导数的概念与几何意义
高考复习-导数的概念及几何意义
导数的概念及几何意义知识集结知识元导数及其几何意义知识讲解1.导数及其几何意义【知识点的知识】1、导数的定义如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f (x)的导函数,简称导数,记为f′(x);如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f′(x)为区间[a,b]上的导函数,简称导数.2、导数的几何意义函数f(x)在x=x0处的导数就是切线的斜率k.例如:函数f(x)在x0处的导数的几何意义:k切线=f′(x0)=.【典型例题分析】题型一:根据切线方程求斜率典例1:已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.解:设切点的横坐标为(x0,y0)∵曲线的一条切线的斜率为,∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3故选A.题型二:求切线方程典例2:已知函数其图象在点(1,f(1))处的切线方程为y=2x+1,则它在点(﹣3,f(﹣3))处的切线方程为()A.y=﹣2x﹣3 B.y=﹣2x+3 C.y=2x﹣3 D.y=2x+3解:∵图象在点(1,f(1))处的切线方程为y=2x+1∴f(1)=2+1=3∵f(﹣3)=f(3﹣2)=f(1)=3∴(﹣3,f(﹣3))即为(﹣3,3)∴在点(﹣3,f(﹣3))处的切线过(﹣3,3)将(﹣3,3)代入选项通过排除法得到点(﹣3,3)只满足A故选A.【解题方法点拨】(1)利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y﹣y0=f′(x0)(x﹣x0).(2)若函数在x=x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x=x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y=f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.(3)注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,(4)显然f′(x0)>0,切线与x轴正向的夹角为锐角;f′(x0)<0,切线与x轴正向的夹角为钝角;f(x0)=0,切线与x轴平行;f′(x0)不存在,切线与y轴平行.例题精讲导数及其几何意义例1.'已知函数,其中a>0.(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,证明:-3<f(x1)+f(x2)<-2.'例2.'求下列函数的导数(1)y=2x3-3x2-4;(2)y=xlnx;(3).'例3.'已知函数f(x)=ax3-x2(a>0),x∈[0,+∞).(1)若a=1,求函数f(x)在[0,1]上的最值;(2)若函数y=f'(x)的递减区间为A,试探究函数y=f(x)在区间A上的单调性.'导数的计算知识讲解1.导数的运算【知识点的知识】1、基本函数的导函数①C′=0(C为常数)②(x n)′=nx n﹣1(n∈R)③(sin x)′=cos x④(cos x)′=﹣sin x⑤(e x)′=e x⑥(a x)′=(a x)*lna(a>0且a≠1)⑦[log a x)]′=*(log a e)=(a>0且a≠1)⑧[lnx]′=.2、和差积商的导数①[f(x)+g(x)]′=f′(x)+g′(x)②[f(x)﹣g(x)]′=f′(x)﹣g′(x)③[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)④[]′=.3、复合函数的导数设y=u(t),t=v(x),则y′(x)=u′(t)v′(x)=u′[v(x)]v′(x)【解题方法点拨】1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.例题精讲导数的计算例1.已知函数f(x)=2lnx+x,则f'(1)的值为___.例2.已知函数f(x)的导函数为f′(x),且满足f(x)=e x f′(1)+3lnx,则f′(1)=___.例3.函数f(x)=sin x+e x(e为自然对数的底数),则f′(π)的值为______。
导数的概念及几何意义
注意:(1)函数在一点处的导数,就是在该点的函数改变量与 自变量的改变量的比值的极限,它是一个数值,不是变数. (2)Δx是自变量x在x0处的改变量,Δx≠0,当Δx>0时,Δx→0表 示x0+Δx从x0右边趋近于x0,反之,当Δx<0时,Δx→0表示x0 +Δx从x0左边趋近于x0,Δy是相应函数的改变量,Δy可正、可 负,也可以为0.
2
规范解答
求过某点的曲线的切线方程
(本题满分12分)已知曲线f(x)=2x3-3x,过点M(0,32) 作曲线f(x)的切线,求切线的方程.
[解 ] 经检验知点 M(0,32)不在曲线上, 1 1 分 设切点坐标为 N(x0,2x3 0- 3x0), 3 3 Δy 2 x0+ Δx - 3x0+ Δx- 2x0+ 3x0 = Δx Δx 2 2 3 3 2x3 + 6 x Δ x + 6 x Δ x + 2 Δ x - 3 x - 3Δ x - 2 x 0 0 0 0 0 + 3x0 = Δx
[错因与防范] 本题易错选 D.错因是忽视了分子与分母相应的 符号的一致性,在利用导数的定义求函数在某一点的导数时, Δy 中 Δx 是分子中被减数的自变量减去减数的自变量的差,要 Δx 深刻理解以防出错.
4.设函数 f(x)在点 x0 处可导,且 f′(x0)已知,求下列各式的 极限值. f x0-Δx- fx0 (1)lim ; Δx → 0 Δx f x0+h-fx0- h (2)lim . h→ 0 2h f x0-Δx- fx0 解:(1)lim Δx → 0 Δx f x0-f x0-Δx =- lim =-f′(x0). Δx → 0 Δx f x0+ h-fx0-h (2)lim =f′(x0). h→ 0 2h
导数的概念及几何意义_基础
导数的概念及几何意义【要点梳理】要点一:导数的概念 1. 导数的概念设函数=()y f x ,当自变量x 从0x 变1x 时,函数值从()0f x 变到()1f x ,函数值关于x 的平均变化率为()()()()100010=f x f x f x x f x y x x x x-+∆-∆=∆-∆, 当1x 趋于0x ,即x ∆趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数=()y f x 在0x 点的导数,通常用符号()0'f x ‘表示,记作 ()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000limlim= 要点诠释:(1)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率.(2)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S 从时间1t 到2t 的平均变化率即为1t 到2t 这段时间的平均速度.(3)增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数.(4)0x ∆→时,Δy 在变化中都趋于0,但它们的比值却趋于一个确定的常数.即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近. (5)函数=()y f x 在0x 点的导数还可以用符号0'|x x y =表示. 要点二:导数的几何意义已知点00(,)P x y 是曲线=()y f x 上一定点,点00(,)Q x x y y +∆+∆是曲线=()y f x 上的动点,我们知道平均变化率yx∆∆表示割线PQ 的斜率.如图所示: ()0'f x ‘表示曲线=()y f x 在0x x =处的切线的斜率,即()0'=tan f x α‘(α为切线的倾斜角)当点Q 无限接近于点P ,即0x ∆→时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线.也就是:当0x ∆→时,割线PQ 斜率的极限,就是切线的斜率.即:0000()()limlim ()x x f x x f x yk f x x x∆→∆→+∆-∆'===∆∆.要点诠释:(1)曲线上一点切线的斜率值只与该点的位置有关.(2)关于切线有两种不同的说法,求法也不同,具体求法与步骤参考类型二:①曲线在点P 处的切线:点P 在曲线上,在点P 处作曲线的切线(P 是切点),此时数量唯一.如图1.②曲线经过点P 处的切线:点P 位置不确定(在曲线上或曲线外),过点P 作曲线上任意位置的切线(只要切线经过点P 即可),数量不唯一.如图2,无论点P 在曲线上还是曲线外, 过点P 都可以作两条直线1l 、2l 与曲线相切.