模糊数学(基本定义)
模糊数学简介
3)
84 Yamakawa F-logic I.C (模糊集成电路)
85 IFSA 成立国际模糊系统协会
我国:70 年代 王培庄,开始主要是理论研究,并且与经典数学相对应的各个领域都
有人研究,现在研究、利用模糊技术的领域已经深入到社会、经济等各个方面。
杂志:
*FSS-Fuzzy Set and Systems,
一、模糊数学简介、教学安排、
普通集合
(一)简介
1. 发展历史
美:65 L.A.zadeh 信息与控制(理论研究开始)
英:74 马丹尼
蒸汽机控制,80年丹麦哥本哈根的史密斯水泥公司首次用模
糊系统实现了对水泥窑炉的控制。88年,日立公司使日本仙台市地铁实现了模糊控制。
日:72 Sugeno
F-measure 语音控制模糊汽车(88),无人驾驶直升机(9
(3)特征函数定义
定义:设 X 为论域, A X ,称映射
A : X { 0 , 1}
1, x A
x |
A (x)
0,
x A
( A B )( x ) min{ A ( x ), B ( x )} A ( x ) B ( x )
Ac (x) 1 A(x)
*IEEE Transactions on Fuzzy Systems (1993),
*Fuzzy Mathematics etc.
IEEE 从1992年起,每年召开一次国际模糊学术会议。1995年 IEEE 给 Zadeh
授予了学会的荣誉勋章。
2.趋势
(1)研究与应用人数逐年上升
(2)应用领域逐步扩大,遍及社会,经济等等各个领域,如:
11模糊数学及其应用
2、隶属度:隶属函数A( x)描述了 x对模糊集合A的隶属程度。
3、模糊集A有下列三种常见的表示形式。 i) zadeh 表示法 ii) 序偶表示法 iii) 向量表示法
2010暑假建模培训
4
用集合x1 , x2 , x3 , x4 表示四位学 生, " 聪明"是一个模糊概念, 经某种方法 对四位学生的聪明程度 作的评价依次为 0.45 , 0.78 , 0.91 , 0.46 , 则以次评价构成 的模糊集合 A记为
22
2010暑假建模培训
2、数据标准化 在实际问题中,不同的数据一般有不 同的量纲,为了使所有不同的量纲的量也 能进行比较,通常需要对数据作适当的变 换 在模糊数学里,一般将数据压缩到区间 [0,1]上。
2010暑假建模培训
23
通常需要作如下两种变换: 1)平移、标准差变换
xik xk x sk
' ik
(i 1,2n; k 1,2,m)
1 xk xik n i 1
n
1 2 sk ( xik xk ) n i 1
n
2010暑假建模培训
24
经过变换后,每个变量的均值为0,标准 差为1,且消除了量纲的影响,但是,这样得 到的 还不一定在区间[0,1]上。
2)平移、极差变换
2010暑假建模培训 19
择近原则
设A1 , A2 , An是论域X中的n个模糊 集合 标准模型,对于给定的 待识别 对象B( X中的模糊集合) , 若存在k使得:
( Ak , B) max{ ( A1, B), ( An , B)}
其中 ( Ai , B )表示B对Ai的贴近度, 则认为B与Ak 最相似
模糊数学简介
集合的运算规律 幂等律: ∪ 幂等律: A∪A = A, A∩A = A; , ; 交换律: ∪ 交换律: A∪B = B∪A, A∩B = B∩A; ∪ , ; 结合律: ∪ ∪ 结合律:( A∪B )∪C = A∪( B∪C ), ∪ ∪ , ( A∩B )∩C = A∩( B∩C ); ; 吸收律: ∪ 吸收律: A∪( A∩B ) = A, , A∩( A∪B ) = A; ∪ ; 分配律: ∪ 分配律:( A∪B )∩C = ( A∩C )∪( B∩C ); ∪ ( A∩B )∪C = ( A∪C )∩( B∪C ); ∪ ∪ ∪
