人教版七年级数学下册 5.2.1 平行线含答案导学案
七年级下册《5.2.1 平行线》教案、导学案、同步练习
《5.2.1平行线》教案一【教学目标】1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.毛2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.3.会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.【重点】:探索和掌握平行公理及其推论.【难点】:对平行线本质属性的理解,用几何语言描述图形的性质. 【教学过程】 一、创设问题情境1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?学生回答后,教师把教具中木条b 与c 重合在一起,转动木条a 确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?2.教师演示教具.顺时针转动木条b 两圈,让学生思考:把a 、b 想像成两端可以无限延伸的两条直线,顺时针转动b 时,直线b 与直线a 的交点位置将发生什么变化?在这个过程中,有没有直线b 与c 木相交的位置?3.教师组织学生交流并形成共识.转动b 时,直线b 与c 的交点从在直线a 上A 点向左边距离A 点很远的点逐步接近A 点,并垂合于A 点,然后交点变为在A 点的右边,逐步远离A 点.继续转动下去,b 与a 的交点就会从A 点的左边又转动A 点的左边……可以想象一定存在一个直线b 的位置,它与直线a 左右两旁都没有交点.cbaba C二、平行线定义表示法1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a 与直线b 不相交的位置,这时直线a 与b 互相平行.换言之,同一平面内,不相交的两条直线叫做平行线.直线a 与b 是平行线,记作“∥”,这里“∥”是平行符号.教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.2.同一平面内,两条直线的位置关系教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.三、画图、观察、归纳概括平行公理及平行公理推论 1.在转动教具木条b 的过程中,有几个位置能使b 与a 平行?本问题是学生直觉直线b 绕直线a 外一点B 转动时,有并且只有一个位置使a 与b 平行.2.用直线和三角尺画平行线. 已知:直线a,点B,点C.(1)过点B 画直线a 的平行线,能画几条?(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗? 3.通过观察画图、归纳平行公理及推论.(1)由学生对照垂线的第一性质说出画图所得的结论. (2)在学生充分交流后,教师板书.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. (3)比较平行公理和垂线的第一条性质.共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.4.归纳平行公理推论.(1)学生直观判定过B 点、C 点的a 的平行线b 、c 是互相平行. (2)从直线b 、c 产生的过程说明直线b ∥直线c. (3)学生用三角尺与直尺用平推方验证b ∥c. (4)师生用数学语言表达这个结论,教师板书.结果两条直线都与第三条直线平行,那么这条直线也互相平行. 结合图形,教师引导学生用符号语言表达平行公理推论: 如果b ∥a,c ∥a,那么b ∥c. (5)简单应用.练习:如果多于两条直线,比如三条直线a 、b 、c 与直线L 都平行,那么这三条直线互相平行吗?请说明理由.本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范.四、作业:课本P16.7,P17.11.《5.2.1 平行线》教案二cba教学流程安排教学过程设计一、创设情境,探究平行线的概念活动1观察,分别将木条a、b、c钉在一起,并把它们想象成两端可以无限延伸的三条直线.转动直线a,直线a从在直线c的下侧与直线b相交逐步变为在上侧与b相交,想象一下在这个过程中,有没有直线a与直线b不相交的位置?学生活动设计:充分发挥学生的想象能力,把三个木条想象成三条直线,想象在转动过程中不相交的情况,进而描述两直线平行的定义.教师活动设计:在学生想象、描述的基础上引导学生进行归纳.在同一平面内,若直线a 和b 不相交,那么就称直线a 和b 平行,记作a //b . 活动2你能举出生活中平行的例子吗?学生活动设计:学生进行想象,在生活中可以看做平行的生活实例,可能举出下列例子:滑雪板、正方体中的一些棱、运动跑道,等等.教师活动设计:本环节主要关注学生的举例,从举例中巩固学生对平行线的认识和理解.二、分组探究,探索平行公理和推论,培养学生的探究能力、合作、交流能力.活动3(1) 在活动木条a 的过程中,有几个位置使得a 与b 平行;(2) 如图,经过点B 画直线a 的平行线,你能有几种方法?可以画几条?经过点C 呢?(3)经过上述问题的解决,你能得到什么结论? 学生活动设计:学生自主探索,动手操作,观察猜想,对于问题(1),可以发现在木条在转动的过程中,只有一个位置使得a 与b 平行;对于问题(2),可以考虑用小学中aBC学过的画平行线的方法——使用三角板和直尺,如图所示:对于问题(3),经过画图操作,观察归纳,可以发现一个基本事实(平行公理):经过直线外一点,有且只有一条直线与已知直线平行.教师活动设计:教师在本环节主要关注学生:(1)学生参与讨论的程度;(2)学生遇到问题时,对待问题的态度;(3)学生进行总结归纳时,语言的准确性和简洁性.主要培养学生的动手能力、观察能力、合情推理的能力与探究能力、合作、交流能力等.活动4问题:如图,若a//b,b//c,你能得到a//c吗?说明你的理由,从中你能得到什么?abc学生活动设计:学生独立思考,完成结论的探索和理由的说明,然后进行交流,在交流中发现问题,解决问题.教师活动设计:引导学生用几何语言进行说明,适时引入反证法(仅仅介绍,让学生认识到用这样的方法可以说明道理,而不要求会用这样的方法).假设a 与c 不平行,则可以设a 与c 相交于点O ,又a //b ,b //c ,于是过O 点有两条直线a 和c 都与b 平行,于是和平行公理矛盾,所以假设不正确,因此a 和c 一定平行.在此环节主要培养学生的逻辑推理能力.三、拓展创新、应用提高,培养学生的应用意识,解决问题的能力. 活动5 问题探究问题1:如下图,AD ∥BC ,在AB 上取一点M ,过M 画MN ∥BC 交CD 于N ,并说明MN 与AD 的位置关系,为什么?学生活动设计:学生动手操作,观察猜测,得出平行的结论,然后对平行的原因进行交流,发现AD //BC ,MN //DC ,根据平行于同一直线的两直线平行,可以得到AD //MN .教师活动设计:主要关注学生说理过程中语言的准确性,若学生感觉到困难可以适当提醒.〔解答〕略.问题2:在同一平面内有4条直线,问可以把这个平面分成几部分? 学生活动设计:分组探究,小组讨论,发现问题,小组讨论解决,在学生研究结束后,每小组派一名代表进行交流,交流完成后完善自己的结果.学生经过探究可以发现:(1) 当4条直线两两平行时,可以把平面分成5部分;DCBdcb a(2) 当4条直线中只有三条两两平行时,可以把平面分成8部分;(3) 当4条直线仅有两条互相平行时,可以把整个平面分成9部分或10部分;(4) 当4条直线中其中两条平行,另两条也平行时,可以把平面分成9部分;(5) 当4条直线任意两条都不平行时,可以把平面分成8或10或11部分;cb a daadcba dc b adc b adc ba教师活动设计:本环节主要考察学生探究问题的能力,同时培养学生的合作与交流意识,在探究的过程中教师可以适当引导学生按一定的条件分类,比如按平行线的条数分或按交点的个数分类,让学生养成有序考虑问题的习惯.〔解答〕略四、小结与作业.小结:1.平行线的定义;2.平行公理以及推论;3.平行公理及推论的应用.作业:4.探究同一平面内n条直线最多可以把平面分成几部分;5.习题5.2第6、7、9题.《5.2.1 平行线》教案【教学目标】1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.3.会用符号语方表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.【教学重点与难点】重点:探索和掌握平行公理及其推论.难点:对平行线本质属性的理解,用几何语言描述图形的性质.课前准备cb分别将木条a、b与木条c钉在一起,做成图所示的教具.【教学过程】一、创设问题情境1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?2.教师演示教具.顺时针转动木条b两圈,让学生思考:把a、b 想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中, 有没有直线b与c木相交的位置?3.教师组织学生交流并形成共识.转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点.继续转动下去,b与a 的交点就会从A点的左边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点.cab二、平行线定义,表示法1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行.换言之,同一平面内, 不相交的两条直线叫做平行线.直线a与b是平行线,记作“∥”,这里“∥”是平行符号.教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.2.