(3)直线与曲线相切⎫直线和曲线有1个公共点;有别于直线和圆,如图,直线l 2与曲线C 有唯一公共点M ,但我们不能说直线l 2与曲线C 相切;而直线l 1尽管与曲线C 相切,却有不止一个公共点.这也是我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线叫做切线”的原因.要点三:导数的物理意义在物理学中,如图物体运动的规律是()=s s t ,那么该物体在时刻0t 的瞬时速度v 就是()=s s t 在0=t t 时的导数,即()0='v s t ;如果物体运动的速度随时间变化的规律是()v v t =,那么物体在时刻0t 的瞬时加速度a 就是()v v t =在0=t t 时的导数,即()0'a v t =.要点诠释:0'()f x 表示函数()f x 在0x 处的瞬时变化率,而在很多物理量中都是借助变化率来定义的.比如,瞬时角速度是角度()t θ对时间t 的变化率;瞬时电流是电量()Q t 对时间t 的变化率;瞬时功率是功()W t 对时间t 的变化率;瞬时电动势是磁通量()t Φ对时间t 的变化率.最常用的是瞬时速度与瞬时加速度. 【典型例题】类型一:导数定义的应用例1. 用导数的定义,求函数()y f x x==x =1处的导数. 【思路点拨】三步法求函数在某点处的导数值. 【解析】先求增量:(1)(1)11y f x f x∆=+∆-=-+∆===再求平均变化率:y x ∆=∆ 求极限,得导数:01'(1)lim2x y f x ∆→∆==-∆.【总结升华】利用定义求函数的导数值,有三步,即三步求导法,具体步骤如下: (1)求函数的增量:00()()y f x x f x ∆=+∆-; (2)求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; (3)求极限,得导数:00000()()'()lim lim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.举一反三:【变式1】已知函数()2=f x x x -+的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy,()'1=f - . 【解析】 ∵ )1()1(22x x y ∆+-+∆+--=∆+-,∴ 2(1)(1)23y x x x x x∆--+∆+-+∆+==-∆∆∆, ∴()'1=f -()00'(1)limlim 3=3x x yf x x ∆→∆→∆==-∆∆.【变式2】求函数 2()3f x x =在x =1处的导数.【解析】 ∵22(1)(1)3(1)363()y f x f x x x ∆=+∆-=+∆-=∆+∆,∴263()63y x x x x x∆∆+∆==+∆∆∆, 0lim(63)6x x ∆→+∆=,即(1)6f '=. ∴函数2()3f x x =在1x =处的导数为6 .【变式3】求函数()2f x x x =-+在1x =-附近的平均变化率,并求出在该点处的导数.【解析】∵2200()()(1)(1)23()y f x x f x x x x x ∆=+∆-=--+∆+-+∆-=∆-∆,∴23()3y x x x x x∆∆-∆==-∆∆∆, ∴00(1)limlim(3)3x x yf x x ∆→∆→∆'-==-∆=∆.例2. 已知函数()24f x x=,求()f x '. 【解析】先求增量:2222444(2)()()x x x y x x x x x x ∆+∆∆=-=-+∆+∆, 再求平均变化率:224(2)()y x x x x x x ∆+∆=-∆+∆. 求极限,得导数:23004(2)8'limlim ()x x y x x y x x x x x∆→∆→∆+∆==-=-∆++∆.【总结升华】求导数的步骤和求导数值的步骤一样,叫三步法求导.举一反三:【变式1】求函数y=在(0,)+∞内的导函数.【解析】∵y∆==,∴y x ∆==∆==∴321lim2x y x -∆→'===-.【变式2】已知()f x =,求'()f x ,'(2)f .【解析】∵y ∆=∴yx ∆=∆==∴'()limx f x y ∆→'==.当2x =时,1'(2)4f ==.例3. 若0'()2f x =,则000()()lim2k f x k f x k→--=________.【思路点拨】【解析】根据导数定义:0000[()]()'()limk f x k f x f x k→+--=-(这时增量x k ∆=-),所以000()()lim2k f x k f x k →--000[()]()1lim 2k f x k f x k →+--⎧⎫=-⋅⎨⎬-⎩⎭000[()]()1lim21221.k f x k f x k →+--=-⋅-=-⨯=-【思路点拨】(1)有一种错误的解法:根据导数的定义:0000()()'()limk f x k f x f x k→--=(这时增量x k ∆=),所以 000000()()()()11limlim 21222k k f x k f x f x k f x k k →→----==⨯=.(2)在导数的定义中,增量x ∆的形式是多种多样的,但不论x ∆选择哪种形式,y ∆也必须选择与之相对应的形式.利用函数()f x 在0x x =处可导的条件,可以将已给定的极限式恒等变形为导数定义的形式.概念是解决问题的重要依据,只有熟练掌握概念的本质属性,把握其内涵与外延,才能灵活地应用概念进行解题.举一反三:【变式1】函数)(x f 满足2)1('=f ,则当x 无限趋近于0时, (1)=-+xf x f 2)1()1( ;(2)=-+xf x f )1()21( .【答案】(1)00(1)(1)1(1)(1)1lim lim '(1)1222x x f x f f x f f x x →→+-+-===(2)00(12)(1)(12)(1)lim 2lim 2'(1)42x x f x f f x f f x x→→+-+-===【变式2】若0'()f x a = (1)求()()xx f x x f x ∆-∆-→∆000lim的值;(2)求000()()lim x f x x f x x x∆→+∆--∆∆的值.【答案】()()()()()()[]00000000000000000()()lim()()lim()()lim21lim 2lim 1()2'()22'()2x x x x x f x x f x x xf x x f x x f x x f x x xf x x f x xf x x f x x x x f x af x a∆→∆→∆→∆→∆→+∆--∆∆+∆--∆+∆--∆∆-∆-∆-∆-=-=-∆∆--∆=-==-==【变式3】设函数()f x 在点x 0处可导,则000()()lim2h f x h f x h h→+--=________.【答案】 原式0000()()()()lim2h f x h f x f x f x h h→+-+--=000000()()()()1lim lim 2h h f x h f x f x h f x h h →→+---⎡⎤=+⎢⎥-⎣⎦ 0000()()1'()lim 2h f x h f x f x h -→--⎡⎤=+⎢⎥-⎣⎦[]0001'()'()'()2f x f x f x =+=. 类型二:求曲线的切线方程例4.求曲线21y x =+在点()12P ,处的切线方程.【思路点拨】利用导数的几何意义,曲线在点P (1,2)处的切线的斜率等于函数21y x =+在1x =处的导数值,再利用直线的点斜式方程写出切线方程. 【解析】先求切线的斜率()'1f :()()22001+111lim lim x x x y x x∆→∆→⎡⎤∆++∆⎣⎦=-∆∆ ()0lim +2=2x x ∆→=∆,由条件可知()1=2f ,由点斜式可得,过点P 的切线方程为:22(1)y x -=-,即2y x =.【总结升华】求曲线()y f x =在0x x =处切线的步骤:(1)先求()0'f x ,即曲线()y f x =在))((00x f x P ,处切线的斜率. (2)再求()0f x ,则切线过点()()00x f x ,;(2)最后由点斜式写出直线方程:()000=()()y f x f x x x '--.特别的,如果()y f x =在点00(())x f x ,处的切线平行于y 轴(此时导数不存在)时,由切线定义知:切线方程为:0x x =. 举一反三:【变式】求曲线215y x x=++上一点2x =处的切线方程. 【答案】先求2'|x y =:∵22211(2)2+4222(2)x y x x x x x -∆⎛⎫∆=+∆+-=∆+∆+ ⎪+∆+∆⎝⎭,∴142(2)y x x x ∆-=+∆+∆+∆, ∴001115limlim(4)4=2(2)44x x y y x x x ∆→∆→∆-'==+∆+=-∆+∆.再求2|x y =:22119|=25=22x y =++.由点斜式得切线方程:()915--224y x =,即15480x y -+=. 