三角恒等变换复习课件
合集下载
第四讲+简单的三角恒等变换 课件——2025届高三数学一轮复习
【题后反思】(1)解决三角函数的求值问题的关键是把“所求 角”用“已知角”表示.①当“已知角”有两个时,“所求角”一 般表示为两个“已知角”的和或差的形式;②当“已知角”有一 个时,此时应着眼于“所求角”与“已知角”的和或差的关系.
(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β, β=α+2 β-α-2 β,α=α+2 β+α-2 β,α-2 β=α+β2-α2+β等.
1-cos α 2.
(2)cos α2=± (3)tan α2=±
1+cos α 2.
1-cos 1+cos
αα=1+sicnoαs
α=1-sincoαs
α .
以上称之为半角公式,符号由α2所在象限决定.
考点一 三角函数式的化简 1.化简:22tcaonsπ44x--x2scions22π4x++12x=________.
2025年高考一轮总复习
第三章 三角函数、解三角形
第四讲 简单的三角恒等变换
1.辅助角公式的应用 (1)a sin α+b cos α= a2+b2sin α· a2a+b2+cos α· a2b+b2, 不妨记 cos φ= a2a+b2,sin φ= a2b+b2, 则 a sin α+b cos α= a2+b2(sin αcos φ+cos αsin φ)= a2+b2sin (α+φ).
答案:B
考向 3 给值求角
[例 3]已知 α,β∈(0,π),且 tan(α-β)=21,tan β=-17,则 2α-β 的值为________.
解析:∵tan α=tan [(α-β)+β]=1t-ant(aαn-(αβ-)+β)ttaannββ =1+12-12×17 17=13>0, ∴0<α<π2.
2024届新高考一轮复习人教B版 主题二 第四章 第3节 三角恒等变换 课件(38张)
又因为 < <π,所以原式=-cos .
答案:-cos
3.化简:
- +
=
( -) ( +)
( - +)
( -)
·
· ( -)
( -)
解析:原式=
=
=
(3)tan 2α=
.
-
1.常用拆角、拼角技巧:例如,2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;
β=
+ -
-
=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°; +α=
-( -α)等.
2.辅助角公式
=
- °
×°
- °
= ×tan 30°= × = .
3.
°- °
等于(
°
A.-
C.
B.-1
解析:原式=2×
=2×
D
)
D.1
°-°°
°
(°+°)-°°
三角函数式的求值
给角求值
[例 1] (1)
° °
解析:(1)原式=
=
=
=
-
( °-
=
.
°- °
三角恒等变换(1)-PPT课件
5
2.cos 65°cos 35°+sin 65°sin 35°( ) A.cos 100° B.sin 100°
3
1
C. 2
D.2
解析:cos 65°cos 35°+sin 65°sin 35°=cos(65°-35°)
=cos 30°= 23.
答案:C
6
3.cos 75°cos 15°-sin 75°sin 195°的值为( )
21
归纳升华 给值求值问题的解题策略
1.从角的关系中找解题思路:已知某些角的三角函 数值,求另外一些角的三角函数值,要注意观察已知角与 所求表达式中角的关系,根据需要灵活地进行拆角或凑角 的变换.
22
α+ β 2.常见角的变换:(1)α=(α- β )+ β;(2)α= 2 α- β +2; (3)2α=(α+ β )+(α- β );(4)2 β =(α+ β )-(α- β ).
A.-12
B.12
C.
3 2
D.-
3 2
1 (2)2cos
105°+
3 2 sin
105°=________.
12
解析:(1)原式=cos 83°cos 23°+sin 83°sin 23°=
cos(83°-23°)=cos 60°=12.
1 (2)2cos
105°+
3 2 sin
105°=
cos 60°cos 105°+sin 60°sin 105°=
cos(60°-105°)=cos(-45°)=
2 2.
答案:(1)B
(2)
2 2
13
归纳升华 两角差的余弦公式常见题型及解法
1.两特殊角之差的余弦值,利用两角差的余弦公式 直接展开求解.
2.cos 65°cos 35°+sin 65°sin 35°( ) A.cos 100° B.sin 100°
3
1
C. 2
D.2
解析:cos 65°cos 35°+sin 65°sin 35°=cos(65°-35°)
=cos 30°= 23.