1, χ A( x) = : (1)枚举法;(2)描述法,A={x | P(x)}. 枚举法; 描述法 描述法, 枚举法 A⊂B ⇔ 若x∈A,则x∈B; ⊂ ∈ , ∈ ; A⊃B ⇔ 若x∈B,则x∈A; ⊃ ∈ , ∈ ; A=B ⇔ A ⊂ B且 A ⊃ B. 且 集合A的所有子集所组成的集合称为 的 集合 的所有子集所组成的集合称为A的 的所有子集所组成的集合称为 幂集, 记为2 幂集 记为 A. 并集A∪ 并集 ∪B = { x | x∈A或x∈B }; ∈ 或 ∈ ; 交集A∩B = { x | x∈A且x∈B }; 交集 ∈ 且 ∈ ; 设全集是X, 余集A 设全集是 A⊂X, 余集 c = { x | x∈X, x∉A }. ∈ ∉
关系合成的矩阵表示法 设 X = {x1, x2, … , xm}, Y = {y1 , y2 , … , ys}, Z = {z1, z2, … , zn},且X 到Y 的关系 , R1 = (aik)m×s, × Y 到Z 的关系 R2 = (bkj)s×n, × 的关系可表示为矩阵形式: 则X 到Z 的关系可表示为矩阵形式: R1 ○ R2 = (cij)m×n, × 其中c 其中 ij = ∨{(aik∧bkj) | 1≤k≤s}, R1 R2 称为矩阵
模糊数学和其应用
04
总结与展望
模糊数学的重要性和意义
模糊数学是处理模糊性现象的一种数学 理论和方法,它突破了经典数学的局限 性,能够更好地描述现实世界中的复杂 问题。
模糊数学的应用领域广泛,包括控制论、信 息论、系统论、人工智能、计算机科学等, 对现代科学技术的发展起到了重要的推动作 用。
模糊数学的出现和发展,不仅丰富 了数学理论体系,也促进了各学科 之间的交叉融合,为解决实际问题 提供了新的思路和方法。
随着计算机技术的发展,模糊 数学的应用越来越广泛,成为 解决复杂问题的重要工具之一 。
模糊数学的基本概念
模糊集合
与传统集合不同,模糊集合的成员关系不再是确 定的,而是存在一定的隶属度。例如,一个人的 身高属于某个身高的模糊集合,其隶属度可以根 据实际情况进行确定。
隶属函数
用于描述模糊集合中元素属于该集合的程度。隶 属函数的确定需要根据实推理规则不再是一 一对应的,而是存在一定的连续性。例如,在医 疗诊断中,病人的症状与疾病之间的关系可能存 在一定的模糊性,通过模糊逻辑可以进行更准确 的推理。
模糊运算
与传统运算不同,模糊运算的结果不再是确定的 数值,而是存在一定的隶属度。例如,两个模糊 数的加法运算结果也是一个模糊数,其隶属度取 决于两个输入的隶属度。
模糊数学在图像处理中的应用
总结词
模糊数学在图像处理中主要用于图像增强和图像恢复。
详细描述
通过模糊数学的方法,可以对图像进行平滑、锐化、边缘检测等操作,提高图像的视觉效果和识别能 力。例如,在医学影像处理中,可以利用模糊数学的方法对CT、MRI等医学影像进行降噪、增强和三 维重建等处理,提高医学诊断的准确性和可靠性。
02
模糊数学的应用领域
模糊控制
模糊数学ppt课件
1 2
,则有rij'
பைடு நூலகம்[0,1]
。也可以
用平移—极差变换将其压缩到[0,1]上,从而得到模糊相似矩阵
R (rij )nm
(2)绝对值指数法. 令
m
rij exp{ xik x jk }(i, j 1, 2, , n) k 1
则 R (rij )nm
(3)海明距离法. 令
rij
1
d (xi , x j )
(6)主观评分法:设有N个专家组成专家组,让每一位专家对
所研究的对象 x i 与 x j 相似程度给出评价,并对自己的自信度
作出评估。如果第k位专家 Pk 关于对象 x i与 x j 的相似度评价
为 rij (k ),对自己的自信度评估为aij (k ) (i, j 1,2,, n),则相关 系数定义为
)2
(i, j 1,2,, n)
其中E为使得所有 rij [0,1](i, j 1, 2, , n) 的确定常数.则 R (rij )nm
(5)切比雪夫距离法. 令
rij
d (xi ,
1 xj)
Q
d
m
k 1
( xi xik
,
x
j ), x jk
(i, j 1,2,, n)
其中Q为使所有 rij [0,1](i, j 1, 2, , n) 的确定常数.则 R (rij )nm
第三步. 聚类 所谓模糊聚类方法是根据模糊等价矩阵将所研究的对象进
