细胞生物学

合集下载

什么是细胞生物学?

什么是细胞生物学?

什么是细胞生物学?
细胞生物学是研究细胞结构、功能和生理过程的科学领域。

它关注细胞的组成、特性及其如何相互作用。

这些研究有助于我们理解生命的基本单位 - 细胞的复杂性和多样性。

细胞生物学的研究涉及多个层次,包括分子、细胞器、细胞和组织之间的相互作用。

它研究细胞如何进行生物化学反应、如何处理遗传信息、如何进行细胞分裂和细胞死亡等基本过程。

通过深入研究这些过程,细胞生物学为其他许多领域的研究提供了基础,例如发育生物学、免疫学、神经科学和癌症研究等。

细胞生物学的研究方法包括观察细胞的形态和结构,利用显微镜和其他成像技术,以及研究细胞内的分子和基因表达。

科学家还使用细胞培养和基因编辑技术来探索细胞的功能和相互作用。

细胞生物学对我们了解生命的本质非常重要。

通过研究细胞,我们可以了解生命的起源、发展和运作方式。

此外,细胞生物学的研究对于理解疾病的发生和治疗也具有重要意义。

细胞生物学是一个充满活力和不断发展的领域。

随着技术的进步和科学的发展,我们对细胞的认识将不断深化,这将推动我们在健康、医学和生物科学等领域取得更大的突破和进步。

参考文献:
- Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002.
- Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000.。

细胞生物学

细胞生物学

细胞生物学细胞生物学是一门研究细胞和分子结构和功能的学科。

它研究了细胞的结构、形态、功能、发育和进化。

细胞生物学的研究对象包括真核细胞和原核细胞,它们的结构和功能有很大的不同。

一、细胞结构细胞结构是细胞生物学研究的基础。

细胞由细胞膜、细胞质和细胞核组成。

细胞膜是细胞的外壳,它把细胞与外界隔离开来,保护细胞免受外界的伤害;细胞质是细胞的内部组织,它是细胞内的代谢活动的主要场所;细胞核是细胞的控制中心,它负责细胞的遗传信息的传递、调节和控制细胞的活动。

二、细胞功能细胞功能是细胞生物学研究的重点。

细胞的主要功能包括新陈代谢、运动、感知和繁殖。

新陈代谢是细胞内的代谢活动,提供细胞所需的能量和物质;运动是细胞内的运动活动,它保证细胞的正常运转;感知是细胞对外界信息的反应,它使细胞能够从外界接收信息;繁殖是细胞的繁殖活动,它使细胞能够不断繁衍,保证细胞的繁衍和维持细胞的数量。

三、细胞发育细胞发育是细胞生物学研究的重要方面。

细胞发育指的是细胞从受精卵到成熟的发育过程。

这个过程可以分为几个阶段,包括受精、分裂、分化、成熟等。

在受精阶段,受精卵会分裂成多个细胞,这些细胞会经历分化,也就是说,它们会发展出不同的细胞类型,从而形成复杂的组织结构;在成熟阶段,细胞会发展出完整的功能,它们可以完成特定的任务。

四、细胞进化细胞进化是细胞生物学研究的重要方面。

细胞进化指的是细胞在不同的环境条件下,通过遗传变异和突变,不断进化变化的过程。

细胞的进化可以通过种群遗传学的方法来研究,它可以帮助我们了解细胞的发展、进化和衰老等过程。

总结细胞生物学是一门研究细胞和分子结构和功能的学科,它研究了细胞的结构、形态、功能、发育和进化。

细胞生物学的研究对象包括真核细胞和原核细胞,它们的结构和功能有很大的不同。

细胞的结构包括细胞膜、细胞质和细胞核;细胞的功能包括新陈代谢、运动、感知和繁殖;细胞的发育可以分为受精、分裂、分化和成熟等几个阶段;细胞的进化是指细胞在不同的环境条件下,通过遗传变异和突变,不断进化变化的过程。

细胞生物学名词解释

细胞生物学名词解释

第一章绪论1.细胞生物学:细胞生物学是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容.第三章细胞生物学研究方法2. 分辨率:能区分开两个物点最小间隔的能力。

通常用相邻两质点的距离表示。

D=0.61λ/N .A第四章细胞膜与细胞表面3. 单位膜:由厚约3.5nm的双层脂分子和内外表面各厚约2nm的蛋白质构成。

4. 相变: 在不同温度下发生的膜脂状态的改变称为相变5. 生物膜:把细胞所有膜结构统称为生物膜,实际上它是细胞内膜和质膜的总称。

6. 膜骨架:指细胞质膜下与膜蛋白相连的由纤维蛋白组成的网架结构,它参与维持细胞质膜的形状并协助质膜完成多种生理功能。

7. 细胞表面细胞外表面:与细胞外环境接触的膜面。

细胞外基质: 指分布于细胞外空间, 由细胞分泌的蛋白和多糖所构成的网络结构8. 细胞外被:指细胞质膜外表面覆盖的一层粘多糖物质,实际指细胞表面与质膜中的蛋白或脂类分子共价结合的寡糖链。

第五章物质的跨膜运输9. 被动运输:是指通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运。

转运的动力来自物质的浓度梯度,不需要细胞提供代谢能量。

:10.简单扩散: 疏水的小分子或小的不带电荷的极性分子在以简单的扩散方式跨膜转运中,不需要细胞提供能量,也没有膜蛋白的协助,因此称为简单扩散11.协助扩散: 各种极性分子和无机离子,如糖、氨基酸、核苷酸以及细胞代谢物等顺浓度梯度或电化学梯度减小方向的跨膜转运,该过程不需要细胞提供能量,但需要特异的膜蛋白“协助”物质转运使其转运速率增加,转运特异性增强。

12.载体蛋白:存在于细胞膜上的一种具有特异性传导功能的蛋白质,它能与特定的溶质分子结合,通过一系列构象改变介导溶质分子的跨膜转运。

13.通道蛋白:存在于细胞膜上的一种跨膜蛋白质,其跨膜部分形成亲水性的通道,当这些孔道开放时允许适宜大小的分子和带电荷的离子通过,通道蛋白所介导的被动运输不需要与溶质分子结合。

细胞生物学

细胞生物学

1、细胞生物学:是研究细胞基本生命活动规律的科学,是在显微、亚显微和分子水平上,以研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,细胞信号传递,真核细胞基因表达与调控,细胞起源与进化等为主要内容的一门学科。

2、分子细胞生物学:是细胞的分子生物学,是指在分子水平上探索细胞的基本生命活动规律,主要应用物理的、化学的方法、技术,分析研究细胞各种结构中核酸和蛋白质等大分子的构造、组成的复杂结构、这些结构之间分子的相互作用及遗传性状的表现的控制等。

3、细胞连接:细胞连接是多细胞有机体中相邻细胞之间通过细胞膜相互联系、协同作用的重要组织方式,在结构上常包括质膜下、质膜及质膜外细胞间几个部分,对于维持组织的完整性非常重要,有的还具有细胞通讯作用。

4、信号通路:细胞接受外界信号,通过一整套的特定机制,将胞外信号转导为胞内信号,最终调节特定基因的表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。