同一平面内,两条直线的位置关系a C 教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.三、画图、观察、归纳概括平行公理及平行公理推论1.在转动教具木条b 的过程中,有几个位置能使b 与a 平行?本问题是学生直觉直线b 绕直线a 外一点B 转动时,有并且只有一个位置使a 与b 平行.2.用直线和三角尺画平行线.已知:直线a,点B,点C.(1)过点B 画直线a 的平行线,能画几条?(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗?3.通过观察画图、归纳平行公理及推论.(1)由学生对照垂线的第一性质说出画图所得的结论.(2)在学生充分交流后,教师板书.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(3)比较平行公理和垂线的第一条性质.共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.4.归纳平行公理推论.(1)学生直观判定过B 点、C 点的a 的平行线b 、c 是互相平行.(2)从直线b 、c 产生的过程说明直线b ∥直线c.(3)学生用三角尺与直尺用平推方验证b ∥c.(4)师生用数学语言表达这个结论,教师板书.结果两条直线都与第三条直线平行,那么这条直线也互相平行.结合图形,教师引导学生用符号语言表达平行公理推论:如果b ∥a,c ∥a,那么b ∥c. c b a(5)简单应用.练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行, 那么这三条直线互相平行吗?请说明理由.本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范.四、作业1.课本P19.7,P20.11.《5.2.1 平行线》导学案【学习目标】1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;4.了解平行线在实际生活中的应用,能举例加以说明.重点:平行线的概念与平行公理;难点:对平行公理的理解.【自主学习】问题1 同一平面内两条直线的位置关系平面内任意两条直线的位置关系除平行外,还有哪些呢?平行线:在同一平面内,_______________的两条直线叫做平行线。
人教版七年级数学下册5.2.1平行线 导学案
aC B 5.2.1平行线 导学案一、自学范围(12页练习)二、自学目标:1、了解平行线的概念、平面内两条直线相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.2.会用符号语言表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.三、自学重点:平行公理也及平行公理的推论四、自学过程:1、自学12页思考,体会在平面内两条直线能存在几种位置关系?2、根据课本填空:在同一平面内,如果存在一条直线a 与直线b 不相交的位置,这时直线a 与直线b 互相 ,记作:3、举出生活中平行的例子。
4、在同一平面内,不重合的两条直线有几种位置关系?动手画一画。
5、自学13页上方的思考:(该怎样经过一点画已知直线的平行线呢)(提示:参考一下13页下面的思考)用三角尺和直尺分别过B点和C点作直线a的平行线b和c。
(1)过点B能作条(2)过点C能作条6、平行公理:经过直线外一点,有且只有条直线与这条直线平行。
7、在上面的作图中,b∥a c∥a,那b与c平行吗?推论:如果两条直线都与第三直线平行,那么这两条直线也互相平行。
(想一想为什么)五、学效测试:8、12页练习9、在同一平面内,两条不重合直线的位置关系可能是( )A.平行或相交B.垂直或相交;C.垂直或平行D.平行、垂直或相交10、下列说法正确的是( )A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行11、在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )A.0个B.1个C.2个D.3个12.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个B.2个C.3个D.4个六、巩固练习1.在同一平面内,两条直线可能的位置关系是()A.平行 B.相交C.平行或相交 D.平行、相交或垂直2.如图所示,将一张长方形纸片对折三次,则产生的折痕与折痕间的位置关系是()A.平行 B.垂直 C.平行或垂直 D.无法确定3. 已知直线l和它外面的一个点P,则过点P()A.只能画出直线l的一条平行线B.能画出直线l的一组平行线C.不能画出直线l的平行线D.能画出直线l的无数条垂线4. 下列选项:(1)一条直线的平行线只有1条;(2)对于同一平面内的三条不同直线a、b、c,若a∥b,b∥c,则直线a∥c;(3)如果两条直线都与第三条直线平行,那么这两条直线平行;(4)经过直线外一点,有且只有一条直线与这条直线平行,其中正确的有()A. 1个B.2个C. 3个D. 4个5. 在如图所示的方格纸上过点P画直线AB的平行线.答案1. C2. C3. A4. C5. 解:画图如下:。
2019-2020学年七年级数学下册 5.2.1 平行线 导学案 新人教版.doc
第9题图 第10题图 第11题图2019-2020学年七年级数学下册 5.2.1 平行线 导学案 新人教版一、教材分析:(一)学习目标:1.知道两条直线互相平行的意义.2.会利用三角尺和直尺,经过一点画平行于已知直线的直线.3.通过画图,经历得出平行公理及推论的过程.(二)学习重点和难点:1.重点:两条直线互相平行的意义,平行公理及其推论.2.难点:画平行线.二、问题导读单:阅读P12—13页回答下列问题:1.阅读实验体会P12页中“思考”问题,得出----平行线概念:在同一平面内,_____________的两条直线叫做平行线.直线a 与b 平行,记作a____b .2.同组同学生举例说明平行线的生活实例.3.画出图形总结说明:同一平面内两条直线的位置关系有___种:_________________4.实验探索P13页中”思考”问题,得出结论是:(1).经过直线外一点,_________________直线与这条直线平行(也称平行公理).(2)如果两条直线都与第三条直线平行,那么_______________________.(也称平行公理推论)即:如果b ∥a ,c ∥a ,那么b ∥c .写成推理形式:∵b ∥a ,c ∥a (已知)∴b ∥c (如果两条直线都与第三条直线平行,那这两条直线也互相平行.)三、问题训练单:5.在同一平面内,两条直线可能的位置关系是 .6.在同一平面内,三条直线的交点个数可能是 .7.下列说法正确的是( )A .经过一点有且只有一条直线与已知直线平行B .经过一点有无数条直线与已知直线平行C .经过一点有一条直线与已知直线平行D .经过直线外一点有且只有一条直线与已知直线平行8.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是( )A .1B .2C .3D .49.如图,直线AB ,CD 被DE 所截,则∠1和 是同位角,∠1和 是内错角,∠1和 是同旁内角.如果∠5=∠1,那么∠1 ∠3.10.已知直线a 和a 外一点P ,利用三角尺和直尺,经过点P 画平行于a 的直线.11.如图,利用三角尺和直尺,过点B 画直线a 的平行线b ,过点C 画直线a 的平行线c ,直线b 与直线c 互相平行吗?为什么? P a C B aAB C2 3 4 5 1 AB C D12.如图,按下列语句画图:(1)过点A画AD∥BC;(2)过点C画CE∥AB,与AD相交于点E.13*在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)四、问题生成单:五、谈本节课收获和体会:课题:5.2.2平行线的判定(1)月日班级:姓名:一、教材分析:(一)学习目标:1.经历判定直线平行方法1的探究过程,知道同位角相等,两直线平行.2.经历判定直线平行方法2的探究过程,知道内错角相等,两直线平行.3.经历判定直线平行方法3的探究过程,知道同旁内角互补,两直线平行.(二)学习重点和难点:1.重点:判定直线平行的三个方法及探究过程.2.难点:方法3的探究.二、问题导读单:阅读P13—15页回答下列问题:1.按P13页“思考”问题要求进行画图分析体会,可以看出:画AB的平行线____,实际上就过点P画与∠1相等的_____,而∠1和∠2是直线AB,CD被直线EF截得的___________,这说明,如果__________________,那么_____________.这样得到了判定方法1两条直线被第三条直线所截,如果____________,那么这两条直线平行.简单地说成:______________,_________________(此时多读几遍应该理解记住!!)2.如图5.2-7,说明木工用图中的角尺画平行线的道理是:_____________________________________________________________________3.按P14页“思考”问题要求进行画图分析体会,由∠2=∠3,得出a∥b(1)说理形式: 因为∠2=∠3,而∠3=∠1(___________),所以∠1=∠2,即同位角相等,从而a ∥b(根据:______________________________________________.)(2)推理形式: ∵∠2=∠3(_______)又∵ ∠3=∠1(_______________)∴_______________∴a ∥b (____________________________________________) 判定方法2两条直线被第三条直线所截,如果____________,那么这两条直线平行. 