工业机器人内部结构及基本组成原理详解修订稿
工业机器人:分析工业机器人的原理、结构和应用。
工业机器人:分析工业机器人的原理、结构和应用引言工业机器人作为工业生产中的重要设备,已经广泛应用于各个行业。
它不仅能够提高生产效率,还可以减少人力成本,改善劳动条件,提高生产质量。
本文将对工业机器人的原理、结构和应用进行详细的分析和介绍,帮助读者更好地了解工业机器人的工作原理以及在实际应用中的作用和优势。
工业机器人的原理工业机器人的原理主要包括传感器、控制系统和执行系统。
传感器工业机器人通过感知外界环境和与外界交互来完成任务。
传感器是工业机器人感知和控制的关键部件。
常见的传感器包括触觉传感器、视觉传感器、激光传感器等。
触觉传感器可以帮助机器人感知物体的力和位置,视觉传感器可以帮助机器人识别物体和环境中的目标,激光传感器可以帮助机器人获取距离和位置信息。
控制系统控制系统是工业机器人的大脑,负责对机器人进行控制和决策。
它由硬件和软件组成。
硬件部分主要包括控制器和处理器,控制器用于接收传感器的信号,处理器用于执行控制算法。
软件部分主要包括编程、路径规划和决策算法等。
通过编程和路径规划,可以指导机器人完成各种任务,比如抓取、装配和焊接等。
决策算法可以帮助机器人做出智能决策,根据环境和任务要求自主地调整动作和行为。
执行系统执行系统是机器人完成任务的关键部件。
它由机械臂、驱动系统和末端执行器等组成。
机械臂是机器人的主要运动部件,可以实现多个自由度的运动。
驱动系统主要通过电机和减速器等装置,提供动力和控制机械臂的运动。
末端执行器是机器人实际进行物体操作的部分,常见的末端执行器包括夹爪、吸盘和焊接枪等。
工业机器人的结构工业机器人的结构主要包括机械结构、电气结构和控制结构。
机械结构机械结构是工业机器人的骨架,它决定了机器人的运动范围和灵活性。
常见的机械结构包括直线型机器人、旋转型机器人和关节型机器人等。
直线型机器人通过直线轨道实现线性运动,旋转型机器人通过旋转底座实现旋转运动,关节型机器人通过多个关节连接实现多自由度的运动。
工业机器人的构造和运动原理
工业机器人的构造和运动原理
工业机器人:
1、构造:
工业机器人由传动机构、控制机构和执行机构组成。
其中,传动机构主要指传动、固定和支撑机构,具有定义机器人的类型、精度、范围等作用;控制机构主要指电器设备,包括输入控制部件、调节部件和输出控制部件,是机器人运动的指挥中心;执行机构主要指机器人系统中预定义好的精确运动部件,如安装在臂上的电动马达等,它是机器人实现预定义运动的运动执行器。
2、运动原理:
(1)机器人的联动原理:工业机器人是把用计算机控制的传动装置、定位装置和调整装置组合起来,实现六度空间运动。
因此,工业机器人具有多轴连接,可以实现任意位置、角度、抓取力和速度的控制。
(2)机器人的运动控制原理:工业机器人使用比例控制和轮式编码系
统控制各个关节的运动,比例控制是指控制机构根据输入的指令将执行机构移动到指定的坐标位置;而轮式编码系统是指将每个轴的编码器的变化值放大和上传到控制机构,控制机构将放大的变化值放大后反馈给编码器,以实现指定角度位置的控制。
(3)机器人的运行机理原理:机器人的运行遵循输入—处理—输出的过程。
它的工作由近端控制单元或者远端控制系统通过输入设备输入指令,将指令信息传输至控制机构,控制机构根据指令信息,分析处理输出电流、电压等控制信号,从而驱动各关节的定位、运动和调节传动机构实现有序的动作,最后完成机器人的动作。
工业机器人课件-工业机器人的基本组成
手臂:是支承手腕和手部的部件,由动力关节和 连杆组成,用以承受工件或工具的负荷,改变工 件或工具的空间位置,并将它们送至预定的位置
腰部:连接臂和基座的部件,通常是回转部件, 腰部的回转运动再加上臀部的平面运动,既能使 胸部作空间运动。腰部是执行机构的关键部件, 它的创造误差、运动精度和平稳性,影响机器人 的定位精度。
其它手部:
工业机器人腕部结构
➢腕部影响手部的姿态(方位)
工业机器人臂部结构
➢臂部确定手部的位置
(2) 驱动系统。驱动系统是按照控制系统发来 的控制指令进行信息放大,驱动执行机构运 动的传动装置,相当于人的肌肉、筋络。常 用的有液压、气压、电气驱动形式。
电动驱动器类型和特点
电动驱动器的能源简单,速度变化范围大,效率高,转动惯性小,速度和 位置精度都很高,但它们多与减速装置相联,直接驱动比较困难。
交流伺服电机自带的编码器反馈信号给驱动器,驱动器根据 反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度 决定于编码器的精度(线数)。
交流伺服电机
驱动放大器
(3) 控制系统。控制系统是机器人的大脑和小脑,支配着机 器人按规定的程序运动,并记忆人们给予的指令信息(如动 作顺序、运动轨迹、运动速度等),同时按其控制系统的信 息对执行机构发出执行指令。
是根据程序和反馈信息 控制机器人动作的中心。分 为开环系统和闭环系统。
(4) 感知系统
感知系统通过力、位置、触觉、视觉等传感器检测 机器人的运动位置和工作状态,并随时反馈给控制 系统,以便使执行机构以一定的精度达到设定的位 置。相当于人的感官和神经。
控制系统
内部传感器(位形检测)
工业机器人本体的基本组成
工业机器人本体的基本组成
工业机器人本体的基本组成通常包括以下几个部分:
1. 机械结构:这是机器人的主体框架,包括底座、腰部、臂部、腕部和末端执行器等组成部分。
机械结构的设计需要考虑到机器人的负载能力、运动范围、精度要求等因素。
2. 驱动系统:驱动系统是为机器人提供动力的关键组件,它可以根据需要调节机器人的运动速度和方向。
常见的驱动方式有电动、液压、气压和伺服电机等。
3. 传感系统:传感系统用于感知机器人周围环境的变化,例如位置、速度、力/扭矩、温度等参数。
常用的传感器包括编码器、激光雷达、摄像头、红外线传感器等。
4. 控制系统:控制系统是机器人的“大脑”,负责接收传感器反馈的数据并进行处理,然后发出指令来控制机器人的动作。
控制系统通常由嵌入式处理器、操作系统、编程语言和人机界面等组成。
5. 执行机构:执行机构是机器人完成特定任务的关键组件,例如抓手、喷涂枪、焊接头等。
执行机构通常与末端执行器相连,可以根据需要进行调节和更换。
6. 配套软件和设备:除了机器人本体外,还需要相应的配套软件和设备来支持机器人的运行和维护。
例如机器人操作系统、编程软件、调试工具、维护手册等。
综上所述,工业机器人本体的基本组成包括机械结构、驱动系统、传感系统、控制系统、执行机构和配套软件和设备等多个部分,它们相互协作,共同实现机器人的功能和任务。
机器人的组成结构及原理
机器人的组成结构及原理机器人是一种能够自动执行任务的机械设备。
它们可以被用于各种各样的任务,从工业制造到医疗保健和军事应用等。
机器人的组成结构和原理是机器人技术的核心,这篇文章将会介绍机器人的组成结构和原理,以及机器人的应用领域。
一、机器人的组成结构机器人通常由以下几个部分组成:1. 机械结构:机械结构是机器人的骨架,它包括机器人的机身、关节、连接器、执行器等。
机械结构的设计直接影响机器人的稳定性、精度和速度。
2. 传感器:传感器是机器人的感知器,它们能够感知环境中的信息并将其转化为机器人能够理解的数据。
传感器包括摄像头、激光雷达、声音传感器、触摸传感器等。
3. 控制系统:控制系统是机器人的大脑,它负责控制机器人的运动和行为。
控制系统包括计算机、控制器、运动控制器等。
4. 能源系统:能源系统是机器人的动力源,它提供机器人所需的能量。
能源系统包括电池、液压系统、气压系统等。
二、机器人的原理机器人的原理是通过机械结构、传感器和控制系统的协同作用来实现机器人的运动和行为。
机器人的运动和行为通常通过以下几个步骤来实现:1. 感知环境:机器人通过传感器感知环境中的信息,并将其转化为机器人能够理解的数据。
2. 分析数据:机器人的控制系统对感知到的数据进行分析,并根据分析结果制定相应的行动计划。
3. 运动控制:机器人的控制系统通过运动控制器控制机械结构的运动,从而实现机器人的运动和行为。
4. 反馈控制:机器人在运动和行为过程中,通过传感器不断反馈环境的变化信息给控制系统,从而实现机器人的自适应控制。
三、机器人的应用领域机器人的应用领域非常广泛,以下是几个典型的应用领域:1. 工业制造:机器人在工业制造中的应用非常广泛,如汽车制造、电子制造、食品加工等。
机器人能够提高生产效率、降低成本、提高产品质量。
2. 医疗保健:机器人在医疗保健中的应用也越来越广泛,如手术机器人、康复机器人、护理机器人等。
机器人能够提高手术精度、减少手术创伤、提高康复效果。
说明工业机器人的基本组成及各部分的关系
说明工业机器人的基本组成及各部分的关系工业机器人是一种能够模仿人类动作的自动化机器,用于完成各种生产任务。
它由多个组成部分构成,各部分之间密切合作,以实现高效的生产流程。
工业机器人的基本组成包括机械结构、控制系统、传感器系统和执行器系统。
机械结构是机器人的骨架,它提供了机器人的身体支撑和运动平台。
机械结构通常由关节、连杆和末端执行器等组成。
关节是机器人的关节点,使机器人能够在空间中进行各种运动。
连杆是连接关节的杆状物,用于传递力和运动。
末端执行器是机器人的工具,用于执行具体的操作任务。
控制系统是机器人的大脑,用于控制机器人的运动和动作。
控制系统通常由主控制器、伺服控制器和编码器等组成。
主控制器是机器人的核心,负责接收和处理指令,控制机器人的运动和动作。
伺服控制器是控制机械结构运动的关键部件,通过控制电机的转动来实现机器人的运动。
编码器用于检测和反馈机器人的位置和速度信息,保证机器人的运动精度和稳定性。
传感器系统是机器人的感知器官,用于获取周围环境的信息。
传感器系统通常由视觉传感器、力传感器和触觉传感器等组成。
视觉传感器能够获取周围环境的图像信息,用于定位和识别目标。
力传感器能够测量机器人施加的力和受到的力,用于控制机器人的力度和力量。
触觉传感器能够感知机器人与物体之间的接触力和接触面积,用于实现精确的操作和装配。
执行器系统是机器人的动力系统,用于驱动机器人的运动和动作。
执行器系统通常由电机、减速器和传动装置等组成。
电机是机器人的动力源,通过转动来驱动机械结构的运动。
减速器用于降低电机的转速,提供更大的输出扭矩。
传动装置用于将电机的转动传递给机械结构,实现机器人的运动。
以上是工业机器人的基本组成及各部分的关系。
机械结构提供了机器人的运动平台,控制系统控制机器人的运动和动作,传感器系统获取周围环境的信息,执行器系统驱动机器人的运动和动作。
这些部分密切合作,共同完成各种生产任务,提高生产效率和质量。
工业机器人的发展和应用将进一步推动自动化生产的发展,为人们的生活带来更多的便利和效益。
