2020年05月24日江苏省普通高校专转本选拔考试高数真题

合集下载

2020年江苏专转本高等数学真题

2020年江苏专转本高等数学真题

C.2
D.4
3.设函数 在点
处连续,且 ul
,则
A.
B.
C.3
4.已知 A.
的一个原函数是 9
,则 B.
C. 9
D. 9
5.下列反常积分中收敛的是
A.
d
B.
d
C.
d
D.6 D.
() ()
() d
6.设 A. t
t
,则
B. t
C. t
D. t
()
7.二次积分
在极坐标系中可化为
()
A.
t
B.
t
C.
u
D.
江苏省 2020 年普通高校专转本选拔考试
高等数学 试题卷
一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分。在下列每小题中选出一个正
确答案,请在答题卡上将所选项的字母标号涂黑)
1.极限 ul u
u
的值为
()
A.1
B.2
C.3
D.4
2.设函数

内连续, 为常数,则 −
()
A.-2
B.0

D
,ቤተ መጻሕፍቲ ባይዱ
围成的平面区域。
四、证明题(本大题 10 分)
23.证明:当
时,
4
五、综合题(本大题共 2 小题,每小题 10 分,共 20 分)
24.设平面图形 由曲线
与其曲线在 处的法线及直线
(1)平面图形 的面积;
(2)平面图形 绕 轴旋转一周所形成的旋转体的体积。
围成,试求:
25.设函数
,已知曲线
试求: (1) 常数 (2)函数
u

2020年江苏专转本高等数学真题

2020年江苏专转本高等数学真题

t
,则
B. t
C. t
D. t
()
7.二次积分
在极坐标系中可化为
()
A.
t
B.
t
C.
u
D.
u
8.设函数 A.
h
在区间
h
h h 内可展开成幂级数 an xn , 则
n0
B.−
h
C.
h
D.
h
二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)
()
_____.
u
的值为
()
A.1
B.2
C.3
D.4
2.设函数

内连续, 为常数,则 −
()
A.-2
B.0
C.2
D.4
3.设函数 在点
处连续,且 ul
,则
A.
B.
C.3
4.已知 A.
的一个原函数是 9
,则 B.
C. 9
D. 9
5.下列反常积分中收敛的是
A.
d
B.
d
C.
d
D.6 D.
() ()
() d
6.设 A. t
(1)平面图形 的面积;
(2)平面图形 绕 轴旋转一周所形成的旋转体的体积。
围成,试求:
25.设函数
,已知曲线
试求: (1) 常数 (2)函数
的值; ⺁的单调区间与极值。
⺁具有水平渐近线
,且有拐
添加小学士微信(xueshi005) 获得高数答案解析
5
的收敛半径为______________.
三、计算题(本大题共 8 小题,每小题 8 分,共 64 分)

2020年江苏省【数学真题】普通高等学校招生全国统一考试试卷(原卷)

2020年江苏省【数学真题】普通高等学校招生全国统一考试试卷(原卷)

『高考真题·真金试炼』『知己知彼·百战不殆』绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=52x ,则该双曲线的离心率是____.7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x = ,则f (-8)的值是____.8.已知2sin ()4πα+ =23,则sin 2α的值是____. 9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.12.已知22451(,)x y y x y R +=∈,则22x y +最小值是_______.13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.。

2020年普通高等学校招生全国统一江苏卷数学高考试题(精编打印版)

2020年普通高等学校招生全国统一江苏卷数学高考试题(精编打印版)

16.(本小题满分 14 分) 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,已知 a 3,c 2, B 45 . (1)求 sin C 的值; (2)在边 BC 上取一点 D,使得 cos ADC 4 ,求 tan∠DAC 的值. 5
精品文档,名师推荐! 来源网络,造福学生
f (x)=k(160 1 x3 6x) 3 k( 1 x 2 4x)

800
2 40
k( 1 x3 3 x2 160)(0 x 40).
800 80
f (x)=k( 3 x2 3 x 160) 3k x(x 20) ,
800 40
800
精品文档,名师推荐! 来源网络,造福学生
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
绝密★启用前
如果您喜欢这份文档,欢迎下载! 精品文档,名师推荐!
2020 年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
注意事项
考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共 4 页,均为非选择题(第 1 题~第 20 题,共 20 题)。本卷满分为 160 分,考试时间为 120 分钟。
二、解答题
15.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推
理论证能力.满分 14 分.
证明:因为 E, F 分别是 AC, B1C 的中点,所以 EF∥AB1 .
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
1
1
1
Snk1 Snk ank1 成立,则称此数列为“λ~k”数列.

2020年专升本高等数学真题

2020年专升本高等数学真题

t t则
______________.
8.
tt
______________.
9.设 10. 函数
tt
,则 ______________.
tt
t
在闭区间 tt上的最大值为______________.
11.定积分 12. 设
______________.
是方程
t
t
确定的隐函数,则 _________来自____.t, x 晦,
则对于 t 与 晦 之间的任意一一个数 ,至少存在一点 ,使得
x
B. 若函数 在闭区间 xt上连续,开区间 x 内可导,那么在 x 内至少存在一点 ,
使等式 x
x 成立
C.若函数 在闭区间 xt上连续,那么在 xt上至少存在一个点 ,使等式立: x
x
D. 若函数 在闭区间 xt上连续,那么
,则
是函数 的( )
A.连续点
2.已知
t
A.t
B.可去间断点 t t,则 等于(
B.t t
C.跳跃间断点 )
C.t t
D.第二类间断点 D.t ⌶
3.当
时, t
与 t 是等价无穷小,则 的值为( )
A.
B.
C.3
D.4
4.下列结论不正确的 ( )
A. 设函数 在闭区间 xt上连续,且在区间端点有不同的函数值
题号

得分
高等数学



总分
考试说明: 1、考试时间为 150 分钟; 2、满分为 150 分; 3、答案请写在答题卷上,否则无效; 4、密封线左边各项要求填写清楚完整。
一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共 得分 有 5 个小题,每小题 4 分,共 20 分)

