模糊数学方法

合集下载

模糊数学的原理及其应用

模糊数学的原理及其应用

模糊数学的原理及其应用1. 模糊数学的概述•模糊数学是一种数学理论和方法,用于描述和处理模糊和不确定性的问题。

•模糊数学可以更好地解决现实世界中存在的模糊性问题。

2. 模糊数学的基本概念•模糊集合:具有模糊性的集合,其元素的隶属度可以是一个区间或曲线。

•模糊关系:描述元素之间模糊的关联,可以用矩阵、图形或规则表示。

•模糊逻辑:基于模糊集合和模糊关系的逻辑运算,用于推理和决策。

3. 模糊数学的原理•模糊集合理论:模糊集合的定义、运算和性质。

•模糊关系理论:模糊关系的表示、合成和推理。

•模糊逻辑理论:模糊逻辑运算的定义、规则和推理机制。

4. 模糊数学的应用领域•控制理论:在模糊环境下设计控制系统,提高系统的鲁棒性和自适应能力。

•人工智能:利用模糊推理和模糊决策技术,实现模糊推理机和模糊专家系统。

•决策分析:在不确定和模糊环境下进行决策,提供可靠的决策支持。

•模式识别:用模糊集合和模糊关系描述和识别模糊模式。

•数据挖掘:利用模糊数学方法在大数据中发现模糊规律和模糊模式。

•经济学:模糊数学在经济学中的应用,如模糊经济学和模糊决策理论。

•工程优化:在多目标优化和约束优化中应用模糊数学方法。

•生物学:模糊生物学在生物信息学和细胞生物学中的应用。

5. 模糊数学的优势和局限5.1 优势•能够处理和描述模糊和不确定的问题,适用于现实世界的复杂问题。

•可以通过合适的模型和规则进行推理和决策,提供可靠的解决方案。

•可以用简单的数学方法解决复杂的问题,不需要严格的数学证明。

5.2 局限•模糊数学方法在某些问题上可能无法提供明确的结果。

•模糊数学需要根据实际情况选择合适的模型和参数,需要一定的经验和专业知识。

•模糊数学方法的计算复杂性较高,在大规模问题上可能不适用。

6. 总结•模糊数学是一种处理模糊和不确定问题的数学理论和方法。

•模糊数学包括模糊集合理论、模糊关系理论和模糊逻辑理论。

•模糊数学在控制理论、人工智能、决策分析等领域应用广泛。

模糊数学中的模糊拓扑与模糊度量

模糊数学中的模糊拓扑与模糊度量

模糊数学中的模糊拓扑与模糊度量模糊数学是一种用于处理不确定性和模糊性问题的数学方法。

在现实世界中,许多问题往往不能用精确的数值进行描述,而是存在模糊性。

模糊拓扑和模糊度量是模糊数学中重要的两个概念,它们在解决模糊性问题和形式化模糊集合论中起着重要的作用。

一、模糊拓扑模糊拓扑是研究模糊空间和模糊集合之间关系的数学分支。

它将传统拓扑学中的集合、映射和连续性等概念推广到模糊集合上,以适应处理模糊性问题的需求。

模糊拓扑中的基本概念包括模糊邻域、模糊开集、模糊闭集等。

模糊邻域是模糊拓扑研究的核心概念之一。

传统拓扑学中的邻域是用确定的集合表示的,而模糊邻域则是用隶属函数表示的。

隶属函数描述了元素对模糊集合的隶属程度,它可以是一个取值在[0,1]上的实函数。

模糊邻域的定义使得我们能够在不确定的情况下,通过隶属函数的取值确定元素在模糊集合中的位置关系。

模糊拓扑中的模糊开集和模糊闭集分别对应了传统拓扑学中的开集和闭集。

模糊开集是一个隶属函数,它描述了一个模糊集合中的元素在该开集中的隶属程度。

模糊闭集则是相对于模糊开集的补集,描述了元素不属于该闭集的程度。

通过模糊拓扑可以定义模糊收敛和模糊连通性等概念。

模糊收敛描述了模糊空间中一列模糊集合的极限行为,模糊连通性则描述了模糊拓扑空间中的连接性。

二、模糊度量模糊度量是模糊数学中描述模糊集合之间相似性和距离的度量方法。

传统度量空间中的距离公式无法直接用于模糊集合,因为模糊集合的元素隶属于集合的程度不是确定的,而是模糊的。

