重庆市长寿区2019-2020学年中考数学模拟试题含解析

合集下载

重庆市长寿区2019-2020学年中考数学考前模拟卷(1)含解析

重庆市长寿区2019-2020学年中考数学考前模拟卷(1)含解析

重庆市长寿区2019-2020学年中考数学考前模拟卷(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4 B.22C.2 D.22.如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x 的函数关系的是A.①B.④C.②或④D.①或③3.在如图的计算程序中,y与x之间的函数关系所对应的图象大致是()A.B.C.D.4.要使式子1xx+有意义,x的取值范围是()A.x≠1B.x≠0 C.x>﹣1且≠0D.x≥﹣1且x≠05.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是()A.2402008x x=-B.2402008x x=+C.2402008x x=+D.2402008x x=-6.在平面直角坐标系中,点(-1,-2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)8.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A.(2,23)B.(﹣2,4)C.(﹣2,22)D.(﹣2,23)9.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1.若S2=48,S1=9,则S1的值为()A.18 B.12 C.9 D.110.下列计算正确的是()A.a6÷a2=a3B.(﹣2)﹣1=2 C.(﹣3x2)•2x3=﹣6x6D.(π﹣3)0=111.12的倒数是()A.﹣12B.2 C.﹣2 D.1212.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC 的度数为()A.125°B.75°C.65°D.55°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.14.如图,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tan∠CBD=34,则BD=_____.15.已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=_____.16.早春二月的某一天,大连市南部地区的平均气温为﹣3℃,北部地区的平均气温为﹣6℃,则当天南部地区比北部地区的平均气温高_____℃.17.如图,在Rt△ABC中,∠ACB=90°,点D、E、F分别是AB、AC、BC的中点,若CD=5,则EF 的长为________.18.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,直线y=12x+2与双曲线y=kx相交于点A(2,n),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为5,求点P的坐标.20.(6分)如图,AB∥CD,∠1=∠2,求证:AM∥CN21.(6分)发现如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……A n中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠A n﹣(n﹣4)×180°.验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……A n中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠A n﹣(n﹣)×180°.22.(8分)如图,抛物线232 2y ax x=--(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.23.(8分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60 10 0.0560≤x<70 30 0.1570≤x<80 40 n80≤x<90 m 0.3590≤x≤10050 0.25请根据所给信息,解答下列问题:m=,n=;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?24.(10分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环中位数/环众数/环方差甲a7 7 1.2乙7 b8 c(1)求a,b,c的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?25.(10分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/m 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.26.(12分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC 的三个顶点都在格点上,且直线m、n互相垂直.(1)画出△ABC关于直线n的对称图形△A′B′C′;(2)直线m上存在一点P,使△APB的周长最小;①在直线m上作出该点P;(保留画图痕迹)②△APB的周长的最小值为.(直接写出结果)27.(12分)某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=2AB=22,BD=AD=CD=2,再利用AC⊥x轴得到C(2,22),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC⊥x轴,∴C(2,22),把C(2,22)代入y=kx得k=2×22=4,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=kx (k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键. 2.D【解析】【分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【详解】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.故选D.3.A【解析】函数→一次函数的图像及性质4.D【解析】 【分析】根据二次根式由意义的条件是:被开方数大于或等于1,和分母不等于1,即可求解. 【详解】 根据题意得:10{x x +≥≠,解得:x≥-1且x≠1. 故选:D . 【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数. 5.B 【解析】 【分析】根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可. 【详解】设乙每天完成x 个零件,则甲每天完成(x+8)个. 即得,2402008x x+= ,故选B. 【点睛】找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键. 6.C 【解析】:∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限,故选C 7.C 【解析】 【详解】根据题意知小李所对应的坐标是(7,4). 故选C. 8.D 【解析】分析:作BC ⊥x 轴于C ,如图,根据等边三角形的性质得4,2,60OA OB AC OC BOA ====∠=o,则易得A 点坐标和O 点坐标,再利用勾股定理计算出BC =然后根据第二象限点的坐标特征可写出B 点坐标;由旋转的性质得60,AOA BOB OA OB OA OB ∠'=∠'==='='o,则点A′与点B 重合,于是可得点A′的坐标.详解:作BC ⊥x 轴于C ,如图,∵△OAB 是边长为4的等边三角形∴4,2,60OA OB AC OC BOA ====∠=o , ∴A 点坐标为(−4,0),O 点坐标为(0,0), 在Rt △BOC 中,224223BC =-=, ∴B 点坐标为(2,3)-;∵△OAB 按顺时针方向旋转60o ,得到△OA′B′, ∴60,AOA BOB OA OB OA OB ∠'=∠'==='='o , ∴点A′与点B 重合,即点A′的坐标为(2,3)-, 故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质. 9.D 【解析】 【分析】过A 作AH ∥CD 交BC 于H ,根据题意得到∠BAE=90°,根据勾股定理计算即可. 【详解】∵S 2=48,∴3A 作AH ∥CD 交BC 于H ,则∠AHB=∠DCB . ∵AD ∥BC ,∴四边形AHCD 是平行四边形,∴3AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB 2=BH 2﹣AH 2=1,∴S 1=1. 故选D .【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.10.D【解析】解:A.a6÷a2=a4,故A错误;B.(﹣2)﹣1=﹣12,故B错误;C.(﹣3x2)•2x3=﹣6x5,故C错;D.(π﹣3)0=1,故D正确.故选D.11.B【解析】【分析】根据乘积是1的两个数叫做互为倒数解答.【详解】解:∵12×1=1∴12的倒数是1.故选B.【点睛】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.12.D【解析】【分析】延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【详解】延长CB,延长CB,∵AD∥CB,∴∠1=∠ADE=145,∴∠DBC=180−∠1=180−125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.±1.【解析】【分析】根据根的判别式求出△=0,求出a1+b1=1,根据完全平方公式求出即可.【详解】解:∵关于x的方程x1+1ax-b1+1=0有两个相等的实数根,∴△=(1a)1-4×1×(-b1+1)=0,即a1+b1=1,∵常数a与b互为倒数,∴ab=1,∴(a+b)1=a1+b1+1ab=1+3×1=4,∴a+b=±1,故答案为±1.【点睛】本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键.14.5【解析】【分析】由tan∠CBD=CDBC=34设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.解:在Rt△BCD中,∵tan∠CBD=CDBC=34,∴设CD=3a、BC=4a,则BD=AD=5a,∴AC=AD+CD=5a+3a=8a,在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,解得:或(舍),则故答案为【点睛】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图.15.1【解析】【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【详解】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.则c1=4×1,c=±1,(线段是正数,负值舍去),故c=1.故答案为1.【点睛】本题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.16.3【解析】【分析】用南部气温减北部的气温,根据“减去一个数等于加上这个数的相反数”求出它们的差就是高出的温度.【详解】解:(﹣3)﹣(﹣6)=﹣3+6=3℃.答:当天南部地区比北部地区的平均气温高3℃,故答案为:3.17.5【解析】【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.【详解】∵△ABC是直角三角形,CD是斜边的中线,∴CD=12AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10,∴EF=12×10=5.故答案为5.【点睛】本题主要考查三角形中位线定理,直角三角形斜边上的中线,熟悉掌握是关键. 18.1.1【解析】【分析】先判断出x,y中至少有一个是1,再用平均数求出x+y=11,即可得出结论.【详解】∵一组数据4,x,1,y,7,9的众数为1,∴x,y中至少有一个是1,∵一组数据4,x,1,y,7,9的平均数为6,∴16(4+x+1+y+7+9)=6,∴x+y=11,∴x,y中一个是1,另一个是6,∴这组数为4,1,1,6,7,9,∴这组数据的中位数是12×(1+6)=1.1,故答案为:1.1.【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是1是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)6yx=;(2)(23-,0)或22,03⎛⎫- ⎪⎝⎭(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.【详解】解:(1)把A(2,n)代入直线解析式得:n=3,∴A(2,3),把A坐标代入y=kx,得k=6,则双曲线解析式为y=6x.(2)对于直线y=12x+2,令y=0,得到x=-4,即C(-4,0).设P(x,0),可得PC=|x+4|.∵△ACP面积为5,∴12|x+4|•3=5,即|x+4|=2,解得:x=-23或x=-223,则P坐标为23⎛⎫- ⎪⎝⎭,或223⎛⎫-⎪⎝⎭,.20.详见解析.【解析】【分析】只要证明∠EAM=∠ECN,根据同位角相等两直线平行即可证明.【详解】证明:∵AB∥CD,∴∠EAB=∠ECD,∵∠1=∠2,∴∠EAM=∠ECN,∴AM∥CN.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握平行线的性质和判定,属于中考基础题.21.(1)见解析;(2)见解析;(3)1.(1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1A n于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答【详解】(1)如图2,延长AB交CD于E,则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1A n于B,则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠A n),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠A n)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠A n﹣(n﹣1)×180°.故答案为1.22.(1)213222y x x =--;(2)(32,0);(3)1,M (2,﹣3). 【解析】 试题分析:方法一:(1)该函数解析式只有一个待定系数,只需将B 点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A 点坐标,然后通过证明△ABC 是直角三角形来推导出直径AB 和圆心的位置,由此确定圆心坐标.(3)△MBC 的面积可由S △MBC =12BC×h 表示,若要它的面积最大,需要使h 取最大值,即点M 到直线BC 的距离最大,若设一条平行于BC 的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M .方法二:(1)该函数解析式只有一个待定系数,只需将B 点坐标代入解析式中即可.(2)通过求出A ,B ,C 三点坐标,利用勾股定理或利用斜率垂直公式可求出AC ⊥BC ,从而求出圆心坐标.(3)利用三角形面积公式,过M 点作x 轴垂线,水平底与铅垂高乘积的一半,得出△MBC 的面积函数,从而求出M 点.试题解析:解:方法一:(1)将B (1,0)代入抛物线的解析式中,得: 0=16a ﹣32×1﹣2,即:a=12,∴抛物线的解析式为:213222y x x =--. (2)由(1)的函数解析式可求得:A (﹣1,0)、C (0,﹣2);∴OA=1,OC=2,OB=1,即:OC 2=OA•OB ,又:OC ⊥AB ,∴△OAC ∽△OCB ,得:∠OCA=∠OBC ; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC 为直角三角形,AB 为△ABC 外接圆的直径; 所以该外接圆的圆心为AB 的中点,且坐标为:(32,0). (3)已求得:B (1,0)、C (0,﹣2),可得直线BC 的解析式为:y=12x ﹣2; 设直线l ∥BC ,则该直线的解析式可表示为:y=12x+b ,当直线l 与抛物线只有一个交点时,可列方程: 12x+b=213222x x --,即:212202x x b ---=,且△=0;∴直线l:y=12x﹣1.所以点M即直线l和抛物线的唯一交点,有:2132 22142y x xy x⎧=--⎪⎪⎨⎪=-⎪⎩,解得:23xy=⎧⎨=-⎩即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=12×2×(2+3)+12×2×3﹣12×2×1=1.方法二:(1)将B(1,0)代入抛物线的解析式中,得:0=16a﹣32×1﹣2,即:a=12,∴抛物线的解析式为:213222y x x=--.(2)∵y=12(x﹣1)(x+1),∴A(﹣1,0),B(1,0).C(0,﹣2),∴K AC=0210+--=﹣2,K BC=0240+-=12,∴K AC×K BC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(32,0).(3)过点M作x轴的垂线交BC′于H,∵B(1,0),C(0,﹣2),∴l BC:y=12x﹣2,设H(t,12t﹣2),M(t,213222t t--),∴S△MBC=12×(H Y﹣M Y)(B X﹣C X)=12×(12t﹣2﹣213222t t++)(1﹣0)=﹣t2+1t,∴当t=2时,S有最大值1,∴M(2,﹣3).点睛:考查了二次函数综合题,该题的难度不算太大,但用到的琐碎知识点较多,综合性很强.熟练掌握直角三角形的相关性质以及三角形的面积公式是理出思路的关键.23.(1)70,0.2(2)70(3)750【解析】【分析】(1)根据题意和统计表中的数据可以求得m、n的值;(2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人.【详解】解:(1)由题意可得,m=200×0.35=70,n=40÷200=0.2,故答案为70,0.2;(2)由(1)知,m=70,补全的频数分布直方图,如下图所示;(3)由题意可得,该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人),答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.【点睛】本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需【解析】【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【详解】(1)甲的平均成绩a=516274829112421⨯+⨯+⨯+⨯+⨯++++=7(环), ∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击成绩的中位数b=7+82=7.5(环), 其方差c=110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2] =110×(16+9+1+3+4+9) =4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【点睛】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.25.(1)20s ;(2)2511222y x ⎛⎫=+- ⎪⎝⎭ 【解析】【分析】(1)利用待定系数法求出函数解析式,再求出y =840时x 的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可.【详解】解:(1)∵该抛物线过点(0,0),∴设抛物线解析式为y =ax 2+bx ,将(1,4)、(2,12)代入,得: 44212a b a b +=⎧⎨+=⎩,所以抛物线的解析式为y=2x2+2x,当y=840时,2x2+2x=840,解得:x=20(负值舍去),即他需要20s才能到达终点;(2)∵y=2x2+2x=2(x+12)2﹣12,∴向左平移2个单位,再向下平移5个单位后函数解析式为y=2(x+2+12)2﹣12﹣5=2(x+52)2﹣112.【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.26.(1)详见解析;(2)①详见解析;②1032.【解析】【分析】(1)根据轴对称的性质,可作出△ABC关于直线n的对称图形△A′B′C′;(2)①作点B关于直线m的对称点B'',连接B''A与x轴的交点为点P;②由△ABP的周长=AB+AP+BP=AB+AP+B''P,则当AP与PB''共线时,△APB的周长有最小值.【详解】解:(1)如图△A′B′C′为所求图形.(2)①如图:点P为所求点.②∵△ABP的周长=AB+AP+BP=AB+AP+B''P∴当AP与PB''共线时,△APB的周长有最小值.∴△APB的周长的最小值10210227.(1)共有三种方案,分别为①A 型号16辆时, B 型号24辆;②A 型号17辆时,B 型号23辆;③A 型号18辆时,B 型号22辆;(2)当16x =时,272W =最大万元;(3)A 型号4辆,B 型号8辆; A 型号10辆,B 型号 3辆两种方案【解析】【分析】(1)设A 型号的轿车为x 辆,可根据题意列出不等式组,根据问题的实际意义推出整数值; (2)根据“利润=售价-成本”列出一次函数的解析式解答;(3)根据(2)中方案设计计算.【详解】(1)设生产A 型号x 辆,则B 型号(40-x )辆1536≤34x+42(40-x)≤1552解得1618x ≤≤,x 可以取值16,17,18共有三种方案,分别为A 型号16辆时,B 型号24辆A 型号17辆时,B 型号23辆A 型号18辆时,B 型号22辆(2)设总利润W 万元则W=()5840x x +-=3320x -+30k =-<Q∴w 随x 的增大而减小当16x =时,272W =最大万元(3)A 型号4辆,B 型号8辆; A 型号10辆,B 型号 3辆两种方案【点睛】本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.。