【高清课堂:导数的几何意义 385147 例2】 例5.求曲线()3f x x =经过点(1,1)P 的切线方程.【思路点拨】本题要分点(1,1)P 是切点和(1,1)P 不是切点两类进行求解. 【解析】第一步:先求导函数.00()()limlimx x f x x f x xy y x ∆→∆→+∆-∆∆'==∆ ()()33322330222()lim3+3+=lim=lim 3+3+3=3x x x x x xxx xx x x x x x x x x x x ∆→∆→∆→+∆-∆-∆=+∆∆∆∆∆g g g第二步:验证点(1,1)P 是否在曲线上. 由于()11f =,所以P 在曲线上. 第三步:分类讨论. ①若点P 是切点,则切线的斜率为()'13f =,于是切线方程为13(1)y x -=-,即32y x =-; ②若点P 不是切点,设切点为()()3000,1x x x≠.则切线的斜率为()200'3f x x =,于是切线方程为:320003()y x x x x -=- . 由于切线经过点(1,1)P ,于是有3200013(1)x x x -=-,整理得:()()()()()()32322322200000000000023+1=22++1=221=21+11x x x x x x x x x x x x ()()2000=121x x x ()()200=12+1=0x x ,解得012x =-或01x =(舍去). 所以切线方程是131+(+)842y x =,即3144y x =+. 综上所述,所求切线方程为32y x =-或3144y x =+. 【思路点拨】求曲线()f x 经过点()00P x y ,的切线方程的一般步骤: (1)求导函数()'f x ;(2)验证点P 是否在曲线上:计算()0f x ,观察()00=f x y 是否成立; (3)分类讨论:①若()00=f x y ,则P 是切点,切线唯一,方程为()000=()()y f x f x x x '--: ②若()00f x y ≠,则P 不是切点,求切点:设切点坐标为()()a f a ,,则切线方程()=()()y f a f a x a '--,代入点()00P x y ,坐标,求出a 的值(注意0a x ≠),可得切线方程. 举一反三:【变式1】 已知函数3()3f x x x =-,过点(2,2)作函数图象的切线. 求切线方程. 【解析】先求导函数:20()lim33x yf x x x∆→∆'==-∆.再验证:3(2)232=2f =-⨯,所以点(2,2)在函数()f x 图象上.最后讨论:(1)当点(2,2)是切点时,切线的斜率为(2)9f '=,则切线方程为:9160x y --=.(2)当点(2,2)不是切点时,设切点坐标为3000(,3)x x x -.则切线的斜率为200()33f x x '=-(02x ≠),所以切线方程为()320000(3)=33()y x x x x x ----. 代入点(2,2)得:()3200002(3)=33(2)x x x x ----整理得:0432030=+-x x ⇒0)2)(1(200=-+x x ⇒10-=x ,此时切线方程为2=y .综上所述,所求的切线方程为9160x y --=或2y =.【变式2】已知曲线1y x=. (1)求曲线过点()10A ,的切线方程; (2)求满足斜率为13-的曲线的切线方程.【解析】()200()()11'=limlim =x x f x x f x y x x x x x∆→∆→+∆--=-∆+∆ (1)由于点A 不在曲线上,设切点坐标为1,a a ⎛⎫ ⎪⎝⎭, 则切线的斜率为21'|=x a y a =-,切线方程为211()y x a a a -=--, 将()10A ,代入,得12a =.所以所求的切线方程为44y x =+ .(2)令2113x -=-,解得x = 所以斜率为13-的切线的切点为⎭或⎛ ⎝⎭.所以所求的切线方程为133y x =-+或133y x =--. 【高清课堂:导数的几何意义 385147 例3】【变式3】设函数32()2f x x ax bx a =+++,2()32g x x x =-+(其中x ∈R ,,a b 为常数).已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l .求,a b 的值,并写出切线l 的方程.【答案】 0(2+)(2)'(2)lim x f x f f x∆→∆=∆ 3230(2)2(2)(2)(282)=lim x x a x b x a a b a x∆→+∆++∆++∆+-+++∆ 20lim 1286()128x a b x x a b ∆→⎡⎤=+++∆+∆=++⎣⎦ 0g(2+)g(2)g '(2)lim x x x ∆→∆=∆220(2)3(2)2(2322)=lim x x x x∆→+∆-+∆+--⨯+∆ 0lim(1)1x x ∆→=+∆= 由条件可知:(2)0f =且'(2)'(2)f g =⇒2,5a b =-=,所以切线l 的方程:2y x =-.类型三:导数的实际应用例6.蜥蜴的体温与阳光的照射有关,其关系为()120155T t t =++,其中()T t 为体温(单位:℃),t 为太阳落山后的时间(单位:min).计算()2T ',并解释它的实际意义.【思路点拨】【解析】()0(2)(2)'2lim t T t T T t∆→+∆=∆ ()0012012015152+57=lim 120=lim 77+120=49t t t tt ∆→∆→⎛⎫⎛⎫++ ⎪ ⎪∆+⎝⎭⎝⎭∆∆ ()()1202=C /min 49T '︒ 表示太阳落山后2分钟蜥蜴的体温以()120C /min 49︒ 的速度下降. 【总结升华】解释导学的实际意义要结合题目中变化的事物(指自变量),它反映事物变化的快慢.举一反三:【变式1】设一个物体的运动方程是:2021)(at t v t s +=,其中0v 是初速度(单位:m ),t 是时间(单位:s ).求:2s t =时的瞬时速度(函数s(t)的瞬时变化率). 【解析】00()()s t t s t s t t+∆-∆=∆∆ 220000000011[()()][]2212v t t a t t v t at tv at a t +∆++∆-+=∆=++∆ 2s t ∴=的瞬时速度是02v a +.【变式2】质点按规律()21s t at =+做直线运动(位移单位:m ,时间单位:s ).若质点在 2 s t =时的瞬时速度为8 m / s ,求常数a 的值.【答案】质点 2 s t =时的瞬时速度为()'28s =.∵()222(2)2(2)1214()s s t ―s a t ―a a t a t ∆=+∆=+∆+⨯=∆+∆-, ∴4s a a t t∆=+∆∆. ∴()0'2lim4t s s a t ∆→∆==∆, 所以48a =,即a =2.。
导数的概念及其几何意义
.
由于 y′=-2x+4 在区间32,2 上是减函数,且 0≤y′≤1,故该段斜坡的坡度最开始很
接近 45°,随着高度慢慢上升,坡度在慢慢变小,在 x 达到 2 时坡度接近 0°.
1.利用导数的几何意义求切线方程的方法 (1)若已知点(x0,y0)在已知曲线上,求在点(x0,y0)处的切线方程,先求出函数 y=f(x) 在点 x0 处的导数,然后根据直线的点斜式方程,得切线方程 y-y0=f′(x0)(x-x0). (2)若点(x0,y0)不在曲线上,求过点(x0,y0)的切线方程,首先应设出切点坐标,然后 根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.
3.(教材习题改编)函数 y=f(x)的图象如图所示,下列描述错误的是( ) A.x=-5 处比 x=-2 处变化快 B.x=-4 处呈上升趋势 C.x=1 和 x=2 处增减趋势相反 D.x=0 处呈上升趋势 【解析】选 D.根据导数的几何意义:f′(-5)>0,f′(-4)>0,f′(-2)=0,f′(0)<0,f′(1)f′(2) <0,判断可知 D 错误.
如 f(x)=3 x 在 x=0 处有切线,但不可导.
4.导函数的概念
(1)定义:当 x 变化时,y=f′(x)就是 x 的函数,称它为 y=f(x)的导函数(简称导数).
f(x+Δx)-f(x)
(2)记作 f′(x)或 y′,即 f′(x)=y′= lim
Δx→0
Δx
.
f′(x)与 f′(x0)相同吗?它们之间有何关系? 提示:f′(x)与 f′(x0)不相同.f′(x)是函数 f(x)的导函数,f′(x0)是函数 f(x)在 x=x0 处的 导数值,是函数 f′(x)在 x=x0 时的函数值.
类型三 导数几何意义的应用(数学抽象、数学运算)
课件3:5.1.2 导数的概念及其几何意义
2.导数的几何意义
函数 y=f(x)在 x=x0 处的导数 f′(x0)就是切线 P0T 的斜率 k0, lim fx0+Δx-fx0
即 k0=__Δ_x_→_0______Δ_x________=f′(x0).