模糊度量的目标是通过定义一种适用于模糊集合的距离函数,来衡量模糊集合之间的相似性或距离。

模糊度量的定义通常基于模糊集合之间的集合运算和隶属函数的运算。

其中,模糊相似度度量是一种常见的度量方法,它可以通过计算模糊集合的交集和并集来衡量模糊集合之间的相似性。

除了模糊相似度度量外,还存在其他一些度量方法,如模糊欧氏距离、模糊马氏距离等。

这些度量方法通过将模糊集合的隶属函数映射到实数域上,从而实现模糊集合之间的距离计算。

模糊数学方法(第七章权重)

模糊数学方法(第七章权重)
u3 ,u1 ,u2
如果u1,u2,u3不是三个旅游点而是三个元素, 则最后的结果:
(0.3617, 0.2538, 0.3845) 就是三个元素的权重:
u1 0.3617,u2 0.2538,u3 0.3845
W(2)

12



n2

第三层n3个元素对第二层n2个元素的权重(排序)向量为
W1 ,W2 , ,Wn2
将它们构成分块矩阵:
W = (W1 ,W2 , ,Wn2 ) 则第三层元素对第一层目标的权重(排序)向量为
W(3) WW(2) (W1 ,W2 ,
,Wn2
)
p
a j wi xi i 1
得到权重集:
( j 1, 2, , n)
A (a1, a2, , an )
§7.2 层次分析法 (The Analytic Hierarchy process,简称AHP)
层次分析是一种决策分析的方法。它结合了 定性分析和定量分析,并把定性分析的结果量化。
特征向量归一化得第三层3个元素对第二层4个元素的权 重(排序)向量为:
0.6028 0.07023 0.09888 0.2791
W1


0.08236 源自,W2 0.3706

,W3


0.3643

,
W4


0.6494

0.3151
得到权重(排序)向量:
W (w1 , w2 , , wn )
3. 特征向量法
(1)计算判断矩阵A的最大特征值max ; (2)求A属于特征值max的正特征向量

模糊数学方法在数学建模中的应用

模糊数学方法在数学建模中的应用
鲁棒控制
鲁棒控制是控制理论的一个重要分支,它主要研究如程中具有广泛的应用价值。
03
模糊数学方法在数学建模中的具体应用案例
基于模糊逻辑的决策支持系统设计
总结词
模糊逻辑是一种处理不确定性、不完全性信息的数学工具,通过引入模糊集合 和模糊逻辑运算,能够更好地描述现实世界中的复杂现象和决策问题。
模糊逻辑在决策分析中的应用
01
模糊逻辑用于处理不确定性
模糊逻辑通过引入模糊集合的概念,能够处理不确定性和不精确性,使
得决策分析更加合理和可靠。
02
模糊推理系统
模糊推理系统是模糊逻辑的重要应用之一,它基于模糊逻辑的原理,通
过模糊集合和模糊规则进行推理,适用于复杂的决策问题。
03
模糊决策分析
模糊决策分析方法能够综合考虑多种因素,包括模糊因素,从而做出更
模糊数学方法的优势
处理不确定性和模糊性
模糊数学方法能够处理不确定性和模糊性,这在许多实际问题中是常见且必要的。
提高建模精度
通过引入模糊集合和隶属函数,模糊数学方法能够更准确地描述事物的模糊性和不确定性 ,从而提高建模精度。
增强模型适应性
模糊数学方法允许模型参数具有一定的模糊范围,增强了模型的适应性和鲁棒性,能够更 好地应对实际问题的复杂性和不确定性。
模糊数学方法在数学建模中的 应用

CONTENCT

• 模糊数学方法简介 • 模糊数学方法在数学建模中的应用
领域 • 模糊数学方法在数学建模中的具体
应用案例 • 模糊数学方法在数学建模中的优势
和局限性 • 结论
01
模糊数学方法简介
模糊数学方法的起源和发展
起源
模糊数学方法起源于20世纪60年代,由L.A.Zadeh教授提出,旨 在解决传统数学方法无法处理的模糊性问题。