重庆市长寿区2019-2020学年中考数学三模考试卷含解析

重庆市长寿区2019-2020学年中考数学三模考试卷含解析

重庆市长寿区2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A.小亮骑自行车的平均速度是12 km/hB.妈妈比小亮提前0.5 h到达姥姥家C.妈妈在距家12 km处追上小亮D.9:30妈妈追上小亮2.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3 B.2.5 C.2 D.53.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.43B.42C.6 D.44.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()米A.200米B.2003米C.2203米D.100(31)5.下列图形中,不是轴对称图形的是()A.B.C.D.6.下列运算正确的是()A.a﹣3a=2a B.(ab2)0=ab2C.8=22±D.3×27=97.若实数m满足22210⎛⎫++=⎪⎝⎭mm,则下列对m值的估计正确的是()A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<28.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为()A.5 B.6 C.7 D.99.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为()A.60 B.30 C.240 D.12010.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)11.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.512.一元一次不等式组的解集中,整数解的个数是()A.4 B.5 C.6 D.7二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2cos60°-38+(5-π)°=____________.14.如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.15.不等式2x-5<7-(x-5)的解集是______________.16.若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.17.如图,在△ABC中,∠ACB=90°,AC=BC=3,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=2,则sin∠BFD的值为_____.18.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

【附5套中考模拟试卷】重庆市长寿区2019-2020学年中考数学四模试卷含解析

【附5套中考模拟试卷】重庆市长寿区2019-2020学年中考数学四模试卷含解析

重庆市长寿区2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知直线2y kx =-与直线32y x =+的交点在第一象限,则k 的取值范围是( )A .3k =B .3k <-C .3k >D .33k -<<2.学校小组5名同学的身高(单位:cm )分别为:147,156,151,152,159,则这组数据的中位数是( ).A .147B .151C .152D .156 3.12-的相反数是( ) A .2- B .2 C .12- D .124.在-3,12,0,-2这四个数中,最小的数是( ) A .3 B .12 C .0 D .-25.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .96.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A .5元,2元B .2元,5元C .4.5元,1.5元D .5.5元,2.5元7.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .8.如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为( )A .15°B .35°C .25°D .45°9.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿( )A .20B .25C .30D .3510.等腰Rt ABC △中,90BAC ∠=︒,D 是AC 的中点,EC BD ⊥于E ,交BA 的延长线于F ,若12BF =,则FBC V 的面积为( )A .40B .46C .48D .5011.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )A .B .C .D .12.如图,在矩形ABCD 中,连接BD ,点O 是BD 的中点,若点M 在AD 边上,连接MO 并延长交BC 边于点M’,连接MB,DM’则图中的全等三角形共有( )A .3对B .4对C .5对D .6对二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知x 1、x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根,则的值是______.14.已知,在Rt △ABC 中,∠C=90°,AC=9,BC=12,点 D 、E 分别在边AC 、BC 上,且CD:CE=3︰1.将△CDE 绕点D 顺时针旋转,当点C 落在线段DE 上的点 F 处时,BF 恰好是∠ABC 的平分线,此时线段CD 的长是________.15.如图,已知m n ∕∕,1105∠=︒,2140∠=︒则a ∠=________.16.如图的三角形纸片中,8,6,5AB cm BC cm AC cm ===,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则ADE ∆的周长为__________.17.64的立方根是_______.18.如图,Rt △ABC 的直角边BC 在x 轴上,直线y=23x ﹣23经过直角顶点B ,且平分△ABC 的面积,BC=3,点A 在反比例函数y=k x图象上,则k=_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本). 若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,用y (元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出y 与x 的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.20.(6分)综合与实践﹣﹣﹣折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.问题背景:在矩形ABCD 中,点E 、F 分别是BC 、AD 上的动点,且BE=DF ,连接EF ,将矩形ABCD 沿EF 折叠,点C 落在点C′处,点D 落在点D′处,射线EC′与射线DA 相交于点M .猜想与证明:(1)如图1,当EC′与线段AD 交于点M 时,判断△MEF 的形状并证明你的结论;操作与画图:(2)当点M 与点A 重合时,请在图2中作出此时的折痕EF 和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M 在线段DA 延长线上时,线段C′D'分别与AD ,AB 交于P ,N 两点时,C′E 与AB 交于点Q ,连接MN 并延长MN 交EF 于点O .求证:MO ⊥EF 且MO 平分EF ;(4)若AB=4,AD=43,在点E 由点B 运动到点C 的过程中,点D'所经过的路径的长为 .21.(6分)先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值. 22.(8分) 已知AC ,EC 分别是四边形ABCD 和EFCG 的对角线,直线AE 与直线BF 交于点H (1)观察猜想如图1,当四边形ABCD 和EFCG 均为正方形时,线段AE 和BF 的数量关系是 ;∠AHB = . (2)探究证明如图2,当四边形ABCD 和FFCG 均为矩形,且∠ACB =∠ECF =30°时,(1)中的结论是否仍然成立,并说明理由.(3)拓展延伸在(2)的条件下,若BC =9,FC =6,将矩形EFCG 绕点C 旋转,在整个旋转过程中,当A 、E 、F 三点共线时,请直接写出点B 到直线AE 的距离.23.(8分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t 表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0t 2≤<,2t 3≤<,3t 4≤<,t 4≥分为四个等级,并依次用A ,B ,C ,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:1()求本次调查的学生人数;2()求扇形统计图中等级B 所在扇形的圆心角度数,并把条形统计图补充完整; 3()若该校共有学生1200人,试估计每周课外阅读时间满足3t 4≤<的人数. 24.(10分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了 人;(2)请补全条形统计图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是 ;(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数25.(10分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.26.(12分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)27.(12分)先化简,后求值:(1﹣11a+)÷(2221a aa a-++),其中a=1.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据题意画出图形,利用数形结合,即可得出答案.【详解】根据题意,画出图形,如图:当3k=时,两条直线无交点;当3k>时,两条直线的交点在第一象限.故选:C.【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.2.C【解析】【分析】根据中位数的定义进行解答【详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【点睛】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.3.D【解析】【分析】【详解】因为-12+12=0,所以-12的相反数是12.故选D. 4.D 【解析】【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】12,0,﹣1这四个数中,﹣10<12, 故最小的数为:﹣1.故选D .【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.5.C【解析】【分析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a 的取值范围,取最大整数即可.【详解】当a-6=0,即a=6时,方程是-1x+6=0,解得x=63=84; 当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得263a ≤≈1.6, 取最大整数,即a=1.故选C .6.A【解析】【分析】可设1本笔记本的单价为x 元,1支笔的单价为y 元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可.【详解】设1本笔记本的单价为x 元,1支笔的单价为y 元,依题意有:322013x y x y +=-⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 故1本笔记本的单价为5元,1支笔的单价为2元.故选A .【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组.7.A【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.故选A .考点:三视图 视频8.A【解析】【分析】根据等腰三角形的性质以及三角形内角和定理可得∠A =50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC 的度数.【详解】∵AB=AC ,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB ,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,故选A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键. 9.B【解析】设可贷款总量为y ,存款准备金率为x ,比例常数为k ,则由题意可得:k y x=,4007.5%30k =⨯=, ∴30y x=, ∴当8%x =时,303758%y ==(亿), ∵400-375=25,∴该行可贷款总量减少了25亿.故选B.10.C【解析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=12×BF×AC=12×12×8=48,故选C.11.C【解析】A、B、D不是该几何体的视图,C是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.12.D【解析】【分析】根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.【详解】图中图中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB, △OBM≌△ODM’,△OBM’≌△ODM, △M’BM≌△MDM’, △DBM≌△BDM’,故选D.【点睛】此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6【解析】【分析】已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x12﹣2 x1﹣1=0,x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1,x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.【详解】∵x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x12﹣2 x1﹣1=0,x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1,x22=2 x2+1,。

