工程热力学基本知识点.doc

合集下载

工程热力学基本知识

工程热力学基本知识

p p0 pe p p0 pv
第0章 工程热力学基本知识
第一节 基本概念
二、气体状态参数与状态方程 3.比容 单位质量物质所占的容积,称为比容,代表 符号V。单位m3/kg
第0章 工程热力学基本知识
第一节 基本概念
二、气体状态参数与状态方程 4.理想气体状态方程
pv R T
p1v1 p2v2 R T1 T2
第0章 工程热力学基本知识
第一节 基本概念
一、热力系统 3.热源 定义:工质从中吸取或向之排出热能的物质系统。 高温热源(热源-- heat source ) 低温热源(冷源—heat sink) 恒温热源(constant heat reservoir) 变温热源
第0章 工程热力学基本知识
第一节 基本概念
第一节 基本概念
二、气体状态参数与状态方程 2.压力
气体压力是分子撞击容器内壁的结果,代表 符号P。压力的单位是什么? 相对压力?绝对压力?真空度?
第0章 工程热力学基本知识
第一节 基本概念
二、气体状态参数与状态方程 2.压力
pe p
p0
pv
p
当 p > p0 当 p < p0
表压力 pe
真空度 pv
循环:循环是指气体经过几个过程又回到其起始的状态。 循环的整个过程在压容图上构成一个闭合的曲线。
P2 P1 O
(P2 ,V2)
(P1 ,V1)
在这个循环中,气体状态从起 始状态P1V1到P2V2,又原路返回到 P1V1。外界对系统作功和系统对外 作功完全相等,净功为零!
V2
V1
第0章 工程热力学基本知识
第0章 工程热力学基本知识
第二节 热力学基本定律

