模糊数学简介及入门
模糊数学简介
3)
84 Yamakawa F-logic I.C (模糊集成电路)
85 IFSA 成立国际模糊系统协会
我国:70 年代 王培庄,开始主要是理论研究,并且与经典数学相对应的各个领域都
有人研究,现在研究、利用模糊技术的领域已经深入到社会、经济等各个方面。
杂志:
*FSS-Fuzzy Set and Systems,
一、模糊数学简介、教学安排、
普通集合
(一)简介
1. 发展历史
美:65 L.A.zadeh 信息与控制(理论研究开始)
英:74 马丹尼
蒸汽机控制,80年丹麦哥本哈根的史密斯水泥公司首次用模
糊系统实现了对水泥窑炉的控制。88年,日立公司使日本仙台市地铁实现了模糊控制。
日:72 Sugeno
F-measure 语音控制模糊汽车(88),无人驾驶直升机(9
(3)特征函数定义
定义:设 X 为论域, A X ,称映射
A : X { 0 , 1}
1, x A
x |
A (x)
0,
x A
( A B )( x ) min{ A ( x ), B ( x )} A ( x ) B ( x )
Ac (x) 1 A(x)
*IEEE Transactions on Fuzzy Systems (1993),
*Fuzzy Mathematics etc.
IEEE 从1992年起,每年召开一次国际模糊学术会议。1995年 IEEE 给 Zadeh
授予了学会的荣誉勋章。
2.趋势
(1)研究与应用人数逐年上升
(2)应用领域逐步扩大,遍及社会,经济等等各个领域,如:
模糊算法入门指南初学者必读
模糊算法入门指南初学者必读随着人工智能领域的发展,模糊算法越来越受到重视。
模糊算法是一种基于模糊逻辑的数学方法,用于处理现实生活中的模糊、不确定和模糊数据。
本文将介绍模糊算法的基本概念、原理和应用,并且为初学者提供了入门指南。
一、基本概念1. 模糊集合模糊集合是由一组具有模糊性质的元素组成的集合,其中每个元素都有其对应的隶属度,表示该元素属于模糊集合的程度大小。
模糊集合与传统集合的区别在于,传统集合的元素只能属于集合或不属于集合,而模糊集合的元素可能同时属于多个集合。
例如,一个人的身高可能既属于“高个子”这个集合,又属于“中等身高”这个集合,这时我们就可以用模糊集合来描述这个人的身高。
2. 模糊逻辑模糊逻辑是一种扩展了传统逻辑的数学方法,用于处理带有模糊性质的命题。
在模糊逻辑中,命题的真值不再只有0或1两种可能,而是在0到1之间连续变化。
例如,“这个人很高”这个命题,在传统逻辑中只有true或false两种可能,而在模糊逻辑中则可以分别对应0.8和0.2,表示这个人身高高度的程度。
3. 模糊推理模糊推理是指根据模糊逻辑规则对模糊数据进行推理的过程。
模糊推理的基本过程是先将模糊数据转换成模糊集合,在对模糊集合进行逻辑运算。
例如,已知“这个人很高”,“这个人是男性”,根据“高个子男性”这个模糊集合的定义,可以推断出该人属于“高个子男性”这个模糊集合。
二、基本原理模糊算法的核心是模糊推理,根据一定的规则推导出合理的结论。
模糊推理可以通过模糊集合的交、并、补等运算,来得到更为准确的结果。
模糊算法中常用的推理方法包括模糊关联、模糊综合评价、模糊聚类等。
三、应用领域1. 物流调度在物流调度中,模糊算法可以通过分析货物的种类、运输距离、车辆的容量等因素,来实现最优的调度和路径规划。
2. 医学诊断在医学诊断中,模糊算法可以通过分析医学数据,提供模糊的医学诊断结果,帮助医生做出更准确的诊断。
3. 控制系统在控制系统中,模糊算法可以通过模糊控制,实现对系统的自适应控制和优化控制。
第一节模糊数学基本知识 数学建模
第一节模糊数学基本知识一、模糊子集及其运算在经典集合论中,一个元素对于一个集合,要么属于,要么不属于,二者必居其一,绝不允许模棱两可。
这一要求就从根本上限定了以经典集合论为基础的常规数学方法的应用范围,它只能用来研究那些具有绝对明确的界限的事物和现象。
但是,在现实世界中,并非所有事物和现象都具有明确的界限。
譬如,“高与矮”,“好与坏”,“美与丑”,……,这样一些概念之间就没有绝对分明的界限。
严格说来,这些概念就是没有绝对的外延,这些概念被称之为模糊概念,它们不能用一般集合论来描述,而需要用模糊集合论去描述。
(一)模糊子集及其表示方法1.模糊子集(1)隶属函数:在经典集合论中,一个元素x和一个集合A之间的关系只能有Ax∉这两种情况。
集合可以通过其特征来刻划,每一个集合A都有x∈或者A一个特征函数C A(x),其定义如下:(1)式所表示的特征函数的图形,如图9-1所示。
由于经典集合论的特征函数只允许取0与1两个值,故与二逻辑值{0,1}相对应。
模糊数学是将二值逻辑{0,1}拓广到可取[0,1]闭区间上任意的无穷多个值的连续值逻辑。
因此,也必须把特征函数作适当的拓广,这就是隶属函数μ(x),它满足:0≤μ(x)≤1 (2)(1)式也可以记作μ(x)∈[0,1],一般情形下,其图形如图9-2所示。
(2)模糊子集的定义:1965年,查德首次给出了模糊子集的如下定义:设U 是一个给定的论域(即讨论对象的全体范围),μA:x→[0,1]是U到[0,1]闭区间上的一个映射,如果对于任何x∈U,都有唯一的μA(x)∈[0,1]与之对应,则该映射便给定了论域U上的一个模糊子集,μA称做的隶属函数,μA(x)称做x对的隶属度。