工业机器人内部机构详解
工业机器人内部机构详解今天给大家讲讲工业机器人内部结构的知识,教教大家控制、驱动、传动、执行等一些有关于机器人的基础知识。
大家可不要小瞧了这基础的内容,俗话说磨刀不误砍柴功,有了坚实的基础,对日后的学习和拓展都很有帮助的。
德国kuka工业机器人的主要内部结构构造一、机器人驱动装置概念:要使机器人运行起来, 需给各个关节即每个运动自由度安置传动装置。
作用:提供机器人各部位、各关节动作的原动力。
驱动系统:可以是液压传动、气动传动、电动传动, 或者把它们结合起来应用的综合系统;可以是直接驱动或者是通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接驱动。
1、电动驱动装置电动驱动装置的能源简单,速度变化范围大,效率高,速度和位置精度都很高。
但它们多与减速装置相联,直接驱动比较困难。
电动驱动装置又可分为直流(DC)、交流(AC)伺服电机驱动和步进电机驱动。
直流伺服电机电刷易磨损,且易形成火花。
无刷直流电机也得到了越来越广泛的应用。
步进电机驱动多为开环控制,控制简单但功率不大,多用于低精度小功率机器人系统。
电动上电运行前要作如下检查:1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的+/-极性一定不能接错,驱动控制器上的电机型号或电流设定值是否合适(开始时不要太大);2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线);3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接;4)一定要搞清楚接地方法,还是采用浮空不接;5)开始运行的半小时内要密切观察电机的状态,如运动是否正常,声音和温升情况,发现问题立即停机调整。
2、液压驱动通过高精度的缸体和活塞来完成,通过缸体和活塞杆的相对运动实现直线运动。
优点:功率大,可省去减速装置直接与被驱动的杆件相连,结构紧凑,刚度好,响应快,伺服驱动具有较高的精度。
缺点:需要增设液压源,易产生液体泄漏,不适合高、低温场合,故液压驱动目前多用于特大功率的机器人系统。
工业机器人的五大机械结构和三大零部件解析
工业机器人的五大机械结构和三大零部件解析一、五大机械结构:1.手臂结构:工业机器人的手臂结构类似于人的手臂,用于搬运和操作物体。
它通常由多段关节构成,这些关节可以进行旋转和伸缩。
手臂结构可以根据不同的任务来设计,手臂的长度、关节的自由度和负载能力等可以根据实际需求进行调整。
2.底座结构:底座结构是工业机器人的支撑部分,它承载整个机器人和工作负载的重量,并提供机器人的旋转能力。
底座通常由电机和减速器组成,通过控制电机的旋转实现整体机器人的转动。
3.关节结构:关节结构是工业机器人手臂各关节连接的部分,它具有旋转和转动的能力。
关节结构通常由电机、减速器和编码器等组成,电机提供动力,减速器提供转动和转动的精度,编码器用于反馈位置和速度等参数。
4.手持器结构:手持器结构是机器人手臂的末端装置,用于夹取和操纵物体。
手持器通常由夹爪、吸盘、焊枪等组成,它们可以根据不同的任务和工作环境进行选择和装配。
5.支撑结构:支撑结构是机器人的框架和支撑部分,它提供机器人的稳定性和强度。
支撑结构通常由铝合金、碳纤维等材料制成,具有轻巧、刚性和耐用等特点。
二、三大零部件:1.电机:电机是工业机器人的核心动力部件,它提供驱动力和旋转力。
根据不同的应用需求,电机可以选择步进电机、直流电机、交流伺服电机等,它们具有不同的功率、转速和扭矩等特性。
2.减速器:减速器是机器人关节结构中的关键部件,它将电机的高速转动转换为低速高扭矩的输出。
减速器能够提供精确的旋转和转动控制,确保机器人的高精度和灵活性。
3.编码器:编码器是机器人关节结构中的传感器部件,它用于测量关节的位置和速度等参数。
编码器通过提供准确的反馈信号,帮助控制系统实时控制和监测机器人的运动状态。
以上是对工业机器人的五大机械结构和三大零部件的解析。
机器人的结构和零部件的选择和设计根据不同的应用和需求来进行,它们共同作用于机器人的性能和功能,实现自动化生产和工作的目标。
随着科技的不断发展,工业机器人在各个领域的应用也将越来越广泛。
工业机器人工作原理及其基本构成
工业机器人工作原理及其基本构成工业机器人是一种能够自动执行一系列生产操作的多关节机械设备。
其工作原理基于计算机控制与机械结构相结合,具备感知、决策和执行的能力,实现高效、精准和灵活的生产作业。
下面将详细介绍工业机器人的工作原理及其基本构成。
一、工作原理1.传感器控制:工业机器人通过安装各种传感器,如视觉传感器、力传感器、接触传感器等,来感知周围环境和工件的状态。
传感器采集到的信息会传送给控制系统进行处理。
2.控制系统:控制系统是工业机器人的核心部分,它由计算机和程序控制器组成。
计算机负责处理各种传感器采集到的数据,并进行实时监控和控制。
程序控制器根据预设的工艺参数和任务要求,决策机器人的动作轨迹和运动方式。
3.执行机构:执行机构是工业机器人实现动作的关键部分。
根据机器人的不同结构和工作任务,可以采用电机、液压驱动或气动驱动等方式实现机械臂的运动。
4.末端执行器:末端执行器是机器人最终与工件接触并执行作业的部分。
