信号与系统第三章习题
信号与线性系统分析-(吴大正-第四版)第三章习题答案
![信号与线性系统分析-(吴大正-第四版)第三章习题答案](https://img.taocdn.com/s3/m/bb9ed179f705cc17552709d0.png)
第三章习题3.1、试求序列k01(k)=2f ⎧⎪⎛⎫⎨ ⎪⎪⎝⎭⎩, 的差分(k)f ∆、(k)f ∇和i=-(i)kf ∞∑。
3.6、求下列差分方程所描述的LTI 离散系统的零输入相应、零状态响应和全响应。
1)()-2(-1)(),()2(),(-1)-1y k y k f k f k k y ε===3)()2(-1)(),()(34)(),(-1)-1y k y k f k f k k k y ε+==+= 5)1()2(-1)(-2)(),()3()(),(-1)3,(-2)-52k y k y k y k f k f k k y y ε++====3.8、求下列差分方程所描述的离散系统的单位序列响应。
2)()-(-2)()=y k y k f k5)()-4(-1)8(-2)()+=y k y k y k f k3.9、求图所示各系统的单位序列响应。
(a)(c)3.10、求图所示系统的单位序列响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1)12()()f k f k *(2)23()()f k f k *(3)34()()f k f k *(4)[]213()-()()f k f k f k *3.13、求题3.9图所示各系统的阶跃响应。
3.14、求图所示系统的单位序列响应和阶跃响应。
3.15、若LTI 离散系统的阶跃响应()()()0.5k g k k ε=,求其单位序列响应。
3.16、如图所示系统,试求当激励分别为(1)()()f k k ε= (2)()()0.5()kf k k ε=时的零状态响应。
3.18、如图所示的离散系统由两个子系统级联组成,已知()1=2cos4k h k π,()()2=k h k k a ε,激励()()()=--1f k k a k δδ,求该系统的零状态响应()zs k y 。
(提示:利用卷积和的结合律和交换律,可以简化运算。
)3.22、如图所示的复合系统有三个子系统组成,它们的单位序列响应分别为()()1=h k k ε,()()2=-5h k k ε,求复合系统的单位序列响应。
奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(上册)-第3章 周期信号的傅里叶级
![奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(上册)-第3章 周期信号的傅里叶级](https://img.taocdn.com/s3/m/61e826400975f46526d3e12f.png)
则
(1)弼 x(t)为实函数时,由亍 x(t)=x*(t),傅里叶级数系数一定是共轭对称的,即
(2)若 x(t)为实偶函数,那么它的傅里叶级数系数也为实偶函数。 (3)若 x(t)为实奇函数,那么它的傅里叶级数系数为纯虚奇函数。 7.连续时间周期信号的帕斯瓦尔定理 (1)连续时间周期信号的帕斯瓦尔定理:
8.连续时间傅里叶级数性质列表 表 3-1 连续时间傅里叶级数性质
/ 106
圣才电子书 十万种考研考证电子书、题库规频学习平台
1.成谐波关系的复指数信号的线性组合 一般的周期序列的线性组合就有如下:
序列φk[n]只在 k 的 N 个相继值的匙间上是丌同的,因此上式的求和仅仅需要包括 N 项。 因此将求和限表示成 k=(N),即离散时间傅里叶级数为
三、傅里叶级数的收敛 连续时间信号的傅里叶级数收敛的条件——狄里赫利条件: 1.条件 1 在仸何周期内,x(t)必须绝对可积,即
这一条件保证了每一系数 ak 都是有限值。 2.条件 2 在仸意有限匙间内,x(t)具有有限个起伏发化;也就是说,在仸何单个周期内,x(t)的
最大值和最小值的数目有限。 3.条件 3 在 x(t)的仸何有限匙间内,只有有限个丌连续点,而丏在这些丌连续点上,函数是有限
则
(1)施加亍连续时间信号上的时间反转会导致其对应的傅里叶级数系数序列的时间反 转。
(2)若 x(t)为偶函数,则其傅里叶级数系数也为偶,若 x(t)为奇函数,则其傅里叶级 数系数也为奇。
4.时域尺度发换 时间尺度运算是直接加在 x(t)的每一次谐波分量上的,傅里叶系数仍是相同的。 x(αt)的傅里叶级数表示:
信号与系统王明泉第三章习题解答
![信号与系统王明泉第三章习题解答](https://img.taocdn.com/s3/m/788fde8884868762caaed5f2.png)
(4)频域分析法分析系统;
(5)系统的无失真传输;
(6)理想低通滤波器;
(7)系统的物理可实现性;
3.3本章的内容摘要
3.3.1信号的正交分解
两个矢量 和 正交的条件是这两个矢量的点乘为零,即:
如果 和 为相互正交的单位矢量,则 和 就构成了一个二维矢量集,而且是二维空间的完备正交矢量集。也就是说,再也找不到另一个矢量 能满足 。在二维矢量空间中的任一矢量 可以精确地用两个正交矢量 和 的线性组合来表示,有
条件1:在一周期内,如果有间断点存在,则间断点的数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有限个。
条件3:在一周期内,信号绝对可积,即
(5)周期信号频谱的特点
第一:离散性,此频谱由不连续的谱线组成,每一条谱线代表一个正弦分量,所以此谱称为不连续谱或离散谱。
第二:谐波性,此频谱的每一条谱线只能出现在基波频率 的整数倍频率上。
(a)周期、连续频谱; (b)周期、离散频谱;
(c)连续、非周期频谱; (d)离散、非周期频谱。
答案:(d)
题7、 的傅里叶变换为
答案:
分析:该题为典型信号的调制形式
题8、 的傅里叶变换为
答案:
分析:根据时移和频移性质即可获得
题9、已知信号 如图所示,且其傅里叶变换为
试确定:
(1)
(2)
(3)
解:
(1)将 向左平移一个单位得到
对于奇谐函数,满足 ,当 为偶数时, , ;当 为奇数时, , ,即半波像对称函数的傅里叶级数展开式中只含奇次谐波而不含偶次谐波项。
(4)周期信号傅里叶级数的近似与傅里叶级数的收敛性
一般来说,任意周期函数表示为傅里叶级数时需要无限多项才能完全逼近原函数。但在实际应用中,经常采用有限项级数来代替无限项级数。无穷项与有限项误差平方的平均值定义为均方误差,即 。式中, , 。研究表明, 越大, 越小,当 时, 。
信号与系统第三章习题部分参考答案
![信号与系统第三章习题部分参考答案](https://img.taocdn.com/s3/m/817ba127cfc789eb172dc88d.png)
(7) (1 − t) f (1 − t) ;
(2) [1 + m f (t)]cosω0 t
(4) (t + 2) f (t); ( ) (6) e− jω0 t df t
dt
(8) f (t)∗ f (t − 3);
t
(9) ∫τ f (τ )dτ −∞
1−t / 2
(11) ∫ f (τ )dτ −∞
2π (sin π t )2 ↔ 2π (1− ⎜w⎜)[ε(w + 2π ) − ε(w − 2π )]
πt
2π
即 (sin π t )2 ↔ (1− ⎜w⎜)[ε(ω + 2π ) − ε(w − 2π )]
πt
2π
(3)双边指数信号
∵ e−a⎜t⎜
↔
2a a2 + w2
(−∞
<
t
<
+∞)
∴ 2a a2 + w2
(13) f (t)∗ Sa(2t) (15) t df (1 − t)
dt
t+5
(10) ∫ f (τ )dτ −∞
(12) df (t) + f (3t ) − 2 e− jt ;
dt
(14) f (t) u(t)
(16) (t − 2) f (t)e j2(t−3)
解:(1) f 2 (t) + f (t) = f (t). f (t) + f (t) ↔ 1 [F (w}* F (w)] + F (w)
又 f (t) = 2 + cos⎜⎛ 2πt ⎟⎞ + 4sin⎜⎛ 5πt ⎟⎞
⎝3⎠
信号与系统练习题——第1-3章
![信号与系统练习题——第1-3章](https://img.taocdn.com/s3/m/b83ac09f7fd5360cbb1adb8f.png)
信号与系统练习题——第1-3章信号与系统练习题(第1-3章)一、选择题1、下列信号的分类方法不正确的是(A )A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、连续信号和离散信号2、下列离散序列中,哪个不是周期序列? (D )A 、165()3cos()512f k k ππ=+ B 、2211()5cos()712f k k ππ=+ C 、33()9sin()5f k k π= D 、433()7sin()45f k k π=+ 3、下列哪一个信号是周期性的?(C )。
A 、()3cos 2sin f t t t π=+;B 、()cos()()f t t t πε=;C 、()sin()76f k k ππ=+; D 、1()cos()53f k k π=+。
4、周期信号()sin6cos9f t t t =+的周期为(D )A 、πB 、2πC 、12π D 、23π5、周期信号()sin3cos f t t t π=+的周期为(C )。