江苏省专转本高数真题及答案

江苏省专转本高数真题及答案

江苏省专转本高数真题及答案高等数学试题卷(二年级)注意事项:出卷人:江苏建筑大学-张源教授1、考生务必将密封线内的各项目及第 2页右下角的座位号填写清楚. 3、本试卷共8页,五大题24小题,满分150分,考试时间120分钟. 一、选择题(本大题共6小题,每小题4分,满分24分) 1、极限 lim(2xsin 1 Sin 3x )=()x xA. 0B.2C.3D.52、设f (x)二2)sinx ,则函数f (x )的第一类间断点的个数为()|x|(x -4)'A. 0B.1C.2D.3133、设 f(x) =2x 2 -5x 2,则函数 f(x)()A.只有一个最大值B.只有一个极小值C.既有极大值又有极小值D.没有极值34、设z =ln(2x)-在点(1,1)处的全微分为()y1 1A. dx - 3dyB. dx 3dyC. 一 dx 3dyD. - dx - 3dy2 21 15、二次积分pdy.y f (x, y )dx 在极坐标系下可化为()sec'— 'sec jA. —4d 寸 o f (「cos 〒,「sin 寸)d 「B. —4d 丁 ? f (「cos 〒,「sin 寸)「d 「&下列级数中条件收敛的是()二、填空题(本大题共6小题,每小题4分,共24分)7要使函数f(x)=(1-2x )x 在点x=0处连续,则需补充定义f(0)= _________________ . 8、设函数 y = x (x 2 +2x +1)2 +e 2x ,贝卩 y ⑺(0) = _______ .江苏省 2 0 12 年普通高校专转本选拔考试2、考生须用钢笔或圆珠笔将答案直接答在试卷上, 答在草稿纸上无效. sec ? iC. o f (「cosd 「sin Jd 「D.4sec ?2d 丁 ? f (「cos 寸,「sin 寸):?d "「TVXTnW ?、n9、设y =x x (x >0),则函数y 的微分dy =.(1)函数f (x)的表达式;11、设反常积分[_e 」dx=q ,则常数a= ______________ . 12、幕级数£上律(x -3)n 的收敛域为 __________________ :“二 n3 三、计算题(本大题共8小题,每小题8分,共64 分)2x +2cosx —2 lim 厂x 0x ln(1 x)2116、计算定积分",-严.17、已知平面二通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平面二平行,又与x 轴垂直的直线方程.18、设函数“ f(x,xyr (x 2 y 2),其中函数f 具有二阶连续偏导数,函数具有二阶连-2续导数,求一Zc^cy19、已知函数f(x)的一个原函数为xe x ,求微分方程丫4/ 4^ f (x)的通解. 20、计算二重积分..ydxdy ,其中D 是由曲线y 「x-1,D闭区域.四、综合题(本大题共2小题,每小题10分,共20分)21、在抛物线y =x 2(x 0)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为2,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积.3x322、已知定义在(皿,畑)上的可导函数f(x)满足方程xf(x)-4( f(t)dt=x 3-3,试求:10、设向量a,b 互相垂直,且= 3,^=2,,贝 U ^+2b13、求极限 14、设函数 y = y(x)由参数方程 xdty = t 2 2lnt所确定, 求鱼dx dx 2 °15、求不定积分 2x 1 J 2~cos x1直线T 及x 轴所围成的平面(2)函数f(x)的单调区间与极值;(3)曲线y= f(x)的凹凸区间与拐点.五、证明题(本大题共2小题,每小题9分,共18分)123、证明:当0 : x :: 1 时,arcsinx x x3.6十x0 g(t)dt g(x)24、设f(x)一2—XHO,其中函数g(x)在(皿,母)上连续,且lim g(x丿=3证x T1—COSX卫(0) x = 01明:函数f (x)在X = 0处可导,且f (0)匕.一. 选择题1-5BCCABD二. 填空题7-12e°128x n(1 ln x)dx5ln 2 (0,6]三. 计算题13求极限x m0 2x 2 cos x - 216、计算定积分 ----------- dx .1x ? 2x T13 t -^dt 二21 1 :; t2 1 t2dt =2arctant 1 t2原式=x叫x2 2 cos x -2 2x—2si nx=limx_0x—sin x3= lim4x3 x刃2x314、设函数y = y(x)由参数方程所确定,求2』=t +21 nt dydxd2ydx2原式号dx dydtdx2t -t12td2y_d燈)dtdx2t2 dt t2dx2dxdtt2115、求不定积分2x 12dx. cos x2x 1原式=i'2■ dx ' cosx 二(2x 1)d tanx 二(2x 1) tanx - tanxd(2x 1) 原式=令.2x -1 “,则原式=.?? 32(1)函数f (x)的表达式;17、已知平面二通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平面二平行,又与x 轴垂直的直线方程.解:平面二的法向量n -OM 「=(0,3,一2),直线方向向量为S = n "「= (0,-2,-3),直线方程:x -1 y -1 z -10 一 -2 一 -3 18、设函数z 二f(x,xy^ (x 2 y 2),其中函数f 具有二阶连续偏导数,函数具有二阶连Z =f i f 2 y 2x ' zf i2 x f 2 xyf 22 2x 2y : .x :x.y19、已知函数f (x)的一个原函数为xe x ,求微分方程y” ? 4y ' 4y = f (x)的通解. 解:f (x) = (xe x ^ = (x 1)e x ,先求y ” ? 4y ' 4y = 0 的通解,特征方程:r 2 ? 4r *4 = 0,h 、2 = -2,齐次方程的通解为Y =(G C 2X )e'x .令特解为y =(Ax B)e x ,代入原方程9Ax 6A 9^x 1,有待定系数法得:__ 120、计算二重积分i iydxdy ,其中D 是由曲线y = :x-1,直线y= —x 及x 轴所围成的平面D 2闭区域.原式=ydy 丫 dx 1.j 0'2y12四. 综合题21、在抛物线y =x 2(x 0)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为2,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积. 3 解:设 P 点(x 0,x ° )(x 0 0),则 k 切=2x °,切线:,y - x ° = 2x 0(x- x °)续导数,求;2z解:9A=1QA+9B =1解得* A 」9 -1,所以通解为丫"6)宀(討?2x/即,y +x ° =2x °x ,由题意((y x^ 2x 0s y)dy =彳,得 X0 = 2,P(2,4)(2)函数f(x)的单调区间与极值;(3)曲线—f(x)的凹凸区间与拐点.x解:(1)已知 xf(x)-4 4 f (t)dt =X 3 -3两边同时对 x 求导得:f (X )? x 「(x)-4f(x) =3x 2 3即.y" — -y=3x 则 y = —3x 2+cx 3 由题意得:f(1)=—2, c=1,贝U f(x)=—3x 2 + x 3 ■ x ' (2) f (x) =3x 2 -6x = 0,论=0,x 2 = 2 列表讨论得在(-二,0) (2,::)单调递增,在(0,2)单调递减。