答案:C
6
3.cos 75°cos 15°-sin 75°sin 195°的值为( )
21
归纳升华 给值求值问题的解题策略
1.从角的关系中找解题思路:已知某些角的三角函 数值,求另外一些角的三角函数值,要注意观察已知角与 所求表达式中角的关系,根据需要灵活地进行拆角或凑角 的变换.
22
α+ β 2.常见角的变换:(1)α=(α- β )+ β;(2)α= 2 α- β +2; (3)2α=(α+ β )+(α- β );(4)2 β =(α+ β )-(α- β ).
A.-12
B.12
C.
3 2
D.-
3 2
1 (2)2cos
105°+
3 2 sin
105°=________.
12
解析:(1)原式=cos 83°cos 23°+sin 83°sin 23°=
cos(83°-23°)=cos 60°=12.
1 (2)2cos
105°+
3 2 sin
105°=
cos 60°cos 105°+sin 60°sin 105°=
cos(60°-105°)=cos(-45°)=
2 2.
答案:(1)B
(2)
2 2
13
归纳升华 两角差的余弦公式常见题型及解法
1.两特殊角之差的余弦值,利用两角差的余弦公式 直接展开求解.
2025届高三数学一轮复习课件-+简单的三角恒等变换
)
A.π 3
B.5π 12
C.π6
D.π4
解析 ∵0<α<π2,0<β<π2,∴0<α+β<π,由 cosα=17,sin(α+β)=5143,得 sinα=473,
cos(α+β)=±1114.若 cos(α+β)=1114,则 sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+
解析
sinα -
3
cosα
=
2
12sinα-
3
2
cosα
=
2sin
α-π3
=
m
-
1
,
因
为
-
1≤sinα-π3≤1,所以-2≤2sinα-π3≤2,所以-2≤m-1≤2,解得-1≤m≤3,
则 m 的取值范围是[-1,3].
课堂小结(1分钟)
【通性通法】 三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通常是 把复杂的三角函数通过恰当的三角变换,转化为一种简单的三角函数,再研究转化 后函数的性质.在这个过程中通常利用辅助角公式,将 y=asinx+bcosx 转化为 y= Asin(x+φ)或 y=Acos(x+φ)的形式,以便研究函数的性质,解题时注意观察角、函 数名、结构等特征,注意利用整体思想解决相关问题.
因为 x∈π4,32π,所以 x-71π2∈-π3,1112π,
所以 sinx-71π2∈- 23,1,
所以- 22sinx-71π2∈- 22, 46,
即函数
f(x)在区间π4,32π上的最大值为
46,最小值为-
2 2.
(2)因为 cosθ=45,θ∈32π,2π, 所以 sinθ=-35,所以 sin2θ=2sinθcosθ=-2245, cos2θ=cos2θ-sin2θ=1265-295=275, 所以 f2θ+π3=- 22sin2θ+π3-71π2 =- 22sin2θ-π4=-12(sin2θ-cos2θ) =12(cos2θ-sin2θ)=12×275+2245=3510.
5.5 三角恒等变换 课件(21张PPT)(2024年)
2
α是 的二倍角,
2是的二倍角,在倍角公式cos 2α=1-2sin2α中,利用换
元法,
用代替2,用
2
代替,得
cos α=1-2sin2
2
1-
2
=
2
2
新知探究
同理,在倍角公式cos
2
2α=2cos α-1中,用代替2,用
cos
2
α=2
2
−1
2
1+
(1)sin αcos β=
2
(2)sin θ+sin φ=2sin θ+φcos θ-φ
2
2
思考1:(2)式与(1)式有什么相同点和不同点?
θ+φ
θ-φ
(换元法)如果我们令α=
,β=
,
2
2
θ+φ θ-φ
θ+φ θ-φ
即α+β=
+
= ,α-β=
=φ,代入(1)中得
2
2
2
2
θ+φ
θ-φ
2sin
cos
=sin θ+sin φ
(+)+(-)
同理,我们还可以得到公式
cos αsin
cos αcos
1
β=
2
1
β=
2
(+)-(-)
(+)+(-)
1
2
sin αsin β= (-)-(+)
我们把以上四个公式叫做“积化和差公式”
例2、求证:
1
[sin(α+β)+sin(α-β)]
2
2
2
, 2 ,2 .
新知探究
例1、试以cos α表示2
简单的三角恒等变换优秀课件(4个课件)
思考6:参照上述分析,cosα cosβ , sinα sinβ 分别等于什么?其变换功能 如何?