根据不同的应用需求,可以采用夹具、吸盘、焊枪等各种类型的末端执行器。
5.编程操作:工业机器人的工作需要编写适应不同任务的程序。
编程操作可以通过在线编程、离线编程或教导示教等方式实现,以确保机器人按照预期工艺参数和任务要求执行工作。
二、基本构成1.机械结构:机器人的机械结构一般包括基座、臂架和末端执行器。
臂架是由多个关节连接而成的,关节可以实现不同方向和角度的运动。
机械结构的设计和布局直接影响机器人的灵活性和作业范围。
2.传感器系统:工业机器人的传感器系统用于感知周围环境和工件状态。
常用的传感器包括视觉传感器、力传感器、接触传感器等。
视觉传感器可以识别工件的位置和形状,力传感器可以测量机器人与工件之间的力,接触传感器可以检测到机器人和工件的接触。
3.控制系统:控制系统包括计算机和程序控制器。
计算机负责处理传感器采集到的数据,并进行实时监控和控制。
程序控制器负责根据预设的工艺参数和任务要求,决策机器人的动作轨迹和运动方式。
工业机器人内部结构及基本组成原理详解
工业机器人内部结构及基本组成原理详解工业机器人是具有三自由度或多轴自动控制的可编程多用途机械手。
这几乎是工业机器人的定义。
越来越多的工程师和企业家正在寻找机器人技术来优化工业环境中的工作流程。
随着时间的演变和机器人技术的发展,机器人手柄必须是用于存储的AGV组,等待初学者铺平道路。
机器人手基本上是移动工具。
但并不是每个工业机器人都像一只手。
不同的机器人有不同类型的结构。
工业机器人内部结构及基本组成原理详解?如果您总是有相同的任务,您可以使用适合您需要的自动化解决方案。
工厂在处理工作时需要更加灵活。
在这种情况下,正确的解决方案是一个可重新编程的机器人,它可以尝试各种任务。
基本工业机器人组成随着人工智能的发展,机器人越来越接近我们的生活。
研究表明,文化差异会影响人类对机器人的认知。
莱内马的人民看到了终结者,日本人看到了终结者。
阿斯特男孩。
教育程度和积极情绪之间也有联系:教育程度越高,人们对机器人的兴趣就越大。
目前,人们对机器人的看法普遍是积极的。
使用机器人可以避免我们完全靠人工完成的工作:将机器人融入我们的经济以提高生产力,减少我们对采矿业的依赖,这样人们就不必在大部分时间里谋生。
普通气缸的基本组成和原理:气缸组成:气缸体、活塞、密封圈、磁环(传感器气缸)原理:压缩空气使柱塞移动。
改变进气方向会改变活塞臂的运动方向。
故障模式:活塞卡住,不工作;气缸无力,垫圈磨损,漏气。
典型气缸设计和工作原理例如,双作用单杆气缸,它最常用于气动系统。
它由气缸、活塞、活塞杆、前盖、后盖和密封件组成。
双作用油缸的内部由活塞分成两个腔室。
柱塞杆的中空部分称为杆腔,没有柱塞杆的柱塞杆的空心部分称为无杆腔。
当压缩空气从无杆室引入时,无杆室退出。
气缸两个腔室之间的压力差作用在活塞上,以超过阻力负载,有利于活塞的移动,并拉伸活塞臂;如果杆室用于进气,而杆室用于排气,则活塞杆缩回。
如果存在用于交替进气和排气的杆腔和无杆腔,活塞可以沿旋转直线移动。
工业机器人工作原理及其基本构成
工业机器人工作原理及其基本构成工业机器人工作原理现在广泛应用的焊接机器人都属于第一代工业机器人,它的基本工作原理是示教再现。
示教也称导引,即由用户导引机器人,一步步按实际任务操作一遍,机器人在导引过程中自动记忆示教的每个动作的位置、姿态、运动参数\工艺参数等,并自动生成一个连续执行全部操作的程序。
完成示教后,只需给机器人一个启动命令,机器人将精确地按示教动作,一步步完成全部操作。
这就是示教与再现。
实现上述功能的主要工作原理,简述如下:(1) 机器人的系统结构一台通用的工业机器人,按其功能划分,一般由 3 个相互关连的部分组成:机械手总成、控制器、示教系统,如图 1 所示。
机械手总成是机器人的执行机构,它由驱动器、传动机构、机器人臂、关节、末端操作器、以及内部传感器等组成。
它的任务是精确地保证末端操作器所要求的位置,姿态和实现其运动。
图 1 工业机器人的基本结构控制器是机器人的神经中枢。
它由计算机硬件、软件和一些专用电路构成,其软件包括控制器系统软件、机器人专用语言、机器人运动学、动力学软件、机器人控制软件、机器人自诊断、白保护功能软件等,它处理机器人工作过程中的全部信息和控制其全部动作。
示教系统是机器人与人的交互接口,在示教过程中它将控制机器人的全部动作,并将其全部信息送入控制器的存储器中,它实质上是一个专用的智能终端。
(2) 机器人手臂运动学机器人的机械臂是由数个刚性杆体由旋转或移动的关节串连而成,是一个开环关节链,开链的一端固接在基座上,另一端是自由的,安装着末端操作器 ( 如焊枪 ) ,在机器人操作时,机器人手臂前端的末端操作器必须与被加工工件处于相适应的位置和姿态,而这些位置和姿态是由若干个臂关节的运动所合成的。
因此,机器人运动控制中,必须要知道机械臂各关节变量空间和末端操作器的位置和姿态之间的关系,这就是机器人运动学模型。
一台机器人机械臂几何结构确定后,其运动学模型即可确定,这是机器人运动控制的基础。
工业机器人构造和工作原理
工业机器人构造和工作原理工业机器人是一种应用于工业生产的自动化设备,它以人工智能和机械技术为基础,能够执行繁重、危险或重复性工作,提高生产效率和产品质量。
本文将介绍工业机器人的构造和工作原理。
一、工业机器人的构造1. 机械结构工业机器人的机械结构分为固定式和移动式两种。