5、异染色质:间期核内染色质纤维折叠压缩程度高,处于聚缩状态,用碱性染料染色时着色深的染色质组分。

6、核小体:染色体的基本结构单位,是由组蛋白和200个碱基对的DNA双螺旋组成的球形小体,其核心由四种组蛋白(H2A、H2B、H3、H4)各两分子共8分子组成的八聚体,核心的外面缠绕了1.75圈的DNA双螺旋,其进出端结合有H1组蛋白分子。

7、核纤层:是位于细胞核内膜与染色质之间的纤维蛋白片层或纤维网络,与核内膜紧密结合。

它普遍存在于高等真核细胞间期细胞核中。

8、细胞骨架:细胞骨架(Cytoskeleton)是指存在于真核细胞质内的中的蛋白纤维网架体系。

包括狭义和广义的细胞骨架两种概念。

广义的细胞骨架包括:细胞核骨架、细胞质骨架、细胞膜骨架和细胞外基质。

狭义的细胞骨架指细胞质骨架,包括微丝、微管和中间纤维。

9、细胞周期:连续分裂的细胞,从上一次有丝分裂结束开始到下一次有丝分裂结束所经历的整个过程。

在这个过程中,细胞遗传物质复制,各组分加倍,平均分配到两个子细胞中。

细胞生物学

细胞生物学

细胞生物学:是研究细胞基本生命活动规律的学科,它在不同层次上以研究细胞结构和功能,细胞增殖、分化、衰老与凋亡,细胞信号传递,真核细胞基因表达与调控,细胞起源与进化等为主要内容。

细胞生物学从显微水平、超微水平和分子水平等不同层次研究细胞结构、功能及生活史。

在我国的基础学科发展规划中,细胞生物学与分子生物学,神经生物学和生态学并列为生命科学的四大基础学科。

细胞生物学的主要研究内容:1、细胞核、染色体以及基因表达的研究2、生物膜与细胞器的研究3、细胞骨架体系的研究4、细胞增殖及其调控5、细胞分化及其调控6、细胞的衰老与凋亡7、细胞的起源与进化8、细胞工程生物科学发展的三个阶段: 1.形态描述生物学时期,19世纪以前;2.实验生物学时期,20世纪前半世纪;3.分子生物学时期,20世纪50-60年代至今细胞是生命活动的基本单位:1、一切有机体都由细胞构成,细胞是构成有机体的基本单位;2、细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位3、细胞是有机体生长与发育的基础4、细胞是遗传的基本单位,细胞具有遗传的全能性5、没有细胞就没有完整的生命细胞分化:一个尚未特化的细胞发育出特征性结构和功能的过程细胞分化是一种持久性的变化,细胞分化不仅发生在胚胎发育中,而是在一生都进行着,以补充衰老和死亡的细胞.影响细胞分化的因素:1、胞外信号分子2、细胞记忆与决定持家基因:又称管家基因,是指所有细胞中均要表达的一类基因,其产物是对维持细胞基本生命活动所必需的。

如微管蛋白基因、糖酵解酶系基因与核糖体蛋白基因等。

生物体各类细胞中都表达,对维持细胞存活和生长所必需的蛋白质编码的基因膜骨架:真核细胞中与保持细胞形态结构和细胞运动有关的纤维网络。

包括微管、微丝和中间丝。

它参与维持细胞膜的形状并协助质膜完成多种生理功能。

简单扩散:疏水的小分子或小的不带电荷的极性分子在以简单扩散的方式跨膜转运中,不需要细胞提供能量,也没有膜蛋白的协助,因此称为简单扩散。

细胞生物学名词解释

细胞生物学名词解释

名词解释细胞生物学:是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容的学科。

其核心问题是将遗传与发育在细胞水平上结合起来。

原生质体:由细胞质膜包围的一团原生质,分化为细胞核与细胞质。

脂质体:在水溶液环境中人工形成的一种球型脂双层结构。

细胞外基质:指分布于细胞外空间,由细胞分泌的蛋白质和多糖所构成的复杂网络结构透明质酸:一种重要的糖氨聚糖,是增殖细胞和迁移细胞胞外基质的主要成分,在早期胚胎中含量特别丰富,与其他糖氨聚糖相比,不被硫酸化,不与核心蛋白共价连接。

连接子:间隙连接中由连接蛋白connexin在质膜内簇集形成的多亚基复合体。

每个连接子由6个连接蛋白亚基环形排列而成,中间形成一直径约1.5nm的通道。

协助扩散:物质通过与特异性膜蛋白的相互作用,从高浓度向低浓度的跨膜转运形式。

胞吞作用:通过质膜内陷形成膜泡,将细胞外或细胞质膜表面的物质包裹到膜泡并转运到细胞内(胞饮和吞噬)的过程。

胞吐作用:携带有内容物的膜泡与质膜融合,将内容物释放到胞外的过程。

细胞通讯:一个细胞发出的信息通过介质(又称配体)传递到另一个细胞(靶细胞)并与靶细胞相应的受体相互作用,然后通过细胞信号转导引起靶细胞产生一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。

信号分子:作为信号载体,能与靶细胞受体特异性结合并引起靶细胞内信号转导最终产生生物学效应的一类分子。

脂溶性:视黄醇、维生素D、甲状腺素、甾类激素。

水溶性:神经递质、多肽类激素、局部介质。

受体:一种能够识别和选择性结合某种配体(信号分子)的大分子,绝大多数已鉴定的为糖蛋白,少数为糖脂或糖蛋白糖脂复合物。

半自主性细胞器:其生长和增殖受核基因组和自身基因组两套遗传系统的控制的细胞器,如线粒体和叶绿体。

电子传递链(呼吸链):在线粒体内膜上存在的一组酶复合体,有一系列能可逆的接受和释放电子或H+的化学物质组成,它们在内膜上相互关连地有序排列成传递链,称为电子传递链或呼吸链,是典型的多酶体系。

医学细胞生物学名词解释

医学细胞生物学名词解释

医学细胞生物学名词解释1、医学细胞生物学:是指用细胞学的原理和方法研究人体细胞的结构、功能、生命活动规律和其疾病关系的科学2、受体:存在于细胞膜上细胞内、能接受外界的信号,并将这一信号转化为细胞内的一系列生物化学反应,从而对细胞的结构或功能产生影响的蛋白质分子。

3、配体:受体所接受的外界信号,包括神经递质、激素、生长因子、光子、某些化学物质及其他细胞外信号。

受体是细胞膜上的特殊蛋白分子,可以识别和选择性地与某些物质发生特异性结合反应,产生相应的生物效应.与之结合的相应的信息分子叫配体。

4、残留小体:次级溶酶体在完成对绝大部分作用底物消化、分解作用之后,尚会有一些不能被消化、分解的物质残留其中。

随着酶活性的逐渐降低以至最终消失,进入溶酶体生理功能的终末状态。

5、马达蛋白:利用ATP 水解酶释放的能量驱动自身沿微管或微丝定向运动的蛋白,如驱动蛋白、动力蛋白和肌球蛋白。

6、分子伴侣:一类在序列上没有相关性但有共同功能的蛋白质,它们在细胞内帮助其他含多肽的结构完成正确的组装,而且在组装完毕后与之分离,不构成这些蛋白质结构执行功能时的组份。