行分类的方法。对于不同的置信水平 [0,1] ,可以得到不同 的分类结果,从而形成动态聚类图。 (一)传递闭包法
通常所建立的模糊矩阵R 只是一个模糊相似矩阵,即R 不 一定是模糊等价矩阵。为此,首先需要由R 来构造一个模糊等
模糊数学
模糊数学的认识与理解1、模糊数学的产生1965 年美国控制论学者L.A.扎德发表论文《模糊集合》,标志着这门新学科的诞生。
模糊数学又称FUZZY 数学,亦称弗晰数学或模糊性数学。
现代数学是建立在集合论的基础上。
集合论的重要意义就一个侧面看,在与它把数学的抽象能力延伸到人类认识过程的深处。
一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它。
符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合。
从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都一可能纳入集合描述的数学框架。
但是,数学的发展也是阶段性的。
经典集合论只能把自己的表现力限制在那些有明确外延的概念和事物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可。
对于那些外延不分明的概念和事物,经典集合论是暂时不去反映的,属于待发展的范畴。
在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。
但是,在客观世界中还普遍存在着大量的模糊现象。
以前人们回避它,但是,由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出现。
各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题推向中心地位。
更重要的是,随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理模糊性。
我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。
从认识方面说,模糊性是指概念外延的不确定性,从而造成判断的不确定性。
在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。
比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。
模糊数学-模糊数学基本知识
隶属函数参数化
1. 三角形隶属函数
0
trig ( x;
a,
b,
c)
x a ba
cx
cb
0
xa a xb b xc
cx
trig(x; a,b, c) max(min( x a , c x), 0) ba cb
参数a,b,c确定了三角形MF三个顶点的x坐标。
2. 梯形隶属函数
0
xa
trap(x, a, b, c, d )
g(x;50,20)
bell(x:20,4,50)
❖ (2)模糊子集运算的基本性质
模糊集合间的并、交、补(余)运算 具有如下的性质.
1)幂等律 A~ A~ A~, A~ A~ A~
2)交换律 A~ B~ B~ A~; A~ B~ B~ A~
3)结合律 ( A~ B~) C~ A~ (B~ C~),
论域U上的模糊集A由隶属函数uA来表征, uA的大小反映了x对于模糊子集的从属程度。 模糊子集完全由隶属函数来描述。
❖ 模糊子集的表示方法 (1)向量法
(2)查德表示法 有限集 无限集
模糊集举例 例4 设U={1,2,3,4,5,6}, A表示“靠近4”的数,则 AF (U),各数属于A的程度A(ui) 如表。
经典集合论的例子: 设U={ 红桃,方块,黑桃,梅花 }
V={ A,1,2,3,4,5,6,7,8,9, 10,J, Q, K } 求U×V
解: U×V={ (红桃,A),(红 桃, 2),……,(
梅花, K) }
35
模糊关系论例子: 设有一组学生U:
U={ 张三,李四,王五 } 他们对球类运动V:
( A~ B~) C~ A~ (B~ C~).