解析2020年普通高等学校招生全国统一考试(江苏卷)数学

解析2020年普通高等学校招生全国统一考试(江苏卷)数学

机密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:,其中S是柱体的底面积,h是柱体的高.柱体的体积V Sh一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合A={-1,0,1,2},B={0,2,3},则A∩B=.【命题意图】本题考查集合中的简单的交集计算.【解析】由集合A={-1,0,1,2},B={0,2,3},所以A∩B={0,2}.答案:{0,2}2.已知i是虚数单位,则复数z=(1+i)(2−i)的实部是.【命题意图】本题主要考查复数的四则运算.【解析】z=(1+i)(2−i)=3+i,则实部为3.答案:33.已知一组数据4,2a,3-a,5,6的平均数为4,则a的值是.【命题意图】本题主要考查数据特征中的平均数的计算.=4可知a=2.【解析】由4+2a+(3-a)+5+65答案:24.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是.【命题意图】本题主要考查古典概型.【解析】总事件数为6×6=36,满足条件的事件有(1,4),(2,3),(3,2),(4,1)共4种,则点数和为5的概率为436=19.答案:195.如图是一个算法流程图,若输出y 的值为-2,则输入x 的值为 .【命题意图】本题主要考查流程图选择问题,注意选择条件. 【解析】由题可知y ={2x ,x>1,x+1,x≤1,当y =-2时,得x +1=-2,则x =-3. 答案:-36.在平面直角坐标系xOy 中,若双曲线x 2a 2 -y 25=1(a >0)的一条渐近线方程为y =√52x ,则该双曲线的离心率是 .【命题意图】本题主要考查双曲线的性质,渐近线问题. 【解析】由x 2a2−y 25=0得渐近线方程为y =±√5ax , 又a >0,则a =2,由c 2=a 2+5=9,c =3,得离心率e =c a =32. 答案:32【光速解题】e =√1+(√52)2=32.答案:327.已知y =f (x )是奇函数,当x ≥0时,f (x )=x 23,则f (-8)的值是 . 【命题意图】本题主要考查函数性质,利用奇偶性求函数值. 【解析】y =f (x )是奇函数,当x ≥0时,f (x )=x 23, 则f (-8)=-f (8)=-823=-4.答案:-48.已知sin 2(π4+α)=23,则sin 2α的值是 .【命题意图】本题主要考查三角函数恒等变换,利用整体思想求值. 【解析】方法一:因为sin 2(π4+α)=23, 由sin 2(π4+α)=12[1−cos (π2+2α)] =12(1+sin 2α)=23,解得sin 2α=13. 方法二:sin 2α=-cos (π2+2α) =2sin 2(π4+α)-1=13.答案:139.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是 cm 3.【命题意图】本题主要考查正棱柱、圆柱的体积计算,要求学生要熟记公式.【解析】记此六角螺帽毛坯的体积为V ,正六棱柱的体积为V 1,圆柱的体积为V 2,则V 1=6×12×2×2×sin 60°×2=12√3(cm 3),V 2=π×(0.5)2×2=π2(cm 3), 所以V =V 1-V 2=12√3-π2(cm 3).答案:12√3-π210.将函数y =3sin (2x +π4)的图象向右平移π6个单位长度,则平移后的图象与y 轴最近的对称轴方程是 .【命题意图】本题主要考查三角函数的图象的平移变换和性质.重点考查直观想象的数学核心素养. 【解析】设f (x )=y =3sin (2x +π4),将函数f (x )=3sin (2x +π4)的图象向右平移π6个单位长度得g (x )=f (x -π6)= 3sin (2x -π3+π4)=3sin (2x -π12),则y =g (x )的图象的对称轴为2x - π12=π2+k π,k ∈Z,即x =7π24+kπ2,k ∈Z,k =0时,x =7π24,k =-1时,x =-5π24,所以平移后的图象与y 轴最近的对称轴的方程是x =-5π24. 答案:x =-5π24【误区警示】解决本题时一定要看清要求的对称轴方程是平移后的图象与y 轴最近的对称轴方程.求出平移后的图象的对称轴方程为x =7π24+kπ2(k ∈Z),不要误认为k =0时,x =7π24就是本题的答案,还应验证k =-1时,x =-5π24,两者进行比较,才能得出答案.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列,已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是 .【命题意图】本题主要考查根据前n 项和求数列的通项公式,多写一项,进行作差运算,根据结构得到数列通项.重点考查学生数学运算的核心素养.【解析】设数列{a n },{b n }的首项分别为a 1,b 1,前n 项和分别为A n ,B n ,则A n =d2n 2+(a 1-d2)n ,B n =b1q -1q n +b11−q ,结合S n =n 2-n +2n -1,得{d2=1,q =2,解得{d =2,q =2,所以d +q =4.答案:412.已知5x 2y 2+y 4=1(x ,y ∈R),则x 2+y 2的最小值是 .【命题意图】本题主要考查不等式,利用消元法结合基本不等式求最值. 【解析】因为5x 2y 2+y 4=1(x ,y ∈R),所以y ≠0, 所以x 2=1−y 45y 2,则x 2+y 2=15y 2+45y 2≥2√425=45, 当且仅当15y 2=45y 2时,即y 2=12, x 2=310时,x 2+y 2的最小值是45.答案:45【光速解题】4=(5x 2+y 2)·4y 2≤[(5x 2+y 2)+4y 22]2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2,即x 2=310,y 2=12时,取等号.所以(x 2+y 2)min =45. 答案:4513.在△ABC中,AB=4,AC=3,∠BAC=90°,D在边BC上,延长AD到P,使得AP=9,若=m+(32-m)(m 为常数),则CD的长度是.【命题意图】本题主要考查平面向量共线的应用.重点考查直观想象及数学运算的核心素养.【解析】作AE⊥BC,交BC于点E.设=λ=λm+λ(32-m),因为C,D,B三点共线,所以λm+λ(32-m)=1,解得λ=23,所以AD=3=AC,所以CD=2·AC·cos C=185.答案:18514.在平面直角坐标系xOy中,已知P(√32,0),A,B是圆C:x2+(y-12)2=36上的两个动点,满足P A=PB,则△P AB面积的最大值是.【命题意图】本题主要考查直线与圆相交问题,通过设圆心角表示面积,利用导数求最值.突出考查数学运算的核心素养.【解析】方法一:如图,作PC所在直径EF,交AB于点D,因为P A=PB,CA=CB=R=6,所以PC⊥AB.要使面积S△P AB最大,则P,D位于C的两侧,并设CD=x,计算可知PC=1,故PD=1+x,AB=2BD=2√36−x2,故S△P AB=12AB·PD=(1+x)√36−x2,设∠BCD=θ,则x=6cos θ,S△P AB=(1+x)√36−x2=(1+6cos θ)·6sin θ=6sin θ+18sin 2θ,0<θ<π2, 记函数f (θ)=6sin θ+18sin 2θ,则f'(θ)=6cos θ+36cos 2θ=6(12cos 2θ+cos θ-6), 令f'(θ)=6(12cos 2θ+cos θ-6)=0, 解得cos θ=23(cos θ=-34<0舍去),显然,当0<cos θ<23时,f'(θ)<0,f (θ)单调递减;当23<cos θ<1时,f'(θ)>0,f (θ)单调递增; 结合cos θ在(0,π2)上单调递减,故cos θ=23时,f (θ)最大,此时sin θ=√1−cos 2θ=√53, 故f (θ)max =6×√53+36×√53×23=10√5,即△P AB 面积的最大值是10√5.方法二:由已知PC =1,设12∠ACB =α(α∈(0,π2)),则△P AB 的面积S =12·(6cosα+1)·12sin α=6sin α(6cos α+1), 令S'=6(12cos 2α+cos α-6) =6(4cos α+3)(3cos α-2)=0,解得cos α0=23(负值舍去),所以S 在(0,α0)上单调递增,在(α0,π2)上单调递减,所以S max =6×√53×5=10√5. 