知识点二 导函数的概念
1.定义:当 x 变化时,y= f′(x) 就是 x 的函数,我们
[规律方法] 求切点坐标可以按以下步骤进行 (1)设出切点坐标; (2)利用导数或斜率公式求出斜率; (3)利用斜率关系列方程,求出切点的横坐标; (4)把横坐标代入曲线或切线方程,求出切点纵坐标.
[跟踪训练] 直线 l:y=x+a(a≠0)和曲线 C:y=x3-x2+1 相切,则 a 的值为___________,切点坐标为____________. 解析:设直线 l 与曲线 C 的切点为(x0,y0), 因为 y′=Δlxi→m0x+Δx3-x+ΔxΔ2x+1-x3-x2+1=3x2-2x, 则 y′|x=x0=3x20-2x0=1,解得 x0=1 或 x0=-13, 当 x0=1 时,y0=x30-x02+1=1, 又(x0,y0)在直线 y=x+a 上,
答案:B
4.已知函数 y=f(x)的图象在点 M(1,f(1))处的切线方程是 y=12x+2, 则 f(1)+f′(1)=________. 解析:由导数的几何意义得 f′(1)=12,由点 M 在切线上得 f(1)=12×1+2=52,所以 f(1)+f′(1)=3. 答案:3
5.曲线 y=x2-3x 的一条切线的斜率为 1,则切点坐标为________. 解析:设切点坐标为(x0,y0), y′=Δlxi→m0x0+Δx2-3xΔ0+x Δx-x20+3x0 =Δlxi→m02x0Δx-3ΔΔxx+Δx2=2x0-3=1,故 x0=2, y0=x20-3x0=4-6=-2,故切点坐标为(2,-2).
导数的概念和几何意义
导数的概念和几何意义导数是数学分析中的一个重要概念,广泛应用于各个学科领域中。
它不仅有着重要的理论意义,也具有丰富的几何意义。
首先,我们来了解导数的概念。
在数学上,导数可以理解为函数在其中一点上的变化率。
具体而言,设函数$y=f(x)$在其中一点$x_0$的邻近有定义,那么函数在此点的导数可以定义为:$$f'(x_0)=\lim_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$$其中,$\Delta x$ 表示自变量 $x$ 在 $x_0$ 处的增量。
这个极限值即为导数。
在几何意义上,导数可以理解为函数图像上其中一点切线的斜率。
具体而言,设函数$y=f(x)$在点$x_0$处的导数为$k$,那么在点$(x_0,f(x_0))$处的切线的斜率为$k$。
这意味着,切线的斜率描述了函数在该点的变化趋势。
如果导数为正,代表函数在该点上升;如果导数为负,代表函数在该点下降;如果导数为零,代表函数在该点取得极值。
以一个简单的例子来说明导数的几何意义。
考虑函数$y=x^2$,我们可以求得其在点$x_0$处的导数为$2x_0$。
这个导数可以看做是函数$y=x^2$在点$x_0$处的切线的斜率。
比如,在点$(1,1)$处,导数为$2$,那么切线的斜率为$2$。
我们可以绘制出函数曲线$y=x^2$,并在点$(1,1)$处绘制出斜率为$2$的切线。
通过这条切线,我们可以近似描述函数$y=x^2$在点$(1,1)$处的局部行为。
导数的几何意义还可以通过函数图像的凹凸性来解释。
如果函数在其中一区间上的导数始终为正(或始终为负),则函数在该区间上单调递增(或单调递减)。
如果函数在其中一区间上的导数变号,则函数在该区间上存在极值点。
此外,如果函数在其中一点的导数为$0$,则函数在该点可能存在极值点,或者函数在该点处具有水平切线。
另外,导数还可以用于判断函数的连续性。
导数的概念及其几何意义
O P
β
y=f(x) Q
Δy M x
Δx
斜 率!
16
请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着 点P逐渐转动的情况 . y
y=f(x) Q
割 线 T 切线
P
x
o
17
我们发现,当点Q沿着曲线无限接近点P即Δ x→0时,割线PQ 有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.
即物体在时刻t0=2(s)的瞬时速度等于20(m/s). 当时间间隔Δt 逐渐变小时,平均速度就越接 s 近t0=2(s) 时的瞬时速度v=20(m/s).
课前测练
5.已知物体运动的速度与时间的关系式v(t ) = t 2 + 2t + 2
4 Δt 则(1)在时间间隔[1,1 + Δt ] 内的平均加速度为_______;
1 x0 y . 1 x 0
例1:设f ( x) x 2 , 求f ' ( x), f ' (1), f ' (2)
思路:先根据导数的定义求f ' ( x), 再将自变量 的值代入求得导数值。 解:由导数的定义有
f ( x x) f ( x) ( x x) x f ' ( x)= lim lim x0 x0 x x x(2 x x) lim 2x x0 x
1.1.3导数的概念
回顾复习
1.平均速度近似反映了物体运动时的快慢程度,但要精 确地描述非匀速直线运动,就要知道物体在每一时刻运 动的快慢程度,要通过瞬时速度来反映. 设物体作直线运动的运动方程为s=s(t). 以 t0 为起 始时刻,物体在t时间内的平均速度为
导数的概念及运算、几何意义
导数的概念及运算、几何意义1.导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或,即f′(x0)==.y′|x=x(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)·(x-x0).(3)函数f(x)的导函数称函数f′(x)=为f(x)的导函数.2.导数公式及运算法则(1)基本初等函数的导数公式(2)导数的运算法则①[f (x )±g (x )]′=)(x f '±g ′(x );②[f (x )·g (x )]′=)(x f 'g (x )+f (x )g ′(x ); ③])()(['x g x f =f ′(x )g (x )-f (x )g ′(x ) [g (x )]2(g (x )≠0). 特殊情况[c ·f (x )]′=c ·)(x f '.(3)复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1))(0x f '与[f (x 0)]′表示的意义相同.(×)(2))(0x f '是导函数)(x f '在x =x 0处的函数值.(√)(3)曲线的切线不一定与曲线只有一个公共点.(√) (4))3sin('π=cos π3.(×)(5)若(ln x )′=1x ,则)1('x =ln x .(×)(6)函数f (x )=sin(-x )的导数为f ′(x )=cos x .(×)(7)函数f (x )=,由于f ′(0)无意义,则说明f (x )=在x =0处无切线.(×)(8)与曲线只有一个公共点的直线一定是曲线的切线.(×)(9)若f (a )=-x 2+2ax +a 3,则f ′(a )=2x +3a 2.(√)(10)过点P 作y =f (x )的切线,且P 在y =f (x )上,则P 一定为切点.(×)考点一 导数的运算[例1] (1)函数y =(1-x ))1(x +,则y ′=________.解析:∵y =(1-x ))11(x +=1x -x =2121x x --,='y 21232121----x x答案:21232121----x x (2)函数y =ln x x ,则y ′=________.解析:y ′=)ln ('xx =(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. 答案:1-ln x x 2(3)y =ln(2x +5),则y ′=________.解析:设y =ln u ,u =2x +5,则y ′x =y ′u ·u ′x ,因此y ′=12x +5·(2x +5)′=22x +5. 答案:22x +5 (4)已知函数f (x )的导函数f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________.解析:f ′(x )=2f ′(1)+1x令x =1,得f ′(1)=2f ′(1)+1,∴f ′(1)=-1.答案:-1 [方法引航] (1)总原则:先化简解析式,再求导.(2)具体方法:①连乘积的形式:先展开化为多项式形式,再求导.②根式形式:先化为分数指数幂,再求导.③复杂分式:化为简单分式的和、差,再求导.(3)区分f ′(x )与f ′(x 0)f ′(x )表示导函数,f ′(x 0)是导函数值.1.若函数y =tan x ,则y ′=________.解析:y ′=)cos sin ('xx =(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x =1cos 2x . 答案:1cos 2x2.设f (x )=x ln x ,若)(0x f '=2,则x 0的值为( )A .e 2B .e C.ln 22 D .ln 2 解析:选B.由f (x )=x ln x 得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e.考点二 导数的几何意义[例2] (1)求曲线f (x )在点(2,f (2))处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程.解:∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0.[方法引航] 导数几何意义的应用,需注意以下两点:(1)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0;(2)注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f(x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.1.在本例中,若f (x )在P 点处的切线平行x 轴,求P 点坐标.解:∵f ′(x )=3x 2-8x +5,令3x 2-8x +5=0得x =1或x =53,∴f (1)=1-4+5-4=-2,f (53)=-5827,∴P (1,-2)或P )2758,35(-. 2.在本例中,若f (x )不变,求f (x )过点(1,-2)的切线方程.解:设过点P (1,-2)的直线与y =f (x )切于点M (x 0,y 0),∴其切线斜率k =f ′(x 0)=3x 20-8x 0+5,y 0=x 30-4x 20+5x 0-4,其切线方程为y -(x 30-4x 20+5x 0-4)=(3x 20-8x 0+5)(x -x 0)过点(1,-2),即-2-(x 30-4x 20+5x 0-4)=(3x 20-8x 0+5)(1-x 0),即(x 0-1)2(2x 0-3)=0∴x 0=1或x 0=32.∴切点为(1,-2)或)817,23(-,∴k 1=0或k 2=-14. ∴所求切线方程分别为y =-2.或y +178=-14)23(-x ,即y =-14x -74.[易错警示]借问“切点”何处有——求曲线的切线方程时切点易错[典例] (2017·浙江杭州模拟)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[正解] 设过点(1,0)的直线与曲线y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又点(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x-9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1,所以选A.