模糊数学理论
2) 模糊矩阵
2.2模糊等价关系与模糊相似关系 模糊等价关系与模糊相似关系 1)模糊等价关系 )
2)模糊等价矩阵 )
3)模糊相似关系与模糊相似矩阵 )
2.3 截矩阵与传递矩阵 1)截矩阵 )
Байду номын сангаас
2)模糊传递矩阵 )
3 模糊聚类分析
所谓聚类分析,就是用数学的方法把事物按一定要求 和规律进行分类,它有广泛的实际应用。在模糊数学产生 之前,聚类分析已是是数理统计中研究“物以类聚”的一 种多元分析方法,它通过数学工具定量地确定、划分样品 的亲疏关系,从而客观地、合理地分型划类。由于客观事 物之间在很多情况下并没有一个截然区别的界限,又由于 分类时所依据的数据指标的变化也大都是连续的,同时许 多客观事物之间的界限往往不一定很清晰,使传统的基于 数理统计原理的聚类分析方法遇到了困难。因此用模糊数 学观点解决聚类分析问题,必然会更符合于实际情况。这 种基于建立模糊相似关系对客观事物进行分类的方法,称 为模糊聚类分析。
注明: 统计量确定满意分类 注明:用F统计量确定满意分类
• 3.1 模糊聚类分析理论:
1)
2)
3)
4)
3.2 基于模糊等价关系的动态聚类分析
例题
此例题可以用截矩阵的方法来实现
3.3 基于模糊相似关系的聚类分析 1)建立模糊相似矩阵 )
2)传递闭包法 )
此外,还有直接聚类法、最大树法、编网法等。 此外,还有直接聚类法、最大树法、编网法等。
3)模糊集的表示
4)模糊集的运算 ) 模糊集与普通集一样, 模糊集与普通集一样,有相同的运算和相应的运 算规律。 算规律。
A与B的并集、交集及 的补集定义如下: 与 的并集 交集及A的补集定义如下 的并集、 的补集定义如下:
模糊诊断法
2-2 模糊模式识别在故障诊断中的应用
典型模式XR1
(基准状态1)
待检模式XT
(待检状态)
贴近度计算
典型模式XR2
(基准状态2)
典型模式XRK
(基准状态K)
2-2 模糊模式识别在故障诊断中的应用
rij R ( xi , y j )
2-2 Enter Your Title 1-2 模糊关系 模糊矩阵和模糊变换
设A为U上的模糊子集,B为论域V上的模糊子集,则A 和B可视为两个向量,称为模糊向量。是到V上的模糊 关系,则 A, B, R 的关系可以用下式表达,其运算法类 似于矩阵相乘。
B A R {ai }m [rij ]mn {bj } 其中 bj ai rij
偏小型函数的特点是x越大,则它对模糊集合A的隶属 度越小。
1-1 模糊子集 隶属函数和隶属度
(2)戒下型偏大型函数
0ua 1, A ( x) 1 ua 1 a(u - a)b a, b 0
偏大型函数的特点是x越大,则它对模糊集合A的隶属 度越大。 该隶属函数和偏小型隶属函数构成了互补的关系。
2-1 模糊综合评判在故障诊断中的应用
在U中顶一个模糊向量 X {x1x2 ......xm} 其 xi A (ui )(i 1, 2,...m) 表示xi对ui的隶属度,则
X Y R
由此可以导出 X {x1x2 ......xm}根据隶属度 xi A (ui )(i 1, 2,...m) 的大小顺序构成下述序列 xr xs xt ..., r, s, t {1, 2,3..., m} ,以上提供了待检信号的特征应归结于某种故障原因可能大 小的顺序,从而为诊断决策提供依据。
数学建模-模糊数学
取论域U={全岛刮胡子的人},
集合A={不给自己刮胡子的人},用特征函数刻画为
A
(某人 )
1, 0,
某人不给自己刮胡子 某人给自己刮胡子
问题:显然理发师 U ,那么理发师是否属于A?
模糊集合及其运算
二、模糊集合及其运算 美国控制论专家Zadeh教授正视了经典集合描述的
“非此即彼”的清晰现象,提示了现实生活中的绝大多数 概念并非都是“非此即彼”那么简单,而概念的差异常以 中介过渡的形式出现,表现为“亦此亦彼”的模糊现象。 基于此,1965年, Zadeh教授在《Information and Control》杂志上发表了一篇开创性论文“Fuzzy Sets”, 标志着模糊数学的诞生。
1 0.4 0.8 0.5 0.5 0.4 1 0.4 0.4 0.4
R 0.8 0.4 1 0.5 0.5
0.5 0.4 0.5 1 0.6
0.5 0.4 0.5 0.6 1
当 1时,分类为{ x1},{ x2 },{ x3 },{ x4 },{ x5 };
模糊聚类分析
例:设有模糊相似矩阵
1 0.1 0.2 R 0.1 1 0.3
0.2 0.3 1
1 0.2 0.2
R
R
0.2
1
0.3
R2
0.2 0.3 1
R2
R2
1 0.2
0.2 1
0.2 0.3
R2
t ( R).
在实际问题中,不同的数据一般有不同 的量纲,为了使有不同量纲的量能进行比较, 需要将数据规格化,常用的方法有:
模糊数学 第四章---模糊关系
2.模糊自反关系(fuzzy reflexive relations)
定义 R F ( X X ), 若x X , R( x, x) 1,
则称R为模糊自反关系.
