玻璃纤维增强环氧树脂基复合材料的制备
(完整word版)玻璃纤维增强环氧树脂基复合材料的制备
综合实验研究玻璃纤维增强环氧树脂基复合材料的制备院系:航空航天工程学部专业:高分子材料与工程专业指导教师:于祺学生姓名:王娜目录第1章概述1.1 玻璃纤维增强环氧树脂基复合材料的研究现状 1.2 本次试验的目的及方法第2章手糊法制备玻纤/环氧树脂复合材料2.1实验原料2.1.1环氧树脂2.1.2玻璃纤维2.1.3咪唑固化剂2.1.4活性稀释剂2.2手糊成型简介2.4实验部分2.4.1实验仪器2.4.2实验步骤第3章力学性能测试3.1剪切强度3.2弯曲强度3.3实验数据的分析3.3.1 浸胶的用量及均匀度3.3.2 固化时间与温度的影响3.3.3 活性稀释剂的用量第4章结论与展望4.1结论与展望参考文献第1章概述1.1 玻璃纤维增强环氧树脂复材的研究现状EP/玻璃纤维(GF)复合材料是目前研究比较成熟、应用最广的一种复合材料。
EP/GF复合材料具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛、工艺性好、加工成型简便、生产效率高等特点,并具有材料可设计性及特殊的功能性如屏蔽电磁波、消音等特点,现已成为国民经济、国防建设和科技发展中无法代替的重要材料。
且复合材料的研究水平已成为一个国家或地区科技经济水平的标准之一。
目前美,日,西欧的水平较高,北美,欧洲,日本的产量分别占33%,32%,30%。
毋庸置疑,EP/玻璃纤维(GF)复合材料的质量轻,高强度等优于金属的特性,会在某些领域更广泛的使用,目前复材的粘接性能与力学性能成为主要的研究方面。
目前主要的成型方法有手糊成型,缠绕成型,热压管成型,RTM成型,拉挤成型。
1.2 本次试验的目的及方法实验由学生自行设计采用一种固化体系,用手糊成型方法制备EP/玻璃纤维(GF)复合材料,再测量材料的力学性能如,弯曲,剪切。
目的在于1,了解材料科学实验所涉及到的设备的基本使用。
2,掌握环氧树脂固化体系的配置及设计。
3,对手糊成型操作了解,及查找文献完成论文的能力。
复合材料作业玻璃纤维增强环氧树脂
复合材料作业玻璃纤维增强环氧树脂引言:玻璃纤维增强环氧树脂是一种常见的复合材料,由玻璃纤维和环氧树脂组成。
它在航空航天、汽车工程、建筑等领域具有广泛的应用。
本文将介绍玻璃纤维增强环氧树脂的制备方法、性能特点以及应用领域。
一、制备方法:玻璃纤维增强环氧树脂的制备主要包括以下几个步骤:1.玻璃纤维预处理:将原始玻璃纤维进行处理,去除杂质和表面粘结剂,使其表面更容易与环氧树脂结合。
2.玻璃纤维浸渍:将经过预处理的玻璃纤维浸入环氧树脂中,使其充分浸渍,以增强纤维与环氧树脂的结合强度。
3.复合材料成型:将浸渍了环氧树脂的玻璃纤维进行成型,可以采用压模、注塑、纺丝等方法。
4.固化处理:通过加热或添加固化剂等方式使环氧树脂发生固化反应,从而形成坚固的复合材料。
二、性能特点:玻璃纤维增强环氧树脂具有以下几个性能特点:1.高强度:玻璃纤维的强度高,能够有效增强复合材料的强度,增加材料的承载能力。
2.轻质:相比于金属材料,玻璃纤维增强环氧树脂具有较低的密度,使得制品更加轻巧,有助于提高机械设备的工作效率。
3.耐腐蚀性:玻璃纤维增强环氧树脂具有良好的耐腐蚀性能,可以在潮湿、酸碱等恶劣环境中长期使用。
4.耐热性:环氧树脂的耐热性较好,可以在一定范围内承受高温环境。
5.绝缘性:由于环氧树脂具有良好的绝缘性能,玻璃纤维增强环氧树脂常被用作绝缘材料。