工程热力学知识点.docx

工程热力学知识点.docx

工程热力学复习知识点一、知识点基本概念的理解和应用(约占40% ),基本原理的应用和热力学分析能力的考核(约占60% )。

1.基本概念掌握和理解:热力学系统 (包括热力系,边界,工质的概念。

热力系的分类:开口系,闭口系,孤立系统 )。

掌握和理解:状态及平衡状态 ,实现平衡状态的充要条件。

状态参数及其特性。

制冷循环和热泵循环的概念区别。

理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。

2.热力学第一定律掌握和理解:热力学第一定律的实质。

理解并会应用基本公式计算:热力学第一定律的基本表达式。

闭口系能量方程。

热力学第一定律应用于开口热力系的一般表达式。

稳态稳流的能量方程。

理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。

3.热力学第二定律掌握和理解:可逆过程与不可逆过程 (包括可逆过程的热量和功的计算 )。

掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文表述等)。

卡诺循环和卡诺定理。

掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。

理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。

热力系的熵方程(闭口系熵方程,开口系熵方程)。

温 - 熵图的分析及应用。

理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。

4.理想气体的热力性质熟悉和了解:理想气体模型。

理解并掌握:理想气体状态方程及通用气体常数。

理想气体的比热。

理解并会计算:理想气体的能、焓、熵及其计算。

理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。

5.实际气体及蒸气的热力性质及流动问题理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。

例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。

蒸汽的定压发生过程(包括其在p-v 和 T-s 图上的一点、二线、三区和五态)。

(完整版)工程热力学知识总结.doc

(完整版)工程热力学知识总结.doc

第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。

边界:分隔系统与外界的分界面,称为边界。

外界:边界以外与系统相互作用的物体,称为外界或环境。

闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。

开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。

绝热系统:系统与外界之间没有热量传递,称为绝热系统。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。

复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

单元系:由一种化学成分组成的系统称为单元系。

多元系:由两种以上不同化学成分组成的系统称为多元系。

均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。

非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。

热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。

如温度(T)、压力( P)、比容(υ)或密度(ρ)、内能()、焓()、熵(s)、自由能(f)、自由焓(g)等。

u h基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。

热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。

压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。

相对压力:相对于大气环境所测得的压力。

工程热力学知识点总结

工程热力学知识点总结

工程热力学知识点总结一、热力学基本概念1.1 系统和环境1.2 状态量和过程量1.3 定态和非定态过程1.4 热平衡和热力学温度二、热力学第一定律2.1 能量守恒原理2.2 内能和焓2.3 热机效率和制冷系数三、热力学第二定律3.1 熵的概念与意义3.2 熵增原理与熵减原理3.3 卡诺循环及其效率四、物质的状态方程及其应用4.1 物态方程的概念与分类4.2 伯努利方程及其应用4.3 范德华方程及其应用五、相变热力学基础知识5.1 相变的基本概念5.2 相变过程中的物态方程5.3 相变焓和相变熵六、理想气体状态方程及其应用6.1 理想气体状态方程6.2 绝热过程中理想气体的温度压强关系6.3 恒容过程中理想气体内能变化七、混合气体热力学基础知识7.1 混合气体的概念7.2 混合气体的状态方程7.3 理想混合气体的热力学性质八、化学反应热力学基础知识8.1 化学反应的基本概念8.2 化学反应焓变和熵变8.3 反应平衡条件及其判定九、传热基础知识9.1 传热方式及其特点9.2 热传导方程及其解法9.3 对流传热及其换热系数十、工程热力学分析方法10.1 理想循环分析方法10.2 实际循环分析方法10.3 燃料空气循环分析方法十一、工程热力学实际应用11.1 能量转换装置的工作原理与性能分析11.2 能量转换装置的优化设计与运行控制11.3 工业过程中能量利用与节能技术总结:本文介绍了工程热力学知识点,包括了基本概念、第一定律和第二定律、物质状态方程及其应用、相变热力学基础知识、理想气体状态方程及其应用、混合气体热力学基础知识、化学反应热力学基础知识、传热基础知识、工程热力学分析方法和工程热力学实际应用。

这些知识点是工程热力学的核心内容,对于掌握能源转换与利用技术以及节能减排具有重要意义。

工程热力学基础知识

工程热力学基础知识

工程热力学基础知识制冷与空调技术理论基础第二部分工程热力学基础知识一、热力学的基本概念(一)、热力系统与工质1.热力系统1.热力系统在热力学研究中,研究者所指定的具体研究对象称为热力系统,简称系统系统。

和系统发生相互作用(热力系统,简称系统。

和系统发生相互作用(能量交换或质量交换)的周围环境称为外界质量交换)的周围环境称为外界,或称为环境。

系统与环外界,或称为环境环境。

系统与环境的分界面称为边界境的分界面称为边界。

边界。

闭口系:与外界没有质量交换的系统,称为闭口系统。

闭口系:开口系:开口系:与外界有质量交换的系统,称为开口系统。

绝热系:绝热系:与外界没有热量交换的系统,称为绝热系统。

完全绝热的系统实际上是不存在的,工程上将与外界换热量相对很小的系统近似为绝热系统。

2.工质 2.工质在制冷与空调工程及其他热力设备中,热能与机械能的转换或热能的转移,都要借助于某种携带热能的工作物转换或热能的转移,都要借助于某种携带热能的工作物质的状态变化来实现,这类工作物质称为工质。

质的状态变化来实现,这类工作物质称为工质。

制冷系统中使用的工质称为制冷剂制冷系统中使用的工质称为制冷剂,也叫冷媒制冷剂,也叫冷媒(二)系统的热力状态及其基本参数1.热力状态1.热力状态某时刻,系统中工质表现在热力现象方面某时刻,系统中工质表现在热力现象方面的总的状况称为系统的热力状态的总的状况称为系统的热力状态,简称状热力状态,简称状态。

描述系统状态的物理量称为状态参数描述系统状态的物理量称为状态参数状态参数的取值完全由状态确定。

如果工质的状态参数可以在一段时间内保持稳定的数值,不随时间变化而变化,则称为热力平衡态称为热力平衡态,简称平衡态。

热力平衡态,简称平衡态平衡态。

2.基本状态参数 2.基本状态参数如果系统的状态发生了变化,那么将表现为状态参数的变化,换而言之,我们可以通过观测系统状态参数的变化来了解系统的变化。

表示系统状态变化的参数有六个,分别为: 表示系统状态变化的参数有六个,分别为: 压力、温度、比体积(或密度)、内能、)、内能压力、温度、比体积(或密度)、内能、焓、熵,其中温度、压力、比体积可以直接或者间接的用一起测出,称为基本状态接或者间接的用一起测出,称为基本状态参数。