X有限时,R (rij )nn , rii R( xi , xi ) 1 根据主对角线元素是否为1判定R 是否自反
2. 运算
设R, S F ( X Y )
R S ( x, y ) X Y , R( x, y ) S ( x, y ); R S ( x, y ) X Y , R( x, y ) S ( x, y );
( R S )( x, y ) R( x, y ) S ( x, y ) ( R S )( x, y ) R( x, y ) S ( x, y )
设R (rij )nm , S ( sij )nm ,
即R( xi , y j ) rij , S ( xi , y j ) sij
则(R S )( xi , y j ) R( xi , y j ) S ( xi , y j ) rij sij 所以,R S (rij sij )nm .
1
X 有限时,
根据矩阵是否为对称阵判定R 是否对称关系
0.3 0.1 为对称关系. 0.1 0.3
命题3.3 R对称 [0, 1], R 是普通对称关系.
证明: 设R对称,且( x, y) R , 则R( x, y)
故R( y, x) R( x, y) ( y, x) R
类似可得: R S (rij sij ) nm . R c (1 rij )nm .
R 1 ( yi , x j ) R( x j , yi ) rji R S i, j, rij sij
Python数学实验与建模课件第14章模糊数学
第14章
14.1模糊数学基本概念
第7页
定义 14.2 论域U 到[ 0 , 1闭]区间上的任意映射 M : U [0,1], u M (u),
都确定了U 上的一个模糊集合, M (u)叫做 M 的隶属函数,或称为u对 M 的 隶属度。记作 M {(u, M(u)) | u U },使得 M(u) 0.5的点称为模糊集 M 的 过渡点,此点最具有模糊性。
(0.3 0.2) (0.35 0.4) (0.1 0.2)]
[0.3 0.2 0.1, 0.3 0.2 0.1, 0.2 0.35 0.1]
[0.3, 0.3, 0.35].
第14章
14.1模糊数学基本概念
#程序文件 Pex14_6.py import numpy as np a=np.array([0.3,0.35,0.1]); aa=np.tile(a,(len(a),1)) b=np.array([[0.3,0.5,0.2],[0.2,0.2,0.4],[0.3,0.4,0.2]]) c=np.minimum(aa.T,b) # 两个矩阵的元素对应取最小值 T=c.max(axis=0) # 矩阵逐列取最大值 print("T=",T)
x
A。描述这一事实的是特征函数
A(
x
)
1, 0,
唯一确定。
x A, 即集合 A由特征函数 x A,
第14章
14.1模糊数学基本概念
第6页
在模糊数学中,称没有明确边界(没有清晰外延)的集合为模糊集合。 常用大写字母来表示。元素属于模糊集合的程度用隶属度来表示。用于计算 隶属度的函数称为隶属函数。它们的数学定义如下。
的模糊集 M 和 N 可表示为
M
第一讲 模糊数学基本知识
§1.2 模糊集的基本定理
λ-截集: 截集: (A)λ = Aλ= {x | A(x) ≥ λ }
模糊集的λ 截集 是一个经典集合, 模糊集的λ-截集Aλ是一个经典集合,由隶属 度不小于λ的成员构成. 度不小于λ的成员构成. 论域U={u1, u2, u3, u4 , u5 , u6}(学生集), 例:论域 (学生集) 他们的成绩依次为50,60,70,80,90,95 50,60,70,80,90,95, 他们的成绩依次为50,60,70,80,90,95,A=“学习 学习 成绩好的学生” 成绩好的学生”的隶属度分别为 0.9,0.95, 0.5,0.6,0.7,0.8, 0.9,0.95,则 A0.9 (90分以上者 = {u5 , u6}, 分以上者) 分以上者 A0.6 (60分以上者 = {u2, u3, u4 , u5 , u6}. 分以上者) 分以上者
第一讲 模糊数学基本概念
1. 1 模糊集合的基本定义 1.2 模糊集合的截集 1.3 模糊关系 1.4 模糊等价关系与经典等价关系
§1.1 模糊子集及其运算
