线性表示方向不同:因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。

3. 假设条件不同:主成分分析中不需要有假设;因子分析的假设包括:各个公共因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关。

4. 提取主因子的方法不同:因子分析抽取主因子不仅有主成分法,还有极大似然法,主轴因子法,基于这些方法得到的结果也不同;主成分只能用主成分法抽取。

5. 主成分与因子的变化:当给定的协方差矩阵或者相关矩阵的特征值唯一时,主成分一般是固定的;而因子分析中因子不是固定的,可以旋转得到不同的因子。

6. 因子数量与主成分的数量:在因子分析中,因子个数需要分析者指定(SPSS根据一定的条件自动设定,只要是特征值大于1的因子主可进入分析),指定的因子数量不同而结果也不同;在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等)。

7. 功能:和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势;而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。

当然,这种情况也可以使用因子得分做到,所以这种区分不是绝对的。

1 、聚类分析基本原理:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。

目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。

常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。

《多元统计分析》第七章 对应分析

《多元统计分析》第七章  对应分析

《多元统计分析》7.1 引言v例1(书中习题9.2)下表包含在美国西南部7个考古场所挖掘出来的4种不同类型陶器的频数。

陶器类型A B C D合计考古场所P03010103989P153416275P2731411116P3*******P446363713132P54565910120P616281695218合计2839133374781陶器类型A B C D 考古场所P00.3370.1120.1120.438P10.7070.0530.2130.027P20.6290.0090.3530.009P30.6450.1940.0320.129P40.3480.2730.2800.099P50.3750.0500.4920.083P60.0730.1280.7750.023行轮廓马赛克图陶器类型A B C D 考古场所P00.1060.1100.0300.527P10.1870.0440.0480.027P20.2580.0110.1230.014P30.0710.0660.0030.054P40.1630.3960.1110.176P50.1590.0660.1770.135P60.0570.3080.5070.068列轮廓马赛克图对应分析图对应分析图陶器类型A B C D考古场所P030(32.2)10(10.4)10(37.9)39(8.4)P153(27.2)4(8.7)16(32.0)2(7.1)P273(42.0)1(13.5)41(49.5)1(11.0)P320(11.2)6(3.6)1(13.2)4(2.9)P446(47.8)36(15.4)37(56.3)13(12.5)P545(43.5)6(14.0)59(51.2)10(11.4)P616(79.0)28(25.4)169(93.0)5(20.7)列联表《多元统计分析》7.2 行轮廓和列轮廓一、列联表列12⋯q合计行1n11n12⋯n1q n1∙2n21n22⋯n2q n2∙⋮⋮⋮⋮⋮p n p1n p2⋯n pq n p∙合计n∙1n∙2⋯n∙q n二、对应矩阵列12⋯q 合 计行1p 11p 12⋯p 1q p 1∙2p 21p 22⋯p 2q p 2∙⁝⁝⁝⁝⁝p p p 1p p 2⋯p pq p p ∙合 计p ∙1p ∙2⋯p ∙q11qi i ij j n p p n ⋅⋅===∑111p qi ji j p p⋅⋅====∑∑1pj j ij i n p p n⋅⋅===∑ij ij n p n=v对应矩阵:行边缘频率构成的列向量:其中。

《多元统计分析讲义》第七章对应分析

《多元统计分析讲义》第七章对应分析

*
XXX
*
目录 上页 下页 返回 结束
§7.2 对应分析的基本理论
7.2.2 对应分析的基本理论 经过以上数据变换,在引入加权距离函数之后,或是 对行剖面集的各点进行式(7.8)的变换,对列剖面的各 点进行类似变换之后,就可以直接计算属性变量各状 态之间的距离,通过距离的大小来反映各状态之间的 接近程度,同类型的状态之间距离应当较短,而不同 类型的状态之间的距离应当较长,据此可以对各种状 态进行分类以简化数据结构。但是,这样做不能对两 个属性变量同时进行分析,因此不计算距离,代之求 协方差矩阵,进行因子分析,提取主因子,用主因子 所定义的坐标轴作为参照系,对两个变量的各状态进 行分析。
*
XXX
*
目录 上页 下页 返回 结束
§7.4对应分析的上机实现
打开GSS93 subset.sav数据,对变量Degree与变量Race进行对 应分析,依次点选Analyze→Data Reduction→Correspondence Analysis…进入Correspondence Analysis对话框。数据集中所 有的变量名(标签)均已出现左边的窗口中,将Degree变量 选入右侧行变量(Row)的小窗口中,此时该窗口显示的Degree 变量形如:Degree(? ?),同时,其下方的Define Range按钮被 击活,点击该按钮,进入Define Row Range对话框,在该对 话框中需要确定Degree变量的取值范围,此处我们不研究缺 失值,最小值(minimum value)与最大值(maximum value)处分 别填上0和4,按右侧的update(更新)按钮,可以看到Degree的 取值0—4已出现在Category Constraints框架左侧的窗口中,该 框架的作用是对Degree的各状态加以限定条件的,保持默认 值none不变,即对Degree的取值不加以限定条件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