7、核仁组织区:即rRNA序列区,它与细胞间期核仁形成有关,构成核仁的某一个或几个特定染色体片断。

这一片段的DNA转录为rRNA, rRNA所在处。

8、紧密连接:是相邻细胞间局部紧密结合,在连接处,两细胞膜发生点状融合,形成与外界隔离的封闭带,由相邻细胞的跨膜连接糖蛋白组成对应的封闭链,主要功能是封闭上皮cel间隙,防止胞外物质通过间隙进入组织,从而保证组织内环境的稳定性,紧密连接分布于各种上皮细胞管腔面,细胞间隙的顶端。

9、桥粒:上皮细胞等细胞间结合的一种形式,是细胞膜上直径约为0.5微米的圆形区域,在切面上可以看到二个相连的细胞膜之间有相距20—25毫微米严格平行的细胞间隙。

桥粒有增强细胞间结合的效能。

10、粘着带:粘着带连接位于上皮细胞紧密连接的下方,靠钙粘着蛋白同肌动蛋白相互作用,将两个细胞连接起来。

细胞生物学全套ppt课件(共277张PPT)

细胞生物学全套ppt课件(共277张PPT)

激光共聚焦显微镜
结合激光扫描和共聚焦技术,实现三 维重建和动态观察,用于研究细胞内 分子定位和相互作用。
电子显微镜
利用电子束代替光束,通过电磁透镜 成像,可观察细胞的超微结构,如透 射电子显微镜和扫描电子显微镜。
分子生物学技术在细胞生物学中应用
DNA重组技术
通过体外操作DNA片段,实现基因克隆、表达和调控研究,用于 解析基因功能和调控网络。
细胞周期调控异常可能导致细胞增殖失控和肿瘤发生。因此,深入研究 细胞周期调控因子和机制对于理解细胞增殖、分化和癌变等生物学过程 具有重要意义。
06
细胞分化、衰老与凋亡
细胞分化类型和影响因素
细胞分化类型 多能干细胞分化
专能干细胞分化
细胞分化类型和影响因素
01
终末分化细胞
02
影响因素
基因表达调控
03
系。
蛋白质组学技术
利用质谱技术、蛋白质芯片等方 法,研究细胞内蛋白质组成、相 互作用和修饰等,揭示蛋白质在
细胞生命活动中的作用。
生物信息学分析
运用生物信息学方法对基因组学 和蛋白质组学数据进行挖掘和分 析,发现新的基因、蛋白质和调 控网络及其与细胞生物学过程的
关系。
THANKS
胞内外环境的稳定。
物质跨膜运输方式及机制
被动运输
01
包括简单扩散和易化扩散两种方式,不需要消耗能量,物质顺
浓度梯度进行运输。
主动运输
02
包括原发性主动转运和继发性主动转运两种方式,需要消耗能
量,物质逆浓度梯度进行运输。
膜泡运输
03
包括出胞和入胞两种方式,通过膜泡的形成和移动来实现物质
的跨膜运输。
膜蛋白功能及其调控

细胞生物学

细胞生物学

细胞生物学细胞生物学:从细胞整体、显微、亚显微和分子等各级水平上研究细胞结构、功能及生命活动规律的学科。

细胞学说:由德国植物学家施莱登和德国动物学家施万提出的学说。

认为一切生物都由细胞组成,细胞是生命的结构单位,细胞只能由细胞分裂而来。

细胞质:位于细胞质和细胞核间的透明、黏稠、不断流动并充满各种细胞器的溶胶。

原生质:无色、半透明,具有不同程度弹性的黏稠液体,有极强的亲水性,是一种亲水胶体。

原生质体:去掉细胞壁的植物细胞或其他去壁细胞原代细胞:是指从机体取出后立即培养的细胞,即第1代细胞与第10代以内的细胞的统称传代细胞:适应在体外培养条件下持续传代培养的细胞。

细胞株:具有有限分裂潜能适合于进行培养,并在培养过程中保持其特性和标志的细胞群。

细胞系:可长期连续传代的培养细胞。

单克隆抗体:由单一杂交瘤细胞克隆分泌的只能识别一种表位(抗原决定簇)的高纯度抗体。

细胞膜:现泛指包括细胞质和细胞器的界膜。

由磷脂双层和相关蛋白质以及胆固醇和糖脂组成。

细胞内模:细胞膜内侧与细胞质相接的膜。

单位膜:由脂双层及嵌合蛋白质构成的一层生物膜。

在电镜下呈现出“暗-明-暗”三层式结构。

细胞外被:覆盖在细胞质膜表面的一层黏多糖物质。

以共价键和膜蛋白或膜脂结合形成糖蛋白或糖脂,对膜蛋白有保护作用,并在分子识别中起重要作用。

脂质体:在水溶液环境中人工形成的一种球形脂双层结构。

膜骨架:细胞质膜胞质侧与膜蛋白相连的由纤维状蛋白组成的网架结构。

去垢剂:是一类即具有亲水基又具有疏水基的物质,一般具有乳化、分散、和增溶作用,是分离与研究膜蛋白的常用试剂。

被动运输:离子或小分子在浓度差或电位差的驱动下顺电化学梯度穿膜的运输方式。

简单扩散:小分子由高浓度区向低浓度区的自行穿膜运输。

属于最简单的一种物质运输方式,不需要消耗细胞的代谢能量,也不需要专一的载体。

协助扩散:被选择吸收的物质也是从高浓度的一侧通过细胞膜到达低浓度的一侧,但需要细胞膜上的一种物质—载体蛋白的协助才能促进扩散,称为协助扩散。

细胞生物学名词解释

细胞生物学名词解释

Ch1-31.细胞生物学:研究细胞基本生命活动规律的科学,它从显微、亚显微与分子水平研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,信号转导,基因表达与调控,起源与进化等。

2.细胞学说:一切动植物都是由细胞组成的,细胞是一切动植物的基本单位。

基本内容:①细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成。

②每个细胞作为一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命有所助益。

③新的细胞可以通过自己存在的细胞繁殖产生。

(细胞只能来自细胞)3.原生质:构成细胞中的所有生命物质,由蛋白质、核酸等生物大分子和水、无机盐、糖类、脂类等生物小分子组成。

4.细胞膜:由磷脂双分子和镶嵌蛋白质构成的富有弹性的半透性膜,具有流动性和不对称性。

5.中膜体:又称间体或质膜体,由细胞质内陷形成,在G+更明显,有拟线粒体之称,可能起DNA复制起点的作用。

6.细胞器:细胞内具有特定形态和功能的显微或亚显微结构。

7.荚膜:位于细胞壁表面的一层松散的黏液物质,主要由葡萄糖和葡萄糖醛酸组成。

8.芽孢:内生孢子,是对不良环境有强抵抗力的休眠体,含水量较丰富的致密体。

9.中心质:蓝藻细胞中央遗传物质DNA所在部位,相当于细菌的核区。

10.细胞体积守恒定律:器官的大小主要决定于细胞的数量,与细胞的数量成正比,而与细胞的大小无关。

11.病毒:迄今发现的最小最简单的,活细胞体内寄生的非细胞生命体,仅有一种核酸和蛋白质构成的核酸-蛋白质复合体。

12.亚病毒:仅由一个有感染性的RNA构成。

13.阮病毒:仅由有感染性的蛋白质构成。

14.分辨率:分开两个质点间的最小距离。

D=0.61λ/N*sin(α/2) N介质折射率α-物镜镜口角15.光学显微镜:光学放大系统,照明系统,机械和支架系统。

0.2μm16.相差显微镜:把光程差转换成振幅差,可用于观察未染色的活细胞。

17.微分干涉显微镜:以平面偏振光为光源,光线经棱镜折射后分成两束,在不同时间经过样品相邻部位,再经另一棱镜将其会和,将厚度差转化成明暗区别,立体感强。

细胞生物学名词解释(期中)