[答案] A[易误] (1)审题不仔细,未对点(1,0)的位置进行判断,误认为(1,0)是切点;(2)当所给点不是切点时,无法与导数的几何意义联系.[警示] ①“曲线y =f (x )在P 点处的切线”与“曲线过P 点的切线”不同,前者P 为切点,后者P 不一定为切点.②此类题首先确定点是否为曲线的切点.当不是切点时.应先设出切点.[高考真题体验]1.(2016·高考全国丙卷)已知f (x )为偶函数,当x ≤0时,x e x f x -=--1)(,则曲线y =f (x )在点(1,2)处的切线方程是________.解析:当x >0时,-x <0,f (-x )=e x -1+x ,而f (-x )=f (x ),所以f (x )=e x -1+x (x >0),点(1,2)在曲线y =f (x )上,易知f ′(1)=2, 故曲线y =f (x )在点(1,2)处的切线方程是y -2=f ′(1)·(x -1),即y =2x .答案:y =2x2.(2015·高考课标卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:由题意可得f ′(x )=3ax 2+1,∴f ′(1)=3a +1,又f (1)=a +2,∴f (x )=ax 3+x +1的图象在点(1,f (1))处的切线方程为y -(a +2)=(3a +1)(x -1),又此切线过点(2,7),∴7-(a +2)=(3a +1)(2-1),解得a =1.答案:13.(2012·高考课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.解析:y ′=3ln x +1+x ·3x =3ln x +4,k =y ′|x =1=4,切线方程为y -1=4(x -1),即y =4x -3.答案:y =4x -34.(2016·高考天津卷)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则)0(f '的值为________.解析:∵f ′(x )=2e x +(2x +1)e x =(2x +3)·e x ,∴f ′(0)=3.答案:35.(2015·高考天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,)(x f '为f (x )的导函数.若)1(f '=3,则a 的值为________.解析:∵f ′(x )=a ln x +a ,∴f ′(1)=a ln 1+a =3,解得a =3.答案:36.(2016·高考山东卷)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3解析:选A.对于A ,y ′=cos x ,存在x 1,x 2,若cos x 1cos x 2=-1,如x 1=π,x 2=2π,可满足,对于B ,其导数为f ′(x )=1x ,f ′(x 1)·f ′(x 2)=1x 1x 2>0,故B 不满足;y =f (x )=e x 的导函数为f ′(x )=e x ,f ′(x 1)·f ′(x 2)=e x 1+x 2>0,故C 不满足;y =f (x )=x 3的导函数为f ′(x )=3x 2,f ′(x 1)·f ′(x 2)=9x 21x 22≥0,故D 不满足.故选A.课时规范训练A 组 基础演练1.若函数f (x )=ax 4+bx 2+c 满足2)1(='f ,则)1(-'f 等于( )A .-1B .-2C .2D .0解析:选B.f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且2)1(='f ,∴)1(-'f =-2.2.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0解析:选A.切线l 的斜率k =4,设y =x 4的切点的坐标为(x 0,y 0),则k =4x 30=4,∴x 0=1,∴切点为(1,1),即y -1=4(x -1),整理得l 的方程为4x -y -3=0.3.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为( ) A .2 B .ln 2+1 C .ln 2-1 D .ln 2解析:选C.∵y =ln x 的导数为y ′=1x ,∴1x =12,解得x =2,∴切点为(2,ln 2).将其代入直线y =12x +b ,得b =ln 2-1.4.曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( )A .(0,1)B .(1,-1)C .(1,3)D .(1,0)解析:选C.y ′=3x+1,令y ′=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3).5.直线y =kx +b 与曲线y =ax 2+2+ln x 相切于点P (1,4),则b 的值为( )A .3B .1C .-1D .-3解析:选C.由点P (1,4)在曲线上可得a ×12+2+ln 1=4,解得a =2,故y =2x 2+2+ln x ,所以y ′=4x +1x ,所以曲线在点P 处切线的斜率1|='=x y k =4×1+11=5.所以直线的方程为y =5x +b .由点P 在直线上得4=5×1+b ,解得b =-1,故选C.6.曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1解析:选C.y ′=e x -1+x e x -1=(x +1)e x -1,故曲线在点(1,1)处的切线斜率为2|1='==x y k7.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2解析:选C.依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,于是有f ′(0)=g ′(0),即-a sin 0=2×0+b ,b =0,m =f (0)=g (0),即m =a =1,因此a +b =1.8.在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是( )A .0B .1C .2D .3解析:选A.依题意得,y ′=3x 2-9,令0≤y '<1得3≤x 2<103,显然满足该不等式的整数x不存在,因此在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是0,选A.9.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选C.依题意,记g (x )=(x -a 1)(x -a 2)…(x -a 8),则f (x )=xg (x ),)(x f '=g (x )+xg ′(x ),f ′(0)=g (0)=a 1a 2…a 8=(a 1a 8)4=212,故选C.10.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=)(1x f ',f 3(x )=)(2x f ',…,f n +1(x )=)(x f n ',n ∈N *,则f 2 019(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选A.∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )是以4为周期的函数,∴f 2 019(x )=f 3(x )=-sin x -cos x ,故选A.B 组 能力突破1.已知函数f (x )在R 上满足f (2-x )=2x 2-7x +6,则曲线y =f (x )在(1,f (1))处的切线方程是( )A .y =2x -1B .y =xC .y =3x -2D .y =-2x +3解析:选C.法一:令x =1得f (1)=1,令2-x =t ,可得x =2-t ,代入f (2-x )=2x 2-7x +6得f (t )=2(2-t )2-7(2-t )+6,化简整理得f (t )=2t 2-t ,即f (x )=2x 2-x ,∴f ′(x )=4x -1,∴f ′(1)=3.∴所求切线方程为y -1=3(x -1),即y =3x -2.法二:令x =1得f (1)=1, 由f (2-x )=2x 2-7x +6,两边求导可得f ′(2-x )·(2-x )′=4x -7,令x =1可得-f ′(1)=-3,即f ′(1)=3.∴所求切线方程为y-1=3(x-1),即y=3x-2.2.已知函数f(x)=a sin x+bx3+4(a∈R,b∈R),)(xf'为f(x)的导函数,则f(2 017)+f(-2 017)+)2018(f'-)2018(-'f=()A.0 B.2 017 C.2 018 D.8解析:选D.设g(x)=a sin x+bx3,∴f(x)=g(x)+4,且g(-x)=-g(x),所以f(2 017)+f(-2 017)=g(2 017)+4+g(-2 017)+4=8,又因为f′(x)=a cos x+3bx2,所以f′(x)为R上的偶函数,则f′(2 018)-f′(-2 018)=0,所以f(2 017)+f(-2 017)+f′(2 018)-f′(-2 018)=8,故选D.3.已知函数y=f(x)及其导函数y=)(xf'的图象如图所示,则曲线y=f(x)在点P处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y=f(x)在点P处的切线的斜率k=f′(2)=1,又过点P(2,0),所以切线方程为x-y-2=0.答案:x-y-2=04.已知函数f(x)的导函数为)(xf',且满足f(x)=3x2+2x·)2(f',则)5(f'=________.解析:对f(x)=3x2+2x)2(f'求导,得f′(x)=6x+2)2(f'.令x=2,得)2(f'=-12.再令x=5,得f′(5)=6×5+2)2(f'=6.答案:65.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.解析:设e x=t,则x=ln t(t>0),∴f(t)=ln t+t,∴f′(t)=1t+1,∴f′(1)=2.答案:26.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析:∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x.∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,x+1x-a=0,∴a=x+1x≥2.答案:[2,+∞)。
导数的定义及几何意义
导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
在一个函数存在导数时,称这个函数可导或者可微分。
可导的函数一定连续。
不连续的函数一定不可导。
导数也叫导函数值。
又名微商,是微积分中的重要基础概念。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。
物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。
如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。
导数的几何意义:函数y=f(x) 在x=x0处的导数f′(x0),表示曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
§2 导数的概念及其几何意义
再由 P(x0,y0)在曲线 y=1x上,得 x0y0=1,
联立可解得 x0=1,y0=1,
所以直线方程为 x+y-2=0.