答案:10√5二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点. (1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【命题意图】本题主要考查立体几何线面平行、面面垂直的证明,考查学生空间想象能力和推理能力.【证明】(1)因为E,F分别是AC,B1C的中点,所以EF∥AB1,因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB,又因为AB⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以AB⊥平面AB1C,因为AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.16.(本小题满分14分)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=3,c=√2,B=45°.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=-45,求tan∠DAC的值.【命题意图】本题主要考查正余弦定理及两角和差公式的应用,考查学生解题的严谨性.【解析】(1)由余弦定理,得cos B=cos 45°=a 2+c2-b22ac=26√2=√22,因此b2=5,即b=√5,由正弦定理csinC =bsinB,得√2sinC=√5√22,因此sin C=√55.(2)因为cos∠ADC=-45,所以sin∠ADC=√1−cos2∠ADC=35,因为∠ADC∈(π2,π),所以C∈(0,π2),所以cos C=√1−sin2C=2√55,所以sin∠DAC=sin(π-∠DAC)=sin(∠ADC+∠C)=sin∠ADC cos C+cos∠ADC sin C=2√525,因为∠DAC ∈(0,π2),所以cos ∠DAC =√1−sin 2∠DAC =11√525, 故tan ∠DAC =sin∠DACcos∠DAC =211. 17.(本小题满分14分)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO'为铅垂线(O'在AB 上),经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO'的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO'的距离b (米)之间满足关系式h 2=-1800b 3+6b.已知点B 到OO'的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO'的桥墩CD 和EF .且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元),桥墩CD 每米造价32k (万元)(k >0),问O'E 为多少米时,桥墩CD 与EF 的总造价最低?【命题意图】本题主要考查实际生活问题中的模型建立及导数的实际应用.重点考查数学建模的核心素养. 【解析】(1)过A ,B 分别作MN 的垂线,垂足为A',B', 则AA'=BB'=-1800×403+6×40=160(米).令140a 2=160,得a =80,所以AO'=80,AB =AO'+BO'=80+40=120(米). (2)设O'E =x ,则CO'=80-x ,由{0<x <400<80−x <80,得0<x <40.设总造价为y ,则y =3k2[160−140(80-x )2]+k [160−(-1800x 3+6x)] =k800(x 3-30x 2+160×800), y'=k800(3x 2-60x )=3k800x (x -20),因为k >0,所以令y'=0,得x =0或x =20, 所以当0<x <20时,y'<0,y 单调递减;当20<x <40时,y'>0,y 单调递增.所以,当x =20时,y 取最小值,即当O'E 为20米时,造价最低. 18.(本小题满分16分)在平面直角坐标系xOy 中,若椭圆E :x 24+y 23=1的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B. (1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求·的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别是S 1,S 2,若S 2=3S 1,求M 的坐标.【命题意图】本题考查了(1)利用椭圆的定义求焦点三角形的周长;(2)求平面向量数量积最值问题;(3)面积比值转化为高之比,从而转化为平行线间的距离求出直线方程.考查数学运算、直观想象的核心素养. 【解析】(1)△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A (1,32),设点P (t ,0),则直线AP 方程为y =321−t (x -t ),令x =a 2c =4得y Q =6−32t 1−t =12−3t 2(1−t ), 即Q (4,12−3t 2−2t),=(t -4,12−3t 2t -2),·=t 2-4t =(t -2)2-4≥-4, 即·的最小值为-4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2, 若S 2=3S 1,则12×|AB |×d 2=12×|AB |×d 1×3,即d 2=3d 1, 由题意可得直线AB 的方程为y =34(x +1), 即3x -4y +3=0,所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点, 设平行于AB 的直线l 为3x -4y +m =0,与直线AB 的距离为95, 所以√9+16=95,即m =-6或12.当m =-6时,直线l 为3x -4y -6=0, 即y =34(x -2),联立{y =34(x -2)x 24+y 23=1,可得(x -2)(7x +2)=0,即{x M =2y M =0,或{x M =−27y M =−127, 所以M (2,0)或(-27,-127).当m =12时,直线l 为3x -4y +12=0, 即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,Δ<0,所以无解.综上所述,M 点坐标为(2,0)或(-27,-127).19.(本小题满分16分)已知关于x 的函数y =f (x ),y =g (x )与h (x )=kx +b (k ,b ∈R)在区间D 上恒有f (x )≥h (x )≥g (x ). (1)若f (x )=x 2+2x ,g (x )=-x 2+2x ,D =(-∞,+∞).求h (x )的表达式; (2)若f (x )=x 2-x +1,g (x )=k ln x ,h (x )=kx -k ,D =(0,+∞).求k 的取值范围;(3)若f (x )=x 4-2x 2,g (x )=4x 2-8,h (x )=4(t 3-t )x -3t 4+2t 2(0<|t |≤√2),D =[m ,n ]⊆[-√2,√2],求证:n -m ≤√7.【命题意图】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.【解析】(1)由f (x )=g (x )得x =0.又f'(x )=2x +2,g'(x )=-2x +2,所以f'(0)=g'(0)=2,所以,函数h (x )的图象为过原点,斜率为2的直线,所以h (x )=2x.经检验:h (x )=2x 符合题意. (2)h (x )-g (x )=k (x -1-ln x ), 设φ(x )=x -1-ln x ,则φ'(x )=1-1x =x -1x , φ(x )≥φ(1)=0,所以当h (x )-g (x )≥0时,k ≥0.设m (x )=f (x )-h (x )=x 2-x +1-(kx -k )=x 2-(k +1)x +(1+k )≥0, 当x =k+12≤0时,m (x )在(0,+∞)上递增,所以m(x)>m(0)=1+k≥0,所以k=-1.>0时,Δ≤0,当x=k+12即(k+1)2-4(k+1)≤0,(k+1)(k-3)≤0,-1≤k≤3.综上,k∈[0,3].(3)①当1≤t≤√2时,≤0.