重庆市长寿区2019-2020学年中考第二次模拟数学试题含解析

重庆市长寿区2019-2020学年中考第二次模拟数学试题含解析

重庆市长寿区2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.1201806x x=+B.1201806x x=-C.1201806x x=+D.1201806x x=-2.估算18的值是在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.若关于x 的一元一次不等式组312(1)x xx a-+⎧⎨-⎩pf无解,则a 的取值范围是()A.a≥3B.a>3 C.a≤3D.a<34.如图,平行四边形ABCD中,点A在反比例函数y=kx(k≠0)的图象上,点D在y轴上,点B、点C 在x轴上.若平行四边形ABCD的面积为10,则k的值是()A.﹣10 B.﹣5 C.5 D.105.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为()DC=3OG;(2)OG=12BC;(3)△OGE 是等边三角形;(4)16AOE ABCDS S∆=矩形.A.1 B.2 C.3 D.46.若2m﹣n=6,则代数式m-12n+1的值为()A.1 B.2 C.3 D.47.﹣2018的绝对值是()A .±2018B .﹣2018C .﹣12018D .20188.如图,△ABC 的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y =k x在第一象限内的图象与△ABC 有交点,则k 的取值范围是( )A .1≤k≤4B .2≤k≤8C .2≤k≤16D .8≤k≤169.如果(x -2)(x +3)=x 2+px +q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-610.下列说法正确的是( )A .某工厂质检员检测某批灯泡的使用寿命采用普查法B .已知一组数据1,a ,4,4,9,它的平均数是4,则这组数据的方差是7.6C .12名同学中有两人的出生月份相同是必然事件D .在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是1311.1cm 2的电子屏上约有细菌135000个,135000用科学记数法表示为( ) A .0.135×106 B .1.35×105C .13.5×104D .135×103 12.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(/)y mg m 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310/mg mB .室内空气中的含药量不低于38/mg m 的持续时间达到了11minC .当室内空气中的含药量不低于35/mg m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.14.计算:18-2=________.15.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60o ,则该直尺的宽度为____________cm .16.计算:(2018﹣π)0=_____.17.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用_____秒钟.18.如图,矩形OABC 的边OA ,OC 分别在轴、轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,B′和B 分别对应),若AB=1,反比例函数(0)k y k x=≠的图象恰好经过点A′,B ,则的值为_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,直线y 1=2x ﹣2与双曲线y 2=k x交于A 、C 两点,AB ⊥OA 交x 轴于点B ,且OA=AB .(2)求点C的坐标,并直接写出y1<y2时x的取值范围.20.(6分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.21.(6分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.22.(8分)直线y1=kx+b与反比例函数28 (0)y xx=>的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.(2)根据图象写出不等式kx+b ﹣8x≤0的解集; (3)若点P 是x 轴上一动点,当△COD 与△ADP 相似时,求点P 的坐标.23.(8分)已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果2a PQ a <<,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (﹣1,1),B (﹣1,﹣1),C (1,﹣1),D (1,1).(1)在11,02P ⎛⎫- ⎪⎝⎭,2132P ⎛ ⎝⎭,(32P 中,正方形ABCD 的“关联点”有_____; (2)已知点E 的横坐标是m ,若点E 在直线3y x =上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围;(3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线31y x =+与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围. 24.(10分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A 等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A 等吗?为什么?(3)如果一个同学综合评价要达到A 等,他的测试成绩至少要多少分?25.(10分)如图,直线y=kx+b(k≠0)与双曲线y=mx(m≠0)交于点A(﹣12,2),B(n,﹣1).求直线与双曲线的解析式.点P在x轴上,如果S△ABP=3,求点P的坐标.26.(12分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,,,作轴于E点.求一次函数的解析式和反比例函数的解析式;求的面积;根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.27.(12分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE 于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x=+,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.2.C【解析】【分析】,推出45,即可得出答案.【详解】,∴45,4和5之间.故选:C.【点睛】本题考查了估算无理数的大小和二次根式的性质,,题目比较好,难度不大.3.A【解析】【分析】先求出各不等式的解集,再与已知解集相比较求出a 的取值范围.【详解】由x﹣a>0 得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式组的解集是空集,∴a≥1.故选:A.【点睛】考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.A【解析】【分析】作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.【详解】作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|−k|,∴|−k|=1,∵k<0,∴k=−1.故选A.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.5.C【解析】∵EF ⊥AC ,点G 是AE 中点,∴OG=AG=GE=12AE , ∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE 是等边三角形,故(3)正确;设AE=2a ,则OE=OG=a ,由勾股定理得,, ∵O 为AC 中点,∴,∴BC=12,在Rt △ABC 中,由勾股定理得,, ∵四边形ABCD 是矩形,∴CD=AB=3a ,∴DC=3OG ,故(1)正确;∵OG=a ,12BC=2a , ∴OG≠12BC ,故(2)错误;∵S △AOE =12=22,S ABCD 2,∴S △AOE =16S ABCD ,故(4)正确; 综上所述,结论正确是(1)(3)(4)共3个,故选C .【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键. 6.D【解析】【分析】先对m-12n+1变形得到12(2m ﹣n )+1,再将2m ﹣n =6整体代入进行计算,即可得到答案.【详解】m12-n+1=12(2m﹣n)+1当2m﹣n=6时,原式=12×6+1=3+1=4,故选:D.【点睛】本题考查代数式,解题的关键是掌握整体代入法.7.D【解析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.详解:﹣2018的绝对值是2018,即20182018-=.故选D.点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.8.C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数kyx=经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数kyx=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.9.B【解析】【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【详解】解:∵(x-2)(x+3)=x2+x-1,又∵(x-2)(x+3)=x2+px+q,∴x2+px+q=x2+x-1,∴p=1,q=-1.故选:B.【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.10.B【解析】【分析】分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a的值为2,则方差为15[(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是12,故本选项错误.故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.11.B【解析】【分析】根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).【详解】解:135000用科学记数法表示为:1.35×1.故选B.【点睛】科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.C【解析】【分析】利用图中信息一一判断即可.【详解】解: A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选C.【点睛】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.10%【解析】【分析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案.【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1.答:这两年平均每年绿地面积的增长率为10%.故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量×(1±x)1=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.14.【解析】试题解析:原式==故答案为15.533【解析】【分析】连接OC,OD,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC,OD,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒= 直尺的宽度:105533 3.333CE OC OE =-== 533【点睛】考查垂径定理,熟记垂径定理是解题的关键.16.1.【解析】【分析】根据零指数幂:a 0=1(a≠0)可得答案.【详解】原式=1,故答案为:1.【点睛】此题主要考查了零次幂,关键是掌握计算公式.17.2.5秒.【解析】【分析】把此正方体的点A 所在的面展开,然后在平面内,利用勾股定理求点A 和B 点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于5,另一条直角边长等于2,利用勾股定理可求得.【详解】解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB =cm ;(2)展开底面右面由勾股定理得AB 5cm ;所以最短路径长为5cm ,用时最少:5÷2=2.5秒. 【点睛】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.18【解析】【详解】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,A′E ,∴A′(12m ,2m ), ∵反比例函数y=k x (k≠0)的图象恰好经过点A′,B ,∴12m•2m=m ,∴m=3,∴k=3.【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)24yx=;(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=12OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx =;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.20.(1)详见解析;(2)详见解析;(3).【解析】(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.(1)证明:连接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=AC,∠CBD=∠C=45°,∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,在△AED和△BFD中,∠A=∠FBD,AD=BD,∠EDA=∠FDB,∴△AED≌△BFD(ASA),∴AE=BF;(2)证明:连接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;(3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2,∵EB=2,BF=1,∴EF=,∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=,∵EF=,∴DE=×,∵∠G=∠A,∠GEB=∠AED,∴,即GE•ED=AE•EB,∴•GE=2,即GE=,则GD=GE+ED=.21.(1)120,54;(2)补图见解析;(3)660名;(4)1 3 .【解析】【分析】(1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360°乘以样本中电话人数所占比例;(2)先计算出喜欢使用短信的人数,然后补全条形统计图;(3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即可;(4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式求解.【详解】解:(1)这次统计共抽查学生24÷20%=120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是360°×18120=54°,故答案为120、54;(2)喜欢使用短信的人数为120﹣18﹣24﹣66﹣2=10(人),条形统计图为:(3)1200×66120=660,所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;(4)画树状图为:共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3, 所以甲乙两名同学恰好选中同一种沟通方式的概率13. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.也考查了统计图和用样本估计总体. 22. (1) y =﹣x+6;(2) 0<x <2或x >4;(3) 点P 的坐标为(2,0)或(﹣3,0).【解析】【分析】(1)将点A B ,坐标代入双曲线中即可求出m n ,,最后将点A B ,坐标代入直线解析式中即可得出结论;(2)根据点A B ,坐标和图象即可得出结论;(3)先求出点C D ,坐标,进而求出CD AD ,,设出点P 坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论.【详解】解:(1)∵点A m 4(,)和点B n 2(,)在反比例函数28(0)y x x=>的图象上, 884,2nm ∴==, 解得m 2n 4=,=,即A 24B 42(,),(,)把A 24B 42(,),(,)两点代入y1kx b +=中得2442k b k b +=⎧⎨+=⎩ , 解得:k 1b 6=-⎧⎨=⎩, 所以直线AB 的解析式为:y x 6+=﹣;(2)由图象可得,当x 0>时,80kx b x+-≤的解集为0x 2<<或x 4>. (3)由(1)得直线AB 的解析式为y x 6+=﹣,当x 0=时,y =6,C 06∴(,), OC 6∴=,当y 0=时,x 6=,∴D 点坐标为60(,)OD 6∴=,(2,4)CD A AD ∴==∴==Q .设P 点坐标为a 0(,),由题可以,点P 在点D 左侧,则PD 6a =﹣由CDO ADP ∠∠=可得①当COD APD V V ∽时,AD PD CD OD=,6a 6-=,解得a 2=, 故点P 坐标为20(,)②当COD PAD V V ∽时,AD CD OD PD=,=a 3=﹣, 即点P 的坐标为30(﹣,)因此,点P 的坐标为20(,)或30(﹣,)时,COD V 与ADP V 相似.【点睛】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.23.(1)正方形ABCD 的“关联点”为P 2,P 3;(2)12m ≤≤12m ≤≤-;(3n ≤≤【解析】【分析】(1)正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;(2)因为E 是正方形ABCD 的“关联点”,所以E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),因为E在直线y =上,推出点E 在线段FG 上,求出点F 、G 的横坐标,再根据对称性即可解决问题;(3)因为线段MN 上的每一个点都是正方形ABCD 的“关联点”,分两种情形:①如图3中,MN 与小⊙Q 相切于点F ,求出此时点Q 的横坐标;②M 如图4中,落在大⊙Q 上,求出点Q 的横坐标即可解决问题;【详解】(1)由题意正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD 的“关联点”为P 2,P 3;(2)作正方形ABCD 的内切圆和外接圆,∴OF =1,2OG =.∵E 是正方形ABCD 的“关联点”,∴E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),∵点E 在直线3y x =上,∴点E 在线段FG 上.分别作FF’⊥x 轴,GG’⊥x 轴,∵OF =1,2OG =∴12OF '=,22OG '=. ∴122m ≤≤. 根据对称性,可以得出2122m -≤≤-. ∴1222m ≤≤或2122m -≤≤-. (3)∵3M ⎛⎫ ⎪ ⎪⎝⎭、N (0,1),∴33OM =,ON =1. ∴∠OMN =60°.∵线段MN 上的每一个点都是正方形ABCD的“关联点”,①MN 与小⊙Q 相切于点F ,如图3中,∵QF =1,∠OMN =60°,∴233QM =. ∵3OM =, ∴33OQ =. ∴13,03Q ⎛⎫ ⎪ ⎪⎝⎭. ②M 落在大⊙Q 上,如图4中,∵2QM =3OM = ∴32OQ =.∴2Q ⎫⎪⎪⎭.n ≤≤【点睛】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.24.(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分.【解析】试题分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;(2)利用测试成绩占80%,平时成绩占20%,进而得出答案;(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值.试题解析:(1)设孔明同学测试成绩为x 分,平时成绩为y 分,依题意得:185{80%20%91x y x y +=+=,解之得:90{95x y ==.答:孔明同学测试成绩位90分,平时成绩为95分;(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能. (3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a 分,根据题意可得:20+80%a≥80,解得:a≥1.答:他的测试成绩应该至少为1分.考点:一元一次不等式的应用;二元一次方程组的应用.25.(1)y=﹣2x+1;(2)点P 的坐标为(﹣32,0)或(52,0). 【解析】【分析】(1)把A 的坐标代入可求出m ,即可求出反比例函数解析式,把B 点的坐标代入反比例函数解析式,即可求出n ,把A ,B 的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C 的坐标,设点P 的坐标为(x,0),根据三角形的面积公式结合S △ABP =3,即可得出122x -=,解之即可得出结论. 【详解】(1)∵双曲线y=mx(m≠0)经过点A(﹣12,2),∴m=﹣1.∴双曲线的表达式为y=﹣1x.∵点B (n,﹣1)在双曲线y=﹣1x上,∴点B的坐标为(1,﹣1).∵直线y=kx+b经过点A(﹣12,2),B(1,﹣1),∴1k b=22k b=1⎧-+⎪⎨⎪+-⎩,解得k=2b=1-⎧⎨⎩∴直线的表达式为y=﹣2x+1;(2)当y=﹣2x+1=0时,x=12,∴点C(12,0).设点P的坐标为(x,0),∵S△ABP=3,A(﹣12,2),B(1,﹣1),∴12×3|x﹣12|=3,即|x﹣12|=2,解得:x1=﹣32,x2=52.∴点P的坐标为(﹣32,0)或(52,0).【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S△ABP=3,得出122x-=.26.(1),;(2)8;(3)或.【解析】试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可求解.试题解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.∵CE⊥x轴于点E,tan∠ABO==,∴OA=2,CE=3,∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得:.故直线AB的解析式为.∵反比例函数的图象过C,∴3=,∴k=﹣1,∴该反比例函数的解析式为;(2)联立反比例函数的解析式和直线AB的解析式可得:,可得交点D的坐标为(1,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=1,故△OCD的面积为2+1=8;(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣2或0<x<1.点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.27.(1)证明见解析;(2)35.【解析】【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,AD AEAB AC=,又易证△EAF∽△CAG,所以AF AEAG AC=,从而可求解.【详解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴35 AD AE AB AC==由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴AF AE AG AC=,∴AF AG=35考点:相似三角形的判定。

2019-2020学年重庆市长寿区中考数学模拟试卷((有标准答案))

2019-2020学年重庆市长寿区中考数学模拟试卷((有标准答案))