模糊数学方法及其应用

模糊数学方法及其应用
1 m rij = M / ∑ | xik − x jk | i =1
i=j i≠j i , j=1,2,…,n
适当选取M,使得0≤rij≤1。 (2)欧氏距离 欧氏距离 见相似性度量聚类中的相似系数。 见相似性度量聚类中的相似系数。
12
(3)切比雪夫距离 切比雪夫距离
d ij = ∨ xik − x jk
k =1
m
(i, j = 1,2, L , n)
建立模糊相似矩阵的其他方法,就不再介绍了。 建立模糊相似矩阵的其他方法 就不再介绍了。 就不再介绍了 三、聚类 1.模糊等价矩阵 模糊等价矩阵 给定U上的一个模糊关系Rij=[rij]n×n, 若它满足: × 若它满足 (1)自反性 rij=1 ); 自反性( 自反性 ; (2)对称性 rij=rji ); 对称性( 对称性 ; (3)传递性 R o R ⊆ R ); 传递性( 传递性 ; 上的一个模糊等价矩阵 模糊等价矩阵。 则称R是U上的一个模糊等价矩阵。
第j类中第 个变量的平均值 x 类中第k个变量的平均值 类中第 个变量的平均值:
x
( j) k
( j) k
1 = nj
( xikj ) ∑ i =1
nj
( (k = 1,2,L, m); x ( j ) = ( x1( j ) , x 2( j ) , L, x mj ) )
1 n x k = ∑ xik (k = 1,2, L , m); x = ( x1 , x 2 , L , x m ) n i =1
第十一章 模糊数学方法及其应用
§1 模糊聚类分析(参考内容) §2 模糊模型识别(参考内容)
1
前言 模糊数学是用数学方法研究和处理具有“模糊性” 模糊数学是用数学方法研究和处理具有“模糊性” 现象的数学。 现象的数学。所谓的模糊性主要是指客观事物差异 的中间过渡界线的“不分明性” 的中间过渡界线的“不分明性”。如储层的含油气 油田规模的大小,成油地质条件的优劣, 性、油田规模的大小,成油地质条件的优劣,圈闭 的形态,岩石的颜色等。 的形态,岩石的颜色等。这些模糊变量的描述或定 义是模糊的,各变量的内部分级没有明显的界线。 义是模糊的,各变量的内部分级没有明显的界线。 地质作用是复杂的, 地质作用是复杂的,对其产生的地质现象有些可 以采用定量的方法来度量, 以采用定量的方法来度量,有些则不能用定量的数 值来表达, 值来表达,而只能用客观模糊或主观模糊的准则进 行推断或识别。 行推断或识别。

第四讲模糊数学方法汇总

第四讲模糊数学方法汇总
糊。如高与矮,长与短,大与小,多 与少,穷与富,好与差,年轻与年老 等。
这类现象不满足“非此即彼”的 排中律,而具有“亦此亦彼”的模糊 性。 2020/10/2 需要指出的是,模糊不确定不同 10
于随机不确定。随机不确定是因果律
破损造成的不确定,而模糊不确定是
由于排中律破损造成的不确定。
为了研究模糊现象和关系,美国
y 1
d d
x c
k
,
c
x
d
0,
x d.
Oa b c
dx
2020/10/2
28
(3) 柯西分布
23
0, x a,

偏大型
A
x
x b
a a
,
a
x
b,
y
1, x b.
1
2020/10/2
Oa b
x 24
0, x a,
x
a
,
a
x
b,

中间型
A
x
b
a 1,
b x c,
y
d
x
,
c
x
d
1
d c
0, x d.
Oa b c d x
2020/10/2
25
(2) 抛物形分布
① 偏小型
(1) 包含:A B A x B x (2) 相等:A B A x B x
2020/10/2
19
(3) 交:C A B C x
A x B x (4) 补:AC AC x 1 A x
(5) 内积:A B A x B x xU
(6) 外积:A B A x B x xU
下面给出本讲的问题提纲,以便 于大家学习。