三、应用领域:玻璃纤维增强环氧树脂具有广泛的应用领域,主要包括以下几个方面:1.航空航天领域:玻璃纤维增强环氧树脂可以用于制造航空器的机身、翼面、尾翼等部件,其轻质高强的特点可以提高航空器的飞行性能。
2.汽车工程:玻璃纤维增强环氧树脂可以用于汽车车身、座椅等部件的制造,其高强度和轻质特点可以提高汽车的安全性和节能性。
3.建筑领域:玻璃纤维增强环氧树脂可以用于建筑结构的加固和修复,如桥梁、楼梯等,其耐腐蚀性和耐久性可以延长结构的使用寿命。
4.电子工程:玻璃纤维增强环氧树脂可以用于制造电子产品的外壳、底座等部件,其绝缘性能可以保护电子元器件的安全运行。
玻璃纤维增强环氧树脂复合材料的力学性能研究
玻璃纤维增强环氧树脂复合材料的力学性能研究玻璃纤维增强环氧树脂复合材料(GF/EP)是一种具有较高强度和刚度的复合材料,具有广泛的应用领域,如航空航天、汽车、建筑等。
本文旨在研究GF/EP复合材料的力学性能,包括拉伸性能、弯曲性能和冲击性能。
首先,我们需要介绍GF/EP复合材料的制备方法。
一般来说,GF与EP树脂通过浸渍,层叠和固化的过程制备成复合材料。
在浸渍过程中,将玻璃纤维预先浸泡在环氧树脂中,使其充分浸润纤维,然后将多层的浸渍玻璃纤维叠加在一起,形成预定形状的复合材料。
最后,通过热固化或辐射固化使复合材料固化。
接下来,我们将研究GF/EP复合材料的拉伸性能。
拉伸性能主要包括拉伸强度和拉伸模量。
拉伸强度是指材料在拉伸过程中的最大承载能力,而拉伸模量是指材料在拉伸过程中的刚度。
通过拉伸试验可以获得拉伸曲线,通过分析拉伸曲线可以计算出拉伸强度和拉伸模量。
然后,我们将研究GF/EP复合材料的弯曲性能。
弯曲性能主要包括弯曲强度和弯曲模量。
弯曲强度是指材料在弯曲过程中的最大承载能力,而弯曲模量是指材料在弯曲过程中的刚度。
通过弯曲试验可以获得弯曲曲线,通过分析弯曲曲线可以计算出弯曲强度和弯曲模量。
最后,我们将研究GF/EP复合材料的冲击性能。
冲击性能主要包括冲击强度和冲击韧性。
冲击强度是指材料在冲击过程中吸收的最大能量,而冲击韧性是指材料在冲击过程中的延展性能。
通过冲击试验可以获得冲击曲线,通过分析冲击曲线可以计算出冲击强度和冲击韧性。
通过以上研究,可以得出GF/EP复合材料的力学性能。
这些性能可以与其他材料进行比较,评估复合材料的优势。
此外,还可以通过改变制备工艺或改变纤维含量等方式来改善复合材料的力学性能。
综上所述,本文研究了GF/EP复合材料的力学性能,包括拉伸性能、弯曲性能和冲击性能。
通过对这些性能的研究,可以评估复合材料的性能,并为进一步提高复合材料的性能提供参考。
玻璃纤维增强环氧树脂基复合材料
玻璃纤维增强环氧树脂基复合材料
1.引言
2.制备方法
(1)玻璃纤维的表面处理:通常采用短时间的表面处理方法,如硅溶胶等,以增加表面粗糙度,提高纤维与树脂基体的黏结性。
(2)树脂基体的制备:将环氧树脂与固化剂按一定比例混合,并加热固化,形成坚固的树脂基体。
(3)玻璃纤维与树脂基体的复合:将表面处理过的玻璃纤维与树脂基体进行复合,通常采用层叠堆叠法或注塑法等,以保证纤维的均匀分布。
3.性能特点
(1)高强度:玻璃纤维的强度高于一般金属材料,使得复合材料具有很高的强度。
(2)轻质:相较于金属材料,玻璃纤维增强环氧树脂基复合材料具有更轻的重量。
(3)耐腐蚀性好:树脂基体具有良好的耐酸碱、耐油脂等性能,使得复合材料在恶劣环境下也有很好的稳定性。