2.模糊子集的表示方法通过上述关于模糊子集的定义可以看出,一个模糊子集完全由其隶属函数所刻划。
因此,模糊子集通常有以下几种表示方法:=[μ1,μ2,…,μ(3)n]在(3)式中,μi∈[0,1](i=1,2,…,n)为第i个元素x i对的隶属度。
模糊数学基本概念
模糊数学是一种处理模糊和不确定性问题的数学方法,它基于模糊集合理论,用于描述和处理无法精确量化的概念和现象。
以下是模糊数学的一些基本概念:
模糊集合:模糊集合是一种将不确定性或模糊性引入集合概念的数学工具。
与传统的集合不同,模糊集合中的元素具有一定的隶属度,表示元素与集合的模糊关系。
隶属函数:隶属函数是模糊集合中元素与集合的隶属度之间的映射关系。
它描述了元素在模糊集合中的程度或概率。
模糊关系:模糊关系是一种描述模糊集合之间的关系的数学工具。
它反映了元素之间的模糊连接或模糊相似性。
模糊逻辑:模糊逻辑是一种处理模糊命题和推理的逻辑系统。
它扩展了传统的二值逻辑,允许命题具有模糊的真值或隶属度。
模糊推理:模糊推理是一种基于模糊规则和模糊推理机制进行推理和决策的方法。
它能够处理模糊的输入和输出,并提供模糊的推理结果。
模糊数学运算:模糊数学中存在一系列的运算,包括模糊集合的并、交、补运算,模糊关系的复合运算等。
这些运算用于处理模糊集合和模糊关系的操作。
模糊控制:模糊控制是一种应用模糊数学方法进行控制的技术。
它通过模糊逻辑和模糊推理实现对复杂系统的控制,具有适应性和容错性的特点。
以上是模糊数学的一些基本概念,它们构成了模糊数学理论的基础,被广泛应用于人工智能、决策分析、模式识别、控制系统等领域。
模糊数学
模糊性与随机性的区别
事物 事物分确定性现象与非确定性现象
- 确定性现象:指在一定条件下一定会发生的现象
- 非确定性现象分随机现象与模糊现象
* 随机性是对事件的发生而言,其事件本身有着明确的含义, 只是由于发生的条件不充分,事件的发生与否有多种可能性 * 模糊性是研究处理模糊现象的,它所要处理的事件本身是模 糊的
A : U {0,1} u A ( u),
其中
1, u A A ( u) 0, u A
函数 A 称为集合A的特征函数。
Ⅱ、模糊集合及其运算
美国控制论专家Zadeh教授正视了经典集合描述的 “非此即彼”的清晰现象,提示了现实生活中的绝大多数 概念并非都是“非此即彼”那么简单,而概念的差异常以 中介过渡的形式出现,表现为“亦此亦彼”的模糊现象。
ab ab a b ,a b 1 ab 1 (1 a )(1 b)
模糊集的并、交、余运算性质 幂等律:A∪A = A, A∩A = A; 交换律:A∪B = B∪A,A∩B = B∩A; 结合律:(A∪B)∪C = A∪(B∪C), (A∩B)∩C = A∩(B∩C) ; 吸收律:A∪(A∩B) = A,A∩( A∪B)= A; 分配律:(A∪B)∩C = (A∩C)∪(B∩C); (A∩B)∪C = (A∪C)∩(B∪C); 0-1律: A∪U = U,A∩U = A; A∪ = A,A∩ = ; 还原律: (Ac)c = A ;
模糊集合及其运算
u0 是固定的,而 A* 在随机变动。 特点:在各次试验中,
模糊统计试验过程:
(1)做n次试验,计算出
x 140 A( x) 190 140
也可用Zadeh表示法:
第四章 模糊数学
(可多位专家取其平均值,如体操比赛打分) 3 描点( xi, A ( xi )),作出 A ( xi )的曲线。
例2:考虑年龄论域X 上的模糊子集A 青年人的年龄, 请专家评定结果如表:
0-14 0
15 18-28 30 35 38 40 45-200 0.5 1 0.9 0.6 0.5 0.3 0
A ( x4 ) 0,则有:
1 0.6 0.1 0 A (最后一项可不写) x1 x2 x3 x4
3、隶属函数的确定 这里介绍两种常用的确定方法,以R1中的模糊 集为例: (1)专家评定法(德尔菲法) 步骤: 1 给定论域X 及其模糊子集A; 2 适当选取X 中若干点xi,请专家评定其 A ( xi );
第四章 模糊数学(Fuzzy Maths)
第一节 模糊集(Fuzzy Sets)
一、模糊现象与模糊集
有些概念,其外延是清楚的,如男人、女人。
而有些概念,其外延不很清楚,如青年人、老年人。 于是我们有如下定义: 模糊集—边界不清楚的集合。 例如:
雨天是清晰集(普通集),而晴天是模糊集;
青年人、老年人也是模糊集。 事实上,“青年”变为“老年”是一个连续的 过程。因此,处于中间过渡阶段年龄的人,自然就 具有“亦此亦彼”的属性。我们把这种属性称为:
书159~161页给出了一个模糊统计的例子。 有时候我们得到的 A ( x)的图形是不规则的,很难
写出其精确的数学表达式。有时为了计算、编程的需 要,我们希望得到 A的函数表达式,可根据估计的 A
进行适当修正,得到与其最接近的函数表达式。下面 介绍几种常见的模糊分布曲线: 4、几种常见的 A ( x)类型(论域为R1):
数学建模-模煳数学理论
精选ppt课件
4
1.2 模糊集与隶属函数
• 论域:如果将所讨论的对象限制在一定范围 内,并记所讨论的对象全体构成的集合为U, 称之为论域。
•普通集合——特征函数
设U是论域,A是U的子集,定义如下映射为集合 A的特征函数 :(集合A可由特征函数唯一确定)