1 c o sc a o s b = c o s ( ab ++ )c o s ( ab -) [ ] 2
1 s i n a s i n b = -[ c o s ( ab +)c o s ( ab -) ] 2
作业: P143习题3.2A组: 1(5)(6)(7)(8) ,2,3,4,5.
19、一个人的理想越崇高,生活越纯洁。 20、非淡泊无以明志,非宁静无以致远。 21、理想是反映美的心灵的眼睛。 22、人生最高之理想,在求达于真理。 便有了文明。 24、生当做人杰,死亦为鬼雄。 25、有理想的、充满社会利益的、具有明确目的生活是世界上最美好的和最有意义的生活。 26、人需要理想,但是需要人的符合自然的理想,而不是超自然的理想。 27、生活中没有理想的人,是可怜的。 28、在理想的最美好的世界中,一切都是为美好的目的而设的。 29、理想的人物不仅要在物质需要的满足上,还要在精神旨趣的满足上得到表现。 30、生活不能没有理想。应当有健康的理想,发自内心的理想,来自本国人民的理想。 31、理想是美好的,但没有意志,理想不过是瞬间即逝的彩虹。 32、骐骥一跃,不能十步;驽马十驾,功在不舍;锲而舍之,朽木不折;锲而不舍,金石可镂。——荀况 33、伟大的理想只有经过忘我的斗争和牺牲才能胜利实现。 34、为了将来的美好而牺牲了的人都是尊石质的雕像。 35、理想对我来说,具有一种非凡的魅力。 36、扼杀了理想的人才是最恶的凶手。 37、理想的书籍是智慧的钥匙。 人生的旅途,前途很远,也很暗。然而不要怕,不怕的人的面前才有路。—— 鲁 迅 2 人生像攀登一座山,而找寻出路,却是一种学习的过程,我们应当在这过程中,学习稳定、冷静,学习如何从慌乱中找到生机。 —— 席慕蓉 3 做人也要像蜡烛一样,在有限的一生中有一分热发一分光,给人以光明,给人以温暖。—— 萧楚女 4 所谓天才,只不过是把别人喝咖啡的功夫都用在工作上了。—— 鲁 迅 5 人类的希望像是一颗永恒的星,乌云掩不住它的光芒。特别是在今天,和平不是一个理想,一个梦,它是万人的愿望。—— 巴 金 6 我们是国家的主人,应该处处为国家着想。—— 雷 锋 7 我们爱我们的民族,这是我们自信心的源泉。—— 周恩来 8 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。—— 吴玉章 9 学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。对自己,“学而不厌”,对人家,“诲人不倦”,我们应取这种态度。—— 毛泽东 10 错误和挫折教训了我们,使我们比较地聪明起来了,我们的情就办得好一些。任何政党,任何个人,错误总是难免的,我们要求犯得少一点。 犯了错误则要求改正,改正得越迅速,越彻底,越好。—— 毛泽东 38、理想犹如太阳,吸引地上所有的泥水。 9.君子欲讷于言而敏于行。 ——《论语》 译:君子不会夸夸其谈,做起事来却敏捷灵巧。 10.二人同心,其利断金;同心之言,其臭如兰。 ——《周易》 译:同心协力的人,他们的力量足以把坚硬的金属弄断;同心同德的人发表一致的意见,说服力强,人们就像嗅到芬芳的兰花香味,容易接受。 11.君子藏器于身,待时而动。 ——《周易》 译:君子就算有卓越的才能超群的技艺,也不会到处炫耀、卖弄。而是在必要的时刻把才能或技艺施展出来。 12.满招损,谦受益。 ——《尚书》 译:自满于已获得的成绩,将会招来损失和灾害;谦逊并时时感到了自己的不足,就能因此而得益。 13.人不知而不愠,不亦君子乎? ——《论语》 译:如果我有了某些成就,别人并不理解,可我决不会感到气愤、委屈。这不也是一种君子风度的表现吗?知缘斋主人 14.言必信 ,行必果。 ——《论语》 译:说了的话,一定要守信用;确定了要干的事,就一定要坚决果敢地干下去。 15.毋意,毋必,毋固,毋我。 ——《论语》 译:讲事实,不凭空猜测;遇事不专断,不任性,可行则行;行事要灵活,不死板;凡事不以“我”为中心,不自以为是,与周围的人群策群力,共同完成任务。 16.三人行,必有我师焉,择其善者而从之,其不善者而改之。——《论语》 译:三个人在一起,其中必有某人在某方面是值得我学习的,那他就可当我的老师。我选取他的优点来学习,对他的缺点和不足,我会引以为戒,有则改之。 17.君子求诸己,小人求诸人。 ——《论语》 译:君子总是责备自己,从自身找缺点,找问题。小人常常把目光射向别人,找别人的缺点和不足。很多人(包括我自己)觉得面试时没话说,于是找了一些名言,可以在答题的时候将其穿插其中,按照当场的需要或简要或详细解释一番,也算是一种应对的方法吧 1.天行健,君子以自强不息。 ——《周易》 译:作为君子,应该有坚强的意志,永不止息的奋斗精神,努力加强自我修养,完成并发展自己的学业或事业,能这样做才体现了天的意志,不辜负宇宙给予君子的职责和才能。 2.勿以恶小而为之,勿以善小而不为。 ——《三国志��
5.5.2 简单的三角恒等变换(课件)
第五章 三角函数
课堂互动探究
探究一 降幂、半角公式的应用 设 π<θ<2π,cos2θ=a,求:
(1)sin θ 的值;(2)cos θ 的值;(3)sin24θ的值.