细胞生物学名词解释(期中)

第一章绪论1、细胞生物学(cell biology):是研究细胞基本生命活动规律的科学,是在显微、亚显微和分子水平上,以研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,细胞信号传递,真核细胞基因表达与调控,细胞起源与进化等为主要内容的一门学科。

2、显微结构(microscopic structure):在普通光学显微镜中能够观察到的细胞结构,直径大于0.2微米,如细胞的大小及外部形态、染色体、线粒体、中心体、细胞核、核仁等,目前用于研究细胞显微结构的工具有普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜等。

3、亚3、显微结构(submicroscopic structure):在电子显微镜中能够观察到的细胞分子水平以上的结构,直径小于0.2微米,如内质网膜、核膜、微管、微丝、核糖体等,目前用于亚显微结构研究的工具主要有电子显微镜、偏光显微镜和X线衍射仪等。

4、细胞学(cytology):研究细胞形态、结构、功能和生活史的科学,细胞学的确立是从Schleiden(1838)和Schwann(1839)的细胞学说的提出开始的,而大部分细胞学的基础知识是在十九世纪七十年代以后得到的。

在这一时期,显微镜的观察技术有了显著的进步,详细地观察到核和其他细胞结构、有丝分裂、染色体的行为、受精时的核融合等,细胞内的渗透压和细胞膜的透性等生理学方面的知识也有了发展。

对于生殖过程中的细胞以及核的行为的研究,对于发展遗传和进化的理论起了很大作用。

5、分子细胞生物学(molecular cell biology):是细胞的分子生物学,是指在分子水平上探索细胞的基本生命活动规律,主要应用物理的、化学的方法、技术,分析研究细胞各种结构中核酸和蛋白质等大分子的构造、组成的复杂结构、这些结构之间分子的相互作用及遗传性状的表现的控制等。

第二章细胞的统一性与多样性1、细胞(cell):由膜转围成的、能进行独立繁殖的最小原生质团,是生物体电基本的开矿结构和生理功能单位。

细胞生物学

细胞生物学

细胞生物学第一章绪论一.细胞生物学研究的对象及目前研究的重要方面和进展1.什么是细胞生物学(研究对象)?细胞是生物形态结构和生命活动的基本单位。

那么我们探索生物体的生命必然要深入细胞中去进行研究。

细胞学就是研究细胞的结构、功能及其生活史的科学。

早期的细胞学是以研究细胞的形态和结构为核心的。

细胞生物学与细胞学的区别是什么呢?细胞生物学是由细胞学发展而来的,但它又不同细胞学。

无论从对细胞研究的范围和深度都远远超出了早期细胞学的研究水平。

现代的细胞学,即细胞生物学是生物各门学科——特别是细胞学、生物化学和遣传学发展到分子水平而汇流到一起的产物。

它是一门综合性学科,也是一门基础学科。

在形态描述方面已远远超出光镜下可见的结构水平;在功能方面也超越了生理变化的描述时期。

随着分子生物学的发展、新方法、新技术的不断涌现,对细胞的研究已从细胞全体和超微结构深入到分子结构三个不同层次中去了,因为生物体本身就是一个多层次的实体,这也是必然的发展规律。

目前已将细胞的整体活动水平、亚细胞结构和分子水平三个方面的研究有机的结合起来,以动态的观点来观察细胞和细胞器的结构和功能以探索细胞的基本活动。

它不仅是孤立地研究一个个细胞器和生物大分子,一个个生命现象,而是研究它们之间变化过程,它们之间的相互关系,以及与环境的相互关系。

概括起来说,细胞生物学是在显微水平、亚显微水平和分子水平三个层次上探讨细胞生命活动及其机制与规律的学科。

在研究范围上已大大超出了过去细胞学内容,改称“细胞生物学”(cell biology)。

2.当前细胞生物学研究的几个重要方面和发展概念。

生物结构的不同层次水平:范畴①分辨力 0.1mm (100μm)以上解剖学、结构器官② 100μm → 10 μm 组织学组织(各种光镜)③ 10 μm → 0.2μm 细胞学细胞、细菌④ 200nm → 1nm 亚显微形态学、超微结构、分子生物学⑤小于1nm 分子和原子结构、原子的排列<1> 细胞超微结构及功能60—70年代中基本搞清超微结构分辨力0.4nm → 0.2μm 光镜/人眼分辨力增加500倍,电镜/光镜增加500倍。

细胞生物学

细胞生物学

1、细胞生物学:是研究细胞基本生活规律的科学,它从不同层次上主要研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,细胞信号转导、细胞基因表达与调控,细胞起源与进化2、单克隆抗体:单克隆细胞合成的一种决定簇的抗体3、细胞膜骨架:指细胞质膜下与膜蛋白相连的由纤维蛋白组成的网架结构,它参与维持细胞质膜的形状并协助质膜完成多种生理功能(由锚蛋白、血影蛋白及带4、1蛋白组成)4、被动运输:是指通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜运输5、主动运输:是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由低浓度一侧向高浓度一侧进行跨膜转运的方式6、协同转运:是一类由钠钾泵与载体蛋白协同作用,靠间接消耗ATP所完成的主动运输方式7、胞吞作用:是通过细胞质膜内缩形成囊泡称胞吞泡将外界物质裹进并输入细胞的过程8、胞吐作用:是将细胞内的分泌泡或其他膜泡中的物质通过细胞质膜运出细胞的过程9、细胞质基质:在真核细胞的细胞质中,除去可分辨的细胞器以外的胶状物质10、信号假说:分泌性蛋白N端序列作为信号肽,指导分泌性蛋白到内质网膜上合成,然后在信号肽引导下蛋白质边合成边通过异位子蛋白复合体进入内质网腔,在蛋白质合成结束之前,信号肽被切除11细胞通讯:是指一个细胞发出的信息通过介质传到另一个细胞并与靶细胞相应的受体相互作用,然后通过细胞细胞信号转导产生胞内一系列生理生化变化,最终表现为细胞整体的生物学效应过程12、受体:是一种能够识别和选择性结合某种配体的大分子,绝大多数已经鉴定的受体都是蛋白质且多为糖蛋白,多数受体为糖脂,有的为糖蛋白和糖脂组成的复合物13、常染色质:指间期细胞核内染色质纤维折叠压缩程度相对低相对处于伸展状态,用碱性染料染色时着色浅的那些染色质14、异染色质:指间期核中,染色质纤维折叠压缩程度高,处于压缩状态,用碱性染料染色时着色深的那些染色质15、细胞周期:(G1期,S期,G2期,M期)从一次细胞分裂结束开始,经过物质积累过程,知道下一次细胞分裂结束为止16、细胞促成熟因子:M期细胞可以诱导PCC,提示在M期细胞中可能存在一种诱导染色体凝集的因子17、细胞凋亡(程序性细胞死亡):由体内外因素触发细胞内预存的死亡程序而导致的细胞死亡的过程18、细胞坏死:当细胞受到意外损伤如极端的物理、化学因素或严重的病理性刺激的情况下,细胞质出现空泡,细胞膜破损,细胞内含物及染色质片段释放到胞外,引起周围组织的炎症化19、细胞分化:在个体发育中,有一种相同的细胞类型经细胞分裂后逐渐在形态、结构和功能上形成稳定差异,产生不同的细胞类型的过程。