固定式机器人通常安装在固定的工作台上,通过关节连接不同的工作部件,如臂、手和末端执行器。
移动式机器人具有移动能力,能够在制造车间内自由移动,更加灵活和多功能。
2. 关节系统工业机器人的关节系统由电机、传动装置和关节构件组成。
电机提供动力,传动装置将电机的转动传递给关节,关节构件使机器人能够进行各种运动。
常见的关节有旋转关节和平移关节,它们使机器人能够在多维度上执行各种复杂任务。
3. 控制系统工业机器人的控制系统是整个机器人的大脑,它接收来自传感器的反馈信息,根据程序进行计算和决策,控制机器人的运动和操作。
控制系统通常由硬件和软件两部分组成,硬件包括主控制器、电源和接口设备,软件包括操作系统、编程环境和控制算法等。
二、工业机器人的工作原理1. 传感器与感知工业机器人通过传感器感知环境和作业对象的信息,以便做出正确的决策和行动。
常见的传感器包括视觉传感器、力传感器、触觉传感器等。
视觉传感器可以识别物体的位置、形状和颜色;力传感器可以测量外界物体对机器人的力大小;触觉传感器则使机器人能够模拟人手的触摸感知能力。
2. 运动和控制基于传感器的反馈信息,工业机器人可以做出相应的运动和控制。
机器人的运动包括关节运动和工作部件的运动,通过控制系统的计算和控制,机器人可以在三维空间内精确控制运动轨迹和速度,完成复杂的操作任务。
3. 编程和任务执行工业机器人的编程可分为离线编程和在线编程。
离线编程是在计算机环境中完成机器人任务的规划和编程,并将编写好的程序传输到机器人控制系统中。
在线编程是在机器人控制系统接收到任务后,直接通过编程界面进行实时编程和控制。
工业机器人基本构成
工业机器人基本构成工业机器人是一种用于工业生产的自动化设备,它可以完成各种重复性、繁琐、危险或高精度的工作任务。
一个典型的工业机器人主要由以下几个基本组成部分构成。
1. 机械结构:工业机器人的机械结构是由框架、关节、臂和末端执行器等组成的。
框架是机器人的基本支撑结构,关节是机器人运动的连接点,臂是机器人的伸缩部分,末端执行器是机器人完成任务的装置,如夹具、喷枪等。
机械结构的设计和制造需要考虑到机器人的工作负荷、工作空间和运动速度等因素。
2. 传感器:工业机器人需要通过传感器来获取环境信息和工作状态。
常见的传感器包括视觉传感器、力传感器、接近传感器等。
视觉传感器可以帮助机器人感知物体的位置、形状和颜色等信息,力传感器可以测量机器人对物体施加的力和力矩,接近传感器可以检测物体与机器人的距离。
3. 控制系统:工业机器人的控制系统是机器人的“大脑”,负责指导机器人的运动和执行任务。
控制系统通常由硬件和软件两部分组成。
硬件包括控制器、伺服驱动器和电源等,控制器是机器人的主控制设备,负责接收和处理来自传感器的信号,并发送指令给伺服驱动器控制机器人的运动。
软件部分则包括机器人的控制算法和程序,用于规划机器人的运动轨迹和执行任务。
4. 电源系统:工业机器人需要电力供应来驱动其运动和执行任务。
电源系统通常包括交流电源和直流电源两种形式。
交流电源用于供应机器人的主控制器和伺服驱动器等设备,直流电源则用于供应机器人的执行器和末端执行器等设备。
5. 人机交互界面:为了方便工人与机器人进行交互和监控机器人的运行状态,工业机器人通常还配备有人机交互界面。
人机交互界面可以是触摸屏、按钮、键盘等形式,通过它,工人可以对机器人进行控制、调试和监控。
除了以上基本构成部分外,工业机器人还可以根据具体的应用需求进行功能扩展和定制化设计。
例如,在一些需要高精度加工的场合,机器人可以配备激光测距仪和自适应控制系统,以实现更高的加工精度;在一些需要进行协作操作的场合,机器人可以配备人体传感器和安全控制系统,以确保机器人与人类工作者的安全。
工业机器人组成及工作原理.. 共43页
“可编程控制”方式:工作人员事先根据机器人的工作任务和运 动轨迹编制控制程序,然后将控制程序输入给机器人的控制器, 起动控制程序,机器人就按照程序所规定的动作一步一步地去 完成,如果任务变更,只要修改或重新编写控制程序,非常灵 活方便。大多数工业机器人都是按照前两种方式工作的。
“遥控”方式:由人用有线或无线遥控器控制机器人在人难以 到达或危险的场所完成某项任务。如防暴排险机器人、军用机 器人、在有核辐射和化学污染环境工作的机器人等。
(3)运动精度(Accurucy) 机器人机械系统的精度主要涉及位姿精度、重复 位姿精度、轨迹精度、重复轨迹精度等。
(4)运动特性(Sped) 速度和加速度是表明机器人运动特性的主要指标。
(5)动态特性 结构动态参数主要包括质量、惯性矩、刚度、阻尼系数、固 有频率和振动模态。
定位精度(Positioning accuracy):指 机器人末端参考点实际到达的位置与 所需要到达的理想位置之间的差距。
(1)工作空间(Work space) 工作空间是指机器人臂杆的特定部位在一定 条件下所能到达空间的位置集合。工作空间的性状和大小反映了机器人工作能力 的大小。理解机器人的工作空间时,要注意以下几点:
(2)有效负载(Payload) 有效负载是指机器人操作机在工作时臂端可能搬运 的物体重量或所能承受的力或力矩,用以表示操作机的负荷能力。
机械结构简图
●S 轴(回旋) ●L 轴(下臂倾动) ●U 轴(上臂倾动) ●R 轴(手臂横摆) ●B 轴(手腕俯仰) ●T 轴(手腕回旋)
机器人关节
?