数学 必修 第一册 A
返回导航
第五章 三角函数
解 (1)∵π<θ<2π,∴π2<2θ<π.又∵cos2θ=a, ∴sin2θ= 1-cos22θ= 1-a2. ∴sin θ=2sin2θcos2θ=2a 1-a2. (2)cos θ=2cos22θ-1=2a2-1. (3)sin24θ=1-2cos2θ=1-2 a.
第五章 三角函数
5.5 三角恒等变换
5.5.2 简单的三角恒等变换
第五章 三角函数
课程标准
能用两角和与差的正弦、余弦、 正切公式及二倍角公式进行简单 的恒等变换(包括推导出积化和 差、和差化积、半角公式,这三 组公式不要求记忆).
核心素养
通过对简单的三角恒等变换 的学习,提升“逻辑推 理”、“数学运算”的核心 素养.
2+1 4.
数学 必修 第一册 A
返回导航
第五章 三角函数
2.若 cos α=13,且 α∈(0,π),则 sinα2=________.
解析 ∵α∈(0,π),∴α2∈0,π2.∴sinα2>0.
又 cos α=1-2sin2α2=13,∴sinα2=
1-cos 2
α=
3 3.
答案
3 3
数学 必修 第一册 A
返回导航
第五章 三角函数
(2)由 x∈-π4,π4得 2x-π3∈-56π, π6,
则 sin2x-π3∈-1,12,
即函数 f(x)=12sin
三角恒等变换复习公开课精华ppt课件
例3 :已知 A、B、C是△ABC三内角,向量
m (1 , 3) , n (cos A , sin A) , m n 1 .
(1)求角
A;(2)若
1 sin2B cos2 B sin2
B
3
,
求
tanC
.
解:(1) m n 1 ,
(1 , 3 ) (cos A , sin A) 1 ,
tan2 sin Asin B tan (sin Acos B cos Asin B) cos Acos B 2
5
典型例题
tan2 sin Asin B tan sin( A B) cos Acos B 2 ①
5
因为 C 3π ,A+B= π , 所以 sin(A+B)= 2 ,
θ
为第二象限角,若
tan
π 4
1 2
,则
sin θ+cos θ=__________.
分析:由 tan
π 4
1 1
tan tan
1 ,得 2
tan
θ= 1 , 3
即 sin θ= 1 cos θ. 3
将其代入 sin2θ+cos2θ=1,得 10 cos2 1 .
9
因为 θ 为第二象限角,所以 cos θ= 3 10 ,sin θ= 10 ,
4
4
2
因为 cos(A+B)=cos Acos B-sin Asin B,
即 3 2 -sin Asin B= 2 ,解得 sin Asin B= 3 2 2 2 .
5
2
5 2 10
由①得 tan2 5 tan 4 0
解得 tan 1或tan 4.