细胞生物学

细胞生物学

细胞生物学第一章绪论一、细胞生物学的研究对象、内容和任务1.细胞生物学的研究对象细胞生物学是研究细胞生命体活动基础规律的一门学科,是现代生命科学的基础学科之一,其研究对象是细胞。

细胞是除病毒以外的所有生物体结构和功能的基本组成单位。

细胞学是指对细胞的研究,从显微和亚显微两个结构层次对细胞的形态结构、生理功能及其生活史的研究。

概括地说,细胞生物学是以细胞为研究对象,应用现代物理学、化学、实验生物学、生物化学及分子生物学的技术和方法,从细胞整体水平、亚显微水平和分子水平三个层次上研究细胞的结构及其生命活动规律的科学。

其研究内容包括细胞各部分的结构和功能,细胞增殖、分化、衰老与凋亡,细胞信号传递,真核细胞基因表达与调控,细胞起源与进化等。

研究的目的不仅在于阐明细胞各种生命活动的现象和本质,而且还要利用和控制其活动现象和规律,为生产实践服务,造福于人类和社会。

2.细胞生物学的研究任务细胞生物学的研究任务是将细胞整体水平、亚显微水平和分子水平三个层次的研究有机地结合起来,以动态的观点考察细胞及细胞器的结构和功能,全面而深人地解读细胞的各项生命活动。

在理论研究方面,采取分析与综合相结合的方法,在细胞显微、亚显微和分子结构三个不同层次上,把结构与功能统一起来进行研究。

在形态方面,不仅要描述细胞的显微结构,而且要用新的工具和方法,观察与分析细胞内部的亚显微结构、分子结构以及各种结构之间的变化过程,进而阐明细胞生命活动的结构基础;在功能方面,不仅要研究细胞内各部分的化学组成和新陈代谢的动态,而且还要研究它们之间的关系和相互作用,进而揭示细胞的生长、分裂、分化、运动、衰老与死亡、遗传与变异,以及信号的传导等生命活动的现象和规律。

在实践应用方面,重视对实际问题的研究。

当今蓬勃发展的生物技术就是以细胞生物学为基础的。

现代生物技术包括细胞工程、基因工程、酶工程、发酵工程和蛋白质工程等。

细胞工程是指应用细胞生物学和分子生物学的原理和方法,通过某种工程学手段,在细胞水平或亚细胞水平上,按照人们的意愿来改变细胞内的遗传物质或获得细胞产品的一门科学技术。

细胞生物学

细胞生物学

细胞生物学细胞生物学(Cell biology)是一门从细胞的显微结构、超微结构和分子结构的各级水平研究细胞的结构与功能的关系,从而探索细胞生长、发育、分化、繁殖、遗传、变异、代谢、衰亡、及进化等各种生命现象规律的科学。

其核心问题是将遗传与发育在细胞水平上结合起来。

细胞生物学的历史可以划分为三个主要的阶段:第一阶段:从16世纪末—19世纪30年代,是细胞发现和细胞知识的积累阶段。

第二阶段:从19世纪30年代—20世纪中期,细胞学说形成,主要进行细胞显微形态的研究。

第三阶段:从20世纪50年代—60年代以来,以细胞超微结构、核型、带型研究为主要内容。

80年代分子克隆技术的成熟到当前,细胞生物学与分子生物学的结合愈来愈紧密,基因调控、信号转导、细胞分化和凋亡、肿瘤生物学等领域成为当前的主流研究内容。

“细胞学说”的基本内容:1、细胞是有机体,一切动植物都是由细胞发育而来, 并由细胞和细胞产物所构成。

2、每个细胞作为一个相对独立的单位,既有它“自己的”生命,又对与其它细胞共同组成的整体的生命有所助益。

3、新的细胞可以通过老的细胞繁殖产生。

一切有机体都由细胞构成(除病毒是非细胞形态的生命体外),细胞是构成有机体的基本单位。

细胞的基本共性:1、所有的细胞都有相似的化学组成2、脂—蛋白体系的生物膜:所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜,即细胞质膜。

3、DNA—RNA的遗传装置:所有的细胞都含有两种核酸,即DNA与RNA作为遗传信息复制与转录的载体。

4、作为蛋白质合成的机器─核糖体,毫无例外地存在于一切细胞内。

5、一分为二的分裂方式:所有细胞的增殖都以一分为二的方式进行分裂。

原核细胞没有核膜,DNA为裸露的环状分子,通常没有结合蛋白。

没有恒定的内膜系统,核糖体为70S型。

通常称为细菌.支原体:它是最小最简单的细胞。

大小0.2~0.3μm,可通过滤菌器、无细胞壁。

细胞膜中胆固醇含量较多,约占36%,凡能作用于胆固醇的物质(如二性霉素B、皂素等)均可引起支原体膜的破坏而使支原体死亡。

细胞生物学

细胞生物学

细胞生物学cell biology定义:从细胞整体、显微、亚显微和分子等各级水平上研究细胞结构、功能及生命活动规律的学科。

细胞生物学(cell biology)是在显微、亚显微和分子水平三个层次上,研究细胞的结构、功能和各种生命规律的一门科学。

细胞生物学由Cytology发展而来,Cytology是关于细胞结构与功能(特别是染色体)的研究。

现代细胞生物学从显微水平,超微水平和分子水平等不同层次研究细胞的结构、功能及生命活动。

在我国基础学科发展规划中,细胞生物学与分子生物学,神经生物学和生态学并列为生命科学的四大基础学科。

简介:细胞生物学是以细胞为研究对象, 从细胞的整体水平、亚显微水平、分子水平等三个层次,(斯.诺.美.A11-走在生物医学的最前沿)以动态的观点, 研究细胞和细胞器的结构和功能、细胞的生活史和各种生命活动规律的学科。