162
A:1表示吸烟,

2表示不吸烟;
B:1表示患慢性支气管炎,
不 吸
13
121
2表示未患。

零假设为:
H0: A与B相互独立
STATISTICS FOR TABLE OF SMOKE BY BRON Statistic
DF
Value
Prob
Chi-Square
1
7.469
0.006
Likelihood Ratio 1

p1p p1.
p22
p2j
p2p p2.
Ai pi1 pi2
pij
pip pi.
An pn1 pn2
pnj
p.1
p.2
p.j
pnp pn. p.p 1
列联表独立性检验
对于数值型变量相关关系,通常是计算相关系数和进 行回归分析。
描述两个定性变量之间的相关性是指广义的相关性, 称为关联性。两个定性变量的关联程度在某种意义 上就是指的“不独立”,它与独立的情形差距越大, 就表明彼此的关系越密切,这种关系不一定是线性 关系。在实际问题中,重要的是判断变量之间是否 独立,因为不独立就意味着关联。最常用的检验办 法是列联表独立性检验。
变量的叉积矩阵
样品的叉积矩阵
R (* X ) X * (p p ) QX *(X *) (n n )
显而易见,变量和样品的叉积矩阵的阶数不同, 一般来说,他们的非零特征根也不一样,那么能否将 观测值做变换。
X Z
ZZ和ZZ具有相同的特征根。
(一)规格化矩阵
x11 x12
X
x21
x22
一般,若总体中的个体可按两个属性A与 B分类,A有n类A1,A2,…,An,B有p类 B1,B2,…,Bp, 属于Ai和Bj的个体数目为 nij(i=1,2, …,n;j= 1,2, …,p),nij称为 频数,则可形成n×p的二维列联表,简 称n×p表。
若所考虑的属性多于两个,也可按类似 的方式作出列联表,称为多维列联表。
7.2 对应分析
对应分析又称为相应分析,也称R—Q分析。是因子分子基础发展起来的 一种多元统计分析方法。它主要通过分析属性(定性)变量构成的列联表 来揭示变量之间的关系,可以用对应分析图(二维图)显示列联表中每一 个单元格的相对位置,以简单、直观地表明列联表的行与列的关系。
对应分析也是利用降维的思想以达到简化数据结构的目的。不过,在 因子分析中,R型因子分析和Q型因子分析是分开进行的。对应分析的基本 思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的 空间中表示出来。在对应分析中,会同时对行与列进行处理,寻求以低维 图形表示数据表中的行与列的关系。(对同一观测数据施加R和Q型因子分 析,并分别保留两个公共因子,则是对应分析的初步)。
7.925 0.005 Chi-Square
Continuity Adj. Chi-Square
1
6.674
0.010
Mantel-Haenszel Chi-Square
1
7.447 0.006
Fisher's Exact Test (Left) 4.09E-03
(Right) 0.998
(2-Tail) 6.86E-03
p2
p
pnp
n
p
我们可以把pij解释成概率,因为所有的元素之和为1。
行和pi.: j p1pij
列和 p.j : i n1pij
Q
pij
pi.
xpij /x.. pij
列联表检验的零假设是两变量 X和Y 相互独立,计 算一个卡方统计量,与列联表中频数取值和零假设 下期望取值之差有关,当卡方 很大时否定零假设。
例 吸烟与慢性支气管炎调查表
为了探讨吸烟与慢性支气管 炎有无关系,调查了339人, 情况如表所示:
B A
患慢性 支气管 炎
未患慢 性支气 管炎
设想有两个随机变量A,B: 吸 43
Phi Coefficient -0.148
Contingency Coefficient 0.147
Cramer's V -0.148
Sample Size = 339
列联表中列出了表格单元频数和在零假设下 的期望频数,可以看出,吸烟人中患病的数
目比期望数目大。检验的结果只要看后面的 统计量部分的Chi-Square一行,其值为 7.469,p值为0.006,所以应否定零假设,吸 烟与患慢性支气管炎是不独立的。
设原始数据矩阵为:
x11 x12
X
x21
x22
xn1
xn2
x1p
x2
p
xnp
n
p
由于因子分析都是基于协方差矩阵或相关系 数矩阵完成的,所以必须从变量和样品的协 方差矩阵入手来进行分析。
x11x1 x12x2 x1p xp
X* x21x1 x22x2 x2p xp
xn1x1 xn2 x2 xnpxpnp
第7章 对 应 分 析
Correspondence Analysis
7.1列联表及列联表分析 7.2对应分析
7.1列联表及列联表分析
一、列联表及其作用 1.列联表是观测数据按两个或更多属性变量
(定类尺度或定序尺度)分类时所列出的频 数表。 2.列联表用于考察两个(或多个)分类变量 的统计学关联。如行变量与列变量之间的关 联性。
对应分析基本步骤: 1、获取对应分析数据 确定研究目的,选择对应分析所需数据,应 该包括的背景资料。 2、建立列联表 3、对应分析 4、利用对应图解型因子分析和Q型因子分析是反映一个整体 的不同侧面,R型因子分析是从列来讨论(对变量), Q型因子分析是从行来讨论(对样品),因此他们之 间存在内在的联系。
xn1
xn2
x1p
x2
p
xi.为行和x., j为列和
x 为总和
xnp
n
p
..
x11 x12 x21 x22
xn1 xn2
x1p x1.
x2
p
x2.
xnp
xn.
x.1
x.2 x.p x..
pijxij/x..
p11
X
p21
p12 p22
pn1
pn2
p1p
列联表
B1 B2
Bj
A1 n11 n12 … n1j

A2 n21 n22
n2j
Bp n1p n1. n2p n2.
Ai ni1 ni2
nij
nip ni.
An nn1 nn2
nnj
n.1
n.2
n.j
nnp nn. n.p n
B1 A1 p11 A2 p21
频率意义上的列联表
B2
Bj
Bp
p12 … p1j
相关文档
最新文档