精选ppt课件
5
•模糊集合——隶属函数
1.2.1模糊集与隶属函数的概念
模糊数学
1 模糊数学的基本概念
2 模糊关系与模糊矩阵
3 模糊聚类分析
4 模糊模式识别
5 模糊综合评判
精选ppt课件
1
1 模糊数学的基本概念
1.1 模糊数学概述
模糊数学是研究和处理模糊性现象(或 概念)的数学方法,而不是把数学变成 模模糊糊的东西,它所要处理事物的概 念本身是模糊的,即一个对象是否符合 这个概念难以确定,我们称这种不确定 性为模糊性。
的一个数来表示。这就是Zadeh的隶属函数的
想法。
精选ppt课件
6
2)隶属函数 设在论域U上给定了一个映射,
则定义了U上的一个模糊子集A,映射 称为模糊
集A的隶属函数,
称为x对模糊集A的隶属
程度,也可表示为A(x)。
精选ppt课件
7
3)模糊集的表示
精选ppt课件
8
4)模糊集的运算
模糊集与普通集一样,有相同的运算和相应的运 算规律。
精选ppt课件
2
• 它与普遍性不同,普遍性是是指一种可用 来表达整个明确定义的现象和活动的特性。
• 它与随机不确定性不同,随机的不确定性 也是概率的不确定性,其研究的事件本身有 着明确的含义,只是由于发生的条件不充分, 而使得在条件与事件之间不能出现决定的因 果关系,从而事件的出现与否表现出不确定 性,这种不确定性称为随机性。例如“掷一 个骰子时出现4点”是一个明确的事件,但 掷骰子时并非只出现4点,我们说出现4点的 概率是1/6。
模糊数学
模糊数学的认识与理解1、模糊数学的产生1965 年美国控制论学者L.A.扎德发表论文《模糊集合》,标志着这门新学科的诞生。
模糊数学又称FUZZY 数学,亦称弗晰数学或模糊性数学。
现代数学是建立在集合论的基础上。
集合论的重要意义就一个侧面看,在与它把数学的抽象能力延伸到人类认识过程的深处。
一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它。
符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合。
从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都一可能纳入集合描述的数学框架。
但是,数学的发展也是阶段性的。
经典集合论只能把自己的表现力限制在那些有明确外延的概念和事物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可。
对于那些外延不分明的概念和事物,经典集合论是暂时不去反映的,属于待发展的范畴。
在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。
但是,在客观世界中还普遍存在着大量的模糊现象。
以前人们回避它,但是,由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出现。
各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题推向中心地位。
更重要的是,随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理模糊性。
我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。
从认识方面说,模糊性是指概念外延的不确定性,从而造成判断的不确定性。
在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。
比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。
模糊数学-模糊数学基本知识
隶属函数参数化
1. 三角形隶属函数
0
trig ( x;
a,
b,
c)
x a ba
cx
cb
0
xa a xb b xc
cx
trig(x; a,b, c) max(min( x a , c x), 0) ba cb
参数a,b,c确定了三角形MF三个顶点的x坐标。
2. 梯形隶属函数
0
xa
trap(x, a, b, c, d )
g(x;50,20)
bell(x:20,4,50)
❖ (2)模糊子集运算的基本性质
模糊集合间的并、交、补(余)运算 具有如下的性质.
1)幂等律 A~ A~ A~, A~ A~ A~
2)交换律 A~ B~ B~ A~; A~ B~ B~ A~
3)结合律 ( A~ B~) C~ A~ (B~ C~),
论域U上的模糊集A由隶属函数uA来表征, uA的大小反映了x对于模糊子集的从属程度。 模糊子集完全由隶属函数来描述。
❖ 模糊子集的表示方法 (1)向量法
(2)查德表示法 有限集 无限集
模糊集举例 例4 设U={1,2,3,4,5,6}, A表示“靠近4”的数,则 AF (U),各数属于A的程度A(ui) 如表。
经典集合论的例子: 设U={ 红桃,方块,黑桃,梅花 }
V={ A,1,2,3,4,5,6,7,8,9, 10,J, Q, K } 求U×V
解: U×V={ (红桃,A),(红 桃, 2),……,(
梅花, K) }
35
模糊关系论例子: 设有一组学生U:
U={ 张三,李四,王五 } 他们对球类运动V:
( A~ B~) C~ A~ (B~ C~).