变式3:
(2013·辽宁理)设向量 a
《三角恒等变换》归纳整合课件
感谢您的观看
THANKS
详细描述
在三角恒等变换中,角度的取值范围对计算结果有着重 要的影响。如果角度的取值超出了特定范围,如90度 到270度或0度到180度,那么就需要使用不同的公式 或定理进行计算。忽视这一点,就会导致错误的结果。
不能灵活运用三角恒等变换的技巧
总结词
不能灵活运用三角恒等变换的技巧是学习中的一大难点。
详细描述
05
三角恒等变换的易错点分 析
忽视公式条件的使用范围
总结词
不重视公式条件的使用范围是三角恒等变换中的常见 错误。
详细描述
三角恒等变换的公式和定理都有一定的使用范围和条 件,如角度的范围、函数的种类等。如果忽视这些条 件,随意使用公式,会导致错误的结果。
忽视角度的范围对结果的影响
总结词
忽视角度的范围对三角恒等变换的结果有重要影响。
三角恒等变换的基本思路
通过引入已知的三角函数式,利用已知的三角恒等式将它们 联系起来,从而找到需要解决的表达式与已知表达式之间的 联系。
三角恒等变换的性质
三角恒等变换的性 质
三角恒等变换的性质主要包括奇 偶性、周期性、对称性以及三角 函数的和差倍角公式等。
奇偶性
对于一个函数f(x),如果f(x)=f(x),那么f(x)就叫做偶函数 ;如果f(-x)=-f(x),那么f(x)就 叫做奇函数。
常数变易的技巧
总结词
灵活运用,随机应变
详细描述
常数变易是通过将常数项变为变量,从而 改变等式中变量的系数,以达到简化计算 的目的。在三角恒等变换中,常数变易是 一种非常重要的技巧,可以广泛应用于各 种不同类型的等式中。
04
三角恒等变换的常见题型
求值题
5.5.2简单的三角恒等变换(共44张PPT)
【(2解)求】f(x)f在(x)π6=,(-23πc上os的x)·单(-调s递in 增x)-区间3.·1+c2os
2x+
3 2
=12sin
2x-
3 2 cos
2x=sin2x-π3.
(1)f(x)的最小正周期为 π,最大值为 1.
(2)令 2kπ-π2≤2x-π3≤2kπ+π2(k∈Z), 即 kπ-1π2≤x≤kπ+152π(k∈Z),所以 f(x)在π6,51π2上单调递增,即 f(x)在 π6,23π上的单调递增区间是π6,51π2.
A.
6 3
B.-
6 3
C.±
6 3
D.±
3 3
答案:A
()
3.已知 cos α=45,α∈32π,2π,则 sin α2等于
()
A.-
10 10
B.
10 10
C.3103
D.-35
答案:B
4.已知 cos θ=-35,且 180°<θ<270°,则 tan θ2=________.
答案:-2
探究点 1 应用半角公式求值
(2)因为 0≤x≤23π, 所以π3≤x+π3≤π. 当 x+π3=π, 即 x=23π时,f(x)取得最小值. 所以 f(x)在区间0,23π上的最小值为 f23π=- 3.
1.若 sin(π-α)=- 35且 α∈π,32π,则 sinπ2+α2等于
A.-
6 3
B.-
6 6
C.
6 6
D.
6 3
4.化简:
1+cos(23π-θ)32π<θ<2π=________.
解析:原式=
1-cos 2
θ=sinθ2,
因为32π<θ<2π,所以34π<θ2<π,
高考数学一轮复习 4.2三角恒等变换课件
5
5
∵α∈
,
2
,
0
∴sin α=- 3 ,∴tan α=3- ,
5
4
∴tan 2α= 2 =ta n α
2
=-
3
.4
24
1 tan 2α
1
3 4
2
7
精品
10
5.已知α∈
2
,,sin α=
,则3 tan
5
α=
4
.
答案
1 7
解析 由已知得cos α=-4 ,∴tan α=3- ,
5
4.函数f(α)=acos α+bsin α(a,b∈R),可以化为f(α)=⑥ sain2 (αb+2φ1)
或f(α)=⑦ ac2osb(α2 -φ2) ,其中φ1、φ2可由a、b的值唯一确定. 5.在两角和的三角函数公式Sα+β,Cα+β,Tα+β中,当α=β时就得到二倍角的三角 函数公式:sin 2α=⑧ 2sin αcos α ,cos 2α=⑨ cos2α-sin2α ,tan 2α=⑩
A.- 3
2
答案
B.- 1
C1 .
D3.
2
2
2
C 原式=sin 45°·cos 15°-cos 45°·sin 15°=sin 1230°=
,故选C.