简单地说成:______________,_________________(此时多读几遍应该理解记住!!)4.判定方法3两条直线被第三条直线所截,如果__________________,那么这两条直线平行.简单地说成:______________,________________(此时多读几遍应该理解记住!!)三、问题训练单: 5.如图,如图,填空: (1)当∠ACE=∠________时,AB ∥CE ,理由是__________________________________________;(2)当∠B=∠________时, AB ∥CE ,理由是 __________________________________________.6. 已知∠2=135°,填空:(1)如果∠1=_____°,那么a ∥b ,理由是___________________________________; (2)如果∠3=_____°,那么a ∥c ,理由是 ___________________________________. 7.如图,已知∠1=80°,∠2=100°, 则_____∥_____,理由是 _______________________________________. 8.如图,填空:(1)如果∠A+∠B=180°, 那么_____∥_____;(2)如果∠A+∠D=180°,那么_____∥_____. 9.判断两直线平行的三种方法分别是:判定方法1:______________________________________________判定方法2:______________________________________________判定方法3:______________________________________________四、问题生成单:五、谈本节课收获和体会: D C B A 312d b a c b a c 12A B C D E。
人教版七年级下册数学同步导学案:《 5.2.1平行线》导学案 (无答案)
《 5.2.1平行线》导学案班级小组姓名评价一、学习目标1.了解平行线的概念,掌握平面内两条直线的位置关系,知道平行公理和它的推论。
2.通过观察、画图、交流、归纳进一步发展空间想象,培养分析、概括的能力;3.自主学习,享受学习的快乐!二、自主学习1.阅读教材第11页,学习“平行线”的定义及表示法:通过自己的演示、思考、想象可知:在木条转动过程中,存在一条直线a与直线b不相交的位置,即直线a与b互相平行,用数学语言描述:同一平面内,的两条直线叫做平行线。
如图(1):直线a与直线b是平行的,记作:a b,读作:。
2.同一平面内,不重合的两条直线只有两种位置关系:_________和_________。
3.阅读教材第12页,学习“平行公理及其推论”:用直尺与三角板画图:已知:直线a、点B、点C,如图2(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,能画几条?它与过点B的平行线平行吗?通过观察与画图。
得出一个基本事实:(用数学语言表达)平行公理:经过直线外一点,一条直线与这条直线平行。
平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相。
结合图(3)用符号语言描述其推论:如果b∥a、c∥a那么∥;4.平行线的画法:一“落”(三角板一边落在已知直线上);二“靠”(用直尺紧靠三角板的另一边);三“移”(沿直尺移动三角板,直到落在已知直线上的三角板的一边经过已知点);四“画”(沿三角板过已知点的边画直线)。
同学们试一试(如图4)。
5.阅读指导:(1)平行线的定义中一定要注意“在同一平面内”这个条件;(2)平行线的公理“经过直线外一点,有且只有一条直线与这条直线平行”一定要注意这一点是直线外的一点,要区别于垂线的性质;(3)平行公理的推论是证明两线平行的一种重要方法,其实质是:平行线具有平行的传递性。
一般证明三条或三条以上的直线平行,用此推论较方便。
三、合作探究1.在同一平面内的两直线的位置关系有_______和________两种。
最新人教版七年级下册数学导学案
人教版第五章相交线与平行线导学案5.1.1 相交线导学案【学习目标】1、了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角。
2、理解对顶角相等,并能运用它解决一些问题.【学习重点】邻补角、对顶角的概念,对顶角性质与应用.【学习难点】理解对顶角相等的性质.【学习过程】一、学前准备各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,并编写两道与它们相关的题目,在小组交流,并推出小组最好的两道题在班级汇报.二、探索思考探索一:完成课本P2页的探究,填在课本上.你能归纳出“邻补角”的定义吗?.“对顶角”的定义:.练习一:1.如图1所示,直线AB和CD相交于点O,OE是一条射线.(1)写出∠AOC的邻补角:____ _ ___ __;(2)写出∠COE的邻补角: __;(3)写出∠BOC的邻补角:____ _ ___ __;(4)写出∠BOD的对顶角:____ _.2.如图所示,∠1与∠2是对顶角的是()探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.请归纳“对顶角的质”:.练习二:1.如图,直线a,b相交,∠1=40°,则∠2=_______∠3=_______∠4=_______ 2.如图直线AB、CD、EF相交于点O,∠BOE的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______ 3.如图,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°,则∠EOF=_____.三、当堂反馈1.若两个角互为邻补角,则它们的角平分线所夹的角为度.2.如图所示,直线a,b,c两两相交,∠1=60°,∠2=23∠4,•求∠3、∠5的度数.3.如图所示,有一个破损的扇形零件,•利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量的角是多少度吗?你的根据是什么?4.探索规律:(1)两条直线交于一点,有对对顶角;(2)三条直线交于一点,有对对顶角;(3)四条直线交于一点,有对对顶角;(4)n条直线交于一点,有对对顶角.四、学习反思本节课你有哪些收获?图1ba4321第1题FEODCBA第2题FEODCBA第3题5.1.2 垂线 导学案【学习目标】1了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;2会用三角板过一点画已知直线的垂线,并会度量点到直线的距离.【学习重点】垂线的意义、性质和画法,垂线段性质及其简单应用. 【学习难点】垂线的画法以及对点到直线的距离的概念的理解. 【学习过程】一、学前准备在学习对顶角知识的时候,我们认识了“两线四角”,及两条直线相交于一点,得到四个角,这四个角里面,有两对对顶角,它们分别对应相等,如图,可以说成“直线AB 与CD 相交于点O ”.我们如果把直线CD 绕点O 旋转,无论是按照顺时针方向转,还是按照逆时针方向转,∠BOD 的大小都将发生变化.当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫垂线,它们的交点叫垂足.如图用几何语言表示:方式⑴∵ ∠AOC=90° ∴ AB_____CD ,垂足是_____方式⑵∵ AB ⊥CD 于O ∴ ∠AOC=______ 二、探索思考探索一:请你认真画一画,看看有什么收获.⑴如图1,利用三角尺或量角器画已知直线l 的垂线,这样的垂线能画__________条;⑵如图2,经过直线l 上一点A 画l 的垂线,这样的垂线能画_____条; ⑶如图3,经过直线l 外一点B 画l 的垂线,这样的垂线能画_____条;(图1) (图2) (图3a )(图3b )经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直. 练习一:1.如图所示,OA ⊥OB ,OC 是一条射线,若∠AOC=120°,求∠BOC 度数第1题图 第2题图 2.如图所示,直线AB ⊥CD 于点O ,直线EF 经过点O ,若∠1=26°,求∠2的度数. 3.如图所示,直线AB ,CD 相交于点O ,P 是CD 上一点. (1)过点P 画AB 的垂线PE ,垂足为E .(2)过点P 画CD 的垂线,与AB 相交于F 点. (3)比较线段PE ,PF ,PO 三者的大小关系探索二:仔细观察测量比较上题中点P 分别到直线AB 上三点E 、F 、O 的距离,你还有什么收获?请将你的收获记录下来:_______________________________________________简单说成: .还有,直线外一点到这条直线的垂线段的 叫做点到直线的距离.注意:垂线是 ,垂线段是一条 ,点到直线的距离是一个数量,不能说“垂线段”是距离. 练习二:1.在下列语句中,正确的是( ).A .在同一平面内,一条直线只有一条垂线B .在同一平面内,过直线上一点的直线只有一条C .在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D .在同一平面内,垂线段就是点到直线的距离 2.如图所示,AC ⊥BC ,CD ⊥AB 于D ,AC=5cm ,BC=12cm ,AB=13cm ,则点B 到AC 的距离是________,点A 到BC 的距离是_______,点C 到AB•的距离是_______,•AC>CD•的依据是_________. 三、当堂反馈1.