机器人控制器
控制器是根据指令以及传感器信息控制机器人完成一定动作或作业任务的 装置,是决定机器人功能和性能的主要因素,也是机器人系统中更新和发展 最快的部分。 其基本功能有:示教、记忆、位置伺服、坐标设定。 开发程度:封闭型、开放性和混合型。
工业机器人本体的基本结构和功能
工业机器人本体的基本结构和功能下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!工业机器人本体:基本结构与功能解析在现代制造业中,工业机器人已经成为不可或缺的自动化设备。
工业机器人内部结构及基本组成原理详解
工业机器人内部结构及基本组成原理详解一、工业机器人的内部结构1.机械结构:工业机器人的机械结构是支撑和传输力量的基础,它由臂体、关节和末端执行器组成。
臂体是机器人的主要结构,一般由相互连接的柔性关节组成。
关节是进行转动的连接部件,通过电机和减速器实现驱动力。
末端执行器是机器人的工具,根据不同的任务可以配备不同的执行器,如夹持器、焊接枪、喷涂枪等。
2.控制系统:工业机器人的控制系统是实现机器人自动操作和运动能力的核心部分,它由控制器、电机和传动系统组成。
控制器是机器人的大脑,负责接收和处理传感器的信号,生成控制指令,并通过电机和传动系统实现机械结构的运动。
电机是驱动机械结构运动的动力源,通常使用伺服电机配合减速器实现精确控制。
传动系统是将电机的旋转运动转换为机械结构的线性运动的装置,常见的传动方式包括齿轮传动、皮带传动和丝杆传动等。
3.传感器:工业机器人的传感器用于感知和监测外部环境和机器人内部状态,以实现自适应和高精度的操作。
常见的传感器包括力传感器、视觉传感器、触觉传感器、温度传感器等。
力传感器用于测量机器人与周围环境之间的力量和力矩,以保证机器人操作的稳定性和安全性。
视觉传感器用于识别和定位目标物体,实现机器人的视觉引导和视觉跟踪。
触觉传感器用于模拟人类手的触摸感应能力,实现机器人的触觉控制和力适应操作。
温度传感器用于监测机器人的工作温度,以确保机器人的运行稳定和安全。
二、工业机器人的基本组成原理1.位置控制:工业机器人的位置控制是确定机器人末端执行器的位置和姿态,以实现精确的定位和操作。
位置控制通常采用正逆运动学的方法,正运动学是指已知机械结构的运动参数,通过计算得到末端执行器的位置和姿态;逆运动学是指已知末端执行器的位置和姿态,通过求解逆运动方程得到机械结构的运动参数。
2.路径规划:工业机器人的路径规划是确定机器人从初始位置到目标位置的最优路径,以实现高效的运动和操作。
路径规划通常采用离散采样的方法,将机器人的可行空间细分为多个离散的点,通过算法找到最短路径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业机器人内部结构及基本组成原理详解 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-工业机器人内部结构及基本组成原理详解工业机器人详解你对工业机器人有着什么样的了解关于工业机器人,我们过去也反反复复推送了很多的文章,在这一次,我们将尝试解决有关---在工业环境中使用的最常见的机器人和作业时经常会遇到的问题。
关于工业机器人定义什么可以被认为是一个工业机器人什么不能被称为工业机器人工业机器人直到最近才能避开这种混乱。
不是在工业环境中使用的每个机电设备都可以被认为是机器人。
根据国际标准组织的定义,工业机器人是一种可编程的三自由度或多轴自动控制的可编程多用途机械手。
这几乎是在谈论工业机器人时被接受的定义。
工业机器人自中年以来发生了什么变化越来越多的工程师和企业家正在寻找越来越多的机器人技术,帮助在工业环境中优化工作流程的方式。
随着时代的发展和机器人技术的进步,机器人手臂必须为诸如仓储中使用的群组AGV等新手铺路。
我们经常说典型的工业机器人由工具,工业机器人手臂,控制柜,控制面板,示教器以及其他外围设备组成。
那么这些是什么这些部分通常都在一起,控制柜类似于机器人的大脑。
控制面板和示教器构成用户环境。
工具(也称为末端执行器)是为特定任务设计的设备(例如焊接或喷涂)。
机器人手臂基本上是移动工具的东西。
但并不是每个工业机器人都像一个手臂。
不同机器人有不同类型的结构。
控制面板---操作员使用控制面板来执行一些常规任务。
(例如:改变程序或控制外围设备)。
应用“机器人工人”----什么时候应该使用工业机器人而不是人工相信这个问题大家思考的次数并不少了。