模糊子集与隶属函数 是论域, 设U是论域,称映射 是论域 A(x):U→[0,1] : 确定了一个U上的模糊子集A,映射A(x)称为 的 上的模糊子集 称为A的 确定了一个 上的模糊子集 ,映射 称为 隶属函数,它表示x对 的隶属程度 的隶属程度. 隶属函数,它表示 对A的隶属程度 当映射A(x)只取 或1时,模糊子集 就是经 只取0或 时 模糊子集A就是经 当映射 只取 典子集, 就是它的特征函数. 典子集,而A(x)就是它的特征函数 可见经典子 就是它的特征函数 集就是模糊子集的特殊情形. 集就是模糊子集的特殊情形
模糊关系的合成 的关系, 的关系, 设 R1 是 X 到 Y 的关系 R2 是 Y 到 Z 的关系 上的一个关系. 则R1与 R2的合成 R1 ° R2是 X 到 Z 上的一个关系 (R1°R2) (x, z) = ∨{[R1 (x, y)∧R2 (y, z)]| y∈Y } ∧ ∈ 当论域为有限时, 当论域为有限时,模糊关系的合成化为模糊 矩阵的合成. 矩阵的合成 设X = {x1, x2, …, xm}, Y = { y1 , y2 , … , ys}, Z= {z1, z2, … , zn},且X 到Y 的模糊关系 1 = (aik)m×s, 模糊关系 关系R , × Y 到Z 的模糊关系 2 = (bkj)s×n,则X 到Z 的模糊关 模糊关系 关系R 模糊关 × 系可表示为模糊矩阵的合成: 模糊矩阵的合成 系可表示为模糊矩阵的合成: R1 ° R2 = (cij)m×n, × 其中c 其中 ij = ∨{(aik∧bkj) | 1≤k≤s}.
模糊数学基本知识
一.模糊数学的基础知识1.模糊集、隶属函数及模糊集的运算。
普通集合A ,对x ∀,有A x ∈或A x ∉。
如果要进一步描述一个人属于年轻人的程度大小时,仅用特征函数就不够了。
模糊集理论将普通集合的特征函数的值域推广到[0,1]闭区间内,取值的函数以度量这种程度的大小,这个函数(记为)(x E )称为集合E 的隶属函数。
即对于每一个元素x ,有[0,1]内的一个数)(x E 与之对应。
(1)模糊子集的定义:射给定论域U ,U 到[0,1]上的任一映射: ))((],1,0[:U u u A u U A ∈∀→→都确定了U 上的一个模糊集合,简称为模糊子集。
)(u A 称为元素u 属于模糊集A 的隶属度。
映射所表示的函数称为隶属函数。
例如:设论域U=[0,100],U 上的老年人这个集合就是模糊集合:⎪⎩⎪⎨⎧≤<-+≤=--10050,))550(1(50,0)(12u u u u A 若在集合U 上定义了一个隶属函数,则称E 为模糊集。
(2)模糊集合的表示:},.....,,{21n u u u U =,)(u A 称为元素u 属于模糊集A 的隶属度;则模糊集可以表示为:nn u u A u u A u u A A )(....)()(2211+++=。
或 )}(),.....,(),({21n u A u A u A A =,))}(,()),.....,(,()),(,{(2211n n u A u u A u u A u A =,(3)模糊集合的运算:)}(),.....,(),({21n u A u A u A A =,)}(),.....,(),({21n u B u B u B B =,并集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∨∨∨=⋃,交集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∧∧∧=⋂,补集:)}(1),.....,(1),(1{21n c u A u A u A A ---=,包含:B A u B u A U u ⊂≤∈∀,则有有若)()(,,2.模糊集的截集已知U 上模糊子集))((],1,0[:U u u A u U A ∈∀→→对]1,0[∈λ,则称})(,{λλ≥∈=u A U u u A 为模糊集A 的λ-截集; 称})(,{λλ>∈=u A U u u A s 为模糊集A 的λ-强截集;λ称为λA 、sA λ的置信水平或阀值。
模糊数学教案第一章
目
CONTENCT
录
• 模糊数学概述 • 模糊集合论基础 • 模糊逻辑与模糊推理 • 模糊数学展望