A 、πB 、2πC 、无周期D 、13π 6、以下序列中,周期为5的是(D ) A. 3()cos()58f k k π=+ B. 3()sin()58f k k π=+ C. 2()58()j k f k eπ+= D. 2()58()j k f k e ππ+=7、下列说法正确的是(D )A 、两个周期信号()x t ,()y t 的和信号()()x t y t +一定是周期信号B 、两个周期信号()x t ,()y t 的周期分别为2()()x t y t +是周期信号C 、两个周期信号()x t ,()y t 的周期分别为2和π,则信号()()x t y t +是周期信号D 、两个周期信号()x t ,()y t 的周期分别为2和3,则信号()()x t y t +是周期信号8、下列说法不正确的是(A )A 、两个连续周期信号的和一定是连续周期信号B 、两个离散周期信号的和一定是离散周期信号C 、连续信号()sin(),(,)f t t t ω=∈-∞+∞一定是周期信号D 、两个连续周期信号()x t ,()y t 的周期分别为2和3,则信号()()x t y t +是周期信号9、(52)f t -是如下运算的结果(C )A 、(2)f t -右移5B 、(2)f t -左移5C 、(2)f t -右移25 D 、(2)f t -左移25 10、将信号()f t 变换为(A )称为对信号()f t 的平移。
《信号与系统(第四版)》习题详解图文
![《信号与系统(第四版)》习题详解图文](https://img.taocdn.com/s3/m/3041cb29172ded630a1cb64c.png)
故f(t)与{c0, c1, …, cN}一一对应。
7
3.3 设
第3章 连续信号与系统的频域分析
试问函数组{ξ1(t),ξ2(t),ξ3(t),ξ4(t)}在(0,4)区间上是否 为正交函数组,是否为归一化正交函数组,是否为完备正交函 数组,并用它们的线性组合精确地表示题图 3.2 所示函数f(t)。
题图 3.10
51
第3章 连续信号与系统的频域分析 52
第3章 连续信号与系统的频域分析 53
第3章 连续信号与系统的频域分析 54
第3章 连续信号与系统的频域分析 55
第3章 连续信号与系统的频域分析 56
第3章 连续信号与系统的频域分析 57
第3章 连续信号与系统的频域分析
题解图 3.19-1
8
第3章 连续信号与系统的频域分析
题图 3.2
9
第3章 连续信号与系统的频域分析
解 据ξi(t)的定义式可知ξ1(t)、ξ2(t)、ξ3(t)、ξ4(t)的波形如题 解图3.3-1所示。
题解图 3.3-1
10
不难得到:
第3章 连续信号与系统的频域分析
可知在(0,4)区间ξi(t)为归一化正交函数集,从而有
激励信号为f(t)。试证明系统的响应y(t)=-f(t)。
69
证 因为
第3章 连续信号与系统的频域分析
所以
即
70
系统函数
第3章 连续信号与系统的频域分析
故
因此
71
第3章 连续信号与系统的频域分析
3.23 设f(t)的傅里叶变换为F(jω),且 试在K≥ωm条件下化简下式:
72
第3章 连续信号与系统的频域分析 73
107
信号与系统习题三
![信号与系统习题三](https://img.taocdn.com/s3/m/50c371593b3567ec102d8a8a.png)
3-1判断下列信号是周期信号还是非周期信号,若是周期信号,试求出其周期。
(1).t t 6cos 4sin +(2).2)(sin t π(3).)1(sin -πt3-2.周期信号)38cos(2)65sin(cos 3)(π--π-+=t t t t f ,试分别画出此信号的单边、双边幅度频谱和相位频谱图。
3-3.已知)()(ω↔F t f ,求↔-)26(t f3-4.求下列信号的傅氏反变换。
(1)ωπ-ωε-+ωε5cos )]5()5([ (2)1)1sin(1)1sin(-ω-ω++ω+ω (3)2sin ωω-j3-5.已知)()(ωF t f ↔,求下列信号的傅氏变换:(1))2(t tf (2))()2(t f t -(3))2()2(t f t -- (4)dt t df t )( (5))1(t f - (6))1()1(t f t -- (7))52(-t f3-6.已知ττωd f t f F t f t )]1(2[)(),()(1211-=↔⎰∞-,求↔)(2t f3-6求下列函数的的傅氏变换。
)(a 、t t f 1)(1=,)(b 、t t f =)(2,)(c 、)()(3t t t f ε=,)(d 、t t f =)(4 3-7利用傅氏变换的性质,求下列谱函数的傅氏变换。
)(a 、)(0ωωδ-,)(b 、)(2ωε3-8已知某系统函数65)(2++-=ωωωωj j H ,输入)()(t e t x tε-=,试求系统的零状态响应,并指出响应中的强制分量和自然分量。
3-9.若系统函数11)(+=ωωj H ,激励为周期信号t t t e 3sin sin )(+=。
试求零状态响应)(t y ,并讨论经传输是否引起失真。
3-10.理想高通滤波器的系统函数为⎪⎩⎪⎨⎧<>=-cc t jde H ωωωωωω0)(,其中c ω为截止角频率,d t 为延迟时间。
信号与系统第三章习题课3
![信号与系统第三章习题课3](https://img.taocdn.com/s3/m/588def4d2b160b4e767fcfd6.png)
(1) ℱ[ ]=