模糊数学基本知识
一.模糊数学的基础知识1.模糊集、隶属函数及模糊集的运算。
普通集合A ,对x ∀,有A x ∈或A x ∉。
如果要进一步描述一个人属于年轻人的程度大小时,仅用特征函数就不够了。
模糊集理论将普通集合的特征函数的值域推广到[0,1]闭区间内,取值的函数以度量这种程度的大小,这个函数(记为)(x E )称为集合E 的隶属函数。
即对于每一个元素x ,有[0,1]内的一个数)(x E 与之对应。
(1)模糊子集的定义:射给定论域U ,U 到[0,1]上的任一映射:))((],1,0[:U u u A u U A ∈∀→→都确定了U 上的一个模糊集合,简称为模糊子集。
)(u A 称为元素u 属于模糊集A 的隶属度。
映射所表示的函数称为隶属函数。
例如:设论域U=[0,100],U 上的老年人这个集合就是模糊集合:⎪⎩⎪⎨⎧≤<-+≤=--10050,))550(1(50,0)(12u u u u A 若在集合U 上定义了一个隶属函数,则称E 为模糊集。
(2)模糊集合的表示:},.....,,{21n u u u U =,)(u A 称为元素u 属于模糊集A 的隶属度;则模糊集可以表示为:nn u u A u u A u u A A )(....)()(2211+++=。
或 )}(),.....,(),({21n u A u A u A A =,))}(,()),.....,(,()),(,{(2211n n u A u u A u u A u A =,(3)模糊集合的运算:)}(),.....,(),({21n u A u A u A A =,)}(),.....,(),({21n u B u B u B B =,并集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∨∨∨=⋃,交集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∧∧∧=⋂,补集:)}(1),.....,(1),(1{21n c u A u A u A A ---=,包含:B A u B u A U u ⊂≤∈∀,则有有若)()(,,2.模糊集的截集已知U 上模糊子集))((],1,0[:U u u A u U A ∈∀→→对]1,0[∈λ,则称})(,{λλ≥∈=u A U u u A 为模糊集A 的λ-截集; 称})(,{λλ>∈=u A U u u A s 为模糊集A 的λ-强截集;λ称为λA 、sA λ的置信水平或阀值。
第2章模糊数学基础
1, a A CA a 0, a A
2014-5-12 7
第2章 模糊数学基础
3. 几种特殊的集合 (1)全集E—包含论域中的全部元素的集合。 (2)空集—不包含任何元素的集合。 (3)子集—集合A中的全部元素同时也都是集合B中的元素, 则A是B的一个子集:AB。 AB且BA,则称A与B相等,A=B。 (4)幂集P(A)—由集合A的所有子集构成的集合。
F(u) 的值接近1,表示u从属于模糊集合F的程 度很高, F(u) 的值接近0,表示u从属于模糊集合F的程 度很低。
模糊集合F完全由隶属度函数所描述。
2014-5-12 16
第2章 模糊数学基础
以“年轻、中年、年老”为例说明模糊集合和隶属度函 数的概念。 年轻-A,中年-B,年老-C 他们的论域U都是[1,100]
k=1
, n; j 1, 2,
,n
13
第2章 模糊数学基础
3. 映射关系
概念
设X和Y为两个不同的集合,对于xX,都存在唯一确定 的y Y,则称关系R为从X到Y的一个映射 对于xX,均有对应的y Y; 是两个集合X和Y的关系; 对于每一个xX,都存在唯一确定的y Y与之对应。
i 1, 2,
, n; j 1, 2,
, m
2014-5-12
12
第2章 模糊数学基础
2. 等价关系
若X上的一个关系R同时具有自反性、对称性和传递性, 则称其为等价关系。 同时具有自反、对称、传递性的关系
(1)自反关系 对于x X , 都有CR x, x 1, 则称其关系R具有自反性。 关系矩阵中的主对角元素均为1
表示
对于元素
隶属度
y f x
什么是模糊数学
•人工智能的要求
• 取得精确数据不可能或很困难
•没有必要获取精确数据
结语: 模糊数学的产生不仅形成了一门崭新的数学 学科,而且也形成了一种崭新的思维方法, 它告诉我们存在亦真亦假的命题,从而打破 了以二值逻辑为基础的传统思维,使得模糊 推理成为严格的数学方法。随着模糊数学的 发展,模糊理论和模糊技术将对于人类社会 的进步发挥更大的作用。
参考书目 1. 模糊数学基础,张文修,西交大出版社 3. 模糊理论及其应用,刘普寅等,国防科大出版社
• 涉及学科 模糊代数,模糊拓扑,模糊逻辑,模糊分析, 模糊概率,模糊图论,模糊优化等模糊数学分支
分类、识别、评判、预测、控制、排序、选择;
人工智能、控制、决策、专家系统、医学、土木、 农业、气象、信息、经济、文学、音乐
• 模糊产品 洗衣机、摄象机、照相机、电饭锅、空调、电梯
• 研究项目 European Network of Excellence 120个子项目与模糊有关 LIFE (Laboratory for International Fuzzy Engineering Research)
Int. J. Uncertainty, Fuzziness, knowledge-based Systems
IEEE 系列杂志 主要杂志25种,涉及模糊内容20,000余种
• 国际会议 IFSA (Int. Fuzzy Systems Association) EUFIT、NAFIP、Fuzzy-IEEE、IPMU
NSF 应用数学:大规模数据处理、不确定性建模
•国内状况
1976年,潘学海,弗齐集合论,计算机应用 及应用数学; 1980年,汪培庄,模糊数学简介,数学的 实践与认识.