如图所示AB ,CD 相交于点O ,EO ⊥AB 于O ,FO ⊥CD 于O ,∠EOD 与∠FOB 的大小关系是( )A .∠EOD 比∠FOB 大 B .∠EOD 比∠FOB 小C .∠EOD 与∠FOB 相等 D .∠EOD 与∠FOB 大小关系不确定2.如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,C ,D 是分别位于公路AB 两侧的加油站.设汽车行驶到公路AB 上点M 的位置时,距离加油站C 最近;行驶到点N 的位置时,距离加油站D 最近,请在图中的公路上分别画出点M ,N 的位置并说明理由.OD CBAC D A BO l l A lB lB3.如图,AOB为直线,∠AOD:∠DOB=3:1,OD平分∠COB.(1)求∠AOC的度数;(2)判断AB与OC的位置关系.四、学习反思:本节课你有哪些收获?5.1.3 同位角、内错角、同旁内角导学案【学习目标】1使学生理解三线八角的意义,并能从复杂图形中识别它们;2通过三线八角的特点的分析,培养学生抽象概括问题的能力.【学习重点】三线八角的意义,以及如何在各种变式的图形中找出这三类角.【学习难点】能准确在各种变式的图形中找出这三类角.【学习过程】一、学前准备在前面我们学习了两条直线相交于一点,得到四个角,即“两线四角”,这四个角里面,有对对顶角,有对邻补角.如果是一条直线分别与两条直线相交,结果又会怎样呢?二、探索思考探索:如图,直线c分别与直线a、b相交(也可以说两条直线a、b被第三条直线c所截),得到8个角,通常称为“三线八角”,那么这8个角之间有哪些关系呢?观察填表:表一位置1 位置2 结论∠1和∠5 处于直线c的同侧处于直线a、b的同一方这样位置的一对角就称为同位角∠2和∠8 处于直线c的()侧这样位置的一对角就称为()∠3和∠6 处于直线a、b的()方这样位置的一对角就称为()∠1和∠5 这样位置的一对角就称为()表二位置1 位置2 结论∠4和∠8 处于直线c的两侧处于直线a、b之间这样位置的一对角就称为内错角∠3和∠5这样位置的一对角就称为()表三位置1 位置2 结论∠3和∠8 处于直线c的()侧处于直线a、b()这样位置的一对角就称为同旁内角∠4和∠5这样位置的一对角就称为()练习:1.如图1所示,∠1与∠2是__ _角,∠2与∠4是_ 角,∠2与∠3是__ _角.(图1) (图2) (图3)2.如图2所示,∠1与∠2是___ _角,是直线______和直线_______•被直线_______所截而形成的,∠1与∠3是___ __角,是直线________和直线______•被直线________所截而形成的.3.如图3所示,∠B同旁内角有哪些?三、当堂反馈1.如图,(1)直线AD、BC被直线AC所截,找出图中由AD、BC被直线AC所截而成的内错角是_________和__________(2)∠3和∠4是直线_________和_________被_________所截,构成内错角.2.已知∠1与∠2是同旁内角,且∠1=60°,则∠2为()A. 60°B. 120°C. 60°或120°D.无法确定3.如图,判断正误①∠ 1和∠ 4是同位角;()②∠ 1和∠ 5是同位角;()③∠ 2和∠ 7是内错角;()④∠ 1和∠ 4是同旁内角;()341E2B CDAabc4.如图,直线DE 、BC 被直线AB 所截.⑴∠1与∠2、∠1与∠3、∠1与∠4各是什么角?⑵如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?四、学习反思本节课你有哪些收获?5.2.1 平行线 导学案【学习目标】1使学生知道平行线的概念,掌握平行公理;2了解平行线具有传递性,能够画出已知直线的平行线.【学习重点】平行线的概念和平行公理,利用直尺和三角板画已知直线的平行线. 【学习难点】用几何语言描述画图过程,根据几何语言画出图形. 【学习过程】一、学前准备在上学期我们学过点和直线的位置关系,同学们还记得点和直线有几种位置关系吗?请画出来,并尝试用几何语言来表示.二、探索思考探索一:我们知道,火车行驶的两条笔直的铁轨、人行道上的斑马线等都给我们平行的形象.一般地, 叫做平行线.如图,记作“a b ”或“AB CD ”,读作“直线a 平行于直线b ”.请同学们思考一下:在同一平面内,两条不重合的直线有几种位置关系?动手画一画,并尝试用几何语言来表示..练习一:1.下列说法中,正确的是( ).A .两直线不相交则平行B .两直线不平行则相交C .若两线段平行,那么它们不相交D .两条线段不相交,那么它们平行 2.在同一平面内,有三条直线,其中只有两条是平行的,那么交点有( ).A .0个B .1个C .2个D .3个 探索二:请同学们仔细阅读课本P13页“平行线的讨论”,认真思考.通过观察和画图,可以体验一个基本事实(平行公理):经过直线外一点, 一条直线与这条直线平行.同样,我们还有(平行线的传递性):如果两条直线都 平行,那么这两条直线也 .简单的说就是:平行于同一直线的两直线 也平行.用几何语言可表示为:如果b ∥a ,c ∥a ,那么 . 练习二:1.如图1所示,与AB 平行的棱有_______条,与AA ′平行的棱有_____条. 2.如图2所示,按要求画平行线. (1)过P 点画AB 的平行线EF ;(2)过P 点画CD 的平行线MN . 3.如图3所示,点A ,B 分别在直线1l ,2l 上,(1)过点A 画到2l 的垂线段;(2)过点B 画直线3l ∥1l .(图1) (图2) (图3) 4.下列说法中,错误的有( ).①若a 与c 相交,b 与c 相交,则a 与b 相交; ②若a ∥b ,b ∥c ,那么a ∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、•相交、垂线三种 A .3个 B .2个 C .1个 D .0个 三、当堂反馈1.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.2.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为________________. 3.判断题341E2BCDA ABCDab(1)不相交的两条直线叫做平行线.( )(2)在同一平面内,不相交的两条射线是平行线.( )(3)如果一条直线与两条平行线中的一条平行, 那么它与另一条也互相平行.( )4.读下列语句,并画出图形:⑴点P是直线AB外一点,直线CD经过点P,且与直线AB平行,直线EF也经过点P•且与直线AB垂直.⑵直线AB,CD是相交直线,点P是直线AB,CD外一点,直线EF经过点P•且与直线AB平行,与直线CD相交于E.四、学习反思本节课你有哪些收获?5.2.2 平行线的判定导学案【学习目标】1、掌握平行线的判定,并能判断两条直线是否平行。
人教版数学七年级下册5.2.2 第1课时 平行线的判定导学案.doc
第五章 相交线与平行线5.2 平行线及其判定5.2.2 平行线的判定 第1课时 平行线的判定学习目标:1.掌握平行线的三种判定方法,能运用平行线的判定方法解决问题.2.通过独立思考,小组探究,理解角与线的位置关系之间的联系,体会数形结合思想.3.激情投入,善于发现问题和提出问题,感受学习数学的乐趣. 重点:三种判定方法判定两直线平行.难点:根据平行线的判定方法进行简单的推理.一、知识链接1.在同一平面内, 的两条直线叫做平行线.2.过已知直线外一点能且只能画 条直线与这条直线垂直,能且只能画 条直线与这条直线平行.3.同位角、内错角、同旁内角的定义是怎样叙述的?4.怎样用三角板和直尺作已知直线的平行线?二、新知预习1.试利用三角板和直尺,经过直线外一点P 画出已知直线AB 的平行线CD ,由此你会发现什么?2.同位角 ,两直线平行. 三、自学自测1.如图,三角形ABC 中,∠A=70°,∠BED=70°,可以判断 ∥ .根据是 .由∠B=48°,∠FDC=48°,可以判断 ∥ .根据是 .第1题图 第2题图2.如图,用直尺和三角板作直线AB ,CD ,从图中可知,直线AB 与直线CD 的位置关系为 .四、我的疑惑___________________________________________________________________________自主学习教学备注【自学指导提示】学生在课前完成自主学习部分一、要点探究探究点1:利用同位角判定两条直线平行画一画:用三角尺和直尺画平行线的步骤有哪些?思考:(1)画图过程中,什么角始终保持相等? (2)直线a ,b 位置关系如何?(3)由上面的操作过程,你能发现判定两直线平行的方法吗? 总结归纳:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行.应用格式: ∵∠1=∠2(已知),∴a ∥b (同位角相等,两直线平行)做一做:下图中若∠1=55°,∠2=55°,直线AB 、CD 平行吗?为什么?探究点2:利用内错角、同旁内角判定两条直线平行 问题1:如图,由∠3=∠2,可推出a//b 吗?如何推出?总结归纳:判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.应用格式: ∵∠3=∠2(已知),∴a ∥b (内错角相等,两直线平行) 问题2:如图,如果∠1+∠2=180°,你能判定a//b 吗?总结归纳:简单说成:同旁内角互补,两直线平行.课堂探究教学备注 配套PPT 讲授1.情景引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片5-13)3.探究点2新知讲授(见幻灯片14-23)应用格式:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行)典例精析例1.根据条件完成填空.