重庆市长寿区中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.在﹣1,0,2,四个数中,最大的数是()A.﹣1 B.0 C.2 D.2.下列航空公司的标志中,是中心对称图形的是()A.B.C.D.3.计算(﹣ab2)3的结果是()A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab24.下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班40名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查5.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m2﹣cd+值为()A.﹣3 B.3 C.﹣5 D.3或﹣56.在函数中,自变量x的取值范围是()A.x≥﹣1 B.x>﹣1且x≠C.x≥﹣1且x≠D.x>﹣17.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是()A.6 B.9 C.21 D.258.已知m=,则以下对m的值估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<69.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n需几根火柴棒()A.2+7n B.8+7n C.4+7n D.7n+110.如图,菱形ABCD的边长为4cm,∠A=60°,弧BD是以点A为圆心,AB长为半径的弧,弧CD是以点B 为圆心,BC长为半径的弧,则阴影部分的面积为()A.2cm2B.4cm2C.4cm2D.πcm211.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米12.若数a使关于x的分式方程+=的解为正数,使关于y的不等式组无解,则所有满足条件的整数a的值之积是()A.360 B.90 C.60 D.15二.填空题(共6小题,满分24分,每小题4分)13.可燃冰是一种新型能源,它的密度很小,1cm3可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是.14.计算: +(π﹣3)0﹣(﹣)﹣2=.15.如图,BD是⊙O的直径,点A、C在圆周上,∠CBD=20°,则∠A的度数为.16.中秋节是我国四大传统文化节日之一,为每年的农历八月十五,自古以来都有赏月吃月饼的习俗,重庆某大型超市为了了解市民对“云腿”月饼的喜好程度,特意在三峡广场做了试吃及问卷调查活动,将市民对“云腿”月饼的喜好程度分为“A非常喜欢”、“B比较喜欢”、“C感觉一般”、“D不太喜欢”四个等级,并将四个等级分别计分为:A等级10分,B等级8分,C等级5分,D等级2分,根据调查结果绘制出如图所示的条形统计图,请问喜好“云腿”程度的平均分是分.17.牛牛和峰峰在同一直线跑道AB上进行往返跑,牛牛从起点A出发,峰峰在牛牛前方C处与牛牛同时出发,当牛牛超越峰峰到达终点B处时,休息了100秒才又以原速返回A地,而峰峰到达终点B处后马上以原来速度的3.2倍往回跑,最后两人同时到达A地,两人距B地的路程记为y(米),峰峰跑步时间记为x(秒),y和x的函数关系如图所示,则牛牛和峰峰第一次相遇时他们距A点米.18.在正方形ABCD中,AB=4,E为BC中点,连接AE,点F为AE上一点,FE=2,FG⊥AE交DC于G,将GF绕着G点逆时针旋转使得F点正好落在AD上的点H处,过点H作HN⊥HG交AB于N点,交AE于M 点,则S=.△MNF三.解答题(共6小题,满分16分)19.如图,等腰Rt△ABC的顶点B落在直线l2上,若∠=75°,∠2=60°.求证:l1∥l2.20.目前“校园手机”现象越来越受到社会关注,针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)在此次调查活动中,初三(1)班有A1、A2两位家长对中学生带手机持反对态度,初三(2)班有B 1、B2两位学生家长对中学生带手机也持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.21.化简:(1)(x﹣2y)2﹣(x+4y)(y﹣x);(2)().22.如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.23.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)24.如图,AB∥DE,点F、C在AD上,AB=DE,且AF=FC=CD.(1)求证:△ABC≌△DEF;(2)延长EF与AB相交于点G,G为AB的中点,FG=4,求EG的长.四.解答题(共2小题,满分22分)25.在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568 (填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.26.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.重庆市长寿区中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<2,故在﹣1,0,2,四个数中,最大的数是2.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【分析】根据积的乘方与幂的乘方计算可得.【解答】解:(﹣ab2)3=(﹣a)3•(b2)3=﹣a3b6,故选:B.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方的计算公式.4.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A:长江水污染的情况,由于范围较大,适合用抽样调查;故此选项错误;B、对端午节期间市场上粽子质量情况的调查,数量较大;不容易掌控,适合抽样调查,故此选项错误;C:对某班40名同学体重情况的调查,数量少,范围小,采用全面调查;故此选项正确;D:对某类烟花爆竹燃放安全情况的调查,具有破坏性,应选择抽样调查;故此选项错误;故选:C.【点评】此题主要考查了适合普查的方式,一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.基于以上各点,“了解全班同学本周末参加社区活动的时间”适合普查,其它几项都不符合以上特点,不适合普查.5.【分析】由题意得a+b=0,cd=1,m=±2,由此可得出代数式的值.【解答】解:由题意得:a+b=0,cd=1,m=±2代数式可化为:m2﹣cd=4﹣1=3故选:B.【点评】本题考查代数式的求值,根据题意得出a+b=0,cd=1,m=±2的信息是关键.6.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由题意得,x+1≥0且2x﹣1≠0,解得x≥﹣1且x≠.故选:C.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.【分析】先判断△ADE∽△ABC,再根据相似三角形的面积之比=相似比的平方即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵AD=2,DB=3,∴==,∴=()2=,∵△ADE的面积是4,∴△ABC的面积是25,∴四边形DBCE的面积是25﹣4=21,故选:C.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积的比等于相似比的平方是解题的关键.8.【分析】估算确定出m的范围即可.【解答】解:m=+=2+,∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B .【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.9.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n 个图案需火柴棒8+7(n ﹣1)=7n +1根.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n 需火柴棒:8+7(n ﹣1)=7n +1根;故选:D .【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.10.【分析】连接BD ,判断出△ABD 是等边三角形,根据等边三角形的性质可得∠ABD =60°,再求出∠CBD=60°,然后求出阴影部分的面积=S △ABD ,计算即可得解.【解答】解:如图,连接BD ,∵四边形ABCD 是菱形,∴AB =AD ,∵∠A =60°,∴△ABD 是等边三角形,∴∠ABD =60°,又∵菱形的对边AD ∥BC ,∴∠ABC =180°﹣60°=120°,∴∠CBD =120°﹣60°=60°,∴S 阴影=S 扇形BDC ﹣(S 扇形ABD ﹣S △ABD ),=S △ABD ,=×4×=4cm 2.故选:B .【点评】本题考查了菱形的性质,扇形的面积的计算,熟记性质并作辅助线构造出等边三角形是解题的关键.11.【分析】如图延长AB 交ED 的延长线于M ,作CJ ⊥DM 于J .则四边形BMJC 是矩形.在Rt △CDJ 中求出CJ、DJ,再根据,tan∠AEM=构建方程即可解决问题;【解答】解:如图延长AB交ED的延长线于M,作CJ⊥DM于J.则四边形BMJC是矩形.在Rt△CJD中,==,设CJ=4k,DJ=3k,则有9k2+16k2=4,∴k=,∴BM=CJ=,BC=MJ=1,DJ=,EM=MJ+DJ+DE=,在Rt△AEM中,tan∠AEM=,∴1.6=,解得AB≈13.1(米),故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.【分析】表示出分式方程的解,由分式方程解为正数,得到a的取值范围;不等式组变形后,根据不等式组无解,确定出a的范围,进而求出a的值,得到所有满足条件的整数a的值之积.【解答】解:分式方程去分母得:2a﹣8=x﹣3,解得:x=2a﹣5,由分式方程的解为正数,得到2a﹣5>0且2a﹣5≠3,解得:a>且a≠4;不等式组整理得:,由不等式组无解,得到5﹣2a≥﹣7,即a≤6,∴a的取值范围是:<a≤6且a≠4,∴满足条件的整数a的值为3,5,6,∴整数a的值之积是90.故选:B.【点评】此题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.二.填空题(共6小题,满分24分,每小题4分)13.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00092=9.2×10﹣4,故答案为:9.2×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【分析】原式利用算术平方根定义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=4+1﹣9=﹣4,故答案为:﹣4【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.【分析】根据直径所对的圆周角是直角,得∠BCD=90°,然后由直角三角形的两个锐角互余、同弧所对的圆周角相等求得∠A=∠D=70°.【解答】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=20°,∴∠D=70°(直角三角形的两个锐角互余),∴∠A=∠D=70°(同弧所对的圆周角相等);故答案是:70°.【点评】本题考查了圆周角定理.在同圆或等圆中,同弧或等弧所对的圆周角相等.16.【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【解答】解:根据题意知喜好“云腿”程度的平均分是=7.4(分),故答案为:7.4.【点评】此题考查了加权平均数,掌握加权平均数的计算公式和从统计图中得到必要的信息是解决问题的关键.17.【分析】根据题意和函数图象中的数据可以分别求得峰峰和牛牛的速度,进而求得他们第一次相遇的时刻,从而可以求得牛牛和峰峰第一次相遇时他们距A 点的距离.【解答】解:由图象可得,牛牛的速度为:800÷(300﹣100)=4米/秒,设峰峰从C 到B 的速度为a 米/秒,,解得,a =1.5米/秒,设牛牛和峰峰第一相遇的时刻为第t 秒,4t =1.5t +(800﹣500),解得,t =120,∴牛牛和峰峰第一次相遇时他们距A 点的距离是:4×120=480米,故答案为:480【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】作过B 作BP ⊥AE 于P ,根据勾股定理计算BE =BC =2,AE ==10,得B ,F ,G 共线,作辅助线,构建直角三角形,利用同角的三角函数得:FQ =,BQ =,分别计算FS 、GS 、DG 、DH 、AH 、AN 的长,利用面积差S △MNF =S △ANF ﹣S △AMN 求值【解答】解:过B 作BP ⊥AE 于P ,∵正方形ABCD 中,AB =4,E 为BC 中点, ∴BE =BC =2, ∴AE ==10, ∴BP ===4, ∴PE ===2,∴EF =EP ,∴F 与P 重合,∴B ,F ,G 共线, 过F 作OS ⊥DC ,交AB 于O ,DC 于S ,则OS ⊥AB ,过F 作FQ ⊥BC 于Q ,sin∠FBE==,=,∴FQ=,∴BQ=,易得矩形OFQB,∴FO=BQ=,∴FS=4﹣=,AO=AB﹣OB=4﹣=,∵GF⊥AE,∴∠AFG=90°,∴∠GFS+∠AFH=∠AFH+∠FAH,∴∠GFS=∠FAB,∴tan∠FAB=tan∠GFS==,∴=,∴GS=,∴DG=DS﹣GS=AO﹣GS=﹣=2,∵GH=GF,∴DH2+DG2=GS2+FS2,∴DH2+(2)2=()2+()2,∴DH=4,∴AH=4﹣4,tan∠ANH=tan∠DHG==,=,AN=,过M作MR⊥AB于R,设MR=x,则AR=2x,tan∠ANH=tan∠DHG==,∴=,∴RN=,由AR+RN=AN得:2x+=,x=6﹣2,∴MR=6﹣2,∴S△MNF =S△ANF﹣S△AMN=AN•FO﹣AN•MR=AN(FO﹣MR)=××(﹣6+2)=.故答案为:.【点评】本题考查了正方形的性质、旋转的性质、三角函数、勾股定理等知识,在四边形的计算中,常运用同角的三角函数或勾股定理列式求线段的长,也可以利用证明两三角形相似求线段的长,相比较而言,利用同角的三角函数比较简单,本题计算量大,有难度.三.解答题(共6小题,满分16分)19.【分析】根据平角的定义得到∠3=75°,根据平行线的判定定理即可得到结论.【解答】证明:∵∠2=60°∠ABC=45°,∴∠3=75°,∵∠1=75°,∴∠3=∠1,∴l1∥l2.【点评】本题考查了平行线的判定,等腰直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.20.【分析】(1)用D类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以C类所占的百分比得到扇形C所对的圆心角的度数,再用200乘以C类所占的百分比得到C类人数,然后补全图1;(3)画树状图展示所有12种等可能结果,再找出2人来自不同班级的结果数,然后根据概率公式求解.【解答】解:(1)120÷60%=200(人),所以调查的家长数为200人;(2)扇形C所对的圆心角的度数=360°×(1﹣20%﹣15%﹣60%)=18°,C类的家长数=200×(1﹣20%﹣15%﹣60%)=10(人),补充图为:(3)设初三(1)班两名家长为A1、A2,初三(2)班两名家长为B1,B2,画树状图为共有12种等可能结果,其中2人来自不同班级共有8种,所以2人来自不同班级的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了扇形统计图.21.【分析】(1)先利用完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2﹣4xy+4y2﹣(xy﹣x2+4y2﹣4xy)=x2﹣4xy+4y2﹣xy+x2﹣4y2+4xy=2x2﹣xy;(2)原式=[﹣]÷(﹣)=÷=•=﹣=﹣【点评】本题主要考查整式和分式的混合运算,解题的关键是掌握整式和分式混合运算顺序和运算法则.22.【分析】(1)由直线y =x +b 与双曲线y =相交于A ,B 两点,A (2,5),即可得到结论;(2)过A 作AD ⊥y 轴于D ,BE ⊥y 轴于E 根据y =x +3,y =,得到B (﹣5,﹣2),C (﹣3,0),求出OC =3,然后根据三角形的面积公式即可得到结论.【解答】解:(1)∵直线y =x +b 与双曲线y =相交于A ,B 两点,已知A (2,5),∴5=2+b ,5=.解得:b =3,k =10.(2)如图,过A 作AD ⊥y 轴于D ,过B 作BE ⊥y 轴于E ,∴AD =2.∵b =3,k =10,∴y =x +3,y =.由得:或,∴B 点坐标为(﹣5,﹣2).∴BE =5.设直线y =x +3与y 轴交于点C .∴C 点坐标为(0,3).∴OC =3.∴S △AOC =OC •AD =×3×2=3,S △BOC =OC •BE =×3×5=.∴S △AOB =S △AOC +S △BOC =. 【点评】本题考查了反比例函数与一次函数的交点,三角形面积的计算,正确的识别图形是解题的关键.23.【分析】(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.【解答】解:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量为y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.【点评】本题是增长率的问题,要记牢增长率计算的一般规律,然后读清题意找准关键语.24.【分析】(1)要证△ABC≌△DEF,只要证易证AC=DF,∠A=∠D即可;(2)由(1)可得EF=BC,根据三角形中位线性质可知BC=2FG=8,由EG=EF+FG计算即可.【解答】(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=FC=CD∴AC=DF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),(2)解:∵AF=FC,∴F为AC中点,又∵G为AB中点,∴GF为△ABC的中位线,∴BC=2GF=8,又∵△ABC≌△DEF,∴EF=BC=8,∴EG=EF+FG=BC+FG=8+4=12,【点评】本题考查了平行线的性质、三角形全等的判定与性质以及三角形的中位线的性质,题目比较简单.利用全等三角形的性质解答是此题的关键.四.解答题(共2小题,满分22分)25.【分析】(1)根据定义表示31568的“顺数”与“逆数”,计算它们的差能否被17整除,可判断31568是“最佳拍档数”;根据定义设这个首位是5的四位“最佳拍档数”N,并表示出来,计算的它的“顺数”与“逆数”之差,根据“最佳拍档数”的定义,分情况讨论可得结论;(2)先证明三位的正整数K的“顺数”与“逆数”之差一定能被30整除,再证明四位的正整数K的“顺数”与“逆数”之差一定能被30整除,同理可得结论.【解答】(1)解:31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568﹣315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;故答案为:是;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z +600+10y +x )﹣(1000z +100y +60+x )=540﹣90y =90(6﹣y ),∴任意三位正整数K 的“顺数”与“逆数”之差一定能被30整除,设四位正整数K 的个位数字为x ,十位数字为y ,百位数字为z ,千位数字为a ,∴(10000a +6000+100z +10y +x )﹣(10000a +1000z +100y +60+x )=5940﹣900z ﹣90y =90(66﹣10z ﹣y ), ∴任意四位正整数K 的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K 的“顺数”与“逆数”之差一定能被30整除.【点评】本题主要考查了“顺数”、“逆数”、“最佳拍档数”的定义及应用,熟练掌握几位数的表示方法,理解新定义,计算“顺数”与“逆数”之差,分解因式是解题的关键.26.【分析】(1)由A 、B 两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD ,则可知CD ∥x 轴,由A 、F 的坐标可知F 、A 到CD 的距离,利用三角形面积公式可求得△ACD 和△FCD 的面积,则可求得四边形ACFD 的面积;②由题意可知点A 处不可能是直角,则有∠ADQ =90°或∠AQD =90°,当∠ADQ =90°时,可先求得直线AD 解析式,则可求出直线DQ 解析式,联立直线DQ 和抛物线解析式则可求得Q 点坐标;当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,则可用t 表示出k ′,设直线DQ 解析式为y =k 2x +b 2,同理可表示出k 2,由AQ ⊥DQ 则可得到关于t 的方程,可求得t 的值,即可求得Q 点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y =﹣x 2+2x +3;(2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴F (1,4),∵C (0,3),D (2,3),∴CD =2,且CD ∥x 轴,∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4;②∵点P 在线段AB 上,∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°,i .当∠ADQ =90°时,则DQ ⊥AD ,∵A (﹣1,0),D (2,3),∴直线AD 解析式为y =x +1,∴可设直线DQ 解析式为y =﹣x +b ′,把D (2,3)代入可求得b ′=5,∴直线DQ 解析式为y =﹣x +5,联立直线DQ 和抛物线解析式可得,解得或,∴Q (1,4); ii .当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,把A 、Q 坐标代入可得,解得k 1=﹣(t ﹣3),设直线DQ 解析式为y =k 2x +b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t =, 当t =时,﹣t 2+2t +3=, 当t =时,﹣t 2+2t +3=, ∴Q 点坐标为(,)或(,); 综上可知Q 点坐标为(1,4)或(,)或(,). 【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

重庆市长寿区2019-2020学年中考第四次模拟数学试题含解析

重庆市长寿区2019-2020学年中考第四次模拟数学试题含解析

重庆市长寿区2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列等式正确的是( )A .x 3﹣x 2=xB .a 3÷a 3=aC .231(2)(2)2-÷-=- D .(﹣7)4÷(﹣7)2=﹣72 2.计算﹣2+3的结果是( )A .1B .﹣1C .﹣5D .﹣63.如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .1254.已知:如图,在扇形OAB 中,110AOB ∠=︒,半径18OA =,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为( )A .2πB .3πC .4πD .5π5.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°6.矩形具有而平行四边形不具有的性质是( )A .对角相等B .对角线互相平分C .对角线相等D .对边相等7.下列运算结果正确的是( )A .(x 3﹣x 2+x )÷x=x 2﹣xB .(﹣a 2)•a 3=a 6C .(﹣2x 2)3=﹣8x 6D .4a 2﹣(2a )2=2a 2 8.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=50°,AO ∥DC ,则∠B 的度数为( )A.50°B.55°C.60°D.65°9.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC CB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.10.下列运算结果正确的是()A.3a2-a2 = 2 B.a2·a3= a6C.(-a2)3 = -a6D.a2÷a2 = a11.-5的倒数是A.15B.5 C.-15D.-512.观察下列图形,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2018年3月2日,大型记录电影《厉害了,我的国》登陆全国各大院线.某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超过10人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a(a>10),则应付票价总额为_____元.(用含a的式子表示)14.将多项式xy 2﹣4xy+4y 因式分解:_____.15.如图,已知Rt △ABC 中,∠B=90°,∠A=60°,AC=23+4,点M 、N 分别在线段AC 、AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为__.16.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.17.如图,在△ABC 中,∠B =40°,∠C =45°,AB 的垂直平分线交BC 于点D ,AC 的垂直平分线交BC 于点E ,则∠DAE =______.18.如果分式4x x +的值是0,那么x 的值是______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t 表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0t 2≤<,2t 3≤<,3t 4≤<,t 4≥分为四个等级,并依次用A ,B ,C ,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:()求本次调查的学生人数;1()求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;2≤<的人数.()若该校共有学生1200人,试估计每周课外阅读时间满足3t4320.(6分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整.(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率.21.(6分)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.点的坐标是;若直线经过点,求直线的解析式;对于一次函数,当随的增大而减小时,直接写出的取值范围.22.(8分)计算:(3﹣2)0+11()3-+4cos30°﹣|﹣12|.23.(8分)已知:如图,在Rt △ABO 中,∠B=90°,∠OAB=10°,OA=1.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN=60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题:(发现)(1)MN n 的长度为多少;(2)当t=2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积.(探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.(拓展)当MN n 与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.24.(10分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.25.(10分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图(1)将条形统计图补充完整;(2)该班团员在这一个月内所发箴言的平均条数是________;(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.26.(12分)如图,已知O e 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =。