细胞生物学是现代生命科学的前沿分支学科之一,主要是从细胞的不同结构层次来研究细胞的生命活动的基本规律。

从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。

运用近代物理学和化学的技术成就和分子生物学的方法、概念,在细胞水平上研究生命活动的科学,其核心问题是遗传与发育的问题。

细胞生物学简史从研究内容来看细胞生物学的发展可分为三个层次,即:显微水平、超微水平和分子水平。

从时间纵轴来看细胞生物学的历史大致可以划分为四个主要的阶段:第一阶段:从16世纪后期到19世纪30年代,是细胞发现和细胞知识的积累阶段。

通过对大量动植物的观察,人们逐渐意识到不同的生物都是由形形色色的细胞构成的。

第二阶段:从19世纪30年代到20世纪初期,细胞学说形成后,开辟了一个新的研究领域,在显微水平研究细胞的结构与功能是这一时期的主要特点。

形态学、胚胎学和染色体知识的积累,使人们认识了细胞在生命活动中的重要作用。

1893年Hertwig的专著《细胞与组织》(Die Zelle und die Gewebe)出版,标志着细胞学的诞生。

细胞生物学

细胞生物学

名词解释原生质:原生质一词原指细胞的全部活性物质,从现代概念来说它包括质膜、细胞质和细胞核(或拟核)。

质膜:是细胞表面的单位膜。

细胞质:质膜与核被膜之间的原生质。

细胞器:具有特定形态和功能的显微或亚显微结构称为细胞器细胞质基质:细胞质中除细胞器以外的部分又称为或胞质溶胶,其体积约占细胞质的一半。

细胞核:真核细胞中最大的由膜包围的最重要的细胞器。

是遗传物质贮存、复制和转录的场所。

主要包括核被膜、核基质、染色质和核仁四部分。

脂质体:是一种人工膜。

在水中搅动后形成,双层或单层脂分子球体外在/外周膜蛋白:通过与膜脂的极性头部或内在膜蛋白的离子相互作用和形成氢键与膜的内、外表面弱结合的膜蛋白。

内在膜蛋白:又称整合蛋白、跨膜蛋白,部分或全部镶嵌在细胞膜中或内外两侧,以非极性氨基酸与脂双分子层的非极性疏水区相互作用而结合在质膜上。

脂锚定膜蛋白:是通过与之共价相连的脂分子插入膜的脂双分子中,从而锚定在细胞质膜上的一类膜蛋白。

膜骨架:质膜下起支撑作用的网络结构血影:是指人的红细胞经低渗处理后,质膜破裂剩下保持原来的形态和大小的细胞膜结构。

简单扩散小分子由高浓度区向低浓度区的自行穿膜运输。

不需要消耗细胞的代谢能量,也不需要专一的载体。

被动运输/协助扩散离子或小分子在浓度差或电位差的驱动下顺电化学梯度穿膜的运输方式。

主动运输特异性运输蛋白消耗能量使离子或小分子逆浓度梯度穿膜的运输方式。

胞吞作用通过质膜内陷形成膜泡,将物质摄入细胞内的现象。

包括吞噬和胞饮。

胞饮作用活细胞不靠通透性而且借助质膜向胞内生芽形成内吞小泡或主动运输方式从外界中摄取可溶性物质的过程。

吞噬作用吞噬细胞摄取颗粒物质的过程。

细胞质基质是除去能分辨的细胞器和颗粒以外的细胞质中胶态的基底物质。

内膜系统真核细胞中,在结构、功能上具有连续性的、由膜围成的细胞器或结构。

包括内质网、高尔基体、溶酶体、内体和分泌泡以及核膜等膜结构,但不包括线粒体和叶绿体。

内质网应激由其他因素导致得内质网功能的内稳态失衡, 形成内质网应激。

细胞生物学名词解释

细胞生物学名词解释

1.细胞生物学(cell biology):是研究和揭示细胞基本生命活动规律的学科,它从显微、亚显微及分子水平上研究细胞结构与功能,细胞增殖、分化、代谢、运动、衰老、死亡,以及细胞信号转导,细胞基因表达与调控,细胞起源与进化等重大生命过程2.细胞学说:①细胞是有机体,,一切动植物都是由细胞发育而来,并有细胞核细胞产物构成。

②每个细胞作为一个相对独立的单位,既有自己的生命,又对与其他细胞共同组成的整体的生命有所助益。

③新的细胞可以通过已存在的细胞繁殖产生。

3.免疫荧光技术:将免疫学方法(抗原抗体特异结合)与荧光标记技术结合起来,研究特异蛋白抗原在细胞内分布的方法。

利用荧光素所发的荧光可在荧光显微镜下检出,从而可对抗原进行细胞定位。

4.密度梯度离心:通过离心力的作用使样品中不同组分以不同的沉降率在密度梯度溶液中沉降,形成不同的沉降带,从而达到分离细胞组分的目的。

5.光脱色恢复技术(FPR):使用亲水性或亲脂性的荧光分子,如荧光素、绿色荧光蛋白与蛋白或脂质耦联,用于检测所标记分子在活体细胞表面或细胞内部的运动及其迁移速率。

6.原代细胞:是指从机体取出后立即培养的细胞,一般指培养的第2代至传10代以内的细胞。

7.接触抑制:动物细胞培养过程中,贴壁生长的正常二倍体细胞表面相互接触时分裂随之停止,这种现象称为细胞的接触抑制。

8.细胞融合:通过培养和诱导,两个或多个细胞融合为一个双核或多核细胞的过程称为细胞融合或细胞杂交。

9.细胞质膜:又称质膜,曾称细胞膜(cell membrane),是围绕在细胞最外层,由脂质、蛋白质和糖类组成的生物膜。

10.生物膜:质膜和细胞内膜在起源、结构和化学组成的等方面具有相似性,故总称为生物膜(biomembrane)11.流动镶嵌模型:一种描述生物膜的动态模型。

生物膜由膜脂和膜蛋白组成,具有流动性,膜蛋白镶嵌在脂双层或结合于脂双层表面。

12.脂筏模型:脂筏是以甘油磷脂的生物膜上,胆固醇和鞘脂形成相对有序的脂相,如同漂浮在脂双层上的"筏"一样,载着具有生物功能的膜蛋白。

细胞生物学

细胞生物学

细胞生物学一、名词解释1、细胞生物学:是研究细胞基本生命活动规律的科学,是在显微、亚显微和分子水平上,以研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,细胞信号传递,真核细胞基因表达与调控,细胞起源与进化等为主要内容的一门学科。

2、显微结构:在普通光学显微镜中能够观察到的细胞结构,直径大于0.2微米,如细胞的大小及外部形态、染色体、线粒体、中心体、细胞核、核仁等。

3、内在蛋白:分布于磷脂双分子层之间,以疏水氨基酸与磷脂分子的疏水尾部结合,结合力较强。

只有用去垢剂处理,使膜崩解后,才能将它们分离出来。

4、外在蛋白:又称外周蛋白,为水溶性蛋白,靠离子键或其它弱键与膜表面的蛋白质分子或脂分子极性头部非共价结合,易分离。

5、血影:红细胞经低渗处理后,质膜破裂,释放出血红蛋白和其他胞内可溶性蛋白后剩下的结构,是研究质膜的结构及其与膜骨架的关系的理想材料。

6、脂筏:是质膜上富含胆固醇和鞘磷脂的微结构域。

7、脂质体:是根据磷脂分子可在水相中形成稳定的脂双层膜的而制备的人工膜。

8、细胞外被:又称糖萼,细胞膜外表面覆盖的一层粘多糖物质,实际上是细胞表面与质膜中的蛋白或脂类分子共价结合的寡糖链,是膜正常的结构组分,对膜蛋白起保护作用,在细胞识别中起重要作用。