①∵∠2 = ∠6(已知)∴___∥___(___________________________)②∵∠3 = ∠5(已知)∴___∥___(___________________________)③∵∠4 +___=180°(已知)∴___∥___(___________________________)例2.如图,已知∠MCA= ∠A,∠DEC= ∠B,那么DE∥MN吗?为什么?针对训练1.根据条件完成填空.①∵∠1 =_____(已知)∴AB∥CE(___________________________)②∵∠1 +_____=180°(已知)∴CD∥BF( ___________________________)③∵∠1 +∠5 =180°(已知)∴_____∥_____(___________________________)④∵∠4 +_____=180°(已知)∴CE∥AB(___________________________)2.如图,直线AB、CD、EF、MN相交,若∠2=∠5,找出图中与∠2 互补的角.二、课堂小结文字叙述符号语言图形相等,两直线平行∵ (已知),∴a∥b相等,∵ (已知),教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片14-23)两直线平行 ∴a ∥b互补, 两直线平行∵ (已知)∴a ∥b1.如图,可以确定AB ∥CE 的条件是( )A.∠2=∠BB. ∠1=∠AC. ∠3=∠BD. ∠3=∠A第1题图 第2题图2.如图,已知∠1=30°,∠2或∠3满足条件 ,则a//b.3.如图.(1)从∠1=∠4,可以推出 ∥ ,理由是 .(2)从∠ABC +∠ =180°,可以推出AB ∥CD ,理由是 .(3)从∠ =∠ ,可以推出AD ∥BC , 理由是 . (4)从∠5=∠ ,可以推出AB ∥CD ,理由是 .4.如图,已知∠1= ∠3,AC 平分∠DAB ,你能判断哪两条直线平行?请说明理由?【本文档由书林工作坊整理发布,谢谢你的下载和关注!】当堂检测教学备注 配套PPT 讲授 4.课堂小结5.当堂检测 (见幻灯片24-28)。
最新人教版七年级数学下册精品导学案5.2.1 平行线
第五章 相交线与平行线5.2 平行线及其判定5.2.1 平行线学习目标:1.在丰富的现实情境中,进一步了解两条直线的平行关系,理解平行线的定义及表示方法,掌握平行公理及其推论,提高识别平行线的能力.2.通过用三角尺、量角器、方格纸画平行线,积累操作活动的经验,培养动手操作能力和空间想象能力;.3.感受数学语言的整洁美,激发学生探索知识的热情,把学到的知识应用到生活中去,进一步提高学生的参与意识和合作精神..重点:平行公理及其推论.难点:作图:过直线外一点画一条直线与已知直线平行.一、知识链接1.你能画出两条相交的直线吗?两条直线相交有几个交点?2. 在同一平面内,如何过一点画一条直线的垂线?二、新知预习1.在同一平面内, 的两条直线叫平行线.直线a 与直线b 互相平行,记作 .2.在同一平面内,不重合的两条直线的位置关系有 种,分别是 和 .3.平行公理: .推论:如果两条直线都与第三条直线平行,那么这两条直线也 .即如果b ∥a,c ∥a ,那么 .三、自学自测1.如图,过点C 作直线AB 的平行线,下列说法正确的是( )A.不能作B.只能作一条C.能作两条D.能作无数条2.判断正误:(1)没有公共点的两条直线叫作平行线;( )(2)两条直线的位置关系只有两种:相交和平行;( )(3)在同一平面内,两条直线的位置关系有三种:相交、垂直和平行.( )四、我的疑惑______________________________________________________________________________________________________________________________________________________自主学习一、要点探究探究点1:平行线的定义及表示问题1:如图,分别将木条a 、b 与木条c 钉在一起,并把它们想象成两端可以无限延伸的三条直线.转动a ,直线a 从在c 的左侧与直线b 相交逐步变为在右侧与b 相交.想象一下,在这个过程中,有没有直线a 与直线b 不相交的位置呢?问题2:平行线的定义是什么?定义中哪些词语比较重要?问题3:观察下列图形,哪些画出了你心目中的平行线?归纳总结:平行线的定义包含三层意思:(1)“在同一平面内”是前提条件;(2)“不相交”就是说两条直线没有交点;(3)平行线指的是“两条直线”而不是两条射线或两条线段.问题4:平行用符号怎么表示?两条直线平行用符号怎么表示?探究点2:平行线的画法、平行公理及推论画一画:(1)经过点C 能画出几条直线?课堂探究(2)与直线AB平行的直线有几条?(3)经过点C能画出几条直线与直线AB平行?(4)过点D画一条直线与直线AB平行,与(3)中所画的直线平行吗?归纳总结:1.平行公理:经过直线外一点,有且只有一条直线与已知直线平行.2.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线互相平行.典例精析例1:判断:(1)两条直线不相交就平行()(2)在同一平面内,两条不同的直线有且只有一个交点()(3)过一点有且只有一条直线与已知直线平行()(4)平行于同一条直线的两条直线互相平行()例2:如图,P是∠AOB内一点.(1)过点P分别画出OA,OB的平行线;(2)量一量:画出的两条平行线所夹的角与∠O有什么样的数量关系?二、课堂小结平行线的定义在同一平面内,不相交的两条直线叫做平行线.平行公理经过直线外一点,有且只有一条直线与已知直线平行.平行公理的推论如果两条直线都与第三条直线平行,那么这两条直线互相平行.当堂检测1.下列说法正确的是()A.在同一平面内,不相交的两条射线是平行线;B.在同一平面内,不相交的两条线段是平行线;C.在同一平面内,两条不重合的直线的位置关系不是相交就是平行;D.不相交的两条直线是平行线2.下列说法正确的是()A、一条直线的平行线有且只有一条B、经过一点有且只有一条直线与已知直线平行C、经过一点有两条直线与某一直线平行D、过直线外一点有且只有一条直线与已知直线平行3.下列推理正确的是()A.因为a // d,b // c,所以c // dB.因为a // c,b // d,所以c // dC.因为a // b,a // c,所以b // cD.因为a // b,c // d,所以a // c4.完成下列推理,并在括号内注明理由.(1)如图,因为AB // DE,BC // DE(已知),所以A,B,C三点;()(2)如图,因为AB // CD,CD // EF(已知),所以________ // _________. ()5.【能力拓展】如图,直线a ∥b,b∥c,c∥d,那么a ∥d吗?为什么?。
人教版七年级数学下册教案5.2.1平行线教案
b.引导学生根据平行线性质分析题目中的角度关系。
c.演示如何运用这些性质进行逻辑推理,解决相关问题。
针对实际问题的解决,教师可以提供一些生活中的实例,如建筑设计中的平行线应用,让学生了解平行线在实际中的应用,并学会如何识别和解决问题。
四、教学流程
(一)导入新课(用时5分钟)
在新课讲授中,我采用了案例分析、重点难点解析等方法,希望能够让学生更好地理解平行线在实际中的应用。从学生的反馈来看,这种方法还是比较有效的,他们能够通过具体案例和实际操作,逐步掌握平行线的判定方法。
然而,我也发现了一些问题。在实践活动和小组讨论中,有些同学参与度不高,可能是因为他们对平行线知识点的掌握还不够熟练ቤተ መጻሕፍቲ ባይዱ导致在讨论过程中有些吃力。针对这一点,我考虑在今后的教学中,加强对学生的个别辅导,帮助他们更好地消化吸收课堂知识。
三、教学难点与重点
1.教学重点
-平行线的定义:理解同一平面内两条永不相交直线称为平行线的概念,这是本节课的核心内容。
-平行线的性质:掌握同位角、内错角、同旁内角的定义及它们之间的关系,这是平行线理论的基础。
-平行线的判定方法:学会使用同位角相等、内错角相等、同旁内角互补等条件判断两条直线是否平行,这是解决实际问题的关键。
2.提升逻辑推理能力:引导学生运用平行线的性质进行推理,学会用严谨的逻辑思维分析问题、解决问题,培养他们的逻辑推理能力。
3.增强数学应用意识:通过解决实际问题,让学生体会数学知识在实际生活中的应用,培养他们运用数学知识解决实际问题的能力,提高数学应用意识。
本节课将紧扣教材内容,注重培养学生的核心素养,使他们在掌握平行线相关知识的同时,提高数学学科素养。
人教版七年级数学下册(导学案)5.2.1平行线