工程模糊数学方法及其应用

工程模糊数学方法及其应用

工程模糊数学方法及其应用
工程模糊数学是一种将模糊数学理论应用于工程领域的方法。

模糊数学是一种处理不确定性问题的数学方法,它可以用来处理模糊的、不完全的信息,因此在工程领域中有着广泛的应用。

在工程领域中,很多问题都存在不确定性,例如:环境污染、交通流量、市场需求等等。

这些问题的不确定性往往导致传统的精确数学方法无法有效处理。

而工程模糊数学方法则可以通过建立模糊数学模型来解决这些问题。

工程模糊数学方法主要包括模糊逻辑、模糊集合、模糊关系、模糊推理等方面。

其中,模糊逻辑是将传统的二元逻辑扩展为多元逻辑,可以用于处理多个变量之间的不确定性关系;模糊集合是将传统的集合概念扩展为模糊集合,可以用于描述模糊的、不确定的概念;模糊关系是将传统的关系扩展为模糊关系,可以用于描述模糊的、不确定的关系;模糊推理是一种基于模糊逻辑和模糊关系的推理方法,可以用于处理模糊的、不确定的问题。

工程模糊数学方法在工程领域中有着广泛的应用,例如:工程设计、控制系统、决策分析、优化问题等等。

通过使用工程模糊数学方法,可以有效地处理不确定性问题,提高工程设计的准确性和可信度,为工程实践提供有效的支持。

- 1 -。

模糊数学方法

模糊数学方法

例 设论域U = {x1 (140), x2 (150), x3 (160), x4 (170), x5 (180), x6 (190)}(单位:cm)表示人的身高, 那么U上的一个模糊集“高个子”(A)的隶属函数 A(x)可定义为
A(x) x 140 190 140
A(x) x 100 200 100
也可用Zadeh表示法:
A 0 0.2 0.4 0.6 0.8 1 x1 x2 x3 x4 x5 x6
A 0.15 0.2 0.42 0.6 0.8 0.9 x1 x2 x3 x4 x5 x6
还可用向量表示法:
A = (0, 0.2, 0.4, 0.6, 0.8, 1).
另外,还可以在U上建立一个“矮个子”、 “中等个子”、“年轻人”、“中年人”等模糊 子集.
定义模糊线性规划(2)中目标函数的隶属函数

Gi (x)
f0 t0(x) , d0
f0 d0 t0(x) f0.
由Gi (x)定义可知,∈[0, 1],
Gi (x)≥ t0 (x) + d0≤ f0,
要求模糊线性规划(2)的模糊最优解x*,则要 求使所有约束条件及目标函数的隶属函数尽可能 达到最大,即求x* 满足
Ai (x)≥及G(x)≥, 且使达到最大值,相当于求解普通线性规划问题
max
(4)
s.t.tdx0i(x)0did0ti
f0 (x)
i
bi
=
1, 2, …, m.
di di
设普通线性规划(4)的最优解为x*, , 则
模糊线性规划(2)的模糊最优解为x*, 最优值 为t0 (x*).
所以,求解模糊线性规划(2)相当于求 解普通线性规划(1), (3), (4).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2) 对称性: 若(x, y)R,则(y, x)R,即集合中(x, y)元素同属于类R 时, 则
(y, x)也同属于R;
3) 传递性: (x, y)R,(y, z)R,则有(x, z)R。
上述三条性质称为等价关系,满足这三条性质的集合R为一分类关
系。
聚类分析的基本思想是用相似性尺度来衡量事物之间的亲疏程度, 并
定义3 模糊集运算定义。若A、B为X上两个模糊集,它们的和集、 交集和A的余集都是模糊集, 其隶属函数分别定义为:
(AB) (x)= max ( A(x), B(x) ) (AB) (x)= min ( A(x), B(x) ) AC (x)=1-A(x) 关于模糊集的和、交等运算,可以推广到任意多个模糊集合中去。
假设R2=(rij ),即rij =
(rik∧rkj ),说明xi 与xj是通过第三者K作为媒介而发生关系,rik∧rkj表 示xi 与xj 的关系密切程度是以min(rik , rkj)为准则,因k是任意的, 故从一 切rik∧rkj中寻求一个使xi 和xj 关系最密切的通道。Rm随m的增加,允许 连接xi 与xj 的链的边就越多。由于从xi 到xj 的一切链中, 一定存在一个使 最大边长达到极小的链,这个边长就是相当于
糊变量,相应的参数分别为
,
,
(i=1, 2, …, n; j=1, 2, …, m)。其中,
,
,
,而
是xij的方差。待判别对象B的m个指标分别具有参数aj , bj (j=1, 2, …, m),且为正态型模糊变量,则B与各个类型的贴近度为
记Si=
,又有Si0=
,按贴近原则可认为B与Ai 0最贴近。
提供了以下8种建立相似矩阵的方法:
①相关系数法: ②最大最小法: ③算术平均最小法: ④几何平均最小法: ⑤绝对指数法: ⑥绝对值减数法: ⑦夹角余弦法: ⑧欧氏距离:
(3) 聚类分析。用上述方法建立起来的相似关系R,一般只满足反射 性和对称性,不满足传递性,因而还不是模糊等价关系。为此,需要 将R改造成R*后得到聚类图,在适当的阈值上进行截取,便可得到所需 要的分类。将R改造成R*,可用求传递闭包的方法。。R自乘的思想是 按最短距离法原则,寻求两个向量xi 与xj 的亲密程度。
其中a为均值,b2=22, 2为相应的方差。按泰勒级数展开,取近似值得
若有是
其中