工程热力学知识点总结

工程热力学知识点总结

工程热力学知识点总结工程热力学知识点总结1. 热力学基本概念热力学是研究能量转化和能量传递规律的学科,它关注系统的宏观性质和变化。

热力学的基本概念包括系统、界面、过程、平衡状态、状态方程等。

2. 热力学第一定律热力学第一定律是能量守恒的表述,它表示能量的增量等于传热和做功的总和。

数学表达式为ΔU = Q - W,其中ΔU表示系统内能的变化,Q表示热的传递,W表示外界对系统做功。

3. 热力学第二定律热力学第二定律描述了自然界中存在的一种过程的不可逆性,即熵增原理。

它指出孤立系统的熵总是增加或保持不变,不会减少。

熵增原理对热能转化和能量传递的方向提供了限制。

4. 热力学循环热力学循环是一系列热力学过程组成的闭合路径,通过这个路径,系统经历一系列状态变化,最终回到初始状态。

常见的热力学循环有卡诺循环、斯特林循环等。

5. 热力学性质热力学性质是用来描述物质宏观状态的物理量,常用的热力学性质包括温度、压力、内能、焓、熵等。

它们与热力学过程和相变有着密切的关系。

6. 热力学方程热力学方程是用来描述物质宏观状态的数学关系。

常见的热力学方程有状态方程(如理想气体状态方程)、焓的变化方程、熵的变化方程等。

这些方程对于分析和计算热力学过程非常重要。

7. 理想气体理想气体是热力学中一种理想的气体模型。

在理想气体状态方程中,气体的压力、体积和温度之间满足理想气体方程。

理想气体模型对于理解和研究气体性质和行为非常有用。

8. 发动机热力学循环发动机热力学循环是指内燃机和外燃机中进行热能转换的一系列过程。

常见的发动机热力学循环有奥托循环、迪塞尔循环等。

通过研究发动机热力学循环,可以优化发动机的效率和性能。

9. 相变热力学相变热力学研究物质由一种相态转变为另一种相态的过程。

相变热力学包括液体-气体相变、固体-液体相变、固体-气体相变等。

了解相变热力学对于理解物质的性质和行为具有重要意义。

总结:工程热力学是研究能量转化和能量传递规律的学科,它关注系统的宏观性质和变化。

工程热力学知识点电子版

工程热力学知识点电子版

工程热力学知识点电子版
1.热力学基本概念:包括热力学系统、态函数、过程、平衡等基本概念。

2.热力学定律:包括热平衡第一定律(能量守恒),热平衡第二定律(熵增原理)以及热平衡第三定律(绝对零度定律)。

3.理想气体的热力学性质:包括状态方程、卡诺循环、理想气体的内能、焓、熵等性质,以及理想气体的不可逆过程等。

4.热功学:包括热力学势、热力学基本方程、热力学关系、开放系统
的热力学分析等。

5.蒸汽循环与汽轮机:包括蒸汽循环的基本原理、热力学效率、汽轮
机的工作原理和热力学分析等。

6.冷热交换过程:包括传热方式、传热定律、传热设备的热力学设计等。

7.蒸发和冷凝:包括蒸发和冷凝的热力学原理、热传导、传质机制等。

8.混合物与溶液的热力学性质:包括理想混合物的热力学分析、溶解度、等温吸收和等温蒸馏等。

9.平衡态的热力学:包括平衡态判定、化学反应的平衡和平衡常数等。

10.非平衡态的热力学:包括非平衡态的基本概念、非平衡态热力学
平衡准则等。

11.热力学循环与工作系统:包括往复式热机循环(如柴油循环、克
氏循环等)、蒸汽循环的分析、制冷循环等。

以上仅列举了一些工程热力学的基本知识点,具体内容还包括一些相关的热力学计算方法和应用,如热力学分析软件的应用、能源转化系统的分析等。

工程热力学知识点

工程热力学知识点

工程热力学知识点1.热力学系统:热力学系统是指研究对象的一部分,可以是一个物体、一堆物体或者由物质组成的一部分空间。

根据与外界的能量交换情况,热力学系统可分为开放系统、封闭系统和孤立系统。

2.热力学性质:热力学性质指描述热力学系统状态的物理量,包括温度、压力、体积、能量等。

温度是衡量系统热平衡程度的物理量,通常用摄氏度或开尔文度量;压力是物质单位面积上的力,常用帕斯卡表示。

3.热平衡和热平衡态:当一个系统与外界无能量和物质交换,且系统各个部分之间没有内部驱动力时,系统处于热平衡态。

在热平衡态下,系统各点的温度相等。

4.热力学过程:热力学过程是指研究对象从一个状态到另一个状态的转变。

常见的热力学过程有等温过程、绝热过程、等容过程和等压过程。

5.理想气体状态方程:理想气体状态方程描述了理想气体的状态。

根据理想气体状态方程,PV=nRT,其中P为气体压力,V为气体体积,n为气体物质的摩尔数,R为气体常数,T为气体的绝对温度。

6.热力学第一定律:热力学第一定律也称能量守恒定律,它表明能量在系统中的转换是不会消失的,只会从一种形式转化为另一种形式。

7.热力学第二定律:热力学第二定律是关于热能转化的限制性规律,它确立了自然界中热能转化的方向,即热量只能从高温物体传向低温物体。

8.热力学循环:热力学循环是指一系列经历各种热力学过程的系统,最终回到初始状态。

常见的热力学循环有卡诺循环、布雷顿循环等。

9.温度计和热工计量:温度计是测量温度的仪器,根据热胀冷缩原理,例如温度计中的水银柱上浮下沉来表示温度的高低。