(*)由g(x)≤h(x),得4x2-8≤4(t3-t)x-3t4+2t2,整理得x2-(t3-t)x+3t4-2t2-84令Δ=(t3-t)2-(3t4-2t2-8),则Δ=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤√2),则φ'(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0恒成立,所以φ(t)在[1,√2]上是减函数,则φ(√2)≤φ(t)≤φ(1),即2≤φ(t)≤7所以不等式(*)有解,设解集为{x|x1≤x≤x2},因此n-m≤x2-x1=√Δ≤√7.②当0<t<1时,f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1,v'(t)=12t3+12t2-4t-4=4(t+1)(3t2-1),.令v'(t)=0,得t=√33)时,v'(t)<0,v(t)是减函数;当t∈(0,√33,1)时,v'(t)>0,v(t)是增函数;当t∈(√33v(0)=-1,v(1)=0,则当0<t<1时,v(t)<0,(或证:v(t)=(t+1)2(3t+1)(t-1)<0)则f(-1)-h(-1)<0,因此-1∉(m,n).因为[m,n]⊆[-√2,√2],所以n-m≤√2+1<√7.③当-√2≤t <0时,因为f (x ),g (x )均为偶函数, 因此n -m ≤√7也成立. 综上所述,n -m ≤√7. 20.(本小题满分16分)已知数列{a n }(n ∈N *)的首项a 1=1,前n 项和为S n ,设λ与k 是常数,若对一切正整数n ,均有S n+11k-S n 1k=λa n+11k成立,则称此为“λ-k ”数列.(1)若等差数列{a n }是“λ-1”数列,求λ的值;(2)若数列{a n }是“√33-2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ-3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由.【命题意图】本题以数列为载体,综合考查等差数列的基本性质,及解决数列综合问题的能力,综合考查代数推理、转化化归及综合运用数学知识探究与解决问题的能力. 【解析】(1)k =1时,a n +1=S n +1-S n =λa n +1,所以λ=1. (2)√S n+1-√S n =√33√a n+1,a n +1=S n +1-S n =√33√a n+1(√S n+1+√S n ), 因此√S n+1+√S n =√3√a n+1.√S n+1=23√3a n+1,S n +1=43a n +1=43(S n +1-S n ). 从而S n +1=4S n .又S 1=a 1=1,所以S n =4n -1,a n =S n -S n -1=3·4n -2,n ≥2. 综上,a n ={1,n =13·4n -2,n ≥2.(3)设各项非负的数列{a n }(n ∈N *)为“λ-3”数列, 则S n+113-S n 13=λa n+113,即√S n+13-√S n 3=λ√S n+1-S n 3.因为a n ≥0,且a 1=1,所以S n +1≥S n >0, 则√S n+1S n3-1=λ√S n+1S n-13.令√S n+1S n3=c n ,则c n -1=λ√c n 3-13(c n ≥1),即(c n -1)3=λ3(c n 3-1)(c n ≥1).(*)①若λ≤0或λ=1,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…) ②若λ>1,则(*)化为(c n -1)(c n2+λ3+2λ3-1c n +1)=0,因为c n ≥1,所以c n 2+λ3+2λ3-1c n +1>0,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…)③若0<λ<1,则c n 2+λ3+2λ3-1c n +1=0的两根分别在(0,1)与(1,+∞)内,则方程(*)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t ). 所以S n +1=S n 或S n +1=t 3S n .由于数列{S n }从任何一项求其后一项均有两种不同结果, 所以这样的数列{S n }有无数多个,则对应的{a n }有无数多个.综上所述,能存在三个各项非负的数列{a n }为“λ-3”数列,λ的取值范围是0<λ<1. 21.【选做题】A .平面上点A (2,-1)在矩阵M =[a 1-1b]对应的变换作用下得到点B (3,-4). (1)求实数a ,b 的值; (2)求矩阵M 的逆矩阵M -1.【命题意图】本题主要考查矩阵的基本运算及对应变换. 【解析】(1)[a1-1b ][2-1]=[2a -1-2-b] =[3-4], 所以{2a -1=3,-2-b =−4.解得{a =2,b =2.(2)由(1)知M =[21-12]. |M |=2·2+1·1=5,所以M -1=[25-151525].B.在极坐标系中,已知点A (ρ1,π3)在直线l :ρcos θ=2上,点B (ρ2,π6)在圆C :ρ=4sin θ上(其中ρ≥0,0≤θ<2π). (1)求ρ1,ρ2的值;(2)求直线l 与圆C 的公共点的极坐标.【命题意图】本题主要考查极坐标公式及极坐标的意义、极坐标的求法.【解析】(1)ρ1=2cosπ3=4,ρ2=4sin π6=2.(2)联立得4sin θcos θ=2得sin 2θ=1, 因为ρ≥0,0≤θ<2π, 所以θ=π4,ρ=2√2,所以公共点的极坐标为(2√2,π4). C.设x ∈R,解不等式2|x +1|+|x |<4.【命题意图】本题主要考查含有绝对值的不等式的解法. 【解析】当x >0时,2x +2+x <4,解得0<x <23;当-1≤x ≤0时,2x +2-x <4,解得-1≤x ≤0;当x <-1时,-2x -2-x <4,解得-2<x <-1. 综上,解集为(-2,23).22.在三棱锥A -BCD 中,已知CB =CD =√5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点. (1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.【命题意图】本题主要考查利用空间向量法求异面直线所成的角及二面角.重点考查如何建立空间直角坐标系,求出相应点的坐标,再利用公式求角.【解析】建立如图所示的空间直角坐标系,则A (0,0,2),B (1,0,0),C (0,2,0),D (-1,0,0),E (0,1,1).(1)=(1,0,−2),=(1,1,1),则cos<,>==√1515.故直线AB 与DE 所成角的余弦值为√1515. (2)由已知得F (34,12,0),=(74,12,0),=(1,1,1),设平面DEF 的一个法向量为n 1=(x 1,y 1,z 1),则{x 1+y 1+z 1=0,74x 1+12y 1=0, 令x 1=2,得{y 1=−7,z 1=5,所以n 1=(2,-7,5).设平面DEC 的一个法向量为n 2=(x 2,y 2,z 2), 又=(1,2,0),则{x 2+y 2+z 2=0,x 2+2y 2=0, 令x 2=2,得{y 2=−1,z 2=−1,所以n 2=(2,-1,-1), 所以|cos θ|=|n 1·n 2||n 1||n 2|=√6×√78=√1313, 所以sin θ=√1−cos 2θ=√1−113=2√3913. 23.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1,q 1和p 2,q 2;(2)求2p n +q n 与2p n -1+q n -1的递推关系式和X n 的数学期望E (X n )(用n 表示).【命题意图】本题主要考查概率的求法及数学期望的求法.重点考查学生利用所学知识解决实际问题的能力.【解析】(1)p 1=13×1=13,q 1=23×1=23.p 2=13p 1+23×13q 1=727, q 2=23p 1+(23×23+13×13)q 1=1627. (2)当n ≥2时,p n =13p n -1+23×13q n -1=13p n -1+29q n -1,q n =23p n -1+(23×23+13×13)q n -1+23×(1-p n -1-q n -1)=-19q n -1+23, 所以2p n +q n =13(2p n -1+q n -1)+23, 则2p n +q n -1=13(2p n -1+q n -1-1), 又2p 1+q 1-1=13,所以2p n +q n =1+(13)n. X n 的概率分布如下:X n 0 1 2 P1-p n -q nq np n则E (X n )=q n +2p n =1+(13)n.。