9、简单扩散:物质直接通过膜由高浓度向低浓度扩散,不需要细胞提供能量,也没有膜蛋白的协助。

10、协同扩散(促进扩散):物质通过与特异性膜蛋白的相互作用,顺浓度或电化学梯度跨膜转运,不需要细胞提供能量。

协同运输:通过消耗ATP间接提供能量,借助某种物质浓度梯度或电化学梯度为动力进行运输。

11、主动运输:物质逆浓度梯度或电化学梯度,由低浓度向高浓度一侧进行跨膜转运的方式,需要细胞提供能量,需要载体蛋白的参与。

12、被动运输:物质通过自由扩散或促进扩散,顺浓度梯度从高浓度向低浓度运输,运输动力来自运输物质的浓度梯度,不需要细胞提供能量。

13、间隙连接:是动物细胞间最普遍的细胞连接,是在相互接触的细胞之间建立的有孔道的连接结构,以利于小分子通过。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质网是一种特化的SER,称为肌质网,可贮存Ca2+,引起肌肉收缩。 2.内质网的功能:增大了细胞内膜的表面积、形成完整封闭体系重要生 物大分子合成基地等;蛋白质合成是主要功能; 蛋白质的修饰与加 工;新生肽的折叠与组装;脂类的合成 三、高尔基体的结构 是由数个扁平囊泡堆在一起形成的高度有极性的细胞器。常分布于内质 网与细胞膜之间,呈弓形或半球形。
3、膜间隙:是内外膜之间的腔隙,宽为6-8nm。标志酶为腺苷酸激 酶。功能:建立电化学梯度,含许多可溶性酶底物及辅助因子 4、基质 内膜和嵴包围的空间。含有:(1)催化三羧酸循环,脂肪 酸、丙酮酸和氨基酸氧化的酶类。标志酶为苹果酸脱氢酶。
(2)线粒体的遗传系统:DNA,及线粒体特有的核糖体,tRNAs、
rRNA、DNA聚合酶、氨基酸活化酶等。 (3)纤维丝和电子密度很大的致密颗粒状物质,内含Ca2+、Mg2+、 Zn2+等离子。功能:进行氧化反应, 主要是三羧酸循环 四、光合作用的简单途径 ㈠光反应包括: 原初反应、电子传递及光合磷酸化 ㈡碳同化反应(固氮反应): 光合碳同化、卡尔文循环、C4途径、景天酸途径 六、前导肽:将游离核糖体上合成的蛋白质的N-端信号称为导向信号, 或导向序列,由于这一段序列是氨基酸组成的肽,所以又称为转运肽。 2.前导肽转运蛋白时的特点 ●需要受体 ●从接触点进入 ●需要解折叠 ●需要消耗能量 ●需要转运肽酶 ●需要分子伴侣 3.线粒体前导肽的性质 ●长约20-80个氨基酸,通常带正电荷的碱性氨基酸(特别是精氨酸和赖 氨酸)含量较为丰富 ●序列中不含有或基本不含有带负电荷的酸性氨基酸,并且有形成两性 (既亲水又疏水)α螺旋的倾向。 有利于穿过线粒体的双层膜; ●对所牵引的蛋白质没有特异性要求,非线粒体蛋白连接上此类信号序 列,也会被转运到线粒体 ●有些信号序列位于蛋白质内部,完成转运后不被切除,还有些信号序 列位于前体蛋白C端 第七章 一、细胞内膜系统 概念:指细胞内在结构、功能及发生上相关的由膜包绕形成的细胞器或 细胞结构。包括核被膜、内质网、高尔基体及其形成的溶酶体、胞内体 和分泌泡等,以及其它细胞器如线粒体,质体和过氧化物酶体等膜包围 的细胞器(膜性细胞器)。 二、内质网的两种基本类型及功能 1.粗面内质网:RER呈扁平囊状,排列整齐,膜围成的空间称为ER腔 (lumen)。内质膜存在易位子,膜外有核糖体附着 光面内质网:SER呈分支管状或小泡状,无核糖体附着。肌肉细胞中的肌
一、细胞的发现 英国学者胡克于1665年用自制的显微镜观察了软木的薄片,第一次描述 了植物细胞的构造,因此人们认为细胞的发现是在1665年。此后不久, 荷兰学者列文虎克用设计较好的显微镜,观察了许多植物的活细胞与原 生生物,并于1674年在观察鱼的红细胞时描述了细胞核的结构。 二、细胞学说概念 细胞学说的基本内容是:①细胞是有机体,一切动植物都是有细胞发育 而来,并由细胞和细胞产物所构成。②每个细胞作为一个相对独立的单 位,既有它“自己的”生命,又对与其他细胞共同组成的整体的生命体 有所助益。③新的细胞可以通过已存在的细胞繁殖产生。 真核细胞的基本结构体系 ㈠以脂质及蛋白质成分为基础的生物膜结构体系 ㈡以核酸(DNA或RNA)与蛋白质为主要成分的遗传信息表达体系 ㈢由蛋白质分子组装构成的细胞骨架体系 3.病毒的繁殖:吸附、侵入、复制、重组、释放 一、相差显微镜工作原理:利用光的干涉和衍射现象,把透过标本的 可见光的光程差变成振幅差,从而提高了各种结构间的对比度,使各种 结构变得清晰可见。 荧光显微镜透射式照明原理 激发光源是通过聚光镜穿过标本材料来激发荧光的。常用暗视野集光 器,也可用普通集光器,调节反光镜使激发光转射和旁射到标本上。 三、免疫荧光技术:将免疫学方法与荧光标记技术相结合用来研究特异 蛋白抗原在细胞内分布的方法。快速、灵敏、有特异性,但其分辨率有 限。常用的萤光素有异硫氰酸荧光素、罗丹明等。荧光抗体的制备,标 本的处理,免疫染色,观察记录。 四、激光扫描共焦显微镜 原理:用激光作扫描光源,逐点、逐行、逐面快速扫描成像,扫描的激 光与荧光收集共用一个物镜,物镜的焦点即扫描激光的聚焦点,也是瞬 时成像的物点。系统经一次调焦,扫描限制在样品的一个平面内。调焦 深度不一样时,就可以获得样品不同深度层次的图像,这些图像信息都 储于计算机内,通过计算机分析和模拟,就能显示细胞样品的立体结 构. 电子显微镜原理