热工计量是测量热力学过程中能量转换的仪器,例如蒸汽流量计和压力计等。

10.热力学循环的效率:热力学循环的效率是指从热量到机械能转化的效率,表示为循环获得的净功与输入的热量之比。

根据卡诺定理,所有工作于相同温度范围内的可逆循环具有相同的效率,而实际循环的效率往往低于理论值。

综上所述,这些是工程热力学的一些重要知识点,热力学是研究能量转化和利用的基础,对于工程学科的学习和应用具有重要意义。

工程热力学知识总结

工程热力学知识总结

工程热力学概念公式第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。

边界:分隔系统与外界的分界面,称为边界。

外界:边界以外与系统相互作用的物体,称为外界或环境。

闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。

开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。

绝热系统:系统与外界之间没有热量传递,称为绝热系统。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。

复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

单元系:由一种化学成分组成的系统称为单元系。

多元系:由两种以上不同化学成分组成的系统称为多元系。

均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。

非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。

热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。

如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。

基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。

热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处热平衡。

压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。

相对压力:相对于大气环境所测得的压力。

工程热力学知识点

工程热力学知识点

工程热力学知识点1.热力学系统热力学系统是指被研究的物体或装置,可以根据其与周围环境的热交换和物质交换情况划分为开放系统、封闭系统和孤立系统。

2.状态方程和状态变化状态方程描述了热力学系统的状态,可以通过物质的温度、压力和体积等物理量进行定义。

状态变化是热力学系统从一个状态到另一个状态的过程,可以通过热力学过程描述。

3.热力学过程热力学过程是热力学系统从一个状态到另一个状态的变化过程。

常见的热力学过程包括等温过程、绝热过程、等容过程和等压过程。

热力学过程可以通过热力学循环描述,常见的热力学循环包括卡诺循环和斯特林循环等。

4.热力学定律热力学定律是热力学系统行为的基本规律。

包括热力学第一定律(能量守恒定律)、热力学第二定律(熵增加定律)和热力学第三定律(绝对零度定律)。

5.热力学性质热力学性质是描述热力学系统的特性的物理量。

常见的热力学性质包括温度、压力、体积、内能、焓等。

这些性质对于研究热力学过程和热力学系统的行为具有重要意义。

6.理想气体状态方程理想气体状态方程是描述理想气体状态的基本关系。

根据理想气体状态方程,可以推导出玻意耳-马略特定律和查理定律等关系。

理想气体状态方程对于研究气体的性质和行为具有重要意义。

7.熵和热力学效率熵是一个描述系统无序程度的物理量,也是热力学第二定律的核心概念。

热力学效率是衡量能量转化的有效性的指标,它可以通过熵增加原理计算和分析。

8.热力学循环和工质流程热力学循环是一系列热力学过程的组合,通常用来描述热力学系统的能量转化过程。

工质流程是热力学系统中流动的工质的循环或非循环过程。

以上是工程热力学的一些重要知识点。

工程热力学的应用广泛,包括能源转化设备、制冷空调设备、热力发电系统等。

通过对热力学系统特性、能量转移和能量转化的研究,可以优化工程设备和能源利用效率,提高系统的性能和可靠性。

工程热力学知识点笔记总结

工程热力学知识点笔记总结

工程热力学知识点笔记总结第一章热力学基本概念1.1 热力学的基本概念热力学是研究能量与物质的转化关系的科学,它关注热与功的转化、能量的传递和系统的状态变化。

热力学中最基本的概念包括系统、热力学量、状态量、过程、功和热等。

1.2 热力学量热力学量是描述系统的性质和状态的物理量,包括内能、焓、熵、自由能等。

内能是系统的总能量,焓是系统在恒压条件下的能量,熵是系统的无序程度,自由能是系统进行非体积恒定的过程中能够做功的能量。

1.3 热力学第一定律热力学第一定律是能量守恒的表达形式,在闭合定容系统中,系统的内能变化等于系统所接受的热量减去系统所做的功。