01
模糊数学概述
模糊数学的定义
模糊数学是研究模糊现象的数学分支,它以模糊集合论为基础, 研究模糊性事物的数量关系和空间形式。
它将经典数学中的精确概念模糊化,引入了隶属度、贴近度等概 念,以处理模糊性事物。
扩张原理
将一个确定性集合通过某种映射规则扩展为模糊集合,以便于描 述具有连续性和不确定性的对象。
03
模糊逻辑与模糊推理
经典逻辑与形式逻辑
经典逻辑
基于二值原则,命题的真假只有 两个取值,即真和假。
形式逻辑
以数学为工具,对思维规律进行 形式化研究的逻辑分支。
模糊逻辑的基本概念
模糊集合
元素属于集合的程度不再是简 单的真或假,而是以0到1之间 的实数表示。
隶属度
元素属于某个集合的程度,用 0到1之间的实数表示。
模糊逻辑运算
基于模糊集合和隶属度进行的 逻辑运算。
模糊命题与模糊推理
模糊命题
最大值和最小值规则
由模糊量词和普通命题构成的复合命 题。
在模糊推理中,最大值和最小值规则 是常用的两种推理规则。
模糊推理
基于模糊命题的推理,其规则不同于 经典逻辑。
04
金融风险管理
在金融领域,模糊数学可 用于风险评估和决策制定, 帮助金融机构更好地管理 风险和把握市场机会。
THANK YOU
感谢聆听
模糊数学展望
模糊数学的发展趋势
1 2
模糊数学与人工智能的结合
随着人工智能技术的快速发展,模糊数学在处理 不确定性、模糊性以及非线性问题上将发挥更大 的作用。
模糊数学整理
(4)强烈算子:
四种算子关系:
1.4模糊集的截集
支集
核
1.5分解定理
定理1
1.6模糊集的模糊度
满足条件:
(1)
(2)
(3)
(4)
三种模糊度:
(1)海明模糊度
(2)欧几里得
第二章扩张原理与模糊数
2.1扩张原理
定理1
例2
2.2多元扩张原理
定理1
例1
2.3区间数
例题
2.4凸模糊集
例1
定理1
2.5模糊数
定义1
定理1
例2
例3
第三章模糊模式识别
3.1模糊集的贴近度
满足条件:
①
②
③
海明贴近度
欧几里德
最大最小
格贴近度
模糊模式识别的方法:
直接方法、间接方法
第四章模糊关系与聚类分析
4.2模糊矩阵及截矩阵
转置矩阵、对称矩阵、自反矩阵
模糊转置关系的性质
4.4模糊关系的合成
例1
4.5模糊关系的传递性
定义1
U上的x
定义2
例题
第五章模糊变换与综合评判
模糊变换
例1
模糊综合评判
(1)建立因素集
(2)建立判断集
(3)单因素模糊评判
(4)建立权重集
(5)模糊综合评判
第六章模糊故障诊断
第七章模糊语言与模糊推理
模糊语言与模糊算子
模糊Байду номын сангаас言变量
模糊算子
语言值
模糊推理的方法及算法
问题1:模糊关系的生成规则。设A是X上的模糊集,B是Y上的模糊集。根据模糊推理的大前提条件,确定模糊关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三种表示方法
25
表示方法1
“查德记法”:模糊子集A记作 A = ∑i=1n μi / xi
26
例子(有限论域)
例.论域 = { Bill Gates, Barack Hussein Obama II , Albert Einstein, Michael Joseph Jackson, Steven Allan Spielberg }
一个子集A 对于X中任一元素x来说,
x符合概念a x A
9
经典集合论
经典集合论中,元素x与集合A的关 系是什么?
x属于集合A x不属于集合A
元素x与概念a的关系是什么?
x符合概念a x不符合概念a
10
集合与特征函数
经典集合论中,给定论域X,子集
A可由其特征函数XA(x)来唯一确定
31
表示方法说明
A = ∫x∈X μA(x) / x 这里的积分号不表示积分,也不表
示求和,而是表示各个元素与隶属 度对应关系的一个总括
32
例子(无限论域)
以年龄为论域,取X=[0, 200] 考虑两个模糊概念:年轻,年老
年龄段——肯定符合“年轻”的概念? 年龄段——肯定不符合“年老”的概
中的不分明性,难以划定界限。非 此即彼?
亦此亦彼,模糊概念
13
模糊概念
源自于实践 模糊概念(现象)无处不在
薄、厚; 高、矮; 强、弱; 中雨、大雨、暴雨、大暴雨;
14
如何亦此亦彼?
经典子集的隶属程度
只能取0或1
如何亦此亦彼?