(2) ℱ[ ]-2ℱ[ ]
(3) ℱ[ ]-2ℱ[ ]
(4)
14.求图3-9所示梯形脉冲的傅里叶变换,并大致画出 情况下该脉冲的频谱图。
解:①利用线性性质
ℱ[ ]-ℱ[ ]
②利用时域卷积定理
令 , ,其中
则
ℱ[ ]ℱ[ ]
③利用时域积分性质
令 则
另外,求得一阶导数后,也可直接利用积分性质求解:
(4)
(5)因为
8.试分别利用下列几种方法证明 。
(1)利用符号函数 ;
(2)利用矩形脉冲取极限 ;
(3)利用积分定理 ;
(4)利用单边指数函数取极限 。
证明:(1)略
(2)
(3)略
(4)
9.若 的傅里叶变换为
,如图3-7所示,求 并画图。
解:
10.已知信号 , 的波形如图3-8(a)所示,若有信号 的波形如图3-8(b)所示。求 。
,
④当 时,
15.已知阶跃函数的傅里叶变换为 ;正弦、余弦函数的傅里叶变换为 ; 。求单边正弦 和单边余弦 的傅里叶变换。
解:同Biblioteka 可求:16.求 的傅里叶逆变换。
解: ,
另一种解法:
17.求信号 的傅氏变换。
解:信号周期为:
则 ,
18.信号 ,若对其进行冲激取样,求使频谱不发生混叠的最低取样频率 。
第三章习题
1.图3-1给出冲激序列 。求 的指数傅里叶级数和三角傅里叶级数。
解:
, ,因为偶函数
,上述
2.利用1题的结果求图3-2所示三角波 的三角傅里叶级数。
解:
①利用1题的结果求解:
令
则
,所以
信号与系统第三章习题答案
![信号与系统第三章习题答案](https://img.taocdn.com/s3/m/5de5d1d376a20029bd642d60.png)
d (t - 1) « e- jw
\ e-2( t -1)d (t - 1) « e- jw
(8) U (t ) - U (t - 3) Q 根据傅里叶变换的线性性质可得: 1 U (t ) « p d (w ) + jw 1 U (t - 3) « e - j 3w (p d (w ) + ) jw \ U (t ) - U (t - 3) « ( 1- e - j 3w )(p d (w ) + 1 ) jw
U (t - 1) « e - jw (pd (w ) +
t 1 U ( - 1) « 2e - j 2w (pd (2w ) + ) 2 j 2w Q d (aw ) = 1 d (w ) a
\ 2e- j 2wpd (2w ) = 2pd (2w )w =0 = pd (w ) \ 2e - j 2w (pd (2w ) +
e - jtd (t - 2 ) « e - j 2(w +1)
(6) e -2( t -1)d (t - 1) Q 根据傅里叶变换的性质 f (t ± t0 ) « e ± jwt0 F ( jw ) 可得: e -2( t -1)d (t - 1) = d (t - 1) d (t ) « 1 (t = 1)
d F ( jw ) - 2 F ( jw ) dw
y ''(t ) + 4 y '(t ) + 3 y (t ) = f (t ) y ''(t ) + 5 y '(t ) + 6 y (t ) = f '(t ) + f (t )
(1) 求系统的频率响应 H(jw)和冲激响应 h(t) ; (2) 若激励 f (t ) = e-2tU (t ) ,求系统的零状态响应 y f (t ) 。 解: 方程 1:
信号与系统王明泉科学出版社第三章习题解答
![信号与系统王明泉科学出版社第三章习题解答](https://img.taocdn.com/s3/m/9e79254cc281e53a5802ff7f.png)
左右对t求导,得:
显然, 的指数傅里叶级数为 (式中 )
3.9求题图3.9所示各信号的傅里叶变换。
题图3.9
解:根据定义
3.10计算下列每个信号的傅里叶变换。
(1) ;(2) ;
(3) ;(4)
(5) ;(6)
解: (1)
(2)
(3)由于
根据卷积乘积性质,得
(4)由于
所以
(5) ,设
第3章傅里叶变换与连续系统的频域分析
3.6本章习题全解
3.1证明函数集 在区间 内是正交函数集。
证明:对任意的自然数n,m (n m),有
=0
证毕
3.2一个由正弦信号合成的信号由下面的等式给出:
(1)画出这个信号的频谱图,表明每个频率成分的复数值。对于每个频率的复振幅,将其实部和虚部分开或者将其幅度和相位分开来画。
图3-19-3
3.21用傅里叶变换法求题图3.21所示周期信号 的傅里叶级数。
题图3.21
解:对x(t)一个周期信号x0(t)的傅里叶变换为
X0(j )=
=
傅里叶级数
3.22求题图3.22所示周期性冲激信号的频谱函数。
题图321-1
3.23已知 的幅频与相频特性如题图3.23所示,求其傅里叶逆变换 。
(a)(b)
题图3.12
解:令傅里叶变换对 ,
(1)根据已知图形可知:
,
已知有
所以
根据傅里叶变换的微积分性质
所以
即
(2) ,
根据(1)的结论得
根据傅里叶变换的微积分性质
所以
即