1.4 热力学第二定律热力学第二定律是描述系统不可逆性的定律,它包括开尔文表述和克劳修斯表述。

开尔文表述指出不可能将热量完全转化为功而不引起其他变化,克劳修斯表述指出热量自然只能从高温物体传递到低温物体。

根据第二定律,引入了熵增大原理和卡诺循环。

1.5 热力学第三定律热力学第三定律是指当温度趋于绝对零度时,系统的熵趋于零。

这一定律揭示了绝对零度对热力学过程的重要意义。

第二章热力学系统2.1 定态与非定态定态系统是指系统的性质在长时间内不发生变化,非定态系统是指系统的性质在长时间内发生变化。

2.2 开放系统与闭合系统开放系统是指与外界交换物质和能量的系统,闭合系统是指与外界不交换物质但可以交换能量的系统。

2.3 热力学平衡热力学平衡是指系统内各部分之间的温度、压力、化学势等性质达到一致的状态。

系统处于热力学平衡时,不会产生宏观的变化。

第三章热力学过程3.1 等温过程在等温过程中,系统的温度保持不变,内能的变化全部转化为热量输给外界。

3.2 绝热过程在绝热过程中,系统不与外界交换热量,内能的变化全部转化为对外界所做的功。

3.3 等容过程在等容过程中,系统的体积保持不变,内能的变化全部转化为热量。

3.4 等压过程在等压过程中,系统的压强保持不变,内能的变化转化为对外界所做的功和系统所吸收的热量。

工程热力学知识点

工程热力学知识点

工程热力学复习知识点一、知识点基本概念的理解和应用(约占40%),基本原理的应用和热力学分析能力的考核(约占60%)。

1. 基本概念掌握和理解:热力学系统(包括热力系,边界,工质的概念。

热力系的分类:开口系,闭口系,孤立系统)。

掌握和理解:状态及平衡状态,实现平衡状态的充要条件。

状态参数及其特性。

制冷循环和热泵循环的概念区别。

理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。

2. 热力学第一定律掌握和理解:热力学第一定律的实质。

理解并会应用基本公式计算:热力学第一定律的基本表达式。

闭口系能量方程。

热力学第一定律应用于开口热力系的一般表达式。

稳态稳流的能量方程。

理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。

3. 热力学第二定律掌握和理解:可逆过程与不可逆过程(包括可逆过程的热量和功的计算)。

掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文表述等)。

卡诺循环和卡诺定理。

掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。

理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。

热力系的熵方程(闭口系熵方程,开口系熵方程)。

温-熵图的分析及应用。

理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。

4. 理想气体的热力性质熟悉和了解:理想气体模型。

理解并掌握:理想气体状态方程及通用气体常数。

理想气体的比热。

理解并会计算:理想气体的内能、焓、熵及其计算。

理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。

5. 实际气体及蒸气的热力性质及流动问题理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。

例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。

蒸汽的定压发生过程(包括其在p-v和T-s图上的一点、二线、三区和五态)。

理解并掌握:绝热节流的现象及特点6. 蒸汽动力循环理解计算:蒸气动力装置流程、朗肯循环热力计算及其效率分析。

工程热力学知识点总结

工程热力学知识点总结

工程热力学知识点总结一、基本概念1. 热力学系统热力学系统是指研究对象的范围,可以是一个物体、一个系统或者多个系统的组合。

根据系统与外界的物质交换和能量交换情况,将系统分为封闭系统、开放系统和孤立系统。

2. 热力学状态热力学状态是指系统的一种特定状态,由系统的几个宏观性质确定。

常用的状态参数有温度、压力、体积和能量等。

3. 热力学过程热力学过程是系统在一定条件下的状态变化。

常见的热力学过程有等温过程、绝热过程、等压过程和等容过程等。

4. 热力学平衡系统的平衡是指系统内各部分之间不存在宏观的能量或物质的不均匀性。

在平衡状态下,系统内各部分之间的宏观性质是不发生变化的。

5. 热力学势函数热力学势函数是描述系统平衡状态的函数,常见的有内能、焓、自由能和吉布斯自由能等。

二、热力学定律1. 热力学第一定律热力学第一定律是能量守恒定律的热力学表述。

它可以表述为:系统的内能变化等于系统对外界所做的功与系统吸收的热的代数之和。

2. 热力学第二定律热力学第二定律是热力学中一个非常重要的定律,它对能量转化的方向和效率进行了限制。