“多练悟——素养提升”见“ 课时跟踪检测(六)” (单击进入电子文档)
x1-x0
= lim
Δx→0
Δx
.
2.割线的定义 函数 y=f(x)在[x0,x0+Δx]的平均变化率为ΔΔxy,它是过 A(x0, f(x0))和 B(x0+Δx,f(x0+Δx))两点的直线的 斜率 ,这条直线称为 曲线 y=f(x)在点 A 处的一条割线. 3.切线的定义 当 Δx 趋于零时,点 B 将沿着曲线 y=f(x)趋于 点 A ,割线 AB 将绕点 A 转动最后趋于直线 l,直线 l 和曲线 y=f(x)在点 A 处“相切”,称直线 l 为曲线 y=f(x)在 点 A 处的切线. 4.导数的几何意义 函数 y=f(x)在 x0 处的导数,是曲线 y=f(x)在点(x0,f(x0)) 处的 切线的斜率 .
2.曲线 y=x2 在点 P(1,1)处的切线方程为
A.y=2x
B.y=2x-1
C.y=2x+1
D.y=-2x
答案:B
()
3.已知曲线 y=f(x)在点(1,f(1))处的切线方程为 2x-y+2=0,
则 f′(1)=
()
A.4
B.-4
C.-2
D.2
答案:D
4.已知 f(x)=-1x,则 f′(x)=________. 答案:x12 5.函数 f(x)=2+13x在 x=1 处的导数为________. 答案:-235
Δx→0
f1+Δx-f1 Δx
=
lim
Δx→0
[a1+Δx+Δxb]-a+b=
导数的概念及几何意义
利用导数求切线的方程
已知曲线 C:y=1x3+4. 33
(1)求曲线 C 在横坐标为 2 的点处的切线方程. (2)在第(1)小题中的切线与曲线 C 是否还有其他的公共点?
[解] (1)将 x=2 代入曲线 C 的方程得 y=4. ∴切点 P(2,4). ∵Δy=13(2+Δx)3+43-13×23-43 =4Δx+2(Δx)2+13(Δx)3, ∴ΔΔxy =4+2Δx+13(Δx)2, 当 Δx 趋于 0 时,4+2Δx+13(Δx)2 趋于 4,所以曲线在 x=2 处 的导数等于 4. 即切线的斜率为 4,故所求切线方程为 y-4=4(x-2),即 4x -y-4=0.
也称为 y=f(x)在 x0 点的__导__数____.
(2)记法:函数 y=f(x)在 x0 点的导数,通常用符号 f′(x0)表示, 记作 f′(x0)=_xl_1i→m_x_0 _f_x_x1_1_- -__fx_0x_0__=_Δl_ixm→_0__f_x_0_+__Δ_Δx_x_-__f_x_0___.
2.导数的几何意义 函数y=fx在x0处的导数;是曲线y=fx在点_______x_0_;f_x_0__处的 切线的______斜__率.函数y=fx在点x0;fx0处切线的斜率反映了 导数的几何意义. 注意:导数的物理意义:函数S=St在点t0处的导数S′t0;就是 当物体的运动方程为S=St时;物体在时刻t=t0时的瞬时速度v; 即v=S′t0;函数v=vt在点t0处的导数v′t0;就是当物体的运动 速度方程为v=vt时;物体在时刻t=t0时的瞬时加速度a;即a= v′t0.
方法归纳 求函数y=fx在点x0处的导数的三个步骤
1.求函数fx=x2+3在x=2处的导数.
解:因为Δy=f a+Δx -f a
导数的概念及其几何意义
= f(x0) , y0 + Δy = f(Δx + x0) , 割 线
PQ
的斜率
k
=
Δy Δx
+ΔΔxx-fx0.
[解题过程] ∵Δy=f(1+Δx)-f(1)=(1+Δx)3-1 =(Δx)3+3(Δx)2+3Δx, ∴割线 PQ 的斜率 k=ΔΔyx=Δx3+3ΔΔxx2+3Δx =(Δx)2+3Δx+3. 设当 Δx=0.1 时割线的斜率为 k1, 则 k1=(0.1)2+3×0.1+3=3.31.
单击此处添加副标题
§ 2 导数的概念及其几何意义
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅的阐述观点。
2.1 导数的概念
2.2 导数的几何意义
单击此处添加文本具体内容,简明 扼要地阐述你的观点
理解导数的概念,会求函数在某点处的导数. 理解导数的几何意义. 根据导数的几何意义,会求曲线上某点处的切线方程.
那么,导数f′(x0)表示
的物理意义.
,这就是导数
运动物体在时间x0的速度
解析: y=x2 在 x=1 处的导数为 f′(1)=liΔxm→0 1+ΔΔxx2-1=2.
一.函数y=x2在x=1处的导数为( )
○ A.2x
B.2+Δx
○ C.2
D.1
答案: C
二.函数y=f(x)在x=x0处的导数f′(x0)的几何意义是( )
∴a=1,即 a 的值为 1.
已知函数f(x)=ax2+c,且f′(1)=2,求a.
过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当 Δx=0.1时割线的斜率.
一般地,设曲线 C 是函数 y=f(x)的图象,P(x0,y0)是曲线
3.1.3导数的概念和几何意义_课件-湘教版数学选修1-1
即切线过抛物线y=x2上的点(2,4),(3,9). 所以切线方程分别为y-4=4(x-2),y-9=6(x-3). 化简得y=4x-4,y=6x-9, 此即是所求的切线方程. 点评 在求曲线过某点的切线方程时,第一要判断该点是否在曲线上,再根 据不同情况求解.
课堂总结 1.函数在某一点处的瞬时变化率即为函数在该点处的导 数. 2.导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切 线的斜率,即当d→0时,k=fx0+dd-fx0=f′(x0). 3.求曲线的切线方程应充分利用导数的几何意义,抓住两 点: (1)切点在曲线上,则在切点处的导数值即为切线的斜率; (2)若已知点不在曲线上时,要设出切点再利用导数几何意义和已 知条件去求.
C.f′(x0)=2x0
D.f′(x0)=d+2x0
答案 C
3.已知函数y=f(x)图象如图,则f′(xA)与f′(xB)的大小关系 是( ).