3.13利用傅里叶变换的对称性求下列信号的频谱函数。
(1) ;(2) ;
信号与系统习题答案第三章
![信号与系统习题答案第三章](https://img.taocdn.com/s3/m/0e328157960590c69fc3760c.png)
第三章习题基础题3.1 证明cos t , cos(2)t , …, cos()nt (n 为正整数),在区间(0,2)π的正交集。
它是否是完备集? 解:(积分???)此含数集在(0,2)π为正交集。
又有sin()nt 不属于此含数集02sin()cos()0nt mt dt π=⎰,对于所有的m和n 。
由完备正交函数定义所以此函数集不完备。
3.2 上题的含数集在(0,)π是否为正交集?解:由此可知此含数集在区间(0,)π内是正交的。
3.3实周期信号()f t 在区间(,)22T T-内的能量定义为222()TT E f t dt -=⎰。
如有和信号12()()f t f t +(1)若1()f t 与2()f t 在区间(,)22T T-内相互正交,证明和信号的总能量等于各信号的能量之和;(2)若1()f t 与2()f t 不是相互正交的,求和信号的总能量。
解:(1)和信号f(t)的能量为[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2)由1()f t 与2()f t 在区间内正交可得2122()()0T T f t f t dt -=⎰则有 22221222()()T T T T E f t dt f t dt --=+⎰⎰即此时和信号的总能量等于各信号的能量之和。
和信号的能量为(2)[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2吧?)由1()f t 与2()f t 在区间(,)22T T-内不正交可得 2122()()0T T f t f t dt K -=≠⎰则有2222222212122222()()()()T T T T T T T T E f t dt f t dt K f t dt f t dt ----=++≠+⎰⎰⎰⎰即此时和信号的总能量不等于各信号的能量之和。
信号与系统课后习题与解答第三章
![信号与系统课后习题与解答第三章](https://img.taocdn.com/s3/m/ccfc04ba312b3169a551a40a.png)
3-1 求图3-1所示对称周期矩形信号的傅利叶级数〔三角形式和指数形式〕。
图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数〔FS 〕为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数〔FS 〕的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为T e jE e jE e jE e jE t f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。
假设:图3-22T-2-重复频率kHz f 5= 脉宽s μτ20=幅度V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。
解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数〔FS 〕的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n那么的指数形式的傅利叶级数〔FS 〕为∑∑∞-∞=∞-∞=⎪⎭⎫ ⎝⎛==n tjn n tjn n e n Sa TE eF t f 112)(1ωωτωτ其直流分量为TE n Sa T EF n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 假设周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:〔1〕)(1t f 的谱线间隔和带宽〔第一零点位置〕,频率单位以kHz 表示; 〔2〕)(2t f 的谱线间隔和带宽; 〔3〕)(1t f 与)(2t f 的基波幅度之比; 〔4〕)(1t f 基波与)(2t f 三次谐波幅度之比。
信号系统(第3版)习题解答
![信号系统(第3版)习题解答](https://img.taocdn.com/s3/m/39f7388b81c758f5f61f6786.png)
《信号与系统》(第3版)习题解析高等教育目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。
](a) 2 f ( t - 2 ) (b) f ( 2t )(c) f ( 2t)(d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i Lt u L L d )(d )(= ⎰∞-=tC C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