1981年,模糊数学创刊
模糊数学方法
~
,则称隶属度
度。
R ( x, y )
~
~
为
( x, y)
关于模糊关系
U V
R
~
的相关程
注:由于模糊关系就是乘积空间
上的一个模糊
子集,因此,模糊关系同样具有模糊集的运算及性质。
模糊矩阵:设矩阵
n n
t ( R) R ( rij( k ) ) nn
k k 1 k 1
特别地,当R为模糊相似矩阵时,必存在一个最小的自然数
k (k
,使得 t ( R) R k ,对任意自然数 l k 都有 Rl R k n)
此时 t ( R ) 一定为模糊等价矩阵。
三. 模糊聚类分析方法
假设作n次模糊统计试验,可以算出
x0 A*的次数 x0 对A的隶属频率= n
事实上,当n不断增大时,隶属频率趋于稳定, 其稳定值称为 x 0 对A的隶属度,即
x0 A* 的次数 A ( x0 ) lim n n
2. 指派方法
指派方法是一种主观的方法,它主要是依据人们
的实践经验来确定某些模糊集隶属函数的方法。如果 模糊集定义在实数集R上,则称模糊集的隶属函数为 模糊分布。所谓的指派方法就是根据问题的性质和经
1 1 n 1 n 2 2 x j xij , s j [ ( xij x j ) ] ( j 1, 2,, m) n i 1 n i 1
(ii) 平移——极差变换.
' xij [0,1] ,则还需 如果经过平移—标准差变换后还有某些
对其进行平移—极差变换,即令
xij xij min {xij }
第四章 模糊数学
三 模 集 运 、 糊 的 算 由 已 , 要 定 个 糊 , 要 给 其 上 知 若 给 一 模 集 主 是 定 隶 属 数 由 两 模 集 运 结 仍 一 模 集 函 。 于 个 糊 的 算 果 为 个 糊 。 因 , 义 糊 的 算 主 是 明 隶 函 为 。 此 定 模 集 运 , 要 阐 其 属 数 何 1 运 定 、 算 义 A B 为 域 的 糊 , 有 列 义 设 、 均 论 X上 模 集 则 下 定 : % % (1 相 A= B µA(x) = µB(x), 现 两 曲 重 ; ) 等 : 表 为 者 线 合 % % % % (2)包 A⊂ B µA(x) ≤ µB(x), 现 µA处 不 于 B; 含 : 表 为 处 大 µ % % % % % % (3)并 UB µAUB(x) = m µA(x), B(x)} µA(x) ∨µB(x); A : ax{ µ ∆ % % % % % % % % (4)交 IB µAIB(x) = m µA(x), B(x)} µA(x) ∧µB(x); A : in{ ∆ µ % % % % % % % % (5)补 ( A) µA(x) =1−µA(x), 集 或c : A % % % % (6)空 ∅ µ∅(x) ≡ 0 一 x 不 于 , ∅ 无 素 集 : , 个也 属 ∅ 即 中 元 。 % % % %
µA
%
µB
%
0
25
50
% % % %
(2)易 , AIB(x) ≤ µAUB(x), 见 µ ∴AIB ⊂ AUB % % % %
2、 算 : 运 律 设 、 、 均 X上 模 集 A B C 为 的 糊 % % % (1)幂 律 AUA= A AIA= A 等 : , % % % % % % (2)交 律 AUB BUA AIB BIA 换 : = , = % % % % % % % % (3)结 律 (AUB) UC = AU(BUC), AIB) IC = AI(BIC) 合 : ( % % % % % % % % % % % % (4)分 律 AI(BUC) = (AIB) U(AIC) 配 : % % % % % % % AU(BIC) = (AUB) I(AIC) % % % % % % % (5)吸 律 AI(AUB) = A AU(AIB) = A 收 : , % % % % % % % % 证 由 配 , I(AUB) = (AIA U(AIB) : 分 律 A ) % % % % % % % ∴µAI(AUB) (x) = (µA(x) ∧µA(x)) ∨(µA(x) ∧µB(x)) = µA(x)
模糊数学第一章
A B B A
(3) 结合律(associativity)
A B பைடு நூலகம்B A
A (B C) (A B) C (A B) C A (B C)
(4) 吸收律(absorption laws)
A (A B) A
A (A B) A
例2:
在例 1中,f1 ({1, 2, 3}) {a,b,c},f2 ({1, 2, 3}) {a}.