重庆市长寿区2019-2020学年中考数学四月模拟试卷含解析

重庆市长寿区2019-2020学年中考数学四月模拟试卷含解析

重庆市长寿区2019-2020学年中考数学四月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个2.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为()A.B.C.D.3.下列关于x的方程中,属于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.ax2+bx+c=04.若关于x的一元二次方程2210-++=有两个不相等的实数根,则一次函数x x kb=+的图象可能是:y kx bA.B. C.D.5.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是( )A .AE=6cmB .4sin EBC 5∠=C .当0<t≤10时,22y t 5=D .当t=12s 时,△PBQ 是等腰三角形6.下列各式中计算正确的是 A .()222x y x y +=+B .()236x x =C .()2236x x = D .224a a a +=7.如图,平面直角坐标系xOy 中,四边形OABC 的边OA 在x 轴正半轴上,BC ∥x 轴,∠OAB =90°,点C (3,2),连接OC .以OC 为对称轴将OA 翻折到OA′,反比例函数y =kx的图象恰好经过点A′、B ,则k 的值是( )A .9B .133C .16915D .338.如图,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC'的位置,此时露在水面上的鱼线B′C′为33m ,则鱼竿转过的角度是( )A .60°B .45°C .15°D .90°9.如图,等腰△ABC 的底边BC 与底边上的高AD 相等,高AD 在数轴上,其中点A ,D 分别对应数轴上的实数﹣2,2,则AC 的长度为( )A .2B .4C .25D .4510.在,90ABC C ∆∠=o 中,2AC BC =,则tan A 的值为( ) A .12B .2C .5 D .2511.若式子1x -在实数范围内有意义,则 x 的取值范围是( ) A .x >1B .x >﹣1C .x≥1D .x≥﹣112.以下各图中,能确定12∠=∠的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A 、B 、C 、D ,得到四边形ABCD ,若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为_____.14.今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图).已知立杆AD 高度是4m ,从侧面C 点测得警示牌顶端点A 和底端B 点的仰角(∠ACD 和∠BCD )分别是60°,45°.那么路况警示牌AB 的高度为_____.15.如图,在菱形ABCD 中,AB =BD .点E 、F 分别在AB 、AD 上,且AE =DF .连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .下列结论:①△AED ≌△DFB ;②S 四边形BCDG =34CG 2;③若AF =2DF ,则BG =6GF .其中正确的结论有_____.(填序号)16.对于任意不相等的两个实数,a b ,定义运算※如下:a ※b =a b a b +-,如3※2=3232+-=5.那么8※4= .17.如图,在Rt AOB ∆中,42OA OB ==.O e 的半径为2,点P 是AB 边上的动点,过点P 作O e 的一条切线PQ (点Q 为切点),则线段PQ 长的最小值为______.18.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP =2,BP =6,∠APC =30°,则CD 的长为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?20.(6分)如图,在△ABC 中,AB=BC ,CD ⊥AB 于点D ,CD=BD .BE 平分∠ABC ,点H 是BC 边的中点.连接DH ,交BE 于点G .连接CG . (1)求证:△ADC ≌△FDB ; (2)求证:1CE BF 2=; (3)判断△ECG 的形状,并证明你的结论.21.(6分)计算:(1)﹣12018+|3﹣2|+2cos30°;(2)(a+1)2+(1﹣a)(a+1);22.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.23.(8分)如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BF∥AC.24.(10分)为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:某市自来水销售价格表类别月用水量(立方米)供水价格(元/立方米)污水处理费(元/立方米)居民生活用水阶梯一0~18(含18) 1.901.00 阶梯二18~25(含25)2.85阶梯三25以上 5.70(注:居民生活用水水价=供水价格+污水处理费)(1)当居民月用水量在18立方米及以下时,水价是_____元/立方米.(2)4月份小明家用水量为20立方米,应付水费为:18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.(3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议25.(10分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.26.(12分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经了解得到以下信息(如表):工程队每天修路的长度(米)单独完成所需天数(天)每天所需费用(元)甲队30 n 600乙队m n﹣14 1160(1)甲队单独完成这项工程所需天数n=,乙队每天修路的长度m=(米);(2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y为正整数).①当x=90时,求出乙队修路的天数;②求y与x之间的函数关系式(不用写出x的取值范围);③若总费用不超过22800元,求甲队至少先修了多少米.27.(12分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G,GB=GC.(1)求证:四边形ABCD是矩形;(1)若△GEF的面积为1.①求四边形BCFE的面积;②四边形ABCD的面积为.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.2.B【解析】【分析】匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答.【详解】∵甲、乙两人分别以4m/s和5m/s的速度,∴两人的相对速度为1m/s,设乙的奔跑时间为t(s),所需时间为20s,两人距离20s×1m/s=20m,故选B.【点睛】此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答.3.B【解析】【分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【详解】A. 未知数的最高次数不是2 ,不是一元二次方程,故此选项错误;B. 是一元二次方程,故此选项正确;C. 未知数的最高次数是3,不是一元二次方程,故此选项错误;D. a=0时,不是一元二次方程,故此选项错误; 故选B. 【点睛】本题考查一元二次方程的定义,解题的关键是明白: 一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2. 4.B 【解析】 【分析】 【详解】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+V>, 解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B. 5.D 【解析】(1)结论A 正确,理由如下:解析函数图象可知,BC=10cm ,ED=4cm , 故AE=AD ﹣ED=BC ﹣ED=10﹣4=6cm . (2)结论B 正确,理由如下:如图,连接EC ,过点E 作EF ⊥BC 于点F ,由函数图象可知,BC=BE=10cm ,BEC 11S 40BC EF 10EF 5EF 22∆==⋅⋅=⋅⋅=, ∴EF=1.∴EF 84sin EBC BE 105∠===. (3)结论C 正确,理由如下: 如图,过点P 作PG ⊥BQ 于点G ,∵BQ=BP=t ,∴2BPQ 11142y S BQ PG BQ BP sin EBC t t t 22255∆==⋅⋅=⋅⋅⋅∠=⋅⋅⋅=. (4)结论D 错误,理由如下:当t=12s 时,点Q 与点C 重合,点P 运动到ED 的中点, 设为N ,如图,连接NB ,NC .此时AN=1,ND=2,由勾股定理求得:NB=2NC=217 ∵BC=10,∴△BCN 不是等腰三角形,即此时△PBQ 不是等腰三角形. 故选D . 6.B 【解析】 【分析】根据完全平方公式对A 进行判断;根据幂的乘方与积的乘方对B 、C 进行判断;根据合并同类项对D 进行判断. 【详解】A. ()2222x y x xy y +=++,故错误. B. ()236x x =,正确.C. ()2239x x =,故错误. D. 2222a a a +=, 故错误. 故选B. 【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键. 7.C 【解析】【分析】设B (2k,2),由翻折知OC 垂直平分AA′,A′G =2EF ,AG =2AF ,由勾股定理得OC =13,根据相似三角形或锐角三角函数可求得A′(526,613),根据反比例函数性质k =xy 建立方程求k .【详解】如图,过点C 作CD ⊥x 轴于D ,过点A′作A′G ⊥x 轴于G ,连接AA′交射线OC 于E ,过E 作EF ⊥x 轴于F ,设B (2k,2), 在Rt △OCD 中,OD =3,CD =2,∠ODC =90°, ∴OC 222232OD CD ++13 由翻折得,AA′⊥OC ,A′E =AE ,∴sin ∠COD =AE CDOA OC=, ∴AE =213213k CD OA OC ⨯⋅,∵∠OAE+∠AOE =90°,∠OCD+∠AOE =90°, ∴∠OAE =∠OCD , ∴sin ∠OAE =EF ODAE OC==sin ∠OCD , ∴EF =1331313OD AE k OC ⋅==, ∵cos ∠OAE =AF CDAE OC==cos ∠OCD , ∴1321313CD AF AE k OC =⋅==, ∵EF ⊥x 轴,A′G ⊥x 轴, ∴EF ∥A′G ,∴12EF AF AE A G AG AA ==='', ∴6213A G EF k '==,4213AG AF k ==,∴14521326OG OA AG k k k =-=-=,∴A′(526k ,613k ), ∴562613k k k ⋅=, ∵k≠0, ∴169=15k , 故选C .【点睛】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B 的坐标,表示出点A′的坐标.8.C【解析】试题解析:∵sin ∠CAB=62BC AC == ∴∠CAB=45°.∵B C sin C AB AC '''∠===' ∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C .考点:解直角三角形的应用.9.C【解析】【分析】根据等腰三角形的性质和勾股定理解答即可.【详解】解:∵点A ,D 分别对应数轴上的实数﹣2,2,∴AD =4,∵等腰△ABC 的底边BC 与底边上的高AD 相等,∴BC =4,∴CD =2,在Rt △ACD 中,AC =,故选:C .此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理.10.A【解析】【分析】本题可以利用锐角三角函数的定义求解即可.【详解】解:tanA=BC AC, ∵AC=2BC ,∴tanA=12. 故选:A .【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 .11.A【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】在实数范围内有意义, ∴ x ﹣1>0, 解得:x >1.故选:A .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.12.C【解析】【分析】逐一对选项进行分析即可得出答案.【详解】A 中,利用三角形外角的性质可知12∠>∠,故该选项错误;B 中,不能确定12∠∠,的大小关系,故该选项错误;C 中,因为同弧所对的圆周角相等,所以12∠=∠,故该选项正确;D 中,两直线不平行,所以12∠≠∠,故该选项错误.【点睛】本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.10πcm 1.【解析】【分析】根据已知条件得到四边形ABCD 是矩形,求得图中阴影部分的面积=S 扇形AOD +S 扇形BOC =1S 扇形AOD ,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=71°,于是得到结论.【详解】解:∵AC 与BD 是⊙O 的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD 是矩形,∴S △ABO =S △CDO =S △AOD =S △BOD ,∴图中阴影部分的面积=S 扇形AOD +S 扇形BOC =1S 扇形AOD ,∵OA=OB ,∴∠BAC=∠ABO=36°,∴∠AOD=71°,∴图中阴影部分的面积=1×2725360π⨯=10π, 故答案为10πcm 1.点睛:本题考查了扇形的面积,矩形的判定和性质,圆周角定理的推论,三角形外角的性质,熟练掌握扇形的面积公式是解题的关键.14【解析】【分析】由特殊角的正切值即可得出线段CD 的长度,在Rt △BDC 中,由∠BCD=45°,得出CD=BD ,求出BD 长度,再利用线段间的关系即可得出结论.【详解】在Rt △ADC 中,∠ACD=60°,AD=4∴tan60°=AD CD∴CD=3∵在Rt △BCD 中,∠BAD=45∘,∴∴路况警示牌AB 的高度为123-m .故答案为:123-. 【点睛】 解直角三角形的应用-仰角俯角问题.15.①②③【解析】【分析】(1)由已知条件易得∠A=∠BDF=60°,结合BD=AB=AD ,AE=DF ,即可证得△AED ≌△DFB ,从而说明结论①正确;(2)由已知条件可证点B 、C 、D 、G 四点共圆,从而可得∠CDN=∠CBM ,如图,过点C 作CM ⊥BF 于点M ,过点C 作CN ⊥ED 于点N ,结合CB=CD 即可证得△CBM ≌△CDN ,由此可得S 四边形BCDG =S 四边形CMGN =2S △CGN ,在Rt △CGN 中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=12CG ,CN=2CG ,由此即可求得S △CGN =8CG 2,从而可得结论②是正确的;(3)过点F 作FK ∥AB 交DE 于点K ,由此可得△DFK ∽△DAE ,△GFK ∽△GBE ,结合AF=2DF 和相似三角形的性质即可证得结论④成立.【详解】(1)∵四边形ABCD 是菱形,BD=AB ,∴AB=BD=BC=DC=DA ,∴△ABD 和△CBD 都是等边三角形,∴∠A=∠BDF=60°,又∵AE=DF ,∴△AED ≌△DFB ,即结论①正确;(2)∵△AED ≌△DFB ,△ABD 和△DBC 是等边三角形,∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,∴点B、C、D、G四点共圆,∴∠CDN=∠CBM,如下图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,∴∠CDN=∠CBM=90°,又∵CB=CD,∴△CBM≌△CDN,∴S四边形BCDG=S四边形CMG N=2S△CGN,∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°∴GN=12CG,CN=3CG,∴S△CGN=3CG2,∴S四边形BCDG=2S△CGN,=3CG2,即结论②是正确的;(3)如下图,过点F作FK∥AB交DE于点K,∴△DFK∽△DAE,△GFK∽△GBE,∴FK DF DFAE DA DF AF==+,FG FKBG BE=,∵AF=2DF,∴13 FKAE=,∵AB=AD,AE=DF,AF=2DF,∴BE=2AE,∴126 FG FK FKBG BE AE===,∴BG=6FG,即结论③成立.综上所述,本题中正确的结论是:故答案为①②③点睛:本题是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多种几何图形的判定与性质的题,题目难度较大,熟悉所涉及图形的性质和判定方法,作出如图所示的辅助线是正确解答本题的关键.16.【解析】【分析】根据新定义的运算法则进行计算即可得.【详解】∵a ※b a b a b+-, ∴8※84233284+==- 3.17.23【解析】【分析】连接OQ ,根据勾股定理知222PQ OP OQ =-,可得当OP AB ⊥时,即线段PQ 最短,然后由勾股定理即可求得答案.【详解】连接OQ .∵PQ 是O e 的切线,∴OQ PQ ⊥;∴222PQ OP OQ =-,∴当PO AB ⊥时,线段OP 最短,∴PQ 的长最短,∵在Rt AOB ∆中,42OA OB ==, ∴28AB OA ==, ∴4OA OB OP AB⋅==, ∴2223PQ OP OQ =-=.故答案为:23.【点睛】本题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,得到PO AB ⊥时,线段PQ 最短是关键.18.215【解析】【分析】如图,作OH ⊥CD 于H ,连结OC ,根据垂径定理得HC=HD ,由题意得OA=4,即OP=2,在Rt △OPH 中,根据含30°的直角三角形的性质计算出OH=12OP=1,然后在在Rt △OHC 中,利用勾股定理计算得到CH=15,即CD=2CH=215.【详解】 解:如图,作OH ⊥CD 于H ,连结OC ,∵OH ⊥CD ,∴HC=HD ,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA ﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴=∴故答案为【点睛】本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得111x 1.5x12 +=,解得x=1.经检验,x=1是方程的解且符合题意.1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.20.(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)首先根据AB=BC,BE平分∠ABC,得到BE⊥AC,CE=AE,进一步得到∠ACD=∠DBF,结合CD=BD,即可证明出△ADC≌△FDB;(2)由△ADC≌△FDB得到AC=BF,结合CE=AE,即可证明出结论;(3)由点H是BC边的中点,得到GH垂直平分BC,即GC=GB,由∠DBF=∠GBC=∠GCB=∠ECF,得∠ECO=45°,结合BE⊥AC,即可判断出△ECG的形状.【详解】解:(1)∵AB=BC,BE平分∠ABC∴BE⊥AC∵CD⊥AB∴∠ACD=∠ABE(同角的余角相等)又∵CD=BD∴△ADC≌△FDB(2)∵AB=BC,BE平分∠ABC∴AE=CE则CE=12AC由(1)知:△ADC≌△FDB ∴AC=BF∴CE=12BF(3)△ECG为等腰直角三角形,理由如下:由点H是BC的中点,得GH垂直平分BC,从而有CG=BG,则∠EGC=2∠CBG=∠ABC=45°,又∵BE⊥AC,故△ECG为等腰直角三角形.【点睛】本题主要考查全等三角形的判定与性质,等腰三角形的判定与性质,解答本题的关键是熟练掌握全等三角形的判定,此题难度不是很大.21.(1)1;(2)2a+2【解析】【分析】(1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;(2)先化简原式,然后将x的值代入原式即可求出答案.【详解】解:(1)原式=﹣1+2﹣3+2×32=1;(2)原式=a2+2a+1+1﹣a2=2a+2.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.22.13.【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.试题解析:解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为39=13.点睛:本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.23.见解析.【解析】【分析】(1)画出⊙O的两条直径,交点即为圆心O.(2)作直线AO交⊙O于F,直线BF即为所求.【详解】解:作图如下:(1);(2).【点睛】本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)1.90;(2)112.65元;(3)当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.【解析】试题分析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可知小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由已知条件可知,用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不会超过25立方米,设他们家的用水量为x立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)≤75.3,解得:x≤24,即小明家每月的用水量不要超过24立方米.试题解析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可得:小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由题意可知,当用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不超过18立方米,而不足25立方米,设他们家的用水量为x立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)≤75.3,解得:x≤24,∴当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.25.(1)x=-1;(2)﹣6≤y≤1;【解析】【分析】(1)根据抛物线的对称性和待定系数法求解即可;(2)根据二次函数的性质可得.【详解】(1)把点(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函数y=x2﹣2mx+5m的对称轴是x=21 2-=-,(2)∵y=x2+2x﹣5=(x+1)2﹣6,∴当x=﹣1时,y取得最小值﹣6,由表可知当x=﹣4时y=1,当x=﹣1时y=﹣6,∴当﹣4≤x≤1时,﹣6≤y≤1.【点睛】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.26.(1)35,50;(2)①12;②y=﹣180x+1058;③150米.【解析】【分析】(1)用总长度÷每天修路的长度可得n的值,继而可得乙队单独完成时间,再用总长度÷乙单独完成所需时间可得乙队每天修路的长度m;(2)①根据:甲队先修建的长度+(甲队每天修建长度+乙队每天修建长度)×两队合作时间=总长度,列式计算可得;②由①中的相等关系可得y与x之间的函数关系式;③根据:甲队先修x米的费用+甲、乙两队每天费用×合作时间≤22800,列不等式求解可得.【详解】解:(1)甲队单独完成这项工程所需天数n=1050÷30=35(天),则乙单独完成所需天数为21天,∴乙队每天修路的长度m=1050÷21=50(米),故答案为35,50;(2)①乙队修路的天数为=12(天);②由题意,得:x+(30+50)y=1050,∴y与x之间的函数关系式为:y=﹣x+;③由题意,得:600×+(600+1160)(﹣x+)≤22800,解得:x≥150,答:若总费用不超过22800元,甲队至少先修了150米.【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.27.(1)证明见解析;(1)①16;②14;【解析】【分析】(1)根据平行四边形的性质得到AD ∥BC ,AB=DC ,AB ∥CD 于是得到BE=CF ,根据全等三角形的性质得到∠A=∠D ,根据平行线的性质得到∠A+∠D=180°,由矩形的判定定理即可得到结论;(1)①根据相似三角形的性质得到219GEF GBC S EF S BC ==V V (),求得△GBC 的面积为18,于是得到四边形BCFE 的面积为16;②根据四边形BCFE 的面积为16,列方程得到BC•AB=14,即可得到结论.【详解】(1)证明:∵GB=GC ,∴∠GBC=∠GCB ,在平行四边形ABCD 中,∵AD ∥BC ,AB=DC ,AB ∥CD ,∴GB-GE=GC-GF ,∴BE=CF ,在△ABE 与△DCF 中, AE DF AEB DFC BE CF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△DCF ,∴∠A=∠D ,∵AB ∥CD ,∴∠A+∠D=180°,∴∠A=∠D=90°,∴四边形ABCD 是矩形;(1)①∵EF ∥BC ,∴△GFE ∽△GBC ,∵EF=13AD , ∴EF=13BC , ∴219GEF GBC S EF S BC ==V V (), ∵△GEF 的面积为1,∴△GBC 的面积为18,∴四边形BCFE的面积为16,;②∵四边形BCFE的面积为16,∴12(EF+BC)•AB=12×43BC•AB=16,∴BC•AB=14,∴四边形ABCD的面积为14,故答案为:14.【点睛】本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得△GFE∽△GBC是解题的关键.。