2020年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)(3)

2020年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)(3)

2020年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题卡相印位置上。

1、函数)42sin(3π+=x y 的最小正周期为 ▲2、设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲3、双曲线191622=-y x 的两条渐近线的方程为 ▲ 4、集合}1,0,1{-共有 ▲ 个子集5、右图是一个算法的流程图,则输出的n 的值是 ▲6、抽样统计甲、乙两位射击运动员的5此训练成绩(单位:环),结果如下:运动员第一次 第二次 第三次 第四次 第五次 甲87 91 90 89 93 乙 89 90 91 88 92则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲7、现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取, 则n m ,都取到奇数的概率为 ▲8、如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ▲9、抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含 三角形内部和边界)。

若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲10、设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若12DE AB AC λλ=+u u u r u u u r u u u r (21λλ,为实数),则21λλ+的值为 ▲11、已知)(x f 是定义在R 上的奇函数。

当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 ▲A B C 1A D E F 1B 1C12、在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F , 右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d , 若126d d =,则椭圆C 的离心率为 ▲13、在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点, 若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为 ▲14、在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a ΛΛ2121>+++的 最大正整数n 的值为 ▲二、解答题:本大题共6小题,共计90分。

2020年普通高等学校招生全国统一考试(江苏卷)数学试题

2020年普通高等学校招生全国统一考试(江苏卷)数学试题

2020年普通高等学校招生全国统一考试(江苏卷)公式:866时间:2020-08-30一、填空题.1.已知集合{1,0,1,2}A =-,{0,2,3}B =,则A B ⋂=_____. 【解析】A 2.已知i 是虚数单位,则复数(1)(2)z i i =+-的实部是_____. 【解析】z 3.已知一组数据4,2a ,3a -,5,6的平均数为4,则a 的值是_____. 【解析】数据4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.曲线的离心率是____.7.已知()y f x =是奇函数,当0x ≥时,23 ()f x x =,则8()f -的值是____. ,8.已知22sin ()α+=,则sin2α的值是____. 【解析】sin 9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是____cm .10.将函数sin(2)34x y =﹢的图象向右平移6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列.已知数列{}n n a b +的前n 项和221n n S n n =-+-(N )n +∈,则d q +的值是_______.12.已知22451x y y +=(,R)x y ∈,则22x y +的最小值是_______. 【解析】513.在ABC ∆中,4AB =,3AC =,90BAC ∠=︒,D 在边BC 上,延长AD 到P , 使得9AP =,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【解析】A 可设(0)PA PD λλ=>3()2PA mPB m PC =+-,∴3()2PD mPB m PC λ=+-,即3()2m m PD PB PC λλ-=+,0m ≠且2m ≠,则B ,D ,C 三点共线,∴21m λλ+=2λ=, AP AB cos 时,32PA PC =,C ,时,32PA PB =,B ,xOy 点,满足PA PB =,则PAB ∆面积的最大值是__________. 【解析】PA 二、解答题.15.在三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,E ,F 分别是AC ,1B C 的中点.(1)求证://EF 平面11AB C ; (2)求证:平面1AB C ⊥平面1ABB .16.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知3a =,c =,45B =︒. (1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米. (1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k(万元)、桥墩CD 每米造价32k (万元)(0)k >.问O E '为多少米时,桥墩CD 与EF 的总造价最低?18.在平面直角坐标系xOy 中,已知椭圆E :143x y+=的左、右焦点分别为1F ,2F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,直线1AF 与椭圆E 相交于另一点B . (1)求12AF F ∆的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB ∆与MAB ∆的面积分别为1S ,2S ,若213S S =,求点M 的坐标.(1)椭圆点准线方程为∴0(,0)OP QP x ⋅=∴OP QP ⋅的最小值为(3)设(,)M x y ,点A 点①,又19.已知关于x 的函数()y f x =,()y g x =与()hx kx b =+(,R)k b ∈在区间D 上恒有()()()f x h x g x ≥≥.(1)若2(2)f x x x =+,2 (2)g x x x =-+,()D -=∞+∞,,求()h x 的表达式;(2)若21() x x f x =-+, (n )l g k x x =, ()h k x kx =-,) 0(D =+∞,,求k 的取值范围;(3)若42() 2f x x x =-,2() 48 g x x =-,242() 4() 3 2h x t t x t t =--+(0 t <≤,[, ][D m n =⊆,求证:n m -≤(3)x20.已知数列{}n a *(N )n ∈的首项11a =,前n 项和为n S .设λ与k 是常数,若对一切正整数n ,均有11111kk kn n n S S a λ++-=成立,则称此数列为“k λ-”数列.(1)若等差数列{}n a 是“1λ-”数列,求λ的值;(2)若数列{}n a 是2-”数列,且0n a >,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“3λ-”数列,且0n a ≥?若存在,求λ的取值范围;若不存在,说明理由,a (2)a S 11S a ==∴3n a ⎧=⎨⎩对于给定的21.平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -. (1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M -.(1)平面上点22.在极坐标系中,已知点1(,)3A πρ在直线l :cos 2ρθ=上,点2(,)6B πρ在圆C :4sin ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值 (2)求出直线l 与圆C 的公共点的极坐标. ρ点(2)ρ[0,2θπ∈当4θ=时,即所求交点坐标为当23.设R x ∈,解不等式2|1|||4x x ++≤.【解析】22x x <⎧⎨--⎩1<-或1-224.在三棱锥A BCD -中,已知CB CD ==,2BD =,O 为BD 的中点,AO ⊥平面BCD ,2AO =,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足14BF BC =,设二面角F DE C --的大小为θ,求sin θ的值.,BC故(1,0,AB=,(1,1,1)DE=,5AB DE-〈〉=15一个法向量为1(,,n x y z=(1,2,0)DC=11n DCn DE⎧⋅=⎨⋅=⎩,x y++⎩令1y=,则,1z=,故1(2,1,1)n=-一个法向量为211(,,n x y=171(,,0)44DF DB BF DB BC=+=+=,则22n DFn DE⎧⋅=⎨⋅=⎩即42x y z⎨⎪++=,7=-,则x,故2(2,7,5)n=-126,6n n-〈〉=25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为n X ,恰有2个黑球的概率为n p ,恰有1个黑球的概率为n q .(1)求1p ,1q 和2p ,2q ; (2)求2n n p q +与112n n p q --+的递推关系式和n X 的数学期望()n E X (用n 表示). 33又n X 的分布列为:1。

2020年普通高等学校招生全国统一考试数学(江苏卷,含答案)

2020年普通高等学校招生全国统一考试数学(江苏卷,含答案)

2020年普通高等学校招生全国统一考试数学(江苏卷,含答案)参考公式:样本数据12,,,n x x x L 的方差221111(),n n i i i i s x x x x n n ===-=∑∑其中一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的位置........上..1.若复数12429,69,z i z i =+=+其中i 是虚数单位,则复数12()z z i -的实部为 ▲ 。

【解析】考查复数的减法、乘法运算,以及实部的概念。

-202.已知向量a r 和向量b r 的夹角为30o,||2,||3a b ==r r ,则向量a r 和向量b r 的数量积a b ⋅r r = ▲。

【解析】 考查数量积的运算。

32332a b ⋅=⋅⋅=r r 3.函数32()15336f x x x x =--+的单调减区间为 ▲ .【解析】 考查利用导数判断函数的单调性。

2()330333(11)(1)f x x x x x '=--=-+,由(11)(1)0x x -+<得单调减区间为(1,11)-。

亦可填写闭区间或半开半闭区间。

4.函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= ▲ .【解析】 考查三角函数的周期知识。

注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。

本卷满分160分,考试时间为120分钟。

考试结束后,请将本卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。

江苏专升本数学真题及答案解析

江苏专升本数学真题及答案解析

江苏专升本数学真题及答案解析江苏专升本考试是很多在职人士为了进一步提升自己的学历而参加的考试。

数学是江苏专升本考试的一门重要科目,对于考生们来说,熟悉并掌握数学的解题技巧是非常关键的。

下面我们就来看几道江苏专升本数学真题,并对其进行详细解析。

第一题:已知函数f(x) = x^2 - 4x + 3,求f(x)的最小值。

解析:对于一般的二次函数f(x) = ax^2 + bx + c来说,其最小值出现在顶点处,顶点横坐标的计算公式为x = -b/(2a)。

根据这个公式,我们可以得到题目中函数f(x)的最小值的横坐标为x = 2。

将x = 2代入函数f(x),可以计算出最小值为f(2) = 2^2 - 4*2 + 3 = 3。

第二题:若A和B是两个矩阵,A = (2 -1 3)^T,B = (1 2 -1)^T,求A和B的内积。

解析:内积也被称为点乘,对于两个矩阵A = (a1 a2 a3)^T和B = (b1 b2 b3)^T来说,其内积的计算公式为a1*b1 + a2*b2 + a3*b3。

给定题目中的矩阵A和B,我们可以计算出内积为2*1 + (-1)*2 +3*(-1) = -1。

第三题:已知函数f(x) = x^3 - 5x^2 + 8x - 4,求f(x)的零点。

解析:零点即为函数f(x)在横坐标轴上的交点,也就是满足f(x) = 0的x值。

解决这类问题的方法之一是因式分解。

观察题目中的多项式,可以发现x = 1是其一个零点。

利用因式定理,我们可以将f(x)进行因式分解,得到f(x) = (x - 1)(x^2 - 4x + 4) = (x - 1)(x -2)(x - 2)。

所以,函数f(x)的零点为x = 1和x = 2。

第四题:已知x + 1/x = 3,求x^3 + 1/x^3的值。

解析:根据题目中的等式,我们可以求解出x的值为1。

根据初中代数的知识,我们知道(x + 1/x)^3 = x^3 + 3x + 3/x + 1/x^3。

专升本考试:2020专升本《高等数学二》真题及答案(6)

专升本考试:2020专升本《高等数学二》真题及答案(6)