二、映射与扩张
(2) 特殊映射
单射(injection):
x1 x2 f ( x1 ) f ( x2 )
或f ( x1 ) f ( x2 ) x1 x2
满射(surjection): f 为从X到Y的满射当且仅当f(X)=Y. 双射(bijection):
2
二、课程认识
在客观世界中,诸如上述的模糊概念要比清
晰概念多得多。
对于这类模糊现象,过去已有的数学模 型难以适用,需要形成新的理论和方法,即 在数学和模糊现象之间架起一座桥梁——模 糊数学。
2
二、课程认识
教学目的
通过本课程的学习,掌握模糊数学的
基本思想,基础理 论;从而进一步了解 模糊理论的基本应用,能够应用模糊理 论解决信息领域与工程技术中的实际问 题。
空集: 不含任何元素的集合, 记为 子集: 若x A x B, 则称A是B的子集,或A包含
于B, 或B包含A.记为A B或B A
相等: A B 且 B A,则称 A与B 相等,且A=B 真子集: A B且A与B不相等且A ,称A是B的真子集, 或A真包含于B, 记A B
交(int ersection) A B {x | x A且x B}
模糊数学的应用
模糊数学的应用——模糊识别一、模糊数学及模糊识别的简单介绍1、模糊数学的介绍在生产实践和日常生活中,人们遇到的需要解决的实际问题大体可以分为两类:确定性问题和不确定性问题,而不确定性问题又可以分为两类:随机不确定性问题与模糊不确定性问题。
模糊不确定性问题是指事物本身所固有的不精确状况,摆脱了非此即彼的精确性,反映了事物之间由于差异的中间过渡性所引起的划分上的不确定,而导致了概念的外延不分明性,也就是“亦此亦彼”的模糊性。
例如,对某种服装,若式样新颖、质地优良、价格低廉,就被列入好的一类;若式样陈旧、质地低劣、价格昂贵,则被列入差的一类。
然而,人们也常对某种服装做出较好或较差的评价,这说明好与差之间还存在较好、较差等中间状态。
研究模糊不确定性问题的工具是由美国控制论专家扎德(L.A.Zadeh )创立的模糊数学,1965年 L.A.Zadeh 发表了开创性论文“模糊集合”,标志着模糊数学的诞生。
模糊数学是研究和处理模糊现象的,所研究的事物的概念本身是模糊的,即一个对象是否符合这个概念难以确定,这种由于概念外延的模糊而造成的不确定性称为模糊性。
在[0,1]上取值的隶属函数就描述了这种模糊性。
模糊数学从诞生到现在,获得了蓬勃发展,其触角遍及自然科学、社会科学、横断交叉学科。
在数学理论(如拓扑学、逻辑学、测度论等)、应用方法(如控制论、聚类分析、模式识别、综合评估等)、实际应用(如中长期气象预报、成矿预测、良种选择、故障整顿等)、人文系统(如经济系统、政治系统、决策系统、教育系统)诸多方面取得了很多有价值的成果。
2、模糊模式识别的介绍由给定的某个具体模型的特征识别它应属于何类的问题成为模式识别。
模式识别问题广泛存在于实际应用中。
例如:通过气象和卫星资料的分析处理,对未来天气属于何种类型做成预报;医生根据病人的症状对病情的诊断;破案时对指纹图像的识别等,都可归结为模式识别过程。
但是,在实际中,由于客观事物本身的模糊性,例如:雷达目标识别时,目标背景的严重污染,目标信息转换过程中特征信息的随机交叠等,加上人们对客观事物的反映过程中也产生模糊性,使得经典的识别方法越来越不适应客观实际的要求。
模糊数学
第二章预备知识2.1 模糊数学概述模糊数学的产生是客观实际发展的必然,美国学者L.A.Zadeh于1965年首次提出模糊集合的概念,对模糊行为和活动建立模型。
模糊理论一经产生就在数学领域本身以及许多的使用领域里得到了广泛的应用。
到20世纪的90年代,己经形成了具有完整体系和鲜明特点的模糊拓扑学,框架日趋成熟的模糊随机数学,模糊分析学,以及模糊逻辑理论。
模糊数学是对模糊行为和活动建立模型,从二值逻辑的基础上转移到连续逻辑上来,把绝对的“是"与“非”变为更加灵活的东西,在特定的限定域上去相对地划分“是”与“非”,但它并非是让数学放弃它的严格性去迁就模糊性,相反,是以严格的数学方法去处理模糊现象。
在人类社会和各个科学领域中,人们所遇到的各种量大体上可以分成两大类:确定性与不确定性,而不确定性又可分为随机性和模糊性人们正是用三种数学来分别研究客观世界中不同的量,即[23] :确定性———经典数学量随机性———随机数学不确定性模糊性———模糊数学在这种框架内,数学模型也可以分为三大类[23]:1、确定性数学模型,其研究对象具有确定性,对象之间具有必然的关系,如用微分法、微分方程、差分方程所见的数学模型。
2、随机数学模型,其研究对象具有随机性,对象之间具有偶然的关系,如用概率分布方法、Markov 链建立的数学模型。
概率论与数理统计是研究随即不确定性问题的主要数学工具。
3、模糊数学模型,其研究对象与对象之间的关系具有模糊性。
这里,要注意区别这两种不确定性,因为过去人们把不确定性看成是随机性的[24]。
为了区分这两种性质截然不同的不确定性,我们将由概率发生的偶然性所引起的不确定性称为随机不确定性,如“明天有雨”、“抛硬币出现两面”等;而将由概念、语言等模糊性所引起的不确定性成为模糊不确定性,如“好人与坏人”、“青年人”、“高个子”等。