根据热力学第二定律,系统内部永远不会自发地将热量从低温物体传递到高温物体,这就是热机不能做功的原因。

3. 卡诺定理卡诺定理是热力学第二定律的一种推论,它指出在两个恒温热源之间进行热机循环时,效率最高的情况是卡诺循环。

4. 热力学第三定律热力学第三定律规定了在温度接近绝对零度时热容为零,即系统的熵在绝对零度时为常数。

三、热力学循环1. 卡诺循环卡诺循环是一种理想的热机循环,它采用绝热和等温两个可逆过程。

卡诺循环的效率是所有热机循环中最高的。

2. 斯特林循环斯特林循环是一种理想的外燃循环,它采用绝热和等温两个可逆过程。

斯特林循环比卡诺循环的效率低一些,但是实际上,在制冷机中应用得比较广泛。

3. 布雷顿循环布雷顿循环是一种理想的内燃循环,它采用等容和等压两个可逆过程。

布雷顿循环是内燃机的工作循环,应用比较广泛。

工程热力学 基本知识点

工程热力学 基本知识点

第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。

边界:分隔系统与外界的分界面,称为边界。

外界:边界以外与系统相互作用的物体,称为外界或环境。

闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。

开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。

绝热系统:系统与外界之间没有热量传递,称为绝热系统。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。

复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

单元系:由一种化学成分组成的系统称为单元系。

多元系:由两种以上不同化学成分组成的系统称为多元系。

均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。

非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。

热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。

如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。

基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。

热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。

压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。

相对压力:相对于大气环境所测得的压力。

(完整版)工程热力学知识总结

(完整版)工程热力学知识总结

第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。

边界:分隔系统与外界的分界面,称为边界。

外界:边界以外与系统相互作用的物体,称为外界或环境。

闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。

开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。

绝热系统:系统与外界之间没有热量传递,称为绝热系统。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。

复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

单元系:由一种化学成分组成的系统称为单元系。

多元系:由两种以上不同化学成分组成的系统称为多元系。

均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。

非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。

热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。

如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。

基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。

热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。

压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。

相对压力:相对于大气环境所测得的压力。

工程热力学知识点总结

工程热力学知识点总结

工程热力学知识点总结1. 热力学基本概念1.1 热力学系统:研究对象,与周围环境有能量和物质交换。