精品
7
2.sin 15°+cos 15°的值为 ( )
A. 1
2
答案
B. 6
C. 6
D3. 2
4
2
2
C sin 15°+cos 15°=2 sin(15°+45°)2= sin 60°2 6=
第四节 简单的三角恒等变换 课件(共106张PPT)
2.给值求值问题的解题策略 已知某些角的三角函数值,求另外一些角的三角函数值. 解题关键:把“所求角”用“已知角”表示. (1)当“已知角”有两个时, “所求角”一般表示为两个“已知角”的和或差 的形式或者和或差的二倍形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和、差或 倍数关系,然后应用诱导公式、和差公式、倍角公式求解.
(2)cos 40°+cos 60°+cos 80°+cos 160°=________.
[解析]
解法一:cos
20°cos
40°·cos
80°=sin
20°cos
20°cos 40°cos sin 20°
80°
1
=2sin
40°cos 40°cos sin 20°
80°
=14sins8in0°2c0o°s 80°
θ .
cos2
cos2
∵0<θ<π,∴0<2θ<π2,∴cos2θ>0,∴原式=-cos θ.
2.证明:cos θ-cos φ=-2sin
θ+φ 2 sin
θ-φ 2.
[证明] 因为θ=θ+2 φ+θ-2 φ,φ=θ+2 φ-θ-2 φ,
所以cos θ-cos φ
=cosθ+2 φ+θ-2 φ-cosθ+2 φ-θ-2 φ
第四章 三角函数 解三角形
第四节 简单的三角恒等变换
[复习要点] 能运用两角和与差的正弦、余弦、正切公式以及二倍角的正弦、 余弦和正切公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但 对这三组公式不要求记忆).
理清教材•巩固基础
知识点 半角公式(不要求记忆)
1-cos α 1.sin α2=_±_______2____;
简单的三角恒等变换课件
2x+(sin
x-cos
x)(sin
x+cos
x)
=12cos
2x+
3 2 sin
2x+sin2x-cos2x
=12cos
2x+
3 2 sin
2x-cos
2x=sin2x-π6,
∴最小正周期 T=22π=π.
∵2x-π6=kπ+π2,k∈Z, ∴x=k2π+π3,k∈Z. ∴图象的对称轴方程为 x=k2π+π3,k∈Z. (2)∵x∈-1π2,π2, ∴2x-π6∈-π3,56π.
由αα+-ββ==2-3ππ4,
得αβ==15221π44π
故当 α=52π4,β=1214π时,ymax= 42-12.
【正确解答】y=
1+cos α
2α α
-1+cos2π2-2β
cosα2-
sin2 α
sin2 cos2
=sincαocsoαs2 α-12-12sin 2β=12sin 2α-12sin 2β-12. 2 分
(1)求函数 f(x)的最小正周期和图象的对称轴方程;
(2)求函数 f(x)在区间-1π2,π2上的值域.
• 【思路点拨】将已知函数通过三角函数恒等变换转化为y=Asin(ωx+φ) 的形式,再研究其性质.
解:(1)∵f(x)=cos2x-π3+2sinx-π4sinx+π4
=12cos
2x+
3 2 sin
• 解:如图,连接PB.
• ∵AB为直径,∴∠APB=90°. • ∵∠PAB=α,AB=1, • ∴PB=sin α,PA=cos α. • 又PT切圆于P点, • 则∠TPB=∠PAB=α. • ∴S四边形ABTP=S△PAB+S△TPB
=12PA·PB+12PT·PB·sin α =12cos α·sin α+12sin2 α =14sin 2α+14(1-cos 2α) = 42sin2α-π4+14. ∵0<α<π2,-π4<2α-π4<34π, ∴当 2α-π4=π2,即 α=38π 时,四边形 ABTP 的面积最大.
高考数学复习考点知识讲解课件21 简单的三角恒等变换
(新教材) 高三总复习•数学
2.积化和差与和差化积公式 (1)积化和差公式 cosα·cosβ=12[cos(α+β)+cos(α-β)]; sinα·sinβ=-12[cos(α+β)-cos(α-β)]; sinα·cosβ=12[sin(α+β)+sin(α-β)]; cosα·sinβ=12[sin(α+β)-sin(α-β)].
— 返回 —
— 5—
(新教材) 高三总复习•数学
(2)和差化积公式 sinα+sinβ=2sinα+2 βcosα-2 β; sinα-sinβ=2cosα+2 βsinα-2 β; cosα+cosβ=2cosα+2 βcosα-2 β; cosα-cosβ=-2sinα+2 βsinα-2 β.