由于模糊数学是由定量的方法去研究和处理模糊现象,与普通的分析设计比较起来,在处理问题时主要具有以下三个方面的特点[25]:一、充分定量地考虑模糊因数,使得设计方案更符合客观实际,优化合理; 二、事物的中介过渡性质,浮动地选取阈值,从而得到一系列不同水平的分析结果与设计方案为人们提供了广泛的选择; 三、具有哲理的方法论特点[25]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊数学简介模糊数学是数学中的一门新兴学科,其前途未可限量。
1965年,《模糊集合》的论文发表了。
作者是著名控制论专家、美国加利福尼亚州立大学的扎德(L.A.Zadeh)教授。
康托的集合论已成为现代数学的基础,如今有人要修改集合的概念,当然是一件破天荒的事。
扎德的模糊集的概念奠定了模糊性理论的基础。
这一理论由于在处理复杂系统特别是有人干预的系统方面的简捷与有力,某种程度上弥补了经典数学与统计数学的不足,迅速受到广泛的重视。
近40年来,这个领域从理论到应用,从软技术到硬技术都取得了丰硕成果,对相关领域和技术特别是一些高新技术的发展产生了日益显著的影响。
有一个古老的希腊悖论,是这样说的:“一粒种子肯定不叫一堆,两粒也不是,三粒也不是……另一方面,所有的人都同意,一亿粒种子肯定叫一堆。
那么,适当的界限在哪里?我们能不能说,123585粒种子不叫一堆而123586粒就构成一堆?”确实,“一粒”和“一堆”是有区别的两个概念。
但是,它们的区别是逐渐的,而不是突变的,两者之间并不存在明确的界限。
换句话说,“一堆”这个概念带有某种程度的模糊性。
类似的概念,如“年老”、“高个子”、“年轻人”、“很大”、“聪明”、“漂亮的人”、“价廉物美”等等,不胜枚举。
经典集合论中,在确定一个元素是否属于某集合时,只能有两种回答:“是”或者“不是”。
我们可以用两个值0或1加以描述,属于集合的元素用1表示,不属于集合的元素用0表示。
然而上面提到的“年老”、“高个子”、“年轻人”、“很大”、“聪明”、“漂亮的人”、“价廉物美”等情况要复杂得多。
假如规定身高1.8米算属于高个子范围,那么,1.79米的算不算?照经典集合论的观点看:不算。
但这似乎很有些悖于情理。
如果用一个圆,以圆内和圆周上的点表示集A,而且圆外的点表示不属于A。
A的边界显然是圆周。
这是经典集合的图示。
现在,设想将高个子的集合用图表示,则它的边界将是模糊的,即可变的。
因为一个元素(例如身高1.75米的人)虽然不是100%的高个子,却还算比较高,在某种程度上属于高个子集合。
这时一个元素是否属于集合,不能光用0和1两个数字表示,而可以取0和1之间的任何实数。
例如对1.75米的身高,可以说具有70%属于高个子集合的程度。
这样做似乎罗嗦,但却比较合乎实际。
精确和模糊,是一对矛盾。
根据不同情况有时要求精确,有时要求模糊。
比如打仗,指挥员下达命令:“拂晓发起总攻。
”这就乱套了。
这时,一定要求精确:“×月×日清晨六时正发起总攻。
”我们在一些旧电影中还能看到各个阵地的指挥员在接受命令前对对表的镜头,生怕出个半分十秒的误差。
但是,物极必反。
如果事事要求精确,人们就简直无法顺利的交流思想——两人见面,问:“你好吗?”可是,什么叫“好”,又有谁能给“好”下个精确的定义?有些现象本质上就是模糊的,如果硬要使之精确,自然难以符合实际。
例如,考核学生成绩,规定满60分为合格。
但是,59分和60分之间究竟有多大差异,仅据1分之差来区别及格和不及格,其根据是不充分的。
不仅普遍存在着边界模糊的集合,就是人类的思维,也带有模糊的特色。
有些现象是精确的,但是,适当的模糊化可能使问题得到简化,灵活性大为提高。
例如,在地里摘玉米,若要找一个最大的,那很麻烦,而且近乎迂腐。
我们必须把玉米地里所有的玉米都测量一下,再加以比较才能确定。
它的工作量跟玉米地面积成正比。
土地面积越大,工作越困难。
然而,只要稍为改变一下问题的提法:不要求找最大的玉米,而是找比较大的,即按通常的说法,到地里摘个大玉米。
这时,问题从精确变成了模糊,但同时也从不必要的复杂变成意外的简单,挑不多的几个就可以满足要求。
工作量甚至跟土地无关。
因此,过分的精确实际成了迂腐,适当的模糊反而灵活。
显然,玉米的大小,取决于它的长度、体积和重量。
大小虽是模糊概念,但长度、体积、重量等在理论上都可以是精确的。
然而,人们在实际判断玉米大小时,通常并不需要测定这些精确值。
同样,模糊的“堆”的概念是建立在精确的“粒”的基础上,而人们在判断眼前的东西叫不叫一堆时,从来不用去数“粒”。
有时,人们把模糊性看成一种物理现象。
近的东西看得清,远的东西看不清,一般的说,越远越模糊。
但是,也有例外的情况:站在海边,海岸线是模糊的;从高空向下眺望,海岸线却显得十分清晰。
太高了,又模糊。
精确与模糊,有本质区别,但又有内在联系,两者相互矛盾、相互依存也可相互转化。
所以,精确性的另一半是模糊。
对模糊性的讨论,可以追溯得很早。
20世纪的大哲学家罗素(B.Russel)在1923年一篇题为《含糊性》(Vagueness)的论文里专门论述过我们今天称之为“模糊性”的问题(严格地说,两者梢有区别),并且明确指出:“认为模糊知识必定是靠不住的,这种看法是大错特错的。
”尽管罗素声名显赫,但这篇发表在南半球哲学杂志的文章并未引起当时学术界对模糊性或含糊性的很大兴趣。
这并非是问题不重要,也不是因为文章写得不深刻,而是“时候未到”。
罗素精辟的观点是超前的。
长期以来,人们一直把模糊看成贬义词,只对精密与严格充满敬意。
20世纪初期社会的发展,特别是科学技术的发展,还未对模糊性的研究有所要求。
事实上,模糊性理论是电子计算机时代的产物。