专升本考试:2020专升本《高等数学二》真题及答案(6)1、()(单选题)A. 0B. 1C. 2D. +∞试题答案:B2、()(单选题)A.B.C.D.试题答案:B3、 ( )(单选题)A.B.C.D.试题答案:B4、第26题的答案是( )(单选题)A. beingB. beC. wasD. were试题答案:A5、()(单选题)A. 2xy+3+2yB. xy+3+2yC. 2xy+3D. xy+3试题答案:C6、 ( ) (单选题)A. 0B. 1C. 2D. 3试题答案:C7、()(单选题)A.B.C.D.试题答案:D8、设函数ƒ(x)在[a,b]上连续且ƒ(x)>0,则()(单选题)A.B.D.试题答案:A9、 These are the pictures of the hotel __________ we held our annual meetings.(单选题)A. thatB. whenC. whichD. where试题答案:D10、设A,B为两个随机事件,且相互独立,P(A)=0.6,P(B)=0.4,则P(A-B)=()(单选题)A. 0.24B. 0.36C. 0.4D. 0.6试题答案:B11、()(单选题)A. 0B. 2C. 2ƒ(-1)D. 2ƒ(1)试题答案:A12、()(单选题)A. 0C. 2D. 3试题答案:A13、 ( ) (单选题)A. -lB. 0C. 1D. 2试题答案:C14、若函数ƒ(x)=5 x,则ƒ´(x)=()(单选题)A. 5 x-1B. x5 x-1C. 5 x ln5D. 5 x试题答案:C15、()(单选题)A.B.C.D.试题答案:C16、 ( ) (单选题)A. 1C. 5D. 7试题答案:B17、请填写最佳答案()(单选题)A. timeB. additionC. detailD. summary试题答案:B18、曲线y=x 3+2x在点(1,3)处的法线方程是()(单选题)A. 5x+y-8=0B. 5x-y-2=0C. x+5y-16=0D. x-5y+14=0试题答案:C19、当x→0时,下列变量是无穷小量的为()(单选题)A.B. 2xC. sinxD. ln(x+e)试题答案:C20、()(单选题)A.B. ƒ(2x)+CC. 2ƒ(2x)+CD.试题答案:A21、()(单选题)A. 1/2B. 1C. 2D. 3试题答案:C22、()(单选题)A. in2B. 2ln2C.D.试题答案:C23、曲线y=e 2x-4x在点(0,1)处的切线方程是()(单选题)A. 2x-y-1=0B. 2x+y-1=0C. 2x-y+1=0D. 2x+y+1=0试题答案:B24、若y=1+cosx,则dy=()(单选题)A. (1+sinx)dxB. (1-sinx)dxC. sinxdxD. -sinxdx试题答案:D25、函数f(x)=x 3—12x+1的单调减区间为( )(单选题)A. (-∞,+∞)B. (-∞,-2)C. (-2,2)D. (2,+∞)试题答案:C26、()(单选题)A. 0B. 2C. 2ƒ(-1)D. 2ƒ(1)试题答案:A27、(单选题)A. 绝对收敛B. 条件收敛C. 发散D. 收敛性与k的取值有关试题答案:A28、()(单选题)A. yx y-1B. yx y+1C. x y lnxD. x y试题答案:A29、 The train to arrive at 11:30, but it was an hour late.(单选题)A. was supposedB. is supposedC. SupposesD. supposed试题答案:A30、(单选题)A. 绝对收敛B. 条件收敛C. 发散D. 收敛性与k的取值有关试题答案:A31、曲线y=e 2x-4x在点(0,1)处的切线方程是()(单选题)A. 2x-y-1=0B. 2x+y-1=0C. 2x-y+1=0D. 2x+y+1=0试题答案:B32、 ( )(单选题)A.C.D.试题答案:A33、()(单选题)A.B. ƒ(2x)+CC. 2ƒ(2x)+CD.试题答案:A34、()(单选题)A.B. ƒ(2x)+CC. 2ƒ(2x)+CD.试题答案:A35、()(单选题)A. 0B.C. 1D. 2试题答案:B36、()(单选题)A.C.D.试题答案:B37、方程x 2+2y 2+3z 2=1表示的二次曲面是()(单选题)A. 圆锥面B. 旋转抛物面C. 球面D. 椭球面试题答案:D38、请填写最佳答案()(单选题)A. whatB. whichC. whereD. when试题答案:C39、()(单选题)A.B. ƒ(2x)+CC. 2ƒ(2x)+CD.试题答案:A40、函数f(x)=x 3—12x+1的单调减区间为( )(单选题)A. (-∞,+∞)B. (-∞,-2)C. (-2,2)D. (2,+∞)试题答案:C41、曲线y=x 3-3x 2-1的凸区间是()(单选题)A. (-∞,1)B. (-∞,2)C. (1,+∞)D. (2,+∞)试题答案:A42、()(单选题)A. 0B. 1/2C. 1D. 2试题答案:A43、 ( ) (单选题)A. 0B. 1C. 2D. 3试题答案:C44、()(单选题)A. 0B.C.D.试题答案:B45、 ( ) (单选题)A. 0B. 1C. 2D. 3试题答案:C46、()(单选题)A. eB. e -1C. e 2D. e -2试题答案:C。

【2020高 考江苏卷数学真题】2020年普通高等学校招生全国统一考试(江苏卷)数学试卷含答案解析

【2020高 考江苏卷数学真题】2020年普通高等学校招生全国统一考试(江苏卷)数学试卷含答案解析

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积,其中是柱体的底面积,是柱体的高.V Sh =S h 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合,则_____.{1,0,1,2},{0,2,3}A B =-=A B = 2.已知是虚数单位,则复数的实部是_____.i (1i)(2i)z =+-3.已知一组数据的平均数为4,则的值是_____.4,2,3,5,6a a -a 4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____. 5.如图是一个算法流程图,若输出的值为,则输入的值是_____.y 2-x6.在平面直角坐标系xOy 中,若双曲线﹣=1(a >0)的一条渐近线方程为,则该双曲线的离心22x a 25y 率是____.7.已知y =f (x )是奇函数,当x ≥0时, ,则f (-8)的值是____.()23f x x =8.已知 =,则的值是____. 2sin ()4πα+23sin 2α9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =的图象向右平移个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是πsin(2)43x ﹢π6____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和,则d +q 的值是_______.221()n n S n n n +=-+-∈N 12.已知,则的最小值是_______.22451(,)x y y x y R +=∈22x y +13.在△ABC 中,D 在边BC 上,延长AD 到P ,使得AP =9,若43=90AB AC BAC ==︒,,∠,(m 为常数),则CD 的长度是________. 3()2PA mPB m PC =+-14.在平面直角坐标系xOy 中,已知,A ,B 是圆C :上的两个动点,满足0)P 221()362x y +-=,则△PAB 面积的最大值是__________.PA PB =二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.。

2020年专升本高等数学真题试卷

2020年专升本高等数学真题试卷

高等数学请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

一、选择题: 本大题共5小题,每小题4分,共 20分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数1x ()e f x =,则x=0是函数f(x)的( ).(A )可去间断点 (B )连续点 (C )跳跃间断点 (D )第二类间断点2.设函数f(x)在[a,b]上连续,则下列说法正确的是(A )b a ()()()f x dx f b a ζζ∈=-⎰必存在(a,b ),使得(B )'()()f b a ζζ∈-必存在(a,b ),使得f(b)-f(a)= (C )()0f ζξ∈=必存在(a,b ),使得 (D )'()0f ζζ∈=必存在(a,b ),使得 3 下列等式中,正确的是(A )'()()f x dx f x =⎰ (B )()()df x f x =⎰(C )()()d f x dx f x dx=⎰ (D )()()d f x dx f x =⎰4.下列广义积分发散的是 (A )+2011+dx x ∞⎰ (B )10⎰ (C )+0ln x dx x ∞⎰ (D )+0x e dx ∞-⎰ 5. y -32sin ,x y y e x '''+=微分方程则其特解形式为(A )sin x ae x (B )(cos sin )xxe a x b x +(C )sin x xae x (D )(cos sin )x e a x b x + 非选择题部分注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

江苏专升本高等数学真题(附答案)

江苏专升本高等数学真题(附答案)