重庆市长寿区2019-2020学年第二次中考模拟考试数学试卷含解析

重庆市长寿区2019-2020学年第二次中考模拟考试数学试卷含解析

重庆市长寿区2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )A .正方体B .球C .圆锥D .圆柱体2.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为( )A .B .C .D .3.如图所示,若将△ABO 绕点O 顺时针旋转180°后得到△A 1B 1O ,则A 点的对应点A 1点的坐标是( )A .(3,﹣2)B .(3,2)C .(2,3)D .(2,﹣3)4.计算6m 6÷(-2m 2)3的结果为( )A .m -B .1-C .34D .34- 5.观察下列图形,其中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.如图①是半径为2的半圆,点C 是弧AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A.43πB.43π﹣3C.23+3πD.23﹣23π7.如图,小刚从山脚A出发,沿坡角为α的山坡向上走了300米到达B点,则小刚上升了()A.300sinα米B.300cosα米C.300tanα米D.300 tanα米8.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC 的是( )A.DEBC=23B.DEBC=25C.AEAC=23D.AEAC=259.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )A.B.C.D.10.计算(1-1x)÷221x xx-+的结果是( )A.x-1 B.11x-C.1xx-D.1xx-11.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M 和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.412.若31x与4x互为相反数,则x的值是()A.1 B.2 C.3 D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是_____.14.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.15.小红沿坡比为1:3的斜坡上走了100米,则她实际上升了_____米.17.化简11-(1)1mm⎛⎫⋅-=⎪-⎝⎭__________.18.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知一次函数y=12x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1.(1)求点B坐标;(1)求二次函数y=ax1+bx+c的解析式;(3)设一次函数y=12x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.20.(6分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.(1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为;若点P(a,b),则点P的“旋转对应点”P'的坐标为;(2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';(3)点P与它的“旋转对应点”P'的连线所在的直线经过点(3,6),求直线PP'与x轴的交点坐标.21.(6分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?22.(8分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为63米,斜坡BC的坡度i=1:3.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)23.(8分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3=1.73,精确到0.1m)工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间之间的函数关系式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?25.(10分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.26.(12分)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.27.(12分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.2.A【解析】【分析】转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可【详解】奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:P(奇数)= = .故此题选A.此题主要考查了几何概率,正确应用概率公式是解题关键.3.A【解析】【分析】由题意可知, 点A 与点A 1关于原点成中心对称,根据图象确定点A 的坐标,即可求得点A 1的坐标.【详解】由题意可知, 点A 与点A 1关于原点成中心对称,∵点A 的坐标是(﹣3,2),∴点A 关于点O 的对称点A'点的坐标是(3,﹣2).故选A .【点睛】本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.4.D【解析】分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案.详解:原式=()663684m m ÷-=-, 故选D . 点睛:本题主要考查的是幂的计算法则,属于基础题型.明白幂的计算法则是解决这个问题的关键. 5.C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、既不是轴对称图形,也不是中心对称图形.故本选项错误;B 、是轴对称图形,不是中心对称图形.故本选项错误;C 、是轴对称图形,也是中心对称图形.故本选项正确;D 、既不是轴对称图形,也不是中心对称图形.故本选项错误.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.D【分析】连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=12OM,得到∠POM=60°,根据勾股定理求出MN,结合图形计算即可.【详解】解:连接OC交MN于点P,连接OM、ON,由题意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM=OPOM=12,22OM OP-3∴∠POM=60°,3∴∠AOB=2∠AOC=120°,则图中阴影部分的面积=S半圆-2S弓形MCN=12×π×22-2×(21202360π⨯-12×3×1)323π,故选D.【点睛】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.7.A【解析】【分析】利用锐角三角函数关系即可求出小刚上升了的高度.【详解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB•sinα=300sinα米.故选A.【点睛】的关系是解题关键.8.D【解析】【分析】根据平行线分线段成比例定理的逆定理,当AD AEDB EC=或AD AEAB AC=时,DE BDP,然后可对各选项进行判断.【详解】解:当AD AEDB EC=或AD AEAB AC=时,DE BDP,即23AEEC=或25AEAC=.所以D选项是正确的.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.9.A【解析】【分析】根据左视图的概念得出各选项几何体的左视图即可判断.【详解】解:A选项几何体的左视图为;B选项几何体的左视图为;C选项几何体的左视图为;D选项几何体的左视图为;故选:A.【点睛】本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.10.B【解析】【分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【详解】解:原式=(xx-1x)÷()2x1x-=x1x-•()2xx1-=1x1-,故选B.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.11.D【解析】【分析】【详解】①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=10°,∴CD=12 AD.∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC•CD=14AC•AD.∴S△ABC=12AC•BC=12AC•A32D=34AC•AD.∴S△DAC:S△ABC13AC AD?AC AD1344::⎛⎫⎛⎫=⋅⋅=⎪ ⎪⎝⎭⎝⎭.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D. 12.D【解析】由题意得31x-+4x=0,去分母3x+4(1-x)=0,解得x=4.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.相等的圆心角所对的弦相等,直径所对的圆周角是直角.【解析】【分析】根据圆内接正四边形的定义即可得到答案.【详解】到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.【点睛】本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点. 14.1.【解析】【分析】由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD =OC−OD求出CD.【详解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半径OA=10m,∴OD2222OA AD108-=-=6,∴CD=OC﹣OD=10﹣6=1(m).故答案为1.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.15.50【解析】根据题意设铅直距离为x ,根据勾股定理求出x 的值,即可得到结果.【详解】解:设铅直距离为x ,根据题意得:222)100x +=,解得:50x =(负值舍去),则她实际上升了50米,故答案为:50【点睛】本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.16.a 1【解析】【分析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可.【详解】解:原式=a 3﹣1+1=a 1.故答案为a 1.【点睛】本题考查了同底数幂的乘除法,关键是掌握计算法则.17.2-m【解析】【分析】根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解.【详解】 解:法一、()11-11m m ⎛⎫⋅- ⎪-⎝⎭ =(11m m --- 11m -) ()1m ⋅- =21m m -- ()1m ⋅- = 2-m .故答案为:2-m .法二、原式=()1111m m ⎛⎫+⋅- ⎪-⎝⎭=2-m.故答案为:2-m.【点睛】本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律.18.1 2【解析】试题分析:如图所示,一只蚂蚁从点出发后有ABD、ABE、ACE、ACF四条路,所以蚂蚁从出发到达处的概率是.考点:概率.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解析】【分析】(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1.得出可设二次函数y=ax1+bx+c=a(x ﹣1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可.【详解】(1)∵y=12x+1交x轴于点A(﹣4,0),∴0=12×(﹣4)+m,∴m=1,与y轴交于点B,∵x=0,∴y=1∴B点坐标为:(0,1),(1)∵二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1 ∴可设二次函数y=a(x﹣1)1把B(0,1)代入得:a=0.5∴二次函数的解析式:y=0.5x1﹣1x+1;(3)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴1AO BO BO OP =,∴1422OP =, 得:OP 1=1,∴P 1(1,0),(Ⅱ)作P 1D ⊥BD ,连接BP 1,将y=0.5x+1与y=0.5x 1﹣1x+1联立求出两函数交点坐标: D 点坐标为:(5,4.5),则AD=952, 当D 为直角顶点时∵∠DAP 1=∠BAO ,∠BOA=∠ADP 1,∴△ABO ∽△AP 1D ,∴2AB AO AP AD =,22595AP = , 解得:AP 1=11.15,则OP 1=11.15﹣4=7.15,故P 1点坐标为(7.15,0);∴点P 的坐标为:P 1(1,0)和P 1(7.15,0).【点睛】此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.20.(1)(﹣2,3,(﹣10,16﹣3,(2a ,b ﹣32a );(2)见解析;(3)直线PP'与x 轴的交3,0)【解析】【分析】(1)①当P(-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=12P'A=2,AH=3P'H=23,即可得出结论;②当P'(-5,16)时,确定出P'A=10,AH=53,由旋转知,PA=PA'=10,OA=OH-AH=16-53,即可得出结论;③当P(a,b)时,同①的方法得,即可得出结论;(2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;(3)先确定出y PP'=3x+3,即可得出结论.【详解】解:(1)如图1,①当P(﹣4,2)时,∵PA⊥y轴,∴∠PAH=90°,OA=2,PA=4,由旋转知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt△P'AH中,P'H=12P'A=2,∴33∴3,∴P'(﹣2,3,②当P'(﹣5,16)时,在Rt△P'AH中,∠P'AH=30°,P'H=5,∴P'A=10,3,由旋转知,PA=PA'=10,OA=OH﹣AH=16﹣3∴P(﹣10,16﹣3,③当P (a ,b )时,同①的方法得,P'(a 2,b ﹣32a ), 故答案为:(﹣2,2+23),(﹣10,16﹣53),(2a ,b ﹣32a ); (2)如图2,过点Q 作QB ⊥y 轴于B ,∴∠BQQ'=60°,由题意知,△PAP'是等边三角形,∴∠PAP'=∠PP'A=60°,∵QB ⊥y 轴,PA ⊥y 轴,∴QB ∥PA ,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A ,∴PP'∥QQ';(3)设y PP '=kx+b',由题意知,k=3,∵直线经过点(3,6),∴b'=3,∴y PP '=3x+3,令y=0,∴x=3∴直线PP'与x 30).【点睛】此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.21.(1)当4≤x≤6时,w 1=﹣x 2+12x ﹣35,当6≤x≤8时,w 2=﹣12x 2+7x ﹣23;(2)最快在第7个月可还清10万元的无息贷款.【解析】分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.详解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:44 62 k bk b+=⎧⎨+=⎩,解得:18kb=-⎧⎨=⎩,∴直线AB的解析式为:y=﹣x+8,同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣12x+5,∵工资及其他费作为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,当6≤x≤8时,w2=(x﹣4)(﹣12x+5)﹣3=﹣12x2+7x﹣23;(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,当6≤x≤8时,w2=﹣12x2+7x﹣23=﹣12(x﹣7)2+32,当x=7时,w2取最大值是1.5,∴101.5=203=623,即最快在第7个月可还清10万元的无息贷款.点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.22.旗杆AB的高度为6.4米.【解析】分析:(1)根据坡度i与坡角α之间的关系为:i=tanα进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可.本题解析:(1)∵斜坡BC 的坡度i=1:3,∴tan ∠BCD=33BD DC =, ∴∠BCD=30°;(2)在Rt △BCD 中,CD=BC×cos ∠BCD=63×3=9, 则DF=DC+CF=10(米),∵四边形GDFE 为矩形,∴GE=DF=10(米), ∵∠AEG=45°,∴AG=DE=10(米),在Rt △BEG 中,BG=GE×tan ∠BEG=10×0.36=3.6(米), 则AB=AG−BG=10−3.6=6.4(米).答:旗杆AB 的高度为6.4米。