正是这种十分精密的机器的发明与广泛应用,使人们更深刻地理解了精密性的局限,促进了人们对其对立面或者说它的“另一半”——模糊性的研究。
扎德1921年2月生于苏联巴库,1942年毕业于伊朗德黑兰大学电机工程系,获学士学位。
1944年获美国麻省理工学院(MIT)电机工程系硕士学位,1949年获美国哥伦比亚大学博士学位,随后在哥伦比亚、普林斯顿等著名大学工作。
从1959年起,在加里福尼亚大学伯克莱分校电机工程、计算机科学系任教授至今。
扎德在20世纪50年代从事工程控制论的研究,在非线形滤波器的设计方面取得了一系列重要成果,已被该领域视为经典并广泛引用。
60年代初期,扎德转而研究多目标决策问题,提出了非劣解等重要概念。
长期以来,围绕决策、控制及其有关的一系列重要问题的研究,从应用传统数学方法和现代电子计算机解决这类问题的成败得失中,使扎德逐步意识到传统数学方法的局限性。
他指出:“在人类知识领域里,非模糊概念起主要作用的惟一部门只是古典数学”,“如果深入研究人类的认识过程,我们将发现人类能运用模糊概念是一个巨大的财富而不是包袱。
这一点,是理解人类智能和机器智能之间深奥区别的关键。
”精确的概念可以用通常的集合来描述。
模糊概念应该用相应的模糊集合来描述。
扎德抓住这一点,首先在模糊集的定量描述上取得突破,奠定了模糊性理论及其应用的基础。
集合是现代数学的基础,模糊集合一提出,“模糊”观念也渗透到许多数学分支。
模糊数学的发展速度也是相当快的。
从发表的论文看,几乎是指数般的增长。
模糊数学的研究可分三个方面:一是研究模糊数学的理论,以及它和精确数学、统计数学的关系;二是研究模糊语言和模糊逻辑;三是研究模糊数学的应用。
在模糊数学的研究中,目前已有模糊拓扑学、模糊群论、模糊凸论、模糊概率、模糊环论等分支。
虽然模糊数学是一门新兴学科,但它已初步应用于自动控制、模式识别、系统理论、信系检索、社会科学、心理学、医学和生物学等方面。
将来还可能出现模糊逻辑电路、模糊硬件、模糊软件和模糊固件,出现能和人用自然语言对话、更接近于人的智能的新的一类计算机。
所以,模糊数学将越来越显示出它的巨大生命力。
是否有人反对呢?当然有。
一些概率论学者认为模糊数学不过是概率论的一个应用而已。
一些搞理论数学的人说这不是数学。
搞应用的人则说道理说的很好,但真正的实际效果没有。
然而,国际著名的应用数学家考夫曼(A.Kauffman)教授在访华时说:“他们的攻击是毫无道理的,不必管人家说什么,我们努力去做就是。
”模糊数学入门§1、集合的幂集与特征函数问题1.1、设集合A={x ∈N|1≤x ≤3},试用列举法写出集合P (A )={S|S ⊆A},考察含有0个、1个、2个元素的集合它们的子集作为元素构成的集合中分别有多少个元素?问题的答案是不难得出的:P (A )={Ф,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}。
含有0个、1个、2个、3个元素的集合它们的子集作为元素构成的集合中分别有1个、2个、4个、8个元素。
定义1.1、一般地,由集合A 的所有的子集为元素构成的集合,即P (A )={S|S ⊆A}称为集合A 的幂集,其中空集Ф和集合A 称为集A 的平凡子集。
由问题1.1的答案可归纳得出下列结论:结论1.1、一个有n 个元素的集合A ,其幂集中的元素个数为2 n 个。
证明的方法是多种多样的,只要你愿意去探索!下面给出几种比较典型的证法,抛砖引玉:证法1、当n=3时,由问题1.1,我们先列出{1,2}的所有子集:Ф,{1},{2},{1,2}接着在第二行里给前一行中每个子集添加一个元素3得{3},{1,3},{2,3},{1,2,3}} 从而得出n=3时集合A 的所有子集。
这就是我们处理更大的n 值的关键想法。
例如当n=4时,A={x 1,x 2,x 3,x 4}的子集是{ x 1,x 2,x 3}的8个子集,加上给这8个子集中的每一个添入x 4而得的子集。
于是4个元素的集合有24个子集。
基于这种想法的证明,是数学归纳法的一个简单应用。
证法2、上述解答方法的另一途径可作如下讨论:对于每个n ,以S n 表示具有n 个(不同的)元素的一个集合的(不同的)子集数。
设A 为一个n+1元集合,并记其中元素为x 。
那么在A 的不含x 的子集与含x 的子集之间,存在一一对应(即:一个不含x 的子集T 与T ∪{x}相对应)。
前一类型的子集即是A -{x}的一切子集。
A -{x}是个n 个元素的集合,因此必定有S n+1=2S n 。
这个递归关系对于n=0,1,2,3,……都是成立的。
与S 0=1这件事联合起来,即有S n =2n 。
证法3、不含有集合A 中任何一个元素的子集有0n C 个,含有A 中1个元素的子集有1nC 个,含有A 中2个元素的子集有2n C 个,……,含有A 中r(0≤r ≤n)个元素的子集有r n C 个,……,含有A 中n 个元素的子集有nn C 个。
从而一个有n 个元素的集合A ,其幂集中的元素个数为:0n C +1n C +2n C +……+r n C +……+n n C =2n 个。
定义1.2、若一个集合含有作为对象被考虑的所有元素的全体,通常将这样一个集合称为全集,或称论域,用大写字母U 、I 等表示。
定义1.3、如果U 为论域,P (U )是U 的幂集,A 、B ∈P (U ),定义P (U )上的集合运算:并集:由A 和B 中的元素的全体构成的集合称为A 与B 的并集,记为A ∪B ,即A ∪B={x|x ∈A ,或x ∈B}。