A.f′(xA)>f′(xB) B.f′(xA)<f′(xB) C.f′(xA)=f′(xB) D.不能确定
答案 A
4.在曲线f(x)=x2+x上取一点P(1,2),则在区间[1,1+d]上的 平均变化率为________,在点P(1,2)处的导数f′(1)=________.
当 d→0 时 1-xx+1 d→1-x12, ∴f′(x)=1-x12, ∴f′(1)=1-112=0.
题型四 利用导数求切线方程 【例4】 已知曲线C:y=x2. (1)求曲线C在点(1,1)处的切线方程; (2)求过点(1,0)且与曲线C相切的直线的方程;
解 (1)fx+dd-fx=x+dd2-x2=2x+d. 当d→0时,2x+d→2x, ∴f′(x)=2x,f′(1)=2 ∴曲线y=x2在(1,1)处的切线方程为 y-1=2(x-1),即y=2x-1.
课件2:5.1.2 导数的概念及其几何意义
答案:(1)A
(2)曲线 f(x)=x3 在点(a,a3)(a≠0)处的切线与 x 轴,直线
x=a 围成的三角形的面积为16,则 a=________.
解析:(2)因为 f′(a)=lim Δx→0
a+ΔΔxx3-a3=3a2,
所以曲线在点(a,a3)处的切线方程为 y-a3=3a2(x-a).
令 y=0,得切线与 x 轴的交点为32a,0,
2.若函数 f(x)=-3x-1,则 f′(x)=( )
A.0
B.-3x
C.3
D.-3
解析:k= lim Δx→0
-3x+Δx-Δ1x--3x-1=-3.
答案:D
3.设曲线 y=x2+x-2 在点 M 处的切线斜率为 3,则点
M 的坐标为( )
A.(0,-2)
B.(1,0)
C.(0,0)
D.(1,1)
方法归纳 求满足某条件的曲线的切点坐标的步骤 (1)先设切点坐标(x0,y0); (2)求导函数 f′(x); (3)求切线的斜率 f′(x0); (4)由斜率间的关系列出关于 x0 的方程,解方程求 x0; (5)点(x0,y0)在曲线 f(x)上,将(x0,y0)代入求 y0 得切点坐标.
微点 2 与曲线的切点相关的问题 例 4 已知直线 l1 为曲线 y=x2+x-2 在(1,0)处的切线, l2 为该曲线的另一条切线,且 l1⊥l2. (1)求直线 l2 的方程; (2)求由直线 l1,l2 和 x 轴围成的三角形面积.
方法归纳 1.求曲线上某点切线方程的三个步骤
2.过曲线外的点 P(x1,y1)求曲线的切线方程的步骤 (1)设切点为 Q(x0,y0). (2)求出函数 y=f(x)在点 x0 处的导数 f′(x0). (3)利用 Q 在曲线上和 f′(x0)=kPQ,解出 x0,y0 及 f′(x0). (4)根据直线的点斜式方程,得切线方程为 y-y0=f′(x0)(x-x0).
导数的概念及几何意义
(1)求物体在时间区间[t0 , t0 t] 上所经过的路程 :
S S(t0 t) S(t0 ) ,
(2)求物体在时间区间[t0 , t0 t] 上的平均速度:
v S S(t0 t) S(t0 ) ,
t
t
(3)求 t0
时刻 的速度: v(t0 )
lim v
t 0
lim
t 0
S(t0
x0 点的导数,记作
f ( x0 ) ,或 y xx0
,
或 dy dx
x x0
,即
f ( x0 )
lim y x0 x
lim
x0
f (x0
x) x
f ( x0 )
lim f ( x) f ( x0 )
x x0
x x0
7
1.1 导数的概念与导数的几何意义
若极限 lim y 不存在,则称函数 f x0 x
f( x0 )
lim
x0
y x
lim x0
f ( x0 x) x
f ( x0 )
lim f ( x) f ( x0 ) ;
x x0
x x0
9
1.1 导数的概念与导数的几何意义
若极限 lim y 存在,则称此极限为 f ( x) 在 x0 x
点 x0 处的右导数,记为 f( x0 ) ,即
f (t) f ( x0 ) 。 t x0
(2)由导数定义可得, v(t0 ) s(t0 ) (导数的物理意义);
k f ( x0 ) (导数的几何意义);
8
1.1 导数的概念与导数的几何意义
(2)单侧导数
定义 2 若极限 lim y 存在,则称此极限为 f ( x) x0 x
3.1 导数的概念及几何意义、导数的运算
∴x2=-2x1,∴f
'(x2)=3 x22=12 x12.∴
f f
'(x1) = 1 .
'(x2 ) 4
(2)由题意,得f '(x)=2x.
设直线与曲线相切于点(x0,y0), 则所求切线的斜率k=2x0,
由题意知2x0= y0 0 = y0 ①.
x0 1 x0 1
林老师网络编辑整理
12
又y0= x02 ②,所以由①②解得x0=0或x0=-2, 所以k=0或k=-4, 所以所求切线方程为y=0或y=-4(x+1), 即y=0或4x+y+4=0. 答案 (1) 1 (2)y=0或4x+y+4=0
2
2
(4)y'
=
cos ex
x
'=(cos
x)
'ex cos (ex )2
x(ex
)'
=-
sin
x cos ex
x.
林老师网络编辑整理
9
栏目索引
栏目索引
方法二 求曲线y=f(x)的切线方程
1.求“在”曲线y=f(x)上一点P(x0,y0)处的切线方程,则点P(x0,y0)为切点,
'(x1)(x0 x1),
点A(x1,y1),代入方程y-y1=f '(x1)(x-x1),化简即得所求的切线方程.