1.2 环境:系统之外的一切,与系统形成对比。

1.3 边界:系统与环境之间的分界线。

1.4 状态:系统在某一时刻宏观性质的集合。

1.5 平衡态:系统状态不随时间变化的状态。

1.6 过程:系统从一个平衡态到另一个平衡态的演变。

2. 热力学第一定律2.1 能量守恒:系统内能量的变化等于热量与功的和。

2.2 内能:系统内部微观粒子动能和势能的总和。

2.3 热量:系统与环境之间由于温度差而交换的能量。

2.4 功:系统对环境或其他系统施加的力与其位移的乘积。

2.5 热力学第一定律公式:ΔU = Q - W。

3. 热力学第二定律3.1 熵:系统无序度的量度,是不可逆过程的度量。

3.2 孤立系统:不与外界交换能量或物质的系统。

3.3 熵增原理:孤立系统熵永不减少。

3.4 卡诺定理:所有热机的最大效率由卡诺循环确定。

4. 热力学性质4.1 温度:系统热动能的度量,是热力学过程的驱动力。

4.2 压力:分子对容器壁单位面积的平均作用力。

4.3 体积:系统占据的空间大小。

4.4 比热容:单位质量的物质温度升高1K所需吸收的热量。

4.5 热容:系统温度升高1K所需吸收的热量。

5. 理想气体行为5.1 理想气体状态方程:PV = nRT。

5.2 摩尔体积:1摩尔理想气体在标准状态下的体积。

5.3 气体常数:理想气体状态方程中的常数R。

5.4 马略特定律:理想气体在恒定温度下,体积与压力成正比。

5.5 波义耳定律:在恒温条件下,理想气体的压强与其体积成反比。

6. 热力学循环6.1 卡诺循环:理想化的热机循环,由四个可逆过程组成。

6.2 奥托循环:内燃机的理想循环,包括等容加热、绝热膨胀、等容放热和绝热压缩。

6.3 朗肯循环:蒸汽动力循环,包括泵吸、锅炉加热、涡轮膨胀和冷凝器排热。

7. 相变与潜热7.1 相变:物质从一种相态转变为另一种相态的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动力机 :动力机是利用工质在机器中膨胀获得机械功的设备。
z
vpv
压气机 :消耗轴功使气体压缩以升高其压力的设
vidRT
Tr
T
对比参数:
,pr
备称为压气机。
节流:流体在管道内流动,遇到突然变窄的断面,由于存在阻力使流体压力降低的现象。
p
,2.常用公式
Tc
v
vr
vc
pc
外储存能 :
宏观动能:
Ek
1mc2
可逆过程。
状况,称为工质的热力状态,简称为状态。
膨胀功 :由于系统容积发生变化(增大或缩小)
平衡状态 :系统在不受外界影响的条件下,如果宏
而通过界面向外界传递的机械功称为膨胀功,也称
观热力性质不随时间而变化,系统内外同时建立了热
容积功。
的和力的平衡,这时系统的状态称为热力平衡状态,
热量:通过热力系边界所传递的除功之外的能量。
孤立系统 :系统与外界之间不发生任何能量传递和
广延性参数 :整个系统的某广延性参数值等于系
物质交换,称为孤立系统。
统中各单元体该广延性参数值之和,如系统的容
单相系 :系统中工质的物理、化学性质都均匀一致
积、内能、焓、熵等。在热力过程中,广延性参数
的系统称为单相系。
的变化起着类似力学中位移的作用,称为广义位
的密度。
开口系统 :有物质流穿过边界的系统称为开口系统,
强度性参数 :系统中单元体的参数值与整个系统
又称控制体积,简称控制体,其界面称为控制界面。
的参数值相同,与质量多少无关,没有可加性,如
绝热系统 :系统与外界之间没有热量传递,称为绝
温度、压力等。在热力过程中,强度性参数起着推
热系统。
动力作用,称为广义力或势。
道尔顿分压定律 :混合气体的总压力P等于各组成气体分压力Pi之和。
混合气体的分容积 :维持混合气体的温度和压力不变时,各组成气体所具有的容积。
阿密盖特分容积定律 :混合气体的总容积V等于各组成气体分容积Vi之和。
混合气体的质量成分 :混合气体中某组元气体的质量与混合气体总质量的比值称为混合气体的质量成分。
焓:流动工质向流动前方传递的总能量中取决于
热力状态的那部分能量。对于流动工质,焓=内能+流动功,即焓具有能量意义;对于不流动工质,焓
只是一个复合状态参数。
稳态稳流工况 :工质以恒定的流量连续不断地进出系统,系统内部及界面上各点工质的状态参数和宏观运动参数都保持一定,不随时间变化,称稳态稳流工况。
技术功 :在热力过程中可被直接利用来作功的能量,称为技术功。
定压容积比热 :在定压过程中,单位容积的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定压容积比热。
定压摩尔比热 :在定压过程中,单位摩尔的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定压摩尔比热。
qw
定容质量比热 :在定容过程中,单位质量的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定容质量比热。
6.气体常数:R
R0
8314
R
J/kg·K
M
M
R与状态无关,仅决定于气体性质。
混合气体的容积成分 :混合气体中某组元气体的容积与混合气体总容积的比值称为混合气体的容积成