理想情况下,这应该是双赢的。
想快速看到效果,你需要知道什么是别人最不喜欢的工作。
想得最多的是那些重复的,乏味的工作,需要从工作人员那边进行大量单调的行动,这个思考是正确的,因为正是如此,例如从一个输送机到另一个输送机。
如果总是相同的任务,您可以使用专门针对您的需求量身定制的自动化解决方案。
工厂的工作处理需要越来越灵活,在这些情况下,正确的解决方案是:可以试用用于不同任务的可重新编程的机器人进行任务操作。
此外,就是那些对人类工作有害的任务。
(例如:用危险化学品进行表面处理,这是在有害环境中工作。
在许多情况下,长期使用机器人比聘用工人更聪明和便宜。
)当然,还有的是人类难以操作的工作。
(例如:举或搬运重物或在不适合人类生活的条件下工作。
)同样,在许多这些情况下,可以应用特定的自动化解决方案。
然而,如果任务需要灵活性处理,还需要考虑要用到的机器人。
以下是最常见的机器人应用程序列表:电弧焊、部件、涂层、去毛刺、压铸、造型、物料搬运、选择、码垛、打包、绘画、点焊、运输,仓储关于工业机器人的结构----如何构建机器人手臂(这很重要)在本文中,将只列出工业机器人中使用的最常见的机器人结构类型。
(详细内容公众号历史记录在“机器人类型”部分深入介绍这些类型)。
所以有:笛卡尔、圆柱、球形、SCARA、铰接臂、平行施工这些类型都有自己的优缺点。
有些更精确,有些可以提升较重的重量,有些则更便宜。
这也导致我们选择机器人时至少要考虑什么分配给机器人的任务是什么这个问题看起来觉得很愚蠢,但是也是因为它是很容易被忽略掉的部分,所以这个需要在这次文章中重点说一下。
(你应该考虑,因为它可以节省你很多钱。
也可以减少很多不必要的麻烦)例如:你已经知道你需要一个电弧焊机器人。
但是,您可以更深入地考虑这个是否有扩张的可能性以后可能会有其他或稍微不同的任务可以分配给同一个机器人也许同一个工业机器人手臂可以在不同的时间用不同的工具还有技术支持。
您可能需要指导员工,获得软件更新,保修维护等。
需要考虑经销商应尽可能靠近您。
我们都知道,如果需要维护,机器人经销商所在的距离越远,停机时间越长,人员培训的费用就越高。
当然,也有例外,就像你有一个特定的任务,唯一可以提供一个机器人需要的是远的。
否则,你应该真正选择最接近你的机器人集成商。
检查所有需要的特定机器人操作的设施,你会在哪里放置所有需要的连接是否都能正常使用准备是否齐全选择适合你的制造商。
在考虑技术支持和工厂时,也应该考虑在任务部分提到的同样的事情,尝试评估未来的可能性。
以下是最知名的工业机器人制造商名单:ABB、Adept技术、Asyst技术、布鲁克斯自动化、DENSO机器人、爱普生机器人、FANUC机器人、Intelitek、川崎重工业、库卡机器人、安川,莫托曼、Nachi机器人系统、雷斯机器人、东芝机、史陶比尔工业机器人的基本组成人工智能发展,机器人距离我们越来越近,涉及我们的生活也越来越多。
研究表明,文化差异影响着人们对机器人的看法,西方人看到终结者,日本人看到”阿斯托男孩“。
教育水平与积极情绪之间也存在着相关性:教育水平越高,人们对机器人越感兴趣。
目前人们对机器人的看法总体上是保持积极的态度。
使用机器人使我们免于减少我们完全人为的能力的工作:将机器人整合到我们的经济中,以提高生产率,减少我们依赖采掘业,同时让人们不必花大部分时间来谋生。
古希腊人认为,“劳动”是为了生存所需的重复工作,是在他们的尊严之下,这就是为什么他们确保这样的工作是由奴隶完成的。
摆脱这种负担,希腊公民大量发明了西方文明。
今天研发机器人以类似的方式为我们完成劳动,从而创造一个人类繁荣的新时代。
机器人对我们的生活影响已经那么大,但是你知道机器人的基本组成吗机器人的种类很多,不同结构和用途的机器人其组成当然也不完全一样。
这里以工业机器人为例,介绍机器人的基本组成。
机器人的基本组成:机器人由机械部分、传感部分、控制部分三大部分组成。
这三大部分又分成六个子系统。
分别为:驱动系统(给每个关节即每个运动自由度安置传动装置,使机器人运动起来,这就是驱动系统)机械结构系统(由机身、手臂、末端操作器三大件组成。
每一大件都有若干自由度,构成一个多自由度的机械系统)(如果机身具备行走机构便构成行走机器人,如果机身不具备行走及腰转机构,则构成单机器人臂)手臂一般由上臂、下臂和手腕组成。
末端操作器是直接装在手腕上的一个重要部件,可以是两手指或多手指的手爪,也可以是喷漆枪、焊枪等。
感受系统(获取内部和外部环境状态中有意义的信息。