分别是第i类元素第j种指标的最小值和最大值,
,而
是第i类元素第j种指标的方差。 (2) 若有n种类型(A1, A2, …, AN), 每类都有m个指标,且均为正态型模
模糊数学方法
在自然科学或社会科学研究中,存在着许多定义不很严格或者说具 有模糊性的概念。这里所谓的模糊性,主要是指客观事物的差异在中间 过渡中的不分明性,如某一生态条件对某种害虫、某种作物的存活或适 应性可以评价为“有利、比较有利、不那么有利、不利”;灾害性霜冻气 候对农业产量的影响程度为“较重、严重、很严重”,等等。这些通常是 本来就属于模糊的概念,为处理分析这些“模糊”概念的数据,便产生了 模糊集合论。
根据集合论的要求,一个对象对应于一个集合,要么属于,要么不属 于,二者必居其一,且仅居其一。这样的集合论本身并无法处理具体的 模糊概念。为处理这些模糊概念而进行的种种努力,催生了模糊数学。 模糊数学的理论基础是模糊集。模糊集的理论是1965年美国自动控制专 家查德(L. A. Zadeh)教授首先提出来的,近10多年来发展很快。
::
:
27 1988162 2817 34 21 2.64 0.00
28 1989760 877 39 33 1.15 0.00
29 1990458 199 35 27 0.43 0.00
类别 1 1 1 : 3 0 0
图303 模糊识别分析的数据编辑定义图
根据如上介绍,DPS系统中设计了两个功能模块:一是根据在集合 上的隶属函数,按隶属原则识别对象,判定样本的类别归属;二是根据
如给5个同学的性格稳重程度打分,按百分制给分,再除以100,这样 给定了一个从域X={x1 , x2 , x3 , x4, x5}到[0, 1]闭区间的映射。
x1:85分,即A(x1)=0.85 x2:75分, A(x2)=0.75 x3:98分, A(x3)=0.98 x4:30分, A(x4)=0.30
模糊集两两之间的贴近度,按择近原则,确定出最接近的两个模糊集。
2. DPS平台的操作示例 系统规定数据输入的格式是每一行为一个样本,每一列为一个变
量。最右边的一列为样本的已知类别(如1, 2, …)。(注意每一类中至少 要有三个样本)。对于待判别的样本, 其分类类别用0表示。所有待分析 数据(连同类别一起)需定义成数据块, 然后进入菜单操作,选择“模糊 数学模糊识别”功能项,回车执行后即可输出分析结果。输出结果包括 各类参数(变量名、最小值、最大值、标准差和参数B)和各待判样本的 归类结果(样本序号、对各类贴近度的最大值、最贴近的类号)。
以此来实现分类,模糊聚类分析的实质就则是根据研究对象本身的属性 未构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系。
3. 模糊聚类 利用模糊集理论进行聚类分析的具体步骤如下: (1) 若定义相似系数矩阵用的是定量观察资料,在定义相似系数矩阵 之前,可先对原始数据进行变换处理,变换的方法同系统聚类分析, 可 参考第17章系统聚类分析一节。 (2) 计算模糊相似矩阵。设U是需要被分类对象的全体,建立U上的 相似系数R,R(i, j)表示i与j之间的相似程度,当U为有限集时,R是一个 矩阵,称为相似系数矩阵。定义相似系数矩阵的工作,原则上可以按系 统聚类分析中的相似系数确定方法,但也可以用主观评定或集体打分的 办法。DPS平台,对数据集
x5:60分, A(x5)=0.60
这样确定出一个模糊子集A=(0.85, 0.75, 0.98, 0.30, 0.60)。 定义2 若A为X上的任一模糊集,对任意0 1,记A={x|xX, A(x)},称
A为A的截集。 A是普通集合而不是模糊集。由于模糊集的边界是模糊的, 如果要把