第五章订交线与平行线教课备注【自学指导提示】学生在课前达成自主学习部分平行线及其判断平行线学习目标: 1.在丰富的现真相境中,进一步认识两条直线的平行关系,理解平行线的定义及表示方法,掌握平行公义及其推论,提升辨别平行线的能力.2.经过用三角尺、量角器、方格纸画平行线,累积操作活动的经验,培育着手操作能力和空间想象能力; .3.感觉数学语言的整齐美,激发学生研究知识的热忱,把学到的知识应用到生活中去,进一步提升学生的参加意识和合作精神..重点:平行公义及其推论.难点:作图:过直线外一点画一条直线与已知直线平行.自主学习一、知识链接1.你能画出两条订交的直线吗?两条直线订交有几个交点?2.在同一平面内,怎样过一点画一条直线的垂线?二、新知预习1. 在同一平面内,的两条直线叫平行线 . 直线 a 与直线b 相互平行,记作.2. 在同一平面内,不重合的两条直线的地点关系有种,分别是和.3. 平行公义:.推论:假如两条直线都与第三条直线平行,那么这两条直线也.即假如 b∥ a,c ∥ a,那么.三、自学自测1.如图,过点 C作直线 AB的平行线,以下说法正确的选项是()A. 不可以作B. 只好作一条C. 能作两条D. 能作无数条2. 判断正误:(1)没有公共点的两条直线叫作平行线;()(2)两条直线的地点关系只有两种:订交和平行;()(3)在同一平面内,两条直线的地点关系有三种:订交、垂直和平行. ()四、我的迷惑___________________________________________________________________________ ___________________________________________________________________________讲堂研究一、重点研究研究点 1:平行线的定义及表示问题 1:如图,分别将木条a、b 与木条 c 钉在一同,并把它们想象成两头能够无穷延长的三条直线 .转动 a,直线 a 从在 c 的左边与直线 b 订交逐渐变成在右边与 b 订交 .想象一下,在这个过程中,有没有直线 a 与直线 b 不订交的地点呢?教课备注配套 PPT 讲解1.情形引入(见幻灯片 3)2.研究点 1 新知讲解(见幻灯片7-9)问题 2:平行线的定义是什么?定义中哪些词语比较重要?问题 3:察看以下图形,哪些画出了你心目中的平行线?概括总结:平行线的定义包括三层意思:(1)“在同一平面内”是前提条件;(2)“不订交”就是说两条直线没有交点;(3)平行线指的是“两条直线”而不是两条射线或两条线段.问题 4:平行用符号怎么表示?两条直线平行用符号怎么表示?研究点 2:平行线的画法、平行公义及推论画一画:(1) 经过点 C 能画出几条直线?教课备注(2) 与直线 AB 平行的直线有几条?(3) 经过点 C 能画出几条直线与直线AB 平行?配套 PPT 讲解(4) 过点 D 画一条直线与直线 AB 平行,与 (3) 中3.研究点 2 新所画的直线平行吗?知讲解(见幻灯片10-14)概括总结:1. 平行公义:经过直线外一点,有且只有一条直线与已知直线平行.2. 平行公义的推论:假如两条直线都与第三条直线平行,那么这两条直线相互平行.典例精析例 1:判断:(1)两条直线不订交就平行()(2)在同一平面内,两条不一样的直线有且只有一个交点()(3)过一点有且只有一条直线与已知直线平行((4)平行于同一条直线的两条直线相互平行())例 2:如图,P是∠AOB内一点.(1)过点 P 分别画出OA , OB 的平行线;(2)量一量:画出的两条平行线所夹的角与∠O 有什么样的数目关系?二、讲堂小结平行线的定义在同一平面内,不订交的两条直线叫做平行线. 4.讲堂小结平行公义经过直线外一点,有且只有一条直线与已知直线平行.平行公义的推论假如两条直线都与第三条直线平行,那么这两条直线相互平行 .当堂检测1.以下说法正确的选项是()A.在同一平面内,不订交的两条射线是平行线;B.在同一平面内,不订交的两条线段是平行线;C.在同一平面内,两条不重合的直线的地点关系不是订交就是平行;D.不订交的两条直线是平行线2.以下说法正确的选项是()A、一条直线的平行线有且只有一条B、经过一点有且只有一条直线与已知直线平行C、经过一点有两条直线与某向来线平行D、过直线外一点有且只有一条直线与已知直线平行3.以下推理正确的选项是()A. 由于 a // d,b // c ,因此 c // dB. 由于 a // c,b // d,因此 c // dC.由于 a // b,a // c,因此 b // cD. 由于 a // b,c // d ,因此 a // c4.达成以下推理,并在括号内注明原因.( 1)如图,由于AB // DE , BC // DE (已知),因此A,B,C 三点;()( 2)如图,由于AB // CD , CD // EF (已知),因此________ // _________. ()5.【能力拓展】如图,直线 a ∥ b, b∥ c, c∥ d,那么 a ∥ d 吗?为何?教课备注配套 PPT 讲解5.当堂检测(见幻灯片15-20)。
人教版数学七年级下 5.2.2 第1课时 平行线的判定优秀导学案
眼泪不是我们的答案,拼搏才是我们的选择。
cP ba 4321第1课时 平行线的判定一、学习目标1、理解并掌握判定两条直线平行的方法;2、理解并掌握平行线的判定方法,并能运用它判定两条直线的平行关系 二、复习回顾1、经过直线外一点,______________与这条直线平行.2、已知a ∥b,a ∥c,则:b______________c.2、在纸上过已知直线外一点画已知直线的平行线是怎样画的?在这个过程中,实际上是保证了哪两个角相等就可以得到这两条直线平行?二、教学过程1、平行线判定方法1:(1)、观察思考上图:过点P 画直线CD ∥AB 的过程,三角尺起了 什么作用?(2) 图中,∠1和∠2什么关系?直线平行的判定方法1: 几何语言:。
∵∠1=∠2(已知)简单说成: 。
∴AB ∥CD (同位角相等,两直线平行) 2、平行线判定方法2:问:木工师傅使用角尺画平行线,有什么道理?判定方法2: 几何语言:。
简单说成: 。
3、平行线判定方法3:将上题中条件改变为∠1+∠4=180°,能得到a ∥c 吗?(试着写出推理过程) 判定方法3: 几何语言:。
简单说成: 。
例1、如图所示,已知∠1=∠2,AC 平分∠DAB,试说明DC ∥AB.D C BA眼泪不是我们的答案,拼搏才是我们的选择。
DCBA 21例2、如图,已知DGN AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由。
四、课堂练习34DCBA21F ED CBA 9654321DCB A(1) (2) (3) (4) (一)选择题1.如图(1)所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD 2.如图(2)所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.如图(5),直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明8765cba3412cba 321眼泪不是我们的答案,拼搏才是我们的选择。
新人教版七年级下5.2.1平行线学案
新人教版七年级下5.2.1平行线学案一、课前自主学习: (一)填空题:1. 在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.2.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.3.如果已知A B ∥CD ,AB ∥EF ,那么可以判断CD EF ,其理由是 .4.如图(4),在正方体中,与棱AB 平行的线段有 .5.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一条必__________. (二)选择题:6. 下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行.(2)过一点有且只有一条直线与已知直线垂直.(3)在同一平面内,两条直线的位置关系只有相交、平行两种.(4)不相交的两条直线叫做平行线.(5)有公共顶点且有一条公共边的两个角互为邻补角. A . 1个 B . 2个 C . 3个 D . 4个 7.下列说法中正确的是 ( ) A .有且只有一条直线垂直于已知直线B .从直线外一点到这条直线的垂线段,叫做这点到这条直线距离C .互相垂直的两条线段一定相交D .直线c 外一点A 与直线c 上各点连接而成的所有线段中最短线段的长是3cm ,则点A 到直线c 的距离是3cm8.下列推理正确的是( )A ,因为a ∥d ,b ∥c 所以c ∥dB .因为a ∥c ,b ∥d 所以a ∥bC .因为a ∥d ,a ∥c 所以d ∥cD .因为a ∥b ,c ∥d 所以a ∥d .9.在同一平面内,若其中有且只有两条直线互相平行,则它们交点的个数为( ) A .0 B .1 C .2 D .310.下列语句中,正确的个数是( ) ①不相交的两条直线是平行线;②同一平面内,两条直线的位置关系有两种,即相交或平行;③若线段AB 与CD 没有交点,则AB ∥CD ;④若a ∥b ,b ∥c 则a 与c 不相交A .1个B .2个C .3个D .4个 (三)解答题:D /C /B /A /D C BA (4)11.读下列语句,并画出图形后判断.(1)直线a 、b 互相垂直,点P 是直线a 、b 外一点,过P 点的直线c 垂直于直线b . (2)判断直线a 、c 的位置关系,并借助于三角尺、直尺验证. 课前自主学习答案:1.平行,相交,平行;2.平行,这两条直线也互相平行;3. ∥,如果两条直线都与第三条直线平行,那么这两条直线也互相平行.4.A ′B ′,DC ,D ′C ′;5.相交;6.B ;7.D ;8.C ;9.C ; 10.B ;11.如图(2)所示:二、课堂互动探究(1)知识要点梳理知识点一:平行线的定义在同一平面内不相交的两条直线叫做平行线.如图(3),a 与b 平行,记作:a ∥b 或b ∥a ①线段,射线平行时,特指线段,射线所在直线平行.②定义强调是在同一平面内,如图(4)中的线段a所在直线与线段BC 所在直线没交点,但它们不平行,也不相交. 知识点二:在同一平面内,两条直线的位置关系只有两种:①相交;②平行.知识点三:平行线的性质 平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.如果b ∥a,c ∥a ,那么b ∥c(2)典型例题分析例一:如图(5)AD ∥BC ,E 为AB 上任一点,(1)过E 点画EF ∥AD 交DC 于F ;(2)问EF 与BC 的关系,为什么?分析:本题考查的是过一点作已知直线的平行线和平行公理的推论.解:⑴如图(6)所示:c b a a D /C /B /A /D CB A c ba E F E D CB A (2) (3) (4) (5) (6)(2)∵AD ∥BC ,AD ∥EF ,∴EF ∥BC变式一:如图(7)所示,梯形ABCD 中,AD ∥BC ,P 是AB 的中点,过P 点作AD 的平行线交DC 于Q 点. (1)PQ 与BC 平行吗?