提高了机器人的机动性、适应性和智能化的水准)机器人—环境交互系统(实现机器人与外部环境中的设备相互联系和协调的系统)人机交互系统(人与机器人进行联系和参与机器人控制的装置)控制系统(根据机器人的作业指令程序以及从传感器反馈回来的信号,支配机器人的执行机构去完成规定的运动和功能)机器人设计包括机械结构设计,检查传感系统设计等,是机械、电子、检测、控制和计算机技术的综合应用。
清楚了解机器人的基本组成,更好地应用机器人完成工作。
工业机器人常用的气缸内部结构是怎样的我们首先讲解下普通气缸的基本组成和原理: 气缸的组成 : 缸体,活塞,密封圈,磁环(有传感器的气缸)原理 : 压力空气使活塞移动,通过改变进气方向,改变活塞杆的移动方向。
失效形式 : 活塞卡死,不动作;气缸无力,密封圈磨损,漏气。
典型气缸的结构和工作原理以气动系统中最常使用的单活塞杆双作用气缸为例来说明,气缸典型结构如下图所示。
它由缸筒、活塞、活塞杆、前端盖、后端盖及密封件等组成。
双作用气缸内部被活塞分成两个腔。
有活塞杆腔称为有杆腔,无活塞杆腔称为无杆腔。
当从无杆腔输入压缩空气时,有杆腔排气,气缸两腔的压力差作用在活塞上所形成的力克服阻力负载推动活塞运动,使活塞杆伸出;当有杆腔进气,无杆腔排气时,使活塞杆缩回。
若有杆腔和无杆腔交替进气和排气,活塞实现往复直线运动。
普通双作用气缸 1、3-缓冲柱塞,2-活塞,4-缸筒,5-导向套,6-防尘圈,7-前端盖,8-气口,9-传感器,10-活塞杆,11-耐磨环,12-密封圈,13-后端盖,14-缓冲节流阀机械接触式无杆气缸的结构和工作原理机械接触式无杆气缸,其结构如下图3所示。
在气缸缸管轴向开有一条槽,活塞与滑块在槽上部移动。
为了防止泄漏及防尘需要,在开口部采用聚氨脂密封带和防尘不锈钢带固定在两端缸盖上,活塞架穿过槽,把活塞与滑块连成一体。
活塞与滑块连接在一起,带动固定在滑块上的执行机构实现往复运动。
这种气缸的特点是:1) 与普通气缸相比,在同样行程下可缩小1/2安装位置;2) 不需设置防转机构;3) 适用于缸径10~80mm,最大行程在缸径≥40mm时可达7m;4) 速度高,标准型可达~s;高速型可达到~s。
其缺点是:1) 密封性能差,容易产生外泄漏。
在使用三位阀时必须选用中压式;2) 受负载力小,为了增加负载能力,必须增加导向机构。
机械接触式无杆气缸 l-节流阀,2-缓冲柱塞,3-密封带,4-防尘不锈钢带,5-活塞,6-滑块,7-活塞架磁性无杆气缸的结构和工作原理活塞通过磁力带动缸体外部的移动体做同步移动,其结构如图4所示。
它的工作原理是:在活塞上安装一组高强磁性的永久磁环,磁力线通过薄壁缸筒与套在外面的另一组磁环作用,由于两组磁环磁性相反,具有很强的吸力。
当活塞在缸筒内被气压推动时,则在磁力作用下,带动缸筒外的磁环套一起移动。
气缸活塞的推力必须与磁环的吸力相适应。
磁性无杆气缸 1-套筒,2-外磁环,3-外磁导板,4-内磁环,5-内磁导板,6-压盖,7-卡环,8-活塞,9-活塞轴,10-缓冲柱塞,11-气缸筒,12-端盖,13-进、排气口齿轮齿条式摆动气缸的结构和工作原理齿轮齿条式摆动气缸是通过连接在活塞上的齿条使齿轮回转的一种摆动气缸,其结构原理如下图5所示。
活塞仅作往复直线运动,摩擦损失少,齿轮传动的效率较高,此摆动气缸效率可达到95%左右。
齿轮齿条式摆动气缸 1-齿条组件,2-弹簧柱销,3-滑块,4-端盖,5-缸体,6-轴承,7-轴,8-活塞,9-齿轮叶片式摆动气缸和工作原理单叶片式摆动气缸的结构原理如图6所示。
它是由叶片轴转子(即输出轴)、定子、缸体和前后端盖等部分组成。
定子和缸体固定在一起,叶片和转子联在一起。
在定子上有两条气路,当左路进气时,右路排气,压缩空气推动叶片带动转子顺时针摆动。
反之,作逆时针摆动。
叶片式摆动气缸体积小,重量最轻,但制造精度要求高,密封困难,泄漏是较大,而且动密封接触面积大,密封件的摩擦阻力损失较大,输出效率较低,小于80%。
因此,在应用上受到限制,一般只用在安装位置受到限制的场合,如夹具的回转,阀门开闭及工作台转位等。
单叶片式摆动气缸 1-叶片,2-转子,3-定子,4-缸体气动手爪原理气动手爪这种执行元件是一种变型气缸。
它可以用来抓取物体,实现机械手各种动作。
在自动化系统中,气动手爪常应用在搬运、传送工件机构中抓取、拾放物体。
气动手爪有平行开合手指(如图所示)、肘节摆动开合手爪、有两爪、三爪和四爪等类型,其中两爪中有平开式和支点开闭式驱动方式有直线式和旋转式。