打破这个限制 表现“亦此亦彼”的模糊概念
15
开山之作
28
表示方法1的说明
A=∑i=1n μi / xi 不是分式求和,只是一个符号 “分母”是论域X的元素 “分子”是相应元素的隶属度 当隶属度为0时,该项可以不写入
29
表示方法2,3
表示方法2:
A = {(0.85, Bill), (0.75, Obama), (0.98, Einstein), (0.50, Jackson), (0.60, Spielberg)}
模糊概念:“smart” smart程度:0.85,0.75,0.98,0.5,
0.60
27
模糊集合“smart”
论域中元素对“smart”这模糊概念 的符合程度可以用模糊子集A来表 示
A = 0.85/Gates + 0.75/ Obama + 0.98/Einstein+0.50/Jackson + 0.60/ Spielberg
念?
33
“年轻”与“年老”的隶属函数曲 线
34
Y
1
[1 ( x 25)2 ]1 5
x x[0,25]
x[ 25,200 ]源自xO 0[1 ( x 50)2 ]1 5
x x[0,50]
x[50,200]
1}推广到[0,1]
20
模糊子集与隶属函数的定义
定义:给出映射μA :X [0, 1] , x| μA(x) , 我们说μA确定一个X的模糊子集A,
μA称为A的隶属函数, μA(x)表示 x隶属于模糊子集A的程度,
称为x对A的隶属度。
21
模糊集合vs.普通集合
模糊集合A由隶属函数μA刻画 普通集合A由特征函数XA刻画 Question. 什么时候模糊集合退化成
表示方法3:
A=(0.85, 0.75, 0.98, 0.50, 0.60) 要求事先对论域中元素排序
30
模糊集合表示方法(无限论域)
当论域X为无限集时,上面的记法 失效
将查德记法推广到一般情况,即论 域是:无限的、连续的、或者其他 情况,论域X上的模糊集合A都可以 表示为
A = ∫x∈X μA(x) / x
模糊数学
1
教材
使用教材
杨纶标,高英仪. 《模糊数学原理及 应用》(第四版),华南理工大学出 版社,2006.
参考教材
罗承忠. 《模糊集引论》(上册),北 京师范大学出版社,2005.
2
讨论
Why are we here?
3
概念、内涵、外延
概念:青菜 内涵:概念具有哪些特征
一种植物,绿色,一般叶子直立,可 食用
1965年,美国控制论专家L.A.Zadeh 发表开创性论文“Fuzzy Sets”[1], 标志模糊数学的诞生
16
什么是模糊数学?
用数学方法研究和处理具有模糊性 的现象
理论基础
模糊集合论
17
第一章 模糊集合的基本概念
18
1-1 模糊子集与隶属函数
19
经典集合与模糊集合
经典集合——特征函数刻画 模糊集合——隶属函数刻画 隶属函数是将特征函数的值域从{0,
普通集合?
22
1-2 模糊子集的表示方法
23
模糊集合的表示方法
论域 论域——有限集
例如:X={x1 , x2 , x3 , x4 ,, x5} 论域——无限集
例如:X=[0, 100]
24
模糊集合表示方法(有限论域)
有限论域X={x1 , x2 , …, xn } 设X上的模糊子集A 的隶属函数为
特征函数是论域X到{0,1}上的一个 映射:
A
(
x)
1, x A 0, x A
11
特征函数—隶属程度 XA(x)指明x对A的隶属程度
隶属程度只有两个值:0,1 经典集合只能表示什么样的概念?
“非此即彼” 确切概念
12
非此即彼?
“高个子” “年轻” 现实世界中的很多概念具有模糊性 模糊性:客观事物差异的中间过渡
要有论域(议题限制在一定范围内)
例如:
在论域“human”上,讨论概念 “male”
在论域“monkey”上,讨论概念
“male”
7
概念与集合
从论域“人”中挑出所有男子,构 成论域的一个子集A
A是概念“男子”的
外延 是概念“男子”的集合表现
概念可以用集合来表示
8
概念与集合
给定论域X,设a为X上一概念,则a的外 延是论域X的
外延:概念的实例
油菜、空心菜、韭菜、葱、菠菜等等
4
概念、内涵、外延
概念要通过词语表现出来,概念的词语 表现叫做——“名称”
每一个概念都有一定的外延和内涵 概念的外延
适合这个概念的一切对象的范围
概念的内涵
这个概念所反映的对象的本质属性的总和
5
集合
集合与概念是什么关系?
6
论域
我们讨论具体问题时,要知道是在 什么范围上进行讨论