重庆市长寿区2019-2020学年第四次中考模拟考试数学试卷含解析

重庆市长寿区2019-2020学年第四次中考模拟考试数学试卷含解析

重庆市长寿区2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是()A.12B.18C.38D.111222++2.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.3.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x …–2 –1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的4.在以下四个图案中,是轴对称图形的是()A.B.C.D.5.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是()A.标号是2 B.标号小于6 C.标号为6 D.标号为偶数6.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元7.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.108.已知二次函数y=(x+a)(x﹣a﹣1),点P(x0,m),点Q(1,n)都在该函数图象上,若m<n,则x0的取值范围是()A.0≤x0≤1B.0<x0<1且x0≠1 2C.x0<0或x0>1 D.0<x0<19.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.10.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是()A.50°B.60°C.70°D.80°11.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°12.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2(a-b)+3b=___________.14.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为____.15.分解因式:a2b+4ab+4b=______.16.如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为____.17.如图,A 、B 是双曲线y=kx上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若D 为OB 的中点,△ADO 的面积为3,则k 的值为_____.18.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 是线段BO 上的一个动点,点F 为射线DC 上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF 可能的整数值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简:224424242x x x x x x -+-⎛⎫÷-+ ⎪-+⎝⎭,然后从67x -<<的范围内选取一个合适的整数作为x 的值代入求值.20.(6分)已知C 为线段AB 上一点,关于x 的两个方程()112x m +=与()23x m m +=的解分别为线段AC BC ,的长,当2m =时,求线段AB 的长;若C 为线段AB 的三等分点,求m 的值.21.(6分)如图,在△ABC 中,BC =12,tanA =34,∠B =30°;求AC 和AB 的长.22.(8分)在△ABC 中,90︒∠=C ,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,分别交AB ,AC 于点E ,F 如图①,连接AD ,若25CAD ︒∠=,求∠B 的大小;如图②,若点F 为»AD 的中点,O e 的半径为2,求AB 的长.23.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC 与支架AC 所成的角∠ACB=75°,支架AF 的长为2.50米米,篮板顶端F 点到篮框D 的距离FD=1.35米,篮板底部支架HF 与支架AF 所成的角∠FHE=60°,求篮框D 到地面的距离(精确到0.01米). (参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,3 1.732≈,2 1.414≈)24.(10分)如图,⊙O 的直径AD 长为6,AB 是弦,CD ∥AB ,∠A=30°,且CD=3. (1)求∠C 的度数;(2)求证:BC 是⊙O 的切线.25.(10分)在平面直角坐标系xOy 中,已知两点A (0,3),B (1,0),现将线段AB 绕点B 按顺时针方向旋转90°得到线段BC ,抛物线y=ax 2+bx+c 经过点C . (1)如图1,若抛物线经过点A 和D (﹣2,0). ①求点C 的坐标及该抛物线解析式;②在抛物线上是否存在点P ,使得∠POB=∠BAO ,若存在,请求出所有满足条件的点P 的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax 2+bx+c (a <0)经过点E (2,1),点Q 在抛物线上,且满足∠QOB=∠BAO ,若符合条件的Q 点恰好有2个,请直接写出a 的取值范围.26.(12分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.27.(12分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A 型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.详解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是1 8 .故选B.点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.2.A【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.详解:该几何体的左视图是:故选A.点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.C【解析】当x=-2时,y=0,∴抛物线过(-2,0),∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=12,故C错误;当x<12时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.4.A【解析】【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【详解】A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.C【解析】【分析】利用随机事件以及必然事件和不可能事件的定义依次分析即可解答.【详解】选项A、标号是2是随机事件;选项B、该卡标号小于6是必然事件;选项C、标号为6是不可能事件;选项D、该卡标号是偶数是随机事件;故选C.【点睛】本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键.6.C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m 2, ∴扩大后长方形广告牌的成本是54×20=1080元, 故选C . 【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键. 7.C 【解析】 【分析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案. 【详解】∵PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E , ∴PA =PB =6,AC =EC ,BD =ED ,∴PC+CD+PD =PC+CE+DE+PD =PA+AC+PD+BD =PA+PB =6+6=12, 即△PCD 的周长为12, 故选:C . 【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键. 8.D 【解析】分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.详解:二次函数y=(x+a )(x ﹣a ﹣1),当y=0时,x 1=﹣a ,x 2=a+1,∴对称轴为:x=122x x =12 当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,由m <n ,得:0<x 0≤12;当P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得:12<x 0<1.综上所述:m <n ,所求x 0的取值范围0<x 0<1. 故选D .点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏. 9.C 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A .不是轴对称图形,也不是中心对称图形.故错误;B .不是轴对称图形,也不是中心对称图形.故错误;C .是轴对称图形,也是中心对称图形.故正确;D .不是轴对称图形,是中心对称图形.故错误. 故选C . 【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合; 中心对称图形是要寻找对称中心,旋转180°后与原图重合. 10.C 【解析】 【分析】连接BC ,根据题意PA ,PB 是圆的切线以及P 40∠=︒可得AOB ∠的度数,然后根据OA OB =,可得CAB ∠的度数,因为AC 是圆的直径,所以ABC 90∠=︒,根据三角形内角和即可求出ACB ∠的度数。

重庆市长寿区2019-2020学年中考数学三模试卷含解析

重庆市长寿区2019-2020学年中考数学三模试卷含解析

重庆市长寿区2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若2(3)3b b -=-,则( )A .3b >B .3b <C .3b ≥D .3b ≤2. 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )A .B .C .D .3.下列算式的运算结果正确的是( )A .m 3•m 2=m 6B .m 5÷m 3=m 2(m≠0)C .(m ﹣2)3=m ﹣5D .m 4﹣m 2=m 24.已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( )A .∠NOQ =42°B .∠NOP =132°C .∠PON 比∠MOQ 大D .∠MOQ 与∠MOP 互补5.如图,已知AE 垂直于ABC ∠的平分线于点D ,交BC 于点E , 13CE BC =,若ABC ∆的面积为1,则CDE ∆的面积是( )A .14B .16C .18D .1106.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )7.已知3a﹣2b=1,则代数式5﹣6a+4b的值是()A.4 B.3 C.﹣1 D.﹣38.下列几何体中,主视图和左视图都是矩形的是()A.B.C.D.9.在反比例函数1kyx-=的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1D.k<110.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于()A.25:24 B.16:15 C.5:4 D.4:311.如图图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.12.关于x的不等式组24351xx-<⎧⎨-<⎩的所有整数解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,2 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=________.14.225abπ-的系数是_____,次数是_____.15.小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当16.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m,两侧离地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞的高度为_______m.(精确到0.1m)17.为了求1+2+22+23+…+22016+22017的值,可令S=1+2+22+23+…+22016+22017,则2S=2+22+23+24+…+22017+22018,因此2S﹣S=22018﹣1,所以1+22+23+…+22017=22018﹣1.请你仿照以上方法计算1+5+52+53+…+52017的值是_____.18.(﹣)﹣2﹣(3.14﹣π)0=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?20.(6分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.21.(6分)阅读材料,解答问题.材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(﹣3,9)开始,按点的横坐标依次增加1的规律,在抛物线y=x2上向右跳动,得到点P2、P3、P4、P5…(如图1所示).过P1、P2、P3分别作P1H1、P2H2、P3H3垂直于x轴,垂足为H1、H2、H3,则S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=12(9+1)×2﹣12(9+4)×1﹣12(4+1)×1,即△P1P2P3的面积为1.”问题:(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);(2)猜想四边形P n﹣1P n P n+1P n+2的面积,并说明理由(利用图2);(3)若将抛物线y=x2改为抛物线y=x2+bx+c,其它条件不变,猜想四边形P n﹣1P n P n+1P n+2的面积(直接写出答案).22.(8分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?23.(8分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的14时,求线段EF的长.24.(10分)先化简,再求值:2(2)()y x yy x y x y⎛⎫--÷--+,其中1x=-,2y=.25.(10分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B 、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ ,连接BP ,DQ .(1)依题意补全图 1;(2)①连接 DP ,若点 P ,Q ,D 恰好在同一条直线上,求证:DP 2+DQ 2=2AB 2;②若点 P ,Q ,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: .26.(12分)如图,在平行四边形ABCD 中,AD >AB .(1)作出∠ABC 的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD 于点E ,AF ⊥BE ,垂足为点O ,交BC 于点F ,连接EF .求证:四边形ABFE 为菱形.27.(128+(﹣13)﹣1+|12|﹣4sin45°.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】等式左边为非负数,说明右边3b 0-≥,由此可得b 的取值范围.【详解】解:2(3b)3b -=-Q ,3b 0∴-≥,解得b 3.≤【点睛】()0a 0≥≥()a a 0=≥.2.C【解析】【分析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C .【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.B【解析】【分析】直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案.【详解】A 、m 3•m 2=m 5,故此选项错误;B 、m 5÷m 3=m 2(m≠0),故此选项正确;C 、(m -2)3=m -6,故此选项错误;D 、m 4-m 2,无法计算,故此选项错误;故选:B .【点睛】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键.4.C【解析】试题分析:如图所示:∠NOQ=138°,选项A 错误;∠NOP=48°,选项B 错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON 比∠MOQ 大,选项C 正确;由以上可得,∠MOQ 与∠MOP 不互补,选项D 错误.故答案选C .考点:角的度量.5.B【解析】先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积. 【详解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵1CE BC3=,ΔABC的面积为1,∴S△AEC=13S△ABC=13,又∵AD=ED,∴S△CDE=12S△AEC=16,故选B.【点睛】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键. 6.B【解析】【分析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.【解析】【分析】先变形,再整体代入,即可求出答案.【详解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故选:B.【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键.8.C【解析】【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.9.A【解析】【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.【详解】解:根据题意,在反比例函数1kyx-=图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x 的增大而增大.10.A【解析】【分析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM,∴EM=125,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=245,∴AD:AB=5:245=2524=25:1.故选A 【点睛】质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.11.A【解析】A. 是轴对称图形,是中心对称图形,故本选项正确;B. 是中心对称图,不是轴对称图形,故本选项错误;C. 不是中心对称图,是轴对称图形,故本选项错误;D. 不是轴对称图形,是中心对称图形,故本选项错误。