— 28 —
(新教材) 高三总复习•数学
对点训练
1.(2022·河南郑州联考)已知 sinα+ 3cosα= 32,则 cos76π-α=( B )
A.
2 6
B.-
2 6
C.
34 6
D.-
34 6
— 返回 —
[解析]
因为 sinα+
3 cosα = 2sin α+π3 , 所 以
高考数学复习考点知识讲解课件
第三节 三角恒等变换 第二课时 简单的三角恒等变换
基础知识夯实 核心考点突破
(新教材) 高三总复习•数学
— 返回 —
考试要求:能运用两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切 公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要 求记忆).
∴tan(α+β)=11-+mmtanα.
— 19 —
(新教材) 高三总复习•数学
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 1 在 A中 B , sC A i n cA o s 2 2 ,A 2 C ,A 3 B ,
求 taA n 的值 A和 B 的 C面 . 积
解:
sinAcoA s
2, 2
2coA s(45)22,
即 cosA(45)12, 又0A18,0
A45 60 , A105,
tanA ttaa1n4n05 ( 560)1tat4a n4 5n5ttaa66 nn00
ttaannBA2, taA n2taB n .
(2) 解: ABC为锐角三角, 形2AB,
又sinA(B)53, coA s(B)5 4,
tan A(B)4 3,即 1 ta tA a n A tn ta aB B n n 4 3
将tanA2taB n代入上, 式 2ta 得 2B n 4ta B n 10,
三角恒等变换复习课件
1.理解三角函数中的4个“三”:
(1)从知识层面看:三角函数公式系统的三条主线 ——同角关系式、诱导公式、变换公式(和、差、倍角).
(2)从问题层面看:三角变换三大问题 ——求值、化简、证明.
(3)从方法层面看:“三个统一”——解决三角函数问 题时要从“统一角度、统一函数名、统一运算结构”方 面思考,这也是审题、解题的算法基础.
C
解得 taB n226 taA n2 6.
设AB边上的高为CD(如图),
AD
B
则
AB
=AD
+
DB
tC anD AtC anD B
3CD 2 6
,
又AB3,CD 2 6, 即为AB边上的高.
例3 已知 A、B、C是△ABC三内角,向量
m ( 1 ,3 ),n (c A ,s oA i) s ,n m n 1 .
(4)从算法层面看:使用公式的三重境界 ——顺用、逆用、变用.
2.理解三角恒等变换与代数变换的区别.
代数式变换往往着眼于式子结构形式的变换. 对于三角变换,由于不同的三角函数式不仅会有 结构形式方面的差异,而且还会有所包含的角, 以及这些角的三角函数种类方面的差异,因此三 角恒等变换常常首先寻找式子所包含的各个角之 间的联系,这是三角式恒等变换的重要特点.
且 x 2 k 2 ,k Z ,且 x k,k Z .
((2 1) )是 化 简 f(否 x)x ;,使 存 ta 得 x 在 n f(x )1 ta 22 x n ?
2
sixn
若存在x求 的出 值;若,不 说存 明在 理 . 由
解:( 1) 1cox ssixn2cos2
x 2
2s in2x cos2x
30°=12.
(2)∵cos 2α=sin(π2 +2α)=2sin(α+π4 )cos(α+π4 ), ∴sin(coπs42+αα)=2cos(α+π4 )=2sin(π4 -α),
又0<α<π4 且cos(π4 -α)=1123,
π ∴sin( 4 -α)=
2
2
5 3
,
co 2 s co s 2 [) (( 2 )]19
3549532
75 27
.
co s() c 2co o 2 2 s 2 s ) c (1 2 o s 72) 23 99s ( . i n 2 )s(i 2 n )(
例6 已知: f(x ) 1 1 s cix o x n c s sio x x n 1 1 s s cix o x n c s sio x xn s
5、辅助角公式
asix n bcoxs
a2 b2 ( a sixn b cox)s
a2b2
a2b2
a2 b2 (sisn ix n co cso x )s
a2 b2 coxs().
其 由 中 sin a , c o s b , ta n a共同 .
a2b 2
a2b 2
b
asix n bco x sa2b2co x s)(
(3)函f数 (x)co2x s2sixn的值域为
(4)sin7cos15sin8 =
cos7sin15sin8
(5)化1 简 111co 2 ( s32 )
2 22 2
2
( 6 )s已 in )( 知 5 3 ,sin )( 1 5 ,则 tta a n n
化简:(
1 α-tan
α 1-cos 2α 2)· sin 2α .
tan 2
【思路点拨】 切化弦 → 通分后利用倍角公式
【尝试解答】
α
α
cos 原式=(
2 α
-
sin
2
2sin2α
α)·2sin αcos
α
sin 2 cos 2
α
α
=
cos2 2 α
-sin2
sin 2 ·cos
α2 ·csoins 2
α α
=2cos sin
αα·csoins
α α=2.