S RS LS C题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T == )()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。
信号与系统课程习题与解答
![信号与系统课程习题与解答](https://img.taocdn.com/s3/m/1fcc490011a6f524ccbff121dd36a32d7375c76f.png)
《信号与系统》课程习题与解答第三章习题(教材上册第三章p160-p172)3-1~3-3,3-5,3-9,3-12,3-13,3-15~3-17,3-19,3-22,3-24,3-25,3-29,3-32第三章习题解答3-2 周期矩形信号如题图3-2所示。
若:求直流分量大小以及基波、二次和三次谐波的有效值。
解:直流分量⎰⎰--=⨯==2222301105)(1ττv Edt dt t f T a TTf(t)为偶函数,∴0=n b)(2cos )(222T n Sa T E tdt n t f T a n πττωττ⎰-==)(21T n Sa T E a F n n πςτ== 基波 =1a )1.0s i n (20)(2πππττ=T Sa T E有效值 39.11.0sin 22021≈=ππa二次谐波有效值 32.122≈a三次谐波有效值 21.123≈a3-3 若周期矩形信号)(1t f 和 )(2t f 波形如题图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1=,E=1V ;)(2t f 的参数为s μτ5.1=,s T μ3=,E=3V ,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3) )(1t f 和 )(2t f 的基波幅度之比; (4) )(1t f 基波与)(2t f 三次谐波幅度之比。
解:(1))(1t f s μτ5.0= s T μ1= E=1V 谱线间隔:khZ T 10001==∆带宽:KHzB f 20001==τ(2) )(2t f s μτ5.1= s T μ3= E=3V间隔:khZ T 310001==∆谱线带宽:KHzB f 320001==τ(3) )(1t f 基波幅度:ππτ2)2cos(4201==⎰dt t T E T a )(2t f 基波幅度:ππτ6)2cos(4201==⎰dt t T E T a幅度比:1:3(4) )(2t f 三次谐波幅度:ππτ2)23cos(4203-=⨯=⎰dt t T E T a 幅度比:1:13-5 求题图3-5所示半波余弦信号的傅立叶级数。
信号系统习题解答3版-第三章-推荐下载
![信号系统习题解答3版-第三章-推荐下载](https://img.taocdn.com/s3/m/74a0692ed1f34693daef3ed7.png)
信号与系统徐天成第3版第3章习题答案3-1 已知周期矩形脉冲信号的重复频率,脉宽,幅度,如图题5 kHz f=20 s τ=μ10V E =3-1所示。
用可变中心频率的选频回路能否从该周期矩形脉冲信号中选取出5,12,20,50,80及频率分量来?要求画出图题3-1所示信号的频谱图。
100 kHz 图 题3-1解:,,,,5kHz f =20μs τ=10V E =11200T s fμ==41210f ππΩ==频谱图为从频谱图看出,可选出5、20、80kHz 的频率分量。
3-3 求图题3-3所示周期锯齿信号指数形式的傅里叶级数,并大致画出频谱图。
图 题3-3解: 在一个周期(0,T 1)内的表达式为: ()f t 11()()Ef t t T T =--111110011111()()(1,2,3)2T T jn tjn t n E jE F f t e dt t T e dt n T T T n π-Ω-Ω==--=-=±±±⎰⎰ 11010011111()()2T T E E F f t dt t T dt T T T ==--=⎰⎰傅氏级数为:111122()22244j t j t j t j tE jE jE jE jE f t e e e e ππππΩ-ΩΩ-Ω=-+-+-(1,2,3)2n E F n n π==±±± (0)2(0)2n n n πϕπ⎧->⎪⎪=⎨⎪<⎪⎩3-4 求图题3-4 所示半波余弦信号的傅里叶级数,若, ,大致画出幅10 V E =10 kHz f =度谱。