林老师网络编辑整理
10
栏目索引
例2 (1)(2018江苏淮安高三期中)已知函数f(x)=x3.设曲线y=f(x)在点P(x1,
f(x1))处的切线与该曲线交于另一点Q(x2, f(x2)),记f '(x)为函数f(x)的导
导数的概念几何意义与运算
导数的概念几何意义与运算一、导数的概念导数是微积分的重要概念之一,是描述函数变化速度的衡量工具。
对于一条曲线上的任意一点,其导数值表示了该点处的切线斜率。
导数的定义为:若函数f(x)在点x0处有定义,那么函数在该点的导数为:f'(x0) = lim(h→0) [f(x0+h) - f(x0)] / h其中 lim 表示极限,h 表示的是 x 的增加量。
导数的概念可以推广到函数的各种高阶导数,分别表示函数变化的速率、加速度、变化的变化率等。
二、导数的几何意义1.切线斜率:导数可以看作是函数曲线在其中一点处切线的斜率。
特定点处的切线斜率表示了函数在该点的变化速度。
2.函数的增减性:若函数在其中一区间内的导数恒大于0,则函数在该区间上是递增的;若导数恒小于0,则函数在该区间上是递减的。
导数的正负性能够直观地反映函数的增减趋势。
3.极值点:若函数在其中一点的导数为0,那么这个点称为函数的极值点。
导数为0相当于切线水平,函数在这一点上由增转为减或由减转为增。
三、导数的运算法则1.常数乘法:对于常数k,(k*f(x))'=k*f'(x)。
2.求和与差:(f(x)±g(x))'=f'(x)±g'(x)。
3.乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
4.商法则:(f(x)/g(x))'=[f'(x)*g(x)-f(x)*g'(x)]/[g(x)]^25.复合函数求导:对于复合函数y=f(g(x)),若g(x)在点x处可导,而f在g(x)处可导,则y也在点x处可导,且y'=f'(g(x))*g'(x)。
四、应用举例1.速度和加速度:对于一个物体的位移函数s(t),其导数s'(t)表示在时间t的瞬时速度。
二次导数s''(t)则表示在时间t的瞬时加速度。
导数的几何意义
玉山县樟村中学
王道远
复习回顾
导数的概念 1.定义:设函数y=f(x),当自变量x从x0变到x1时,函 Δy 数值从f(x0)变到f(x1),函数值y关于x的平均变化率为 = Δx fx1-fx0 fx0+Δx-fx0 x1-x0 = ,当x1趋于x0,即Δx趋于0 Δx 时,如果平均变化率趋于一个
解: 先求y 2 x 3在x 1处的导数
f (1 x) f (1) 2(1 x) 3 2 13 x x 6 6x 2(x) 2 . 令x趋于零,可知y 2 x 3在x 1处的导数为f , (1) 6 则函数y 2 x 3在点( 1,f( 1)) (1,2)处的切线斜率为 6 因此切线方程 y 6x 4
P
o
x
yy f Biblioteka x)B割线l
B,
A
切线
o
x0
x
导数的几何意义:函数 y f ( x)在x0处的切线的斜率
例题讲解
例1
已知函数y f ( x) x 2 , x0 2. (1)分别对x 2,1,0.5求y x 2 在区间 [ x0 , x0 x]上的平均变化率。 (2)求函数y x 2 在x0 2处的导数。
( 1)x 2,1,0.5时,区间 [ x0 , x0 x]相应为[2,0],[2,1],[2,1.5]. 解: y x 2 在这些区间上的平均变 化率分别为 f (0) f (2) 0 2 (2) 2 2 2 2 f (1) f (2) (1) 2 (2) 2 3 1 1 f (1.5) f (2) (1.5) 2 (2) 2 3.5 0.5 0.5
作业
导数的概念及几何意义
导数的概念及几何意义导数是微积分中的一个重要概念,它描述了函数在其中一点上的变化率。
导数的几何意义是一个函数在其中一点上的斜率或切线的斜率。
假设有一个函数y=f(x),表示自变量x与因变量y之间的关系。
在函数图像上,选取其中一个点P(x,f(x)),然后再选取另一个与点P非常接近的点Q(x+△x,f(x+△x))。
△x表示x的一个小的增量。
这两个点的连线被称为割线,割线的斜率可以表示为:斜率=(f(x+△x)-f(x))/△x当△x逐渐接近于0时,割线的斜率会趋近于一个特定的值,这个值就是函数在点P处的导数。
数学表达式可以表示为:f'(x) = lim(△x→0) (f(x + △x) - f(x)) / △x导数也可以用微分法的符号(dx / dx)表示。
导数可以表示函数的变化率,即在特定点上函数的斜率。
导数的值可以为正、负或零。
导数的几何意义是函数的图像在其中一点上的切线的斜率。
切线是函数图像上与这个点非常接近的直线。
切线的斜率与点的导数值相等。
当导数值大于0时,说明函数图像在该点上是递增的,切线是向上的。
当导数值小于0时,说明函数图像在该点上是递减的,切线是向下的。
当导数值等于0时,说明函数图像在该点上是平的,切线是水平的。
导数还可以提供其他有用的几何信息。
例如,函数在其中一点上的导数值越大,函数曲线在该点附近弯曲得越急。
函数的导数也可以帮助确定函数的拐点。
拐点是函数图像的曲线从凹向上凸或从凸向上凹的点。
导数的计算方法有很多种。
有些函数可以通过求导公式直接计算导数,这些被称为可导函数。
例如,如果函数是关于x的幂函数,如f(x) =x^n,其中n是一个常数,那么它的导数可以通过将指数降低1并将结果乘以原指数来计算,即f'(x) = nx^(n-1)。
还有一些常见的函数,如正弦函数、余弦函数和指数函数,它们也有特定的求导公式。
除了直接求导的公式之外,还可以使用导数的基本性质来求导。
导数的概念及其几何意义
4.导数的几何意义 导数的几何意义
在点x 函数 y=f(x)在点 0处的导数的几何意义,就是曲 在点 处的导数的几何意义, 在点P(x0 ,f(x0))处的切线的斜率,即曲线 处的切线的斜率, 线 y=f(x)在点 在点 处的切线的斜率 即曲线y= f(x)在点 在点P(x0 ,f(x0)) 处的切线的斜率是 f ′( x0 ). 在点 故曲线y=f(x)在点 曲线 在点P(x0 ,f(x0))处的切线方程是 处的切线方程是: 在点 处的切线方程是
导数的概念及其几何 意义
一、导数的概念 定义:设函数 在点x 定义:设函数y=f(x)在点 0处及其 在点 附近有定义,当自变量 在点x 当自变量x在点 附近有定义 当自变量 在点 0处有改 变量Δ 时函数有相应的改变量 变量Δx时函数有相应的改变量 如果当Δ → Δy=f(x0+ Δx)- f(x0).如果当Δx→0 如果当 的极限存在,这个极限就叫 时,Δy/Δx的极限存在 这个极限就叫 Δ Δ 的极限存在 做函数f(x)在点 0处的导数 或变化率) 在点x 或变化率 做函数 在点 处的导数(或变化 记作 f ′( x )或y′ | , 即:
2
求函数y = x 在点(−2, 4)处的切线.
2
例3求函数y = x 在x0 = 1处的切线.
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DaoShu de Gainian jiqi JiheYIYi 授课人:谢才兴
复习旧知
平均变化率:对一般函数来说,当自变量x从x0变为x1时,函数值 y从f(x0)变化到f(x1), 它的平均变化率为:
用来刻画函数在[x0, 函数的平均变化率也可以表示成函数值的改变值与自变量的改 x1]上变化的快慢
新课讲解
练习.服药后,人体血液中药物的质量浓度y(单 位:μg/mL)是时间x(单位:min)的函数y=f(t).假设函数y=f(t) 在x=10和t=100处的导数分别为f’(10)=1和f’(100)=-0.6,试解 释它们的实际意义. 血液中药物的质量浓度 解: f’(10)=1表示 服药后 10min时, 上升速度为 1μg/(mL.min) ,也就是说,如果保持这一速度, 那么每经过1min, 血液中药物的质量浓度将 上升1μg/mL.
变值的比
用来刻画函数在 x0处变化的快慢
当Δx变化率.
新课讲解
新课讲解
对函数y=f(x)来说,当自变量x从x0变为x1时,函数值y从f(x0)变 化到f(x1), 它的平均变化率为: 当x1趋向于x0 ,即Δx趋向于0时,如果平均变化率趋于一个 固定的值,那么这个值就是y=f(x)在点x0点的瞬时变化率,在数 学中,称瞬时变化率为函数y=f(x) 在点x0的导数. 函数y=f(x) 在点x0的导数通常用用符号f’(x0)表示. 记作
总结提高
1.什么是导数? 2.如何求导数?导数的实际意义是什么?
布置作业: P37 .A1,2
谢谢观看!
THANK YOU
导数 f’(2)表示当x=2s时水量的瞬时变化率,即水流的瞬时速 度.也就是如果水管中的水以x=2s时的瞬时速度流动的话,每经过 1s,水管中流水的水量为12m3.
新课讲解
例2.一名食品加工厂的工人上班开始后连续工作,生产的 食品是y(单位:kg)是其工作时间x(单位:h)的函数y=f(x).假 设函数y=f(x)在x=1和x=3处的导数分别为f’(1)=4和f’(3)=3.5, 试解释它们的实际意义. 解: f’(1)=4表示该工厂上班后工作1h的时候,其生产速度 (工作效率)为4kg/h,也就是说,如果保持这一生产速度,那 么他每小时可以生产4kg的食品. f’(3)=3.5表示该工厂上班后工作3h的时候,其生产速度 (工作效率)为3.5kg/h,也就是说,如果保持这一生产速度, 那么他每小时可以生产3.5kg的食品.
新课讲解
当堂训练
2.函数y=x3在x=2处的导数为 12 .
新课讲解
例1.一条水管中流过的水量y(单位:m3)是时间x(单位:s)的函数 第二步: 第一步: 2 y=f(x)=3x ,求函数y=f(x)在x=2 处的导数f’(2),并解释它的实际意 代数 列式 义.
第一步: 化简 第四步:取 Δx=0,得导数