• 1.本题求解的关键在于:切化弦、通分(约 分),然后灵活运用倍角公式及其变形.
asix n bcoxs
a2 b2 ( a sixn b cox)s
a2b2
a2b2
a2 b2 (co sis x n sin co x )s
a2 b2 sinx().
其 由 中 sin b , c o s a , ta n b共同 .
a2b 2
a2b 2
a
asixn bco xsa2b 2six n ()
3、两角和与差的三角函数公式:
sin()sin co sco ssin
cos()co cso ssin sin
tan()1tatnanttaann .
4、二倍角公式:
si n 2 2 sin c os
co sc2o 2 ssi2 n2c o2s112s i2n
tan212ttaa2nn
5、辅助角公式
2(1+cos α)
α
α
α
α
α
2cos =
2 (sin
2 +cos
2 )(sin
α
2 -cos
2)
2|cos 2 |
=-(sin
α
2 +cos
α2)(sin
α
2 -cos
α
2)
αα =cos2 2 -sin2 2 =cos α.
(1)(2012·重庆高考)sin
47°-sin 17°cos cos 17°
1 2 1
3 3
3
sinAsin105si4 n5 (60) s4 i c n 5 6 o c 0 s 4 o s5 6 s i n 0 2 6 4
SABC1 2AC AB siA n1223
2 4
6 3(
2 4
6) .
例 2 已知 A中 B 在 , sA iC n B 锐 ) ( 5 3 ,s角 A i n B ) ( 1 5 .
2
(2) 若taxnf(x)1ta2n2 x,
2
sinx
则taxn(
2
1ta2nx
)
2, 即
2 sinx sinx
sinx1,
2tan
x 2
1,
1 tan2
x 2
此x时 2k3 2 ,k Z,即为存在的值.
课堂小结:
三角恒等变换实际上是对角、函数名称,以及函数形 (结构)的变换,这类问题,无论是求值化简证明以及 复杂的综合问题,一般的考虑方法是: ⑴ 找差异:角、名、形的差异;
解:( 1 ) co s7 1,0 2,
sin 1co2s
1
1 72
43 7
,
tancsions 4 3 ,
ta2n1 2ttaa2n n
1
24 (4
3 8 3
3 )2
47
.
例4 已知 co 7 1 ,s co ) s 1 1 (,且 4 3 0 2 ,
( 1)求ta2n的 值 ;(2)求 .
⑵ 建立关系:角的和差关系、倍半关系等,名、形之间 可以用哪个公式联系起来;
⑶ 变公式:在实际变换过程中,往往需要将公式加以变 形后,正用或逆用公式.
(4)常用技巧: ①弦化切 ②化“1” ③正切的和、积 ④角变换 ⑤“升幂”与“降次” ⑥辅助角
课后巩固:
(1)sin5sin1
12 12 (2 )c2 oc 0 s4 oc 0 s6 oc 0 s8 o 0 s
3.归纳并掌握三角恒等变换在研究相关函数性质时 的方法流程.
4.由于向量与三角函数之间天然的联系,注意收集 并积累向量与三角函数交汇的问题.
基础知识:
1、同角三角函数的基本关系式:
(1) 平方关系:si2nco2s1
(2) 商数关系:csoins tan
2. 诱导公式总结概括为:
“奇变偶不变 ,符号看象限 ”
1sixncoxs 2sin2 x 2sinxcosx
2
22
cos sin
x 2 x 2
,
同样可 1c得 oxss: ixn sin
x 2,
1s ixncoxs
cos
x 2
f
(x)
csions2x2x
csoins2x2x
cos2 x 2
sin2x c
sin2 os2x
x 2
s
2 inx
,
(x 2 k,k Z ,且 x k,k Z )
(1)求角A;( 2 ) 若 c1 2 o B s ss i2 B n i2B n 3,求 ta C .n 解:(1) mn1,
( 1, 3 )(cA o ,ss iA n ) 1,
即3siA ncoA s1,2(23s iA n1 2coAs)1,