模糊概念转化为数学语言,需要选取不同的置信水平 (0 1) 来确定其隶 属关系。截集就是将模糊集转化为普通集的方法。模糊集A 是一个具有 游移边界的集合,它随值的变小而增大,即当1 <2时,有A1∩A2。
序 年 幼虫发生量 发生期 增殖系数 号 份 第二 第三 第二 第三 二至三三至
代 代 代 代 代 四代
1 1962344 3333 29 9 9.69 1.91
2 1963121 1497 27 19 12.37 1.34
3 1964187 1813 32 18 9.70 1.06
:: : : :
第2节 模糊模式识别
1. 方法简介 “模式”一词来源于英文Pattern,原意是典范、式样、样品,在不同场 合有其不同的含义。在此我们讲的模式是指具有一定结构的信息集合。 模式识别就是识别给定的事物以及与它相同或类似的事物,也可以 理解为模式的分类,即把样品分成若干类,判断给定事物属于哪一类, 这与我们前面介绍的判别分析很相似。 模式识别的方法大致可以分为两种,即根据最大隶属原则进行识别 的直接法和根据择近原则进行归类的间接法,分别简介如下: (1) 若已知n个类型在被识别的全体对象U上的隶属函数,则可按隶属 原则进行归类。此处介绍的是针对正态型模糊集的情形。对于正态型模 糊变量x,其隶属度为
模糊集合论的提出虽然较晚,但目前在各个领域的应用十分广泛。 实践证明,模糊数学在农业中主要用于病虫测报、种植区划、品种选育 等方面,在图像识别、天气预报、地质地震、交通运输、医疗诊断、信 息控制、人工智能等诸多领域的应用也已初见成效。从该学科的发展趋 势来看,它具有极其强大的生命力和渗透力。
在侧重于应用的模糊数学分析中,经常应用到聚类分析、模式识别 和综合评判等方法。在DPS系统中,我们将模糊数学的分析方法与一般 常规统计方法区别开来,列专章介绍其分析原理及系统设计的有关功能 模块程序的操作要领,供用户参考和使用。
。 在实际处理过程中,R的收敛速度是比较快的。为进一步加快收敛速
度,通常采取如下处理方法: R→R2→R4→R8→…→R2k
即先将R自乘改造为R2,再自乘得R4,如此继续下去,直到某一步出现 R2k=Rk=R*。此时R*满足了传递性, 于是模糊相似矩阵(R)就被改造成了 一个模糊等价关系矩阵(R*)。
第1节 模糊聚类分析
1. 模糊集的概念 对于一个普通的集合A,空间中任一元素x,要么xA,要么xA,二者 必居其一。这一特征可用一个函数表示为:
A(x)即为集合A的特征函数。将特征函数推广到模糊集,在普通集合中 只取0、1两值推广到模糊集中为[0, 1]区间。
定义1 设X为全域,若A为X上取值[0, 1]的一个函数,则称A为模糊 集。
0.不转换 1.数据中心化 2.对数转换 3.数据规格化 4.数据标准化
作出数据转换方式的选择后,系统又将提示选择建立模糊相似关系的计 算方法,共有上面所述的8种方法可供选择。
分析输出的结果包括各个样本的联结序号、联结水平、聚类谱系图 索引及在屏幕上显示聚类谱系图(拷屏可得到谱系图硬拷贝, 或按S将图 形文件以“.BMP”格式存放在盘上,然后可在Windows有关应用软件中调 出)。
1497.000000 4600.000000 1243.947346 1759.207208
27.000000 36.000000 3.311596 4.683304
9.000000 19.000000 3.577709 5.059644
的历史资料按上页图303方式整理编辑和定义。 完成数据编辑定义之后,执行选项功能“模糊识别”,便可得到如下
结果:
第1类
X( 1) X( 2) X( 3) X( 4) X( 5) X( 6)
变量名 最小值 最大值
相关文档
最新文档