重庆市长寿区2019-2020学年中考数学最后模拟卷含解析

重庆市长寿区2019-2020学年中考数学最后模拟卷含解析

重庆市长寿区2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为()A.120°B.110°C.100°D.80°2.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000 km,将13000用科学记数法表示应为( )A.0.13×105B.1.3×104C.1.3×105D.13×1033.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1084.点A、C为半径是4的圆周上两点,点B为»AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A.7或22B.7或23C.26或22D.26或235.如图,已知点A,B分别是反比例函数y=kx(x<0),y=1x(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=12,则k的值为()A.2 B.﹣2 C.4 D.﹣46.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是()A.﹣a<a<a2B.a<﹣a<a2C.﹣a<a2<a D.a<a2<﹣a7.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤23;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个8.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分9.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF 的长度为()A.2 B.23C.3D.2210.如图,点A,B,C在⊙O上,∠ACB=30°,⊙O的半径为6,则»AB的长等于()A.πB.2πC.3πD.4π11.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A.12B.22C.32D.3312.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知x+y=8,xy=2,则x2y+xy2=_____.14.如图,在平面直角坐标系中,以坐标原点O为位似中心在y轴的左侧将△OAB缩小得到△OA′B′,若△OAB与△OA′B′的相似比为2:1,则点B(3,﹣2)的对应点B′的坐标为_____.15.如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则mn=______16.如图,菱形ABCD中,AB=4,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过6次这样的操作菱形中心(对角线的交点)O所经过的路径总长为_____.17.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_____.18.在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E.(1) 求证:DE⊥AC;(2) 连结OC交DE于点F,若3 sin4ABC∠=,求OFFC的值.20.(6分)315211xx x-⎧⎨-+-⎩<()<21.(6分)(1)解方程:11122x x--+=0;(2)解不等式组32193(1)xx x->⎧⎨+<+⎩,并把所得解集表示在数轴上.22.(8分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.23.(8分)计算:﹣12+2132-⎛⎫+-⎪⎝⎭﹣(3.14﹣π)0﹣|1﹣3|.24.(10分)如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.求证:DE=CE.若∠CDE=35°,求∠A 的度数.25.(10分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x ﹣3=0的解.根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.x …﹣3 ﹣52﹣2 ﹣32﹣1﹣12121322 …y …﹣8 ﹣21858m ﹣98﹣2 ﹣15835812 …(1)直接写出m的值,并画出函数图象;(2)根据表格和图象可知,方程的解有个,分别为;(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.26.(12分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作☉O,交BD于点E,连接CE,过D作DF AB于点F,∠BCD=2∠ABD.(1)求证:AB 是☉O 的切线;(2)若∠A=60°,DF=,求☉O 的直径BC 的长.27.(12分)如图所示,平面直角坐标系中,O 为坐标原点,二次函数2(0)y x bx c b =-+>的图象与x轴交于(1,0)A -、B 两点,与y 轴交于点C ;(1)求c 与b 的函数关系式;(2)点D 为抛物线顶点,作抛物线对称轴DE 交x 轴于点E ,连接BC 交DE 于F ,若AE =DF ,求此二次函数解析式;(3)在(2)的条件下,点P 为第四象限抛物线上一点,过P 作DE 的垂线交抛物线于点M ,交DE 于H ,点Q 为第三象限抛物线上一点,作QN ED ⊥于N ,连接MN ,且180QMN QMP ∠+∠=︒,当:15:16QN DH =时,连接PC ,求tan PCF ∠的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【详解】∵∠DCF=100°,∴∠DCE=80°,∵AB ∥CD ,∴∠AEF=∠DCE=80°.故选D.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.2.B【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将13000用科学记数法表示为:1.3×1.故选B.考点:科学记数法—表示较大的数3.A【解析】【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.【详解】设每次降价的百分率为x,根据题意得:168(1-x)2=1.故选A.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.4.C【解析】【分析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=12OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.【详解】过B作直径,连接AC交AO于E,∵点B为»AC的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=12×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=1+2=3,连接OC,∵CE=2222=43=7OC OE--,在Rt△DEC中,由勾股定理得:DC=2222=(7)1=22CE DE++;如图②,OD=2,BD=4+2=6,DE=12BD=3,OE=3-2=1,由勾股定理得:2222=41=15OC OE--2222=3(15)=26DE CE++.故选C.【点睛】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.5.D【解析】【分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y=k x(x<0),y=1x(x>0)的图象上,即可得S△OBD=12,S△AOC=12|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值【详解】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∴∠OBD=∠AOC,∴△OBD∽△AOC,又∵∠AOB=90°,tan∠BAO=12,∴OBAO=12,∴BODOACSSVV=14,即112142k,解得k=±4,又∵k<0,∴k=-4,故选:D.【点睛】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市长寿区2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.-4的相反数是( ) A .14B .14-C .4D .-42.如图,在,//ABC DE BC ∆中,,D E 分别在边,AB AC 边上,已知13AD DB =,则DEBC 的值为( )A .13B .14C .15D .253.下列计算结果是x 5的为( )A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)24.PM2.5是指大气中直径小于或等于2.5μm (1μm=0.000001m )的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( ) A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯5.如图,某厂生产一种扇形折扇,OB=10cm ,AB=20cm ,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为10003π cm 2,则扇形圆心角的度数为( )A .120°B .140°C .150°D .160°6.如图,AB ∥CD ,E 为CD 上一点,射线EF 经过点A ,EC=EA .若∠CAE=30°,则∠BAF=( )A .30°B .40°C .50°D .60° 7.2016的相反数是( ) A .12016-B .12016C .2016-D .20168.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°10.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°11.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N 两点.若AM=2,则线段ON的长为( )A.22B.32C.1 D.6212.若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.23D.43二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.14.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为_____ cm.15.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是 .16.阅读材料:设a r =(x 1,y 1),b r =(x 2,y 2),如果a r ∥b r ,则x 1•y 2=x 2•y 1.根据该材料填空:已知a r=(2,3),b r =(4,m ),且a r ∥b r,则m=_____.17.Rt △ABC 中,∠ABC=90°,AB=3,BC=4,过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.18.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米精确到1米三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y =-x +5的图象与反比例函数y =kx(k≠0)在第一象限的图象交于A(1,n)和B 两点.求反比例函数的解析式;在第一象限内,当一次函数y =-x +5的值大于反比例函数y =kx(k≠0)的值时,写出自变量x 的取值范围.20.(6分)如图所示,在△ABC 中,AB=CB ,以BC 为直径的⊙O 交AC 于点E ,过点E 作⊙O 的切线交AB 于点F . (1)求证:EF ⊥AB ;(2)若AC=16,⊙O 的半径是5,求EF 的长.21.(6分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=1.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.22.(8分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)如果AB=4,AE=2,求⊙O的半径.23.(8分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:排球10 9.5 9.5 10 8 9 9.5 97 10 4 5.5 10 9.5 9.5 10篮球9.5 9 8.5 8.5 10 9.5 10 86 9.5 10 9.5 9 8.5 9.5 6整理、描述数据:按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:项目平均数中位数众数排球8.75 9.5 10篮球8.81 9.25 9.5得出结论:(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)24.(10分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?25.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.26.(12分)某街道需要铺设管线的总长为9000m,计划由甲队施工,每天完成150m.工作一段时间后,因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度()y m与甲队工作时间x(天)之间的函数关系图象.(1)直接写出点B的坐标;(2)求线段BC所对应的函数解析式,并写出自变量x的取值范围;(3)直接写出乙队工作25天后剩余管线的长度.27.(12分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=mx(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.2.B【解析】【分析】根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.【详解】解:∵13 ADDB=,∴14 ADAB=,∵DE∥BC,∴△ADE∽△ABC,∴14 DE ADBC AB==,故选:B.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.3.C【解析】解:A.x10÷x2=x8,不符合题意;B.x6﹣x不能进一步计算,不符合题意;C.x2x3=x5,符合题意;D.(x3)2=x6,不符合题意.故选C.4.C【解析】试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.考点:用科学计数法计数根据扇形的面积公式列方程即可得到结论.【详解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,设扇形圆心角的度数为α,∵纸面面积为10003π cm2,∴22301010003603603a aπππ⋅⨯⋅⨯-=,∴α=150°,故选:C.【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积=2 360n Rπ.6.D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.7.C【解析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.8.A【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【详解】将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选A.【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.9.A【解析】试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.考点:平行线的性质.10.C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:510.51+51=10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.11.C【解析】【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=222,再根据角平分线性质得2,则2,于是利用正方形的性质得到22+2,OC=122+1,所以2△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=22AM=22×2,∵CM平分∠ACB,∴2,∴2,∴22(2)2,∴OC=122+1,CH=AC﹣2+222,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴ON OCMH CH=21222+=+∴ON=1.故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.12.A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.考点:正多边形和圆.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】试题解析:设俯视图的正方形的边长为a . ∵其俯视图为正方形,从主视图可以看出,正方形的对角线长为22,∴()22222a a +=, 解得24a =,∴这个长方体的体积为4×3=1.14.1cm【解析】【分析】首先根据题意画出图形,然后连接OA ,根据垂径定理得到OC 平分AB ,即AC=BC ,而在Rt △OAC 中,根据勾股数得到AC=4,这样即可得到AB 的长.【详解】解:如图,连接OA ,则OA=5,OC=3,OC ⊥AB ,∴AC=BC ,∴在Rt △OAC 中,AC=22OA OC -=4,∴AB=2AC=1.故答案为1.【点睛】本题考查垂径定理;勾股定理.15.1【解析】试题分析:∵多边形的每一个内角都等于108°,∴每一个外角为72°.∵多边形的外角和为360°,∴这个多边形的边数是:360÷÷72=1. 16.6【解析】根据题意得,2m=3×4,解得m=6,故答案为6. 17.3.1或4.32或4.2【解析】【分析】在Rt △ABC 中,通过解直角三角形可得出AC=5、S △ABC =1,找出所有可能的分割方法,并求出∴AB=22AB BC+=5,S△ABC=12AB•BC=1.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=APAC•S△ABC=35×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=·342.45AB BCAC⨯==,∴AD=DP=223 2.4-=1.2,∴AP=2AD=3.1,∴S等腰△ABP=APAC•S△ABC=3.65×1=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=CPAC•S△ABC=45×1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为:3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.18.【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有,即,,.所以两盏警示灯之间的水平距离为:三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)4yx=;(2)1<x<1.【分析】(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;(2)一次函数y=-x+5的值大于反比例函数y=kx,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.【详解】解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),∴n=﹣1+5,解得:n=1,∴点A的坐标为(1,1).∵反比例函数y=kx(k≠0)过点A(1,1),∴k=1×1=1,∴反比例函数的解析式为y=4x.联立54y xyx=-+⎧⎪⎨=⎪⎩,解得:14xy=⎧⎨=⎩或41xy=⎧⎨=⎩,∴点B的坐标为(1,1).(2)观察函数图象,发现:当1<x<1.时,反比例函数图象在一次函数图象下方,∴当一次函数y=﹣x+5的值大于反比例函数y=kx(k≠0)的值时,x的取值范围为1<x<1.【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.20.(1)证明见解析;(2) 4.8.【解析】【分析】(1)连结OE,根据等腰三角形的性质可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,两直线平行即可判定OE∥AB,又因EF是⊙O的切线,根据切线的性质可得EF⊥OE,由此即可证得EF⊥AB;(2)连结BE,根据直径所对的圆周角为直角可得,∠BEC=90°,再由等腰三角形三线合一的性质求得AE=EC =8,在Rt△BEC中,根据勾股定理求的BE=6,再由△ABE的面积=△BEC的面积,根据直角三角形面积的两种表示法可得8×6=10×EF,由此即可求得EF=4.8.(1)证明:连结OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切线,∴EF⊥OE,∴EF⊥AB.(2)连结BE.∵BC是⊙O的直径,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面积=△BEC的面积,即8×6=10×EF,∴EF=4.8.【点睛】本题考查了切线的性质定理、圆周角定理、等腰三角形的性质与判定、勾股定理及直角三角形的两种面积求法等知识点,熟练运算这些知识是解决问题的关键.21.(1)(m,2m﹣2);(2)S△ABC =﹣82aa;(3)m的值为72或10.【解析】分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=1,可得出点B的坐标的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC的值;(3)由(2)的结论结合S△ABC=2可求出a值,分三种情况考虑:①当m>2m−2,即m<2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m−2≤m≤2m−2,即2≤m≤2时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m−2,即m>2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.详解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,∴抛物线的顶点坐标为(m,2m﹣2),故答案为(m,2m﹣2);(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,∵AB∥x轴,且AB=1,∴点B的坐标为(m+2,1a+2m﹣2),∵∠ABC=132°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,1a+2m﹣2﹣t),∵点C在抛物线y=a(x﹣m)2+2m﹣2上,∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=﹣41aa+,∴S△ABC=12AB•CD=﹣82aa+;(3)∵△ABC的面积为2,∴﹣82aa+=2,解得:a=﹣15,分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣15(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣11m+39=0,解得:m1=7﹣10(舍去),m2=7+10(舍去);②当2m﹣2≤m≤2m﹣2,即2≤m≤2时,有2m﹣2=2,解得:m=72;③当m<2m﹣2,即m>2时,有﹣15(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣210(舍去),m1=10+210.综上所述:m的值为72或10+210.点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤2及m>2三种情况考虑.22.(1)见解析;(1)⊙O半径为43 3【解析】【分析】(1)连接OA,利用已知首先得出OA∥DE,进而证明OA⊥AE就能得到AE是⊙O的切线;(1)通过证明△BAD∽△AED,再利用对应边成比例关系从而求出⊙O半径的长.【详解】解:(1)连接OA,∵OA=OD,∴∠1=∠1.∵DA平分∠BDE,∴∠1=∠2.∴∠1=∠2.∴OA∥DE.∴∠OAE=∠4,∴∠OAE=90°,即OA⊥AE.又∵点A在⊙O上,∴AE是⊙O的切线.(1)∵BD是⊙O的直径,∴∠BAD=90°.∵∠3=90°,∴∠BAD=∠3.又∵∠1=∠2,∴△BAD∽△AED.∴BD BA AD AE=,∵BA=4,AE=1,∴BD=1AD.在Rt△BAD中,根据勾股定理,得.∴⊙O.23.130 小明平均数接近,而排球成绩的中位数和众数都较高.【解析】【分析】()1根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;()2根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.【详解】解:补全表格成绩:()1达到优秀的人数约为16013016⨯=(人);故答案为130;()2同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高.(答案不唯一,理由需支持判断结论)故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.24.(1)作图见解析;(2)1.【解析】试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.答:该校九年级大约有1名志愿者.25.(1)60°;(2)证明略;(3)8 3【解析】【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为120180Rπ=1204180πg=83π.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.26.(1)(10,7500)(2)直线BC的解析式为y=-250x+10000,自变量x的取值范围为10≤x≤40.(3)1250米.【解析】【分析】(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.【详解】(1)9000-150×10=7500.∴点B的坐标为(10,7500)(2)设直线BC的解析式为y=kx+b,依题意,得:解得:∴直线BC的解析式为y=-250x+10000,∵乙队是10天之后加入,40天完成,∴自变量x的取值范围为10≤x≤40.(3)依题意,当x=35时,y=-250×35+10000=1250.∴乙队工作25天后剩余管线的长度是1250米.本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.27.(1)y=3x;y=x-2;(2)(0,0)或(4,0)【解析】试题分析:(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.试题解析:(1)∵反比例函数y=mx(m≠0)的图象过点A(1,1),∴1=1m ∴m=1.∴反比例函数的表达式为y=3x.∵一次函数y=kx+b的图象过点A(1,1)和B(0,-2).∴31 {2k bb==+-,解得:1{2kb-==,∴一次函数的表达式为y=x-2;(2)令y=0,∴x-2=0,x=2,∴一次函数y=x-2的图象与x轴的交点C的坐标为(2,0).∵S△ABP=1,1 2PC×1+12PC×2=1.∴PC=2,∴点P的坐标为(0,0)、(4,0).【点睛】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据S△ABP=S△ACP+S△BCP 列方程是关键.。

相关文档
最新文档