7.
p1v1p2v2
T1T2
分。
混合气体的摩尔成分:混合气体中某组元气体的摩
比热:
1.比热定义式:c
q
尔数与混合气体总摩尔数的比值称为混合气体的摩尔成分。
简称系统。
程上常用测压仪表测定系统中工质的压力即为相
边界 :分隔系统与外界的分界面,称为边界。
对压力。
外界 :边界以外与系统相互作用的物体,称为外界
比容:单位质量工质所具有的:没有物质穿过边界的系统称为闭口系统,
密度:单位容积的工质所具有的质量,称为工质
也称控制质量。
式中VM= Mv—气体的摩尔容积,m3/kmol;
R0=MR—通用气体常数,
J/kmol·K
适用于1千摩尔理想气体。
4.pV
nR0T
式中
V—nK mol气体所占有的容积,m3;
n—气体的摩尔数,
m
n,kmol
M
适用于n千摩尔理想气体。
5.通用气体常数:R0
R08314J/Kmol·K
R0与气体性质、状态均无关。
量,其物理实质是物质内部大量微观分子热运动的强
终点,其参数的变化值,仅与初、终状态有关,而
弱程度的宏观反映。
与状态变化的途径无关。
温度:
1.
mw2
BT
2
式中
mw2
—分子平移运动的动能,其中m是
2
一个分子的质量,w是分子平移运动的均方根速度;
B—比例常数;
T—气体的热力学温度。
2.T273t
压力:
2mw22
制冷系数 :
q2
q2
1
q1q2
w0
式中
q1—工质向热源放出热量;
q2—工质从冷源吸取热量;
w0—循环所作的净功。
供热系数:
q1
q1
2
q1q2
w0
式中
q1—工质向热源放出热量
q2—工质从冷源吸取热量
w0—循环所作的净功
第二章
气体的热力性质
1.基本概念
理想气体 :气体分子是由一些弹性的、忽略分子之间相互作用力(引力和斥力)、不占有体积的质点所构成。
复相系 :由两个相以上组成的系统称为复相系,如
移。
固、液、气组成的三相系统。
准静态过程 :过程进行得非常缓慢,使过程中系
单元系 :由一种化学成分组成的系统称为单元系。
统内部被破坏了的平衡有足够的时间恢复到新的
多元系 :由两种以上不同化学成分组成的系统称为
平衡态,从而使过程的每一瞬间系统内部的状态都
多元系。
定容容积比热 :在定容过程中,单位容积的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定容容积比热。
定容摩尔比热 :在定容过程中,单位摩尔的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定容摩尔比热。
混合气体的分压力 :维持混合气体的温度和容积不变时,各组成气体所具有的压力。
n
xx1x2L Lxnxi1
i 1
容积成分与摩尔成分关系:
ni
rixi
n
mi
niMi
Mi
Mi
gi
m
nM
xiM
riM
gi
riMi
ri
R
ri
i
M
Ri
折合分子量:
n
mi
niMi
n
n
M
1
xiMi
riMi
n
n
i 1
i 1
M
1
1
g2
gn
n
gi
g1
L L
M1
M2
Mn
Mi
i 1
折合气体常数:
n
n
R0
RR0
nR0i 0
6.比热比:
cpc'pMcp
cvc'vMcv
R
cv
1
nR
cp
1
道尔顿分压定律:
n
p p1p2p3
pn
pi
i 1
T ,V
阿密盖特分容积定律:
VV1V2V3
n
Vi
Vn
i 1
T ,P
质量成分:
mi
gi
m
n
g1g2L Lgngi1
i 1
容积成分:
ri
Vi
V
n
r r1r2
L rn
ri1
i
1
摩尔成分:
ni
xi
n
压力;
H—低于当地大气压力时的相对压力,称
为真空值。
比容:
1.v
V
m3/kg
m
式中
V—工质的容积
m—工质的质量
2.v
1
式中
—工质的密度
kg/m3
v—工质的比容
m3/kg
热力循环:

u 0,du
0
循环热效率:
w0q1
q2
q2
t
q1
q1
1
q1
式中q1—工质从热源吸热;
q2—工质向冷源放热;
w0—循环所作的净功。
对比参数 :各状态参数与临界状态的同名参数的比值。
对比态定律 :对于满足同一对比态方程式的各种气体,对比参数pr、Tr和vr中若有两个相等,则第三
个对比参数就一定相等,物质也就处于对应状态中。
2.常用公式
理想气体状态方程:
1.pv
RT
式中
p—绝对压力
Pa
v—比容
m3/kg
T—热力学温度
K
适用于1千克理想气体。
比热:单位物量的物体, 温度升高或降低1K(1℃)
所吸收或放出的热量,称为该物体的比热。
定容比热 :在定容情况下,单位物量的物体,温度变化1K(1℃)所吸收或放出的热量,称为该物体的定容比热。
定压比热 :在定压情况下,单位物量的物体,温度变化1K(1℃)所吸收或放出的热量,称为该物体的定压比热。
定压质量比热 :在定压过程中,单位质量的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定压质量比热。
2
dx 0
基本状态参数 :在工质的状态参数中,其中温度、
状态参数:dx x2x1
1
相关文档
最新文档