为什么?(2)测量DQ 与CQ 是否相等?分析:本题考查的是过一点作已知直线的平行线和平行公理的推论 及动手操作能力. 解:⑴PQ ∥BC ,∵AD ∥BC ,AD ∥PQ ; ∴PQ ∥BC ⑵DQ =CQ . 变式二:如图(8),梯形ABCD 中,AD ∥BC ,P 是AB 的中点,过P 点作AD 的平行线交DC 于Q 点.(1)画出线段PQ ,PQ 与BC 平行吗?为什么? (2)测量DQ 和CQ 是否相等? (3)通过测量并判断21(AD +BC )=PQ 是否成立? 分析:与以上相类似,主要考查的是平行公理的推论.解:(1)平行;因为它们都与AD 平行 (2)相等 (3)成立 点拨:本类题中利用平行公理解决.例二:在同一平面内,两条不重合直线的位置关系可能是( )A.平行或相交B.垂直或相交;C.垂直或平行D.平行、垂直或相交 分析:垂直是相交的一种特殊情形,所以答案B ,C ,D 错误.故选A . 变式一:如图(9)所示, a ∥b ,a 与c 相交,那么b 与c 相交吗?为什么? 分析:在同一个平面内,两条直线有两种位置关系:相交或平行,如果b ∥c ,那么就有a ∥c ,与已知矛盾.所以b 与c 相交. 解: b 与c 相交,假设b 与c 不相交,则b ∥c ,∵a ∥b∴a ∥c ,与已知a 与c •相交矛盾.变式二:如图(10) ,已知直线AB ∥CD ,直线AB 与EF 相交于点P ,那么直线EF 也与直线CD 相交,请在下面的推理过程中填空. ∵AB ∥CD ,AB .EF 交于点P ;∴点P 必在直线CD 外.假设直线EF 和CD 不相交,那么过点P 就有两条直线 AB 和EF 都与CD 平行,这与 公理矛盾.∴直线EF 也与直线CD 相交.分析:在同一平面内两条直线有两种位置关系:相交或平行.解:平行公理. 点拨:利用平行公理解决平面内的直线平行或相交的问题.Q P DCB Ac ba PFEDC B A (7) (8) (9) (10)例三:已知如图(11):直线a ,点B ,点C .(1)过点B 画直线a 的平行线,能画几条?(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗? 分析:按照一落、 二靠、 三移、 四画进行画线解:⑴能画一条,如图(12)所示:⑵平行.变式一:读下列语句,并画出图形后判断.(1)直线a 、b 互相垂直,点P 是直线a 、b 外一点,过P 点的直线c 垂直于直线b . (2)判断直线a 、c 的位置关系,并借助于三角尺、直尺验证.分析:通过作图,直观上判断两条直线平行.解:⑴如图(13)所示:⑵平行.变式二:如图(14)所示,∵AB ∥CD (已知),经过点F 可画EF ∥AB∴EF ∥CD ( )分析:主要考查的是平行线的作法和平行公理. 解:如图(15)所示:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 点拨:通过画平行线,考查平行公理. 三、课后习题精选1.下列说法正确的是 ( ). A 两条不相交的直线叫做平行线 B 一条直线的平行线有且只有一条 C 若a ∥b ,a ∥c ,则b ∥c . D 两直线不相交就平行.分析:A ,D 两个答案忽略了在同一平面内这一条件;一条直线的平行线有无数条,B 答案错误,故选C .2. 在同一平面内,下列说法aCBc b aBa FD C BAF E D CBA(11)(12)(13) (14) (15)⑴过两点有且只有一条直线⑵两条不相同的直线有且只有一个公共点⑶过一点有且只有一条直线与已知直线垂直⑷过一点有且只有一条直线与已知直线平行其中正确的有().A1个B 2个C 3个D 4个分析:两条不相同的直线的交点可能有一个,也可能没有,⑵答案错误;⑷答案忽略了这一点在直线外这个条件;⑴、⑶正确,故选B.4.下列说法不正确的是()A.过马路的斑马线是平行线B.100米跑道的跑道线是平行线C.若a∥b,b∥d,则a⊥d D.过直线外一点有且只有一条直线与已知直线平行分析:如果a∥b,b∥d,那么a∥d,故C不正确.5.过一点画已知直线的平行线,则( )A.有且只有一条B.有两条;C.不存在D.不存在或只有一条分析:点在直线外可画一条,点在直线上不能画平行线,故选D.6.在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的括号内⑴a与b没有公共点,则a与b;⑵a与b有且只有一个公共点,则a与b;⑶a与b有两个公共点,则a与b.分析:⑴a与b没有公共点,a∥b;⑵a与b相交;⑶重合.7. 下列命题:⑴长方形的对边所在的直线平行;⑵经过一点可作一条直线与已知直线平行;⑶在同一平面内,如果两条直线不平行,那么这两条直线相交;⑷经过一点可作一条直线与已知直线垂直.其中正确的个数是()A.1 B.2 C.3 D.4分析:⑵答案忽略点必须在直线外;故选C.8.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个B.2个C.3个D.4个分析:①;③忽略了在同一平面内这一条件.故选B.四、能力提高训练1.互不重合的三条直线公共点的个数是().A.只可能是0个,1个或3个B.只可能是0个,1个或2个C.只可能是0个,2个或3个D.0个,1个,2个或3个都有可能分析:如图(16)所示:故选D.2.根据下列要求画图.(1)如图(1)所示,过点A 画MN ∥BC ;(2)如图(2)所示,过点P 画PE ∥OA ,交OB 于点E ,过点P 画PH ∥OB ,交OA 于点H ;(3)如图(3)所示,过点C 画CE ∥DA ,与AB 交于点E ,过点C 画CF ∥DB ,与AB •的延长线于点F .分析:主要考查的是平行线的一些画法.分析:主要考查的是平行线的一些画法.解:如图所示:C B A N M C B AOBOB DC BA FE DC B A (1) (2) (3) (1) (2) (3)。
春七年级数学下册 5.2.1 平行线学案 新人教版(2021年整理)
2017年春七年级数学下册 5.2.1 平行线学案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年春七年级数学下册5.2.1 平行线学案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年春七年级数学下册 5.2.1 平行线学案(新版)新人教版的全部内容。
5。
2 平行线及其判定5.2.1 平行线【学习目标】1.了解平行线的概念,了解同一平面内两条直线的两种位置关系.2.理解并掌握平行线的基本事实.3.会根据几何语言画图,会用直尺和三角板画平行线.【学习重点】探索和掌握平行线的基本事实.【学习难点】理解平行线的概念及由平行线的基本事实导出其推论的过程.行为提示:创设情景,引导学生知道本节课要学什么.行为提示:引导学生学会看书,独学时对于书中的问题,一定要认真探究,理解新知,落实重点.行为提示:充分利用教具的操作,得出平行的概念,激发学生的学习兴趣.学法指导:对于平行线的概念,可从以下几方面理解:(1)“在同一平面内"是前提条件;(2)平行线指的是“两条直线”,两条射线或线段平行,是指它们所在的直线平行;(3)“不相交”就是说两条直线没有公共点.情景导入生成问题情景导入1.两条直线相交有__1__个交点.2.展示一些生活中的图片,让学生观察生活中的两条直线之间的位置关系.问题:平面内两条直线的位置关系除相交外,还有哪些?自学互研生成能力【自主探究】仔细阅读教材P11的内容,完成下列问题:1.平行定义及表示方法:在同一平面内,不相交的两条直线是平行线.直线a与b平行,记作a∥b.2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.请你举出一些生活中平行线的例子.【合作探究】活动:教师演示教具:分别将木条a,b与木条c钉在一起,并把它们想象成在同一平面内两端可以无限延伸的三条直线.转动a,直线a从在c的左侧与直线b相交逐步变为在c的右侧与b相交.思考:1.在直线a的转动过程中,有没有直线a与直线b不相交的位置?2.在同一平面内,不重合的两条直线有几种位置关系?3.什么叫两直线平行?如何表示?学生观察、交流.形成共识:1.有;2.两种:相交和平行;3.在同一平面内,两条直线没有交点,称直线a与b平行.记作:a∥b。
2019-2020学年七年级数学下册 5.2.1 平行线导学案(新版)新人教版.doc
2019-2020学年七年级数学下册 5.2.1 平行线导学案(新版)新人
教版
一、学习目标
(2)理解平行线的概念,平行公理,平行公理的推论。
(2)学会过直线外一点画这条直线的平行线
二、自主学习
阅读教材,理解下列问题
(1)两条直线平行有什么条件?
(2)动手画过直线外一点画这条直线的平行线
(3)平行公理的内容是什么?
(4)平行公理推论是什么?
三、合作交流
独立完成下列练习,然后与同伴讨论正确结果
1.读下列语句,并画图形
(1)点p是直线AB外一点,直线CD经过点P且与直线AB平行
(2)直线AB、CD是相交直线,点P是直线AB、CD外一点,直线EF经过点P与AB平行,与直线CD相交于点E
(3)如图过点D画DE,使DE//AC,交BC延长线于点E
B
的边AB上的一点,直线EF经过点P且与直线BC平行(4)点P是ABC
2.填空
(1)平行线用符号“”表示,直线AB与CD平行可记作“”
读作。
(2)已知直线AB及一点P,若过一点P作一直线与AB平行,那么这样的直线有条。
(3)若直线a//b, b//c,则b//c的依据是()
A 平行公理 B等量代换 C平行于同一直线的两条直线平行
D平行线的定义
四拓展提高
如图,用直尺和图规将线段BC二等分,过该点E用直尺和三角板画出AB的平行线交AC于D点,用刻度尺量出AD、CD的长度,并比较大小,量出DE、AB的长度后并做比较,你能得出什么结论?