(4)绝缘性好:玻璃纤维增强环氧树脂基复合材料具有良好的绝缘性能,适用于电气领域的应用。
4.应用领域
(1)航空航天领域:由于复合材料具有轻质、高强度的特点,被广泛应用于飞机、导弹、航天器等的结构部件。
(2)汽车制造领域:复合材料可以减轻汽车的重量,提高燃油效率,同时具有良好的耐腐蚀性能,适用于汽车外壳、底盘等部件的制造。
(3)建筑领域:复合材料的轻质、高强度特点使其成为建筑结构材料的理想选择,如用于制造建筑外墙板、屋顶等。
(4)电子领域:由于玻璃纤维增强环氧树脂基复合材料具有良好的绝缘性能,被广泛应用于电子器件的外壳、电路板等制造。
5.总结
玻璃纤维增强环氧树脂基复合材料具有突出的性能特点和广泛的应用领域,是一种重要的结构材料。
在未来的发展中,我们可以进一步研究和改进制备方法,提高复合材料的性能,拓宽应用领域,以满足不同领域对材料的需求。
《玻璃纤维-环氧树脂复合材料力学性能研究》
《玻璃纤维-环氧树脂复合材料力学性能研究》篇一玻璃纤维-环氧树脂复合材料力学性能研究一、引言复合材料是近年来科学研究和技术开发的重要领域,具有卓越的物理、化学和力学性能。
其中,玻璃纤维/环氧树脂复合材料因具有优异的强度、刚度、耐腐蚀性等特点,被广泛应用于航空、航天、汽车、建筑等多个领域。
因此,对其力学性能的深入研究具有重要意义。
本文将探讨玻璃纤维/环氧树脂复合材料的力学性能,包括其拉伸性能、弯曲性能、冲击性能等,以期为相关领域的研究和应用提供理论依据。
二、材料与方法2.1 材料实验所使用的玻璃纤维/环氧树脂复合材料由高质量的玻璃纤维和环氧树脂基体组成。
玻璃纤维具有高强度、高模量等特点,而环氧树脂基体则具有良好的粘结性和耐腐蚀性。
2.2 方法(1)样品制备:将玻璃纤维与环氧树脂按照一定比例混合,制备成复合材料样品。
(2)力学性能测试:采用万能材料试验机进行拉伸性能测试,采用三点弯曲法进行弯曲性能测试,采用冲击试验机进行冲击性能测试。
(3)数据分析:对实验数据进行统计分析,计算各项力学性能指标的平均值、标准差等。
三、结果与分析3.1 拉伸性能通过拉伸性能测试,我们发现玻璃纤维/环氧树脂复合材料具有较高的拉伸强度和拉伸模量。
这主要归因于玻璃纤维的高强度和高模量特性,以及其与环氧树脂基体之间的良好界面结合。
此外,适当的纤维含量和分布也对提高复合材料的拉伸性能起到了重要作用。
3.2 弯曲性能在弯曲性能测试中,玻璃纤维/环氧树脂复合材料表现出较高的弯曲强度和弯曲模量。
这得益于玻璃纤维的优异性能以及其在复合材料中的有效承载作用。
此外,环氧树脂基体的良好韧性和粘结性也有助于提高复合材料的弯曲性能。
3.3 冲击性能冲击性能测试结果表明,玻璃纤维/环氧树脂复合材料具有较好的冲击强度和韧性。
这主要归因于玻璃纤维的增强作用以及环氧树脂基体的能量吸收能力。
此外,复合材料的微观结构对其冲击性能也有一定影响。
四、讨论通过对玻璃纤维/环氧树脂复合材料的力学性能研究,我们可以得出以下结论:(1)玻璃纤维的增强作用对复合材料的力学性能具有显著影响。
玻璃纤维/环氧树脂纺织复合材料水分散法制备
中图分类号 : S0 T 11
文献标识码 : A
文章编号:10 —56 ( 0) 0 0 -0 0 9 102 8 - 0 5 3 0
不 含 或 少 含 挥 发 性 有 机 化 合 物 (o ), v c 以及 不 含 有
玻 璃 纤 维 增 强 环 氧 树 脂 复 合 材 料 是 指 以环 氧
1 实 验 .