图 题3-4解:由于是偶函数,所以展开式中只有余弦分量,故傅氏级数中,另由图()f t 0n b =可知有直流分量, 在一个周期(,)内的表达式为:()f t ()f t 2T -2T其中:111cos 4()04T E t t f t T t ⎧Ω<⎪⎪=⎨⎪>⎪⎩112T πΩ=11112401112411()cos T T T T E a f t dt E tdt T T π--==Ω=⎰⎰111111241112422()cos T T jn t jn t T T n n a c f t e dt E t e dt T T -Ω-Ω--===Ω⋅⎰⎰211sin sin 2122cos 3,5,71112n n E E n n n n n πππππ+-⎡⎤⎢⎥=+=-=⎢⎥+--⎢⎥⎣⎦111211122()2T j t T E a c f t e dt T -Ω-===⎰所以,的三角形式的傅里叶级数为:()f t 11122()cos cos 2cos 42315E E E Ef t t t t πππ=+Ω+Ω-Ω+ 3-6 利用信号的对称性,定性判断图题3-6中各周期信号的傅里叶级数中所含有()f t的频率分量。
信号与系统第3章习题和重点
![信号与系统第3章习题和重点](https://img.taocdn.com/s3/m/cf1f1a16866fb84ae45c8d69.png)
ZB
3-26
已知 f (t) = f1(t) + f2(t)的频谱密度函数 F(ω) = 4Sa(ω) − j
4
ω
,
为偶函数, 为奇函数, 且 f1(t)为偶函数, f2(t)为奇函数,试求 f1(t)和 f2(t) 。 解:由题意知
f1(t) ↔4Sa(ω) = AτSa( 2 ∴f1(t) = 2g2(t)
F = n 1 T 1 T
∫ ∫
3T 4 T 4
f (t)e− jnω0tdt
L − 2 L 2 2 2 −2T −T 0 T 2T t
() 1
− jnω0 T 2 ) = 1 (1−e− jnπ )
−
=
T 1 δ (t) −δ (t − )e− jnω0tdt = (1−e T 2 T − 4
0
T
ZB
3-4 已知周期信号 f (t)的前四分之一周期的波形如图所 且其余每一段四分之一周期的波形要与之相同, 示,且其余每一段四分之一周期的波形要与之相同,试 整个周期的波形。 就下列情况分别画出 f (t)整个周期的波形。 为偶函数, 解:(1) f (t)为偶函数,且只含偶次谐波
f (t)
∞
F(ω) =
∫ = e e ∫
=
−∞ 0 2t − jωt
e2tε(−t)e− jωtdt dt
−∞ (2− jω)t 0 e
2 − jω −∞
ZB
1 = 2 − jω 《信号与系统》SIGNALS AND SYSTEMS
3-19 设 f (t) ↔F(ω) ,试证: 试证: (1) ∫ ∞ f (t)dt = F(0) ) −
解: (2) 为非周期信号 T →∞
信号与系统-第三章习题讲解
![信号与系统-第三章习题讲解](https://img.taocdn.com/s3/m/e6a24236195f312b3069a59a.png)
E
[Sa2 (
0
)e
j
( 0 2
)
Sa2 (
0
)e
j
( 0 2
)
]
4
4
4
3 39决 定 下 列 信 号 的 最 低 抽 样 频 率 与 奈 奎 斯 特 间 隔 : (1) : S a (1 0 0 t ); ( 2 ) : S a 2 (1 0 0 t ); (3 ) : S a (1 0 0 t ) S a (5 0 t ); ( 4 ) : S a (1 0 0 t ) S a 2 (6 0 t )
故 f ( t ) 2 E 1 s i n ( n t ) 2 E 1 s i n ( n 2 t )
n n 1 . 3 . 5 . . .
n n 1 . 3 . 5 . . .
T
= 2 E [sin ( t) 1 sin (3 t) 1 sin (5 t) ...]
1 2
[ (
0 ) (
0 )]* [
1 j
( )]
11
[
2 j( 0 )
j(
1
] 0)
2
[
(
0)
(
0 )]
j
2 0
2
2
[
(
0)
(
0 )]
单边正弦函数的傅立叶变换为:
F [sin( 0t)u (t)]
1 2
F T [sin( 0t)]* F T [u (t)]
1 2
0
b n
2 T1
T1 0
f
(t ) s in ( n 1t ) d t
2[
T 2
E
sin (n t)d t
西安交通大学_信号与系统A课后习题(第3、4章)
![西安交通大学_信号与系统A课后习题(第3、4章)](https://img.taocdn.com/s3/m/ff63381df18583d049645964.png)
6
7
8
9
10
t
(c)
1
《第二次课后作业》 28 对下图所示的离散时间周期信号 x[n] 求傅里叶级数系数, 并画出每一组系数 ak 的模和相位。
x[n] … -12 -6 1 … 0 6 12 n
(b)
x[n] 2 … -12 -6 1 … 0 -1 6 12 n
(c) 11 现对一信号 x[n] 给出如下信息: 1. x[n] 是实、偶信号。 3. a11 = 5 2. x[n] 有周期 N = 10 和傅里叶系数 ak 。 4.