A。
人教版数学七年级下册学案 5.2.1《 平行线》 (含答案)
5.2.1 平行线【学习目标】1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;4.了解平行线在实际生活中的应用,能举例加以说明.重点:平行线的概念与平行公理;难点:对平行公理的理解.【自主学习】问题1 同一平面内两条直线的位置关系平面内任意两条直线的位置关系除平行外,还有哪些呢?平行线:在同一平面内,_______________的两条直线叫做平行线。
直线a与b平行,记作“a∥b”。
在同一平面内,两条直线只有两种位置关系:_______或_______。
**对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.问题2 平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).归纳:(1)平行公理:经过_____一点,有且只有一条直线与这条直线_____。
(2)两条直线都与第三条直线平行(平行线是在同一平面内定义的),那么这两条直线_______. 即b∥a,c∥a,那么_______。
问题3 在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上。
(1)a与b没有共同点,则a与b_______。
(2)a与b有且只有一个共同点,则a与b_______。
在同一平面内,若两条直线相交,则公共点的个数是____;若两条直线平行,则公共点的个数是____。
【合作学习】1、若直线a∥b,b∥c,则a____c,理由是:_______________。
直线l1是l2的平行线,记作:_______,读作:_______________。
七年级下册数学第五章相交线与平行线导学案[1]
七年级下册数学第五章相交线与平行线导学案[1]第五章相交线与平行线导学案课题:5.1.1相交线月日班级:姓名:一、教材分析:(一)学习目标:1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题(二)学习重点和难点:重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索二、问题导读单:阅读P1—3页回答下列问题:1.图5.1-1观察并阅读有关内容体会说明:图中“剪刀”可以看作:_______________线,画出示图为:__________________2.阅读“探究”中有关内容回答相应问题并填写下表。
两条直线相交所形成的角分类位置关系数量关系O3.如2题图中AB 交CD于点O形成四个角,∠1和∠2有一条公共边_____,它们的另一边互为_______________,具有这种关系的两个角,互为邻补角.互为邻补角的还有:___________________________________________________∠1和∠3有一个_____________,并且∠1的两边分别是∠3的两边的_______________.具有这种位置关系的两个角,互为对顶角.互为对顶角的还有_________________.4.写出对顶角的性质:___________________.写出性质的推理或说理形式._____________________________________________________________ ________________________________________________________________ _5.例题中求三个角的度数时,应用了哪些“原理”?分别是:____________________________________________________________ _________三、问题训练单:6.如图直线c分别交直线a、b形成如图中8个角,写出图中∠1的邻补角有:∠3的邻补角有:∠5的邻补角有:∠7的邻补角有:所有的对顶角有:________________________________________________________________ __________________7.下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2)邻补角是互补的两个角,互补的两个角是邻补角(3)对顶角相等,相等的两个角是对顶角21438.如图,填空:(1)∠1与∠是邻补角,∠1又与∠是邻补角;(2)∠2与∠是邻补角,∠2又与∠是邻补角;(3)如果∠1=40°,那么∠2=°,∠4=°,∠3=°.9某.如图直线AB、CD、EF相交于点O.(1)写出图中所有对顶角:(2)写出:∠AOC的邻补角有:∠AOE的邻补角有:∠AOF的邻补角有:∠AOD的邻补角有:四、问题生成单:五、谈本节课收获和体会:课题:5.1.2(1)垂线月日班级:姓名:一、教材分析:(一)学习目标:1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2.1 平行线【学习目标】1、理解平行线的定义,会用符号表示平行线.2、掌握平行线的基本事实(平行公理),了解平行公理的推论。
3、会用三角尺、量角器、方格纸画平行线,积累操作活动经验.【课前预习】1.在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行2.下列说法中不正确的个数为().①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个3.下列结论中:①同一平面内,两条不相交的直线被第三条直线所截,形成的同旁内角互补;②在同一平面内,若⊥,则a ca b b c,//⊥;③直线外一点到直线的垂线段叫点到直线的距离;④同一平面内,过一点有且只有一条直线与已知直线平行,正确的个数有()A.1个B.2个C.3个D.4个4.在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c则a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c5.下列语句,其中正确的个数是()①直线AB与直线BA是同一条直线;②射线AB与射线BA是同一条射线;③两点确定一条直线;④在同一平面内,经过一点有且只有一条直线与已知直线平行;⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直;⑥两点之间的线段叫做两点之间的距离.A.3B.4C.5D.06.下列说法错误的个数是()①经过一点有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线互相平行;③直线外一点到这条直线的垂线段,叫做这个点到直线的距离;④同一平面内不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个7.下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.8.下列结论错误的是()A.垂直于同一直线的两条直线互相平行B.两直线平行,同旁内角互补C.过直线外一点有且只有一条直线与这条直线平行D.同一平面内,不相交的两条直线叫做平行线9.有一正棱锥的底面为正三角形.若此正棱锥其中两个面的周长分别为27、15,则此正棱锥所有边的长度和为多少?()A.36B.42C.45D.4810.下列说法正确的是()①平面内,不相交的两条直线是平行线;②平面内,过一点有且只有一条直线与已知直线垂直;③平面内,过一点有且只有一条直线与已知直线平行;④相等的角是对顶角;⑤P是直线a外一点,A、B、C分别是a上的三点,P A=1,PB=2,PC=3,则点P到直线a的距离一定是1.A.1个B.2个C.3个D.4个【学习探究】自主学习阅读课本,完成下列问题1.在同一平面内,的两条直线叫平行线.直线a与直线b互相平行,记作.2.在同一平面内,不重合的两条直线的位置关系有种,分别是和.3.平行公理:.推论:如果两条直线都与第三条直线平行,那么这两条直线也.即如果b∥a,c∥a,那么.4.如图,过点C作直线AB的平行线,下列说法正确的是()A.不能作B.只能作一条C.能作两条D.能作无数条5.判断正误:(1)没有公共点的两条直线叫做平行线;()(2)两条直线的位置关系只有两种:相交和平行;()(3)在同一平面内,两条直线的位置关系有三种:相交、垂直和平行.()互学探究探究点1:平行线问题1:如图,分别将木条a、b与木条c钉在一起,并把它们想象成两端可以无限延伸的三条直线.转动a,直线a从在c的左侧与直线b相交逐步变为在右侧与b相交.想象一下,在这个过程中,有没有直线a与直线b不相交的位置呢?问题2:平行线的定义是什么?定义中哪些词语比较重要?问题3:观察下列图形,哪些画出了你心目中的平行线?问题4:平行用符号怎么表示?两条直线平行用符号怎么表示?【小结】定义:在同一平面内,的两条直线叫做平行线。
表示方法:直线AB平行于直线CD,记作。
位置关系:在同一平面内,两条直线只有和两种位置关系。
点拨:(1)在平行线定义中,是很重要的前提条件,因为在空间中,两条直线还有既不平行也不相交的情况。
(2)平行线是指两条线,两条射线或线段平行,是指它们平行。
(3)“不相交”就是说两条直线公共点。
只有同时具备以上三个条件,才符合平行线的定义。
(4)在同一平面内,两条直线不平行就,不相交就。
这里所说的两条直线是指的直线探究点2:平行公理及推论画一画:(1)经过点C能画出几条直线?(2)与直线AB平行的直线有几条?(3)经过点C能画出几条直线与直线AB平行?(4)过点D画一条直线与直线AB平行,与(3)中所画的直线平行吗?平行公理:经过直线一点,一条直线与这条直线平行。
推论:如果两条直线都与第三条直线,那么这两条直线也互相。
符号表示:∵b∥a, c∥a (已知) ∴c∥b()3.应用示例:例1:下列说法中,正确的个数有()①不相交的直线是平行线;②两条直线的位置关系只有平行和相交两种;③在同一平面内两条不同的直线的位置关系不相交就平行;④如果在同一平面内的两条线段不相交,那么这两条线段就平行;⑤两条射线或线段平行是指他们所在直线平行;⑥不相交的两条射线一定是平行的两条射线。
A 1B 2C 3D 4例2:根据下列要求画图.(1)如图(1)所示,过点A 画MN ∥BC;(2)如图(2)所示,过点P 画PE ∥OA,交OB 于点E,过点P 画PH ∥OB,交OA 于点H;(3)如图(3)所示,过点C 画CE ∥DA,与AB 交于点E,过点C 画CF ∥DB,与AB•的延长线交于点F.例3如图所示,在∠AOB 的内部有一点P ,已知∠AOB=45°(1)过点P 作PC ∥OA, PD ∥OB;(2)量出∠CPD 的度数说出它与∠AOB 的关系。
结论:如果一个角的两边分别平行于另一个角的两边,那么这两个角 。
【课后练习】1.对于同一平面内的三条直线a ,b ,c ,给出下列5个论断:①a ∥b ;①b ∥c ;①a ∥c ;①a ⊥b ;①a ⊥c .以其中两个论断作为题设,一个论断作为结论,组成一个你认为不正确的命题是( )A .已知①①则①B .已知①①则①C .已知①①则①D .已知①①则①2.若a ⊥b ,c ⊥d ,则a 与c 的关系是( )A .平行B .垂直C .相交D .以上都不对3.若整数a 使关于x 的方程39ax x +=--有负整数解,且a 也是四条直线在平面内交点的个数,则满足条件的所有a 的个数为( )A .3B .4C .5D .64.在同一平面内,下列说法中不正确的是( )A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .过直线外一点有且只有一条直线与这条直线垂直CB AP O B AD CB A PA,则点C是线段AB的中点.D.若AC BC5.下列说法:①两点之间,直线最短;①若AC=BC,则点C是线段AB的中点;①同一平面内过一点有且只有一条直线与已知直线垂直;①过一点有且只有一条直线与已知直线平行.其中正确的说法有()A.1个B.2个C.3个D.4个6.下列说法正确的是()A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行7.下列命题不正确的是()A.在同一平面内,平行于同一条直线的两条直线垂直B.两直线平行,内错角相等C.对顶角相等D.从直线外一点到直线上点的所有线段中,垂线段最短8.下列推理中,错误的是( )A.因为AB①EF,EF⊥CD,所以AB①CDB.因为①α=①β,∠β=①γ,所以①α=①γC.因为a①b,b∥c,所以a①cD.因为AB=CD,CD=EF,所以AB=EF9.下列说法正确的是()A.过一点有一条直线平行于已知直线;B.两条直线不相交就平行C.两点之间,直线最短;D.在平面内过一点有且只有一条直线垂直于已知直线.10.下列说法错误的有()(1)相等的角是对顶角;(2)同旁内角互补;(3)同角或等角的余角相等;(4)平行于同一直线的两条直线互相平行;(5)垂直于同一条直线的两条直线互相平行;(6)过一点有且只有一条直线与已知直线平行;A.5个B.2个C.3个D.4个11.空间两直线的位置关系有___________________________.12.没有公共点的两条直线可能是________直线,也有可能是________直线.13.空间两条不重合的直线的位置关系有________、________、________三种.14.直线l的同侧有A,B,C三点,如果A,B两点确定的直线l1与B,C两点确定的直线l2都与l平行,那么A,B,C三点在同一条直线上,理由是________________________【参考答案】【课前预习】1.C 2.C 3.B 4.A 5.A 6.C 7.D 8.A 9.D 10.B【课后练习】1.C 2.D 3.B 4.D 5.A 6.D 7.A 8.A 9.D 10.C11.平行、相交、异面12.平行异面13.相交平行异面14.过直线外一点有且只有一条直线与这条直线平行。