11 主 要原 料 . 。
水 性 环氧 树脂 (B E 4,浙江 安邦 新材 料发 展 A — 4) 有 限公 司 ;水 性 环氧 树脂 固化  ̄ (B HG) U — I A ,浙江 安
磨性 、高耐腐蚀性等等 。然而 ,在工业上或试验 中 使 用 的这些 主要 制 备技 术有 一 个共 同的缺 点 ,就 是 用有毒性有机溶剂作介质 , 生产过程会给环境带来 较 大 的污染 ,特 别是 所用 的 溶剂 的挥 发性 很 高 ,对 操作_ 人的健康影响很大 , T 工业生产的废水排放也
范 围如下 : ( )覆铜 箔板 f 玻璃 纤 维基 板) 风 1 电子 和 电 叶片 ( 2) 航 空航 天结 构 材 料 。 ( 3)运 动 器 材
用环氧树脂为水性环氧树脂 , 水性环氧树脂含有较 少 的有 机溶 剂 ,具 有 低 V C,气 味较 小 ,环 境污染 O 小, 没有失火隐患 ; 生产及施工设备可以用水清洗 , 操 作 安 全 、方便 等优 点 ,以水 分 散化 后 的环 氧树脂 作 为基料来制备复合材料 , 将会很大的改善人们的 工作和生活环境 ,并且在 国内外几乎没见过有 以水 分散法工艺来制备环氧树脂复合材料 “。 本文将探索 玻璃布增强环 氧树脂复合材料 的 水分散法制备工艺条件及成型的工艺参数。
较 高 ,浸 渍 时间为 4 秒左 右 ,浸渍 次 数为 4 5 次 ;复合 材 料 制备 较佳 的工 艺参 数为模 压 压 力 0 N
环氧树脂增强玻璃纤维
环氧树脂增强玻璃纤维
在现代工业领域中,环氧树脂增强玻璃纤维由于其优异的性能和广泛的应用领域而备受青睐。
环氧树脂是一种聚合物材料,具有高度的耐腐蚀性和机械强度,而玻璃纤维则是一种优秀的增强材料,两者结合后形成的复合材料,在航空航天、汽车制造、建筑等领域有着广泛的应用。
环氧树脂增强玻璃纤维的制备过程中,首先将环氧树脂和硬化剂按一定比例混合,形成了环氧树脂基体。
然后将玻璃纤维布与环氧树脂基体结合在一起,经过一定的压力和温度条件下固化成型,形成最终的复合材料产品。
这种制备方法简单易行,且能够灵活地控制材料的性能和形状。
环氧树脂增强玻璃纤维复合材料具有优秀的机械性能,如高强度、高模量、优异的耐磨性和耐疲劳性能,使其在航空航天领域中得到广泛应用。
例如,飞机的结构件和内饰部件中常使用环氧树脂增强玻璃纤维复合材料,能够减轻飞机自重,提高飞行效率,同时还能提供良好的抗冲击性能和阻燃性能,提高飞机的安全性能。
此外,环氧树脂增强玻璃纤维复合材料还在汽车制造领域有着广泛的应用。
如汽车车身结构件、车轮罩、内饰件等都可以采用这种复合材料,能够减轻汽车的整体重量,提高燃油效率,同时还能增加车身的强度和刚性,提升汽车的安全性能。
在建筑领域,环氧树脂增强玻璃纤维复合材料也有着重要的应用价值。
例如,使用这种材料制作的墙体、地板、屋顶等部件,具有优异的防水性能和耐候性能,能够有效延长建筑物的使用寿命,提高建筑物的整体质量。
综上所述,环氧树脂增强玻璃纤维复合材料具有广泛的应用前景和巨大的市场需求。
随着科技的发展和工艺水平的提高,相信这种优秀的复合材料在未来会有更多的创新和应用,为各个领域的发展带来新的机遇和挑战。
纤维增强树脂基复合材料增材制造技术
纤维增强树脂基复合材料增材制造技术一、概述纤维增强树脂基复合材料(Fiber Reinforced Polymer,FRP)是由纤维和树脂组成的一种新型材料。
它具有轻质、高强度、耐腐蚀、耐疲劳等优点,在航空、航天、汽车、建筑等领域得到了广泛应用。
而增材制造技术(Additive Manufacturing,AM)则是近年来快速发展起来的一种新型生产方式,它可以通过逐层堆叠材料的方式直接制造出所需产品。
本文将介绍纤维增强树脂基复合材料的增材制造技术。
二、纤维增强树脂基复合材料1. 纤维纤维是构成FRP的重要组成部分,主要包括玻璃纤维、碳纤维和芳纶纤维等。
其中,碳纤维具有高强度、高模量和低密度等优点,但价格较高;玻璃纤维则价格相对较低,但强度和模量较低。
芳纶纤维则具有良好的耐化学性能和耐高温性能。
2. 树脂树脂是FRP的另一个重要组成部分,主