江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。

(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。

(3)了解反函数:反函数的定义,反函数的图象。

(4)把握函数的四则运算与复合运算。

(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。

(6)了解初等函数的概念。

重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。

(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。

(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

(6)熟练把握用两个重要极限求极限的方法。

重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。

(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。

(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。

(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。

重点:理解函数(左、右连续)性的概念,会判别函数的中断点。

江苏专转本数学真题共28页文档

江苏专转本数学真题共28页文档

<1>一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是( )A 、e xx x =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211( ) A 、211x- B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x fB 、0)('<x f ,0)(''>x fC 、0)('>x f ,0)(''<x fD 、0)('>x f ,0)(''>x f4、=-⎰dx x 21( ) A 、0 B 、2C 、-1D 、15、方程xy x 422=+在空间直角坐标系中表示( ) A 、圆柱面 B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数y x z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([ 三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=x x y ,求dy .12、计算xx dte x xt x sin lim2002⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求xz∂∂、y x z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分)21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积; (3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

江苏专转本高等数学真题 (附答案)

江苏专转本高等数学真题 (附答案)

2001年江苏省普通高校“专转本”统一考试 ___________________________________________ 12002年江苏省普通高校“专转本”统一考试 ___________________________________________ 62003年江苏省普通高校“专转本”统一考试 __________________________________________ 10 2004年江苏省普通高校“专转本”统一考试 __________________________________________ 14 2005年江苏省普通高校“专转本”统一考试 __________________________________________ 182006年江苏省普通高校“专转本”统一考试 __________________________________________ 212007年江苏省普通高校“专转本”统一考试 __________________________________________ 24 2008年江苏省普通高校“专转本”统一考试 __________________________________________ 28 2009年江苏省普通高校“专转本”统一考试 __________________________________________ 31 2010年江苏省普通高校“专转本”统一考试 __________________________________________ 342001年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 37 2002年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 38 2003年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 40 2004年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 41 2005年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 432006年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 45 2007年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 47 2008年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 49 2009年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 51 2010年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 532001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数yx z =的全微分=dz 10、设)(x f 为连续函数,则+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim 22⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12.16、已知⎰∞-=+02211dx x k ,求k 的值.17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

2020年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)

2020年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)

2020年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)一、填空题:本大题共14个小题,每小题5分,共70分.1.已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A Y 中元素的个数为_______. 【答案】5 【解析】试题分析:{123}{245}{12345}5A B ==U U ,,,,,,,,,个元素 考点:集合运算2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 【答案】6考点:平均数3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______. 5 【解析】试题分析:22|||34|5||5||5z i z z =+=⇒=⇒=考点:复数的模4.根据如图所示的伪代码,可知输出的结果S 为________.【答案】7 【解析】试题分析:第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7.S =S ←1 I ←1While I <10 S ←S +2 I ←I +3 End While Print S(第4题图)考点:循环结构流程图5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 【答案】5.6考点:古典概型概率6.已知向量a =)1,2(,b=)2,1(-, 若m a +n b =)8,9(-(R n m ∈,), n m -的值为______. 【答案】3- 【解析】试题分析:由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=- 考点:向量相等7.不等式224xx-<的解集为________.【答案】(1,2).- 【解析】试题分析:由题意得:2212x x x -<⇒-<<,解集为(1,2).- 考点:解指数不等式与一元二次不等式 8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3 【解析】试题分析:12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 考点:两角差正切公式9. 现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行的直线方程.
21、已知函数 y e2x 是微分方程 y '' 2 y ' y f (x) 的一个特解,求该微分方程满足初始
条件 y x0 2, y ' x0 5 的特解.
22、计算二重积分 (x y)dxdy ,其中 D 是由直线 y x , y x 与 y 1所围成的平面
D、 2[cos(4x 2 ) 1]
7、二次积分
1
dx
1(x 2 y 2 )dy 在极坐标系中可化为(
0
x

1
x
1
A、 4 d cos 2d
0
0
x
1
C、
x2d
sin 2 d
0
4
x
1
B、 4 d cos 3d
0
0
x
1Байду номын сангаас
D、
2 x
d
sin 3d
0
4
8、设函数
f (x)
1 x5
(2)平面图形 D 绕 x 轴旋转一周所形成的旋转体的面积.
25.
设函数
f x
x
a
1
x
b
12
c ,已知曲线
y f x具 有 水 平 渐 近 线
y
1 且有拐点
(1,0) ,试求:
(1)常数 a,b,c 的值. (2)函数 f (x) 的单调区间与极值.
3

b, x 2
A、-2
B、0
C、2 D、4
3、设函数 f (x) 在 x 0 处连续,且 lim f (3x) 2 ,则 f ' (0) ( ) x0 x
2
A、
3
3
B、
2
C、3 D、6
4、已知 f (x) 的一个原函数是 ln 3x 1 ,则 f (3x)dx ( )
A、 1 ln 9x 1 C 3
D
闭区域.
四、证明题(本大题 10 分)
23、证明:当 x 0 时, e x ex x 2 2 .
五、综合题(本大题共 2 小题,每小题 10 分,共 20 分)
24、设平面图形 D 由曲线 y e x 与其在点 (0,1) 处的法线及直线 x 1围成.试求:
(1)平面图形 D 的面积;
机密★启用前
江苏省 2020 年普通高校专转本选拔考试
高等数学 试题卷
注意事项: 1、本试卷分为试题卷和答题卡两部分,试题卷共 3 页。全卷满分 150 分,考试时间 120 分 钟。 2、必须在答题卡上作答,作答在试题卷上无效。作答前务必将自己的姓名和准考证号准确 清晰地填写在试题卷和答题卡上的指定位置。 3、考试结束时,须将试题卷和答题卡一并交回。
一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分。在下列每小题中选出一个正确答 案,请在答题卡上将所选项的字母标号涂黑)
1、极限
lim( x
sin
2
2
sin x
x
)
的值为(

x0
x
A、1
B、2
C、3
D、4
2、设函数
f
(x)
x 2 a x2
,
x 2 在( , )内连续,a,b 为常数,则 a - b=(
的通解为
.
14、设幂级数 an x n
n0
的收敛半径为 8,则幂级数
n0
an xn 3n
的收敛半径为
.
三、计算题(本大题共 8 小题,每小题 8 分,共 64 分)
15、求极限 lim x ln(1 x) . x0 x ln(1 x)
16、求不定积分 (x sin 2 x) cos xdx .
.
x
x
x0
x
10、已知函数 f (x) e2x ,则 f (n) (0)
.
11、设 y
y(
x)
是由参数方程
xt y 3t
3 5
3t,
dy
所确定的函数,则
5t 3 ,
dx
t 1
.
12、设向量 a (2,6, ) 与 b (1, ,4) 垂直,则常数
.
13、微分方程
dy dx
x2 y 1 x3
2
17、计算定积分
x2
dx .
0 (4 x2 ) 4 x2
18、设 z
f (2x 3y, y 2 ) ,其中函数
f
2z
具有二阶连续偏导数,求
y 2
.
19、设
z
z(x,
y)
是由方程
yz
ln
z
x
y
所确定的函数,求
z x

z y
.
2
20、求通过点
(1,0,2)
,且与直线
x 2x
y y
z 2 0, 3z 6 0,
,在区间( (5,5) )内可展开成幂级数 an x n
n0
,则系数 a2020


1 A、 52020
B、
1 5 2020
1 C、 52021
D、
1 5 2021
二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)
9、设 lim(1 1 ) x lim 1 kx 1 ,则常数 k
B、 1 ln 3x 1 C 3
C、 ln 9x 1 C
D、 3ln 9x 1 C
5、下列反常积分中收敛的是(

A、 1dx
1x
B、
1
1
x x
2
dx
C、
1
1 x 1 x2
dx
D、
1
1
x3
xdx
6、设 f (x) 2x cos t 2dt ,则 f ' (x) ( 0

A、 cos(4x 2 ) B、 cos(4x 2 ) 1 C、 2 cos(4x 2 )
相关文档
最新文档