《第二次课后作业》 11 已知下列关系:
y (t ) = x(t ) ∗ h(t )
和
g (t ) = x(3t ) ∗ h(3t )
并已知 x(t ) 的傅里叶变换是 X ( jω ) , h(t ) 的傅里叶变换是 H ( jω ) ,利用傅里叶变换性质证明
g (t ) 为 g (t ) = Ay ( Bt )
x(t ) = t , 0 < t < 1
3
画出 x(t ) 并求出它的傅里叶级数系数。 45 设 x(t ) 是一个实周期信号,其正弦-余弦形式的傅里叶级数表示为
x(t ) = a0 + 2∑ [ Bk cos kω0t − Ck sin kω0t ]
k =1
∞
(a) 求 x(t ) 的偶部和奇部的指数形式的傅里叶级数表示;也就是利用上式的系数求下面 两式中的 α k 和 β k ,
h (t ) = e
−4 t
z[n] = x[n] y[ n]
对下列各输入情况下,求输出 y (t ) 的傅里叶级数表示: (b) x(t ) = ∑ n =−∞ (−1) n δ (t − n)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一填空(30)
1、=−−)2(*)1(k k εε
2、 ∑−∞
==−δk n n )2(
3、
∑∞−∞
==−+−k k k k )1()54(2δ4、卷积和的定义=)(*)(21k f k f
5、任一序列与单位样值序列信号)(k f )(k δ的关系为
6、已知两个序列分别为)()3
1()(1k k f k ε=,)3()()(2−−=k k k f εε,,则, =
)(*)()(21k f k f k s ==)2(s )4(s 7、 f (k )﹡δ(k ) =
8、 f (k )﹡δ(k – ) = 0k
9、()()1−−k k εε=
10、=)(*)(k k εε
12=
13.()()43−∗−k k εε求:=
14设f 1(k )=e -k ε( k ),f 2(k )=ε(k ), f 1(k )*f 2(k )=
15. 已知序列x (k )=(3)-k ε(k ) ,y (k )=1, -∞<k <∞,求= )(*)(k y k x 16,,)()5.0()(1k k f k ε=1)(2=k f ∞<<∞−k ,则=)(*)(21k f k f 17,)()5.0()(1k k f k ε=)()(2k k f ε=,∞<<∞−k ,则 =)(*)(21k f k f
18 f(k)﹡δ(k–
5) = 19 f (k )﹡δ(k – 7) =
6单位阶跃序列与单位取样序列的关系为
20()()23−∗−k k εε求:=
21 ()(47−)∗−k k εε求:=
22 f (k )﹡δ(5) =
23 f (k )﹡δ(7) =
24.
∑∞−∞==−+−k k k k
)1()64(2δ
25
∑∞−∞==−+−k k k k )2()54(2δ
二选择(20)
1 )2(*)3(−+k k x δ的正确结果是()
A )2()5(−k x δ
B )2()1(−k x δ
C )1(+k x
D )5(+k x
2 序列和等于()
)2(2−∑−∞=i k
i i δA 1 B 4 C )(4k ε D )2(4−k ε
3序列和
等于() ∑∞
−∞=k k )(δA 1 B ∞ C )(k ε D )()1(k k ε+ 4.)(4
cos n k δπ等于() A )(n δ B 21
C 4cos
πk D
4
πk
6. 系统的冲激响应与()
A 输入激励信号有关
B 系统结构有关
C 冲激响应强度有关
D 产生冲激时刻有关
5.=)(*)(n n εε( )
A )(n n ε
B
)(2n n εC )()1(n n ε+
D )()1(n n ε−
7. 若,则 等于( )
)(*)()(t h t x t y =)2(*)2(t h t x A )2(2
1t y B )4(4
1t y C )2(4
1t y D )4(2
1t y 8. 线性系统响应的分解特性满足一下规律()
A 一般情况下,零状态响应与系统特性无关
B 若系统的激励信号为零,则系统的零输入响应与强迫响应相等
C 若系统的初始状态为零,则系统的输入响应与自由响应相等
D 若系统的零状态响应为零,则强迫响应也为零
9. 一个离散时间LTI 系统,其输入和单位冲激响应分别为
,,则的结果是()
)(n x )(n h )()(n a n x n ε=)()(n a n h n ε=)(*)(n h n x A a
n a n n −+1)()1(ε B
)()1(n a n n ε+
C n a
(+
n)1
(n
na nε
D )
10.f(k)﹡δ(3) =
A 1
B 0
C f(3)
D f(0)。