化学突触:神经递质(如乙酰胆碱)由突触前膜释放,经突触间隙扩散 到突触后膜,作用于特定的靶细胞。 2、接触性依赖的通讯:细胞间直接接触,信号分子与受体都是细胞的 跨膜蛋白。 3、间隙连接或胞间连丝实现代谢耦联或电耦联(电突触) 二、受体 概念:多为糖蛋白,是一种能够识别和选择性结合某种配体的大分子, 当与配体结合后,通过信号转导作用将胞外信号转换为化学或物理信 号,以启动一系列过程,最终表现为生理效应。类型: (1)细胞内受体: 为胞外亲脂性信号分子所激活,如胞内的甾体类激素受 体。激素激活的基因调控蛋白(胞内受体超家族) (2)细胞表面受体: 为胞外亲水性信号分子所激活,细胞表面受体分属三 大家族:①离子通道藕联的受体②G蛋白耦联的受体③酶耦联的受 体。 三、第二信使学说: 概念:细胞外化学物质(第一信使)不能进入细胞,它作用于细胞 表 面受体,而导致产生胞内第二信使,从而激发一系列生化反应,最后产 生一定的生物学效应,第二信使的降解使其信号作用终止。第二信使有 cAMP、cGMP、三磷酸 肌醇(IP3)和二酰基甘(DG),Ca2+被称为 第三信使是因为其释放有赖于第二信使 。 四、NO的作用机制 NO没有专门的储存及释放调节机制,靶细血管内皮细胞接受乙酰胆 碱,引起胞内Ca2+浓度升高,激活一氧化氮合酶,细胞释放NO,NO扩 散进入平滑肌细胞,与胞质鸟苷酸环化酶活性中心的Fe2+结合,改变 酶的构象,导致酶活性的增强和cGMP合成增多。cGMP可降低血管平滑 肌中的Ca2+离子浓度。引起血管平滑肌的舒张,血管扩张、血流通畅。
六、细胞内特异核酸的定位与定性的几种方法 1.原位杂交:用标记的核酸探针通过分子杂交确定特异核苷酸序列在染 色体上或在细胞中位置的方法。 2.光镜水平的原位杂交技术(同位素标记或荧光素标记的探针) 3.电镜原位杂交技术(采用生物素或地高辛标记探针,与抗生物素抗体 相连的胶体金标记进行检测)。 七、放射自显影技术 原理:将放射性同位素标记的化合物导入生物体内,经过一段时间后, 制取切片,涂上卤化银乳胶,经放射性曝光,使乳胶感光。 步骤:同位素标记的大分子前体物掺入细胞(标记时间:持续标记和脉 冲标记)—制片—放射自显影—显影—定影—观察。 八、 单克隆抗体技术 概念:将产生抗体的B淋巴细胞与骨髓瘤细胞杂交,获得既能产生抗 体,又能无限增殖的杂种细胞,并生产抗体的技术。 三、膜蛋白类型 1.整合膜蛋白(内在膜蛋白):为跨膜蛋白,是两性分子,整合蛋白约 占膜蛋白的70-80%。与膜的结合非常紧密,只有用去垢剂才能从膜上洗 涤下来。 2.外周膜蛋白(外在膜蛋白):靠离子键或其它较弱的键与膜表面的蛋 白质分子或膜脂分子的亲水部分结合。 3.脂锚定膜蛋白:又称脂连接蛋白 四、去垢剂 1.概念:去垢剂是一端亲水、另一端疏水的两性小分子,是分离与研究膜 蛋白的常用试剂。 2.类型:离子型去垢剂(SDS)和非离子型去垢剂曲拉酮(Triton X-100) 五、红细胞膜骨架的构成: 血影蛋白四聚体游离端与短肌动蛋白纤维(约13~15单体)相连,形成 血影蛋白网络。通过两个锚定点固定在质膜下方;通过带4.1蛋白与血 型糖蛋白连结;通过锚蛋白与带3蛋白相连。这一骨架系统赋与了红细
胞质膜的刚性与韧性,得以几百万次地通过比它直径还小的微血管、动 脉、静脉。膜骨架是质膜下纤维蛋白组成的网架结构;位于细胞质膜下 约0.2μm厚的溶胶层,可维持质膜的形状并协助质膜完成多种生理功 能。成熟的哺乳动物血红细胞没有核和内膜系统,是研究膜骨架的理想 材料。 一、概念
1. 协助扩散:也称促进扩散,是各种极性分子和无机离子,如糖、氨基 酸、核苷酸及细胞代谢物等顺其浓度梯度或电化学梯度的跨膜转运,不 需要细胞提供能量,但需膜转运蛋白的协助。 2.主动运输 定义:主动转运是由载体蛋白所介导的物质逆浓度梯度或电化学梯度的 跨模转运方式,需要消耗能量。 类型:根据主动转运过程所需能量来源的不同可归纳为: 由ATP直接提供能量(ATP驱动泵)、间接提供能量(耦联转运蛋白)以 及光能驱动的主动运输三种基本类型。 3. ABC 超家族: ATP结合盒式蛋白是古老而庞大的家族,是一类ATP驱 动泵。ABC成员之间具有很多共性,如相似的物质转运功能和结构。 4.协同转运:是一类由Na-K泵(或H泵)与载体蛋白协同作用,靠间接 提供能量完成的主动运输方式。根据物质运输方向与离子沿浓度梯度的 转移方向,协同运输又可分为:同向协同与反向协同。 2. P-型离子泵、V-型质子泵和F-型质子泵之间的区别 (1)V-型质子泵:又称膜泡质子泵,存在于动物细胞胞内体、溶 酶 体膜、破骨细胞和某些肾小管的质膜以及植物、酵母和其他真菌细 胞液泡膜上,利用ATP水解供能从细胞质基质中逆H+电化学梯度泵出H +进入细胞器,以维持细胞质基质pH中性和细胞器内pH酸性。 (2)F-型质子泵:又称H+-ATP合成酶(F1F0-ATPase),存在于线 粒体内膜、植物细胞类囊体膜和细菌质膜上, H+顺浓度梯度运动,所 释放的能量耦联ATP合成。如线粒体磷酸化和叶绿体光合磷酸化。 (3)P型离子泵:载体蛋白利用ATP使自身磷酸化,发生构象的改变来 转移质子或其它离子,如植物细胞膜上的H+泵、动物细胞的Na+-K+泵、 Ca2+离子泵,H+-K+ATP酶(位于胃表皮细胞,分泌胃酸)。存在于真核 细胞的细胞膜上。 三、胞饮作用与吞噬作用主要区别
2.电子载体:在电子传递过程中与释放的电子结合并将电子传递下去的
物质称为电子载体。
二、线粒体的超微结构及各部的功能、标志酶
基质:含三羧酸循环酶系、线粒体基因表达酶系等以及线粒体DNA, RNA,核糖体 1、外膜 含40%的脂类和60%的蛋白,具有porin构成的亲水通道,通透 性较高,允许分子量5KD以下的分子通过,标志酶为单胺氧化酶。 2、内膜 高度不通透性,仅允许不带电荷的小分子物质通过。氧化磷酸 化的电子传递链位于内膜。标志酶为细胞色素C氧化酶。内膜向线粒体 内室折叠形成嵴,能扩大内膜表面积,含有与能量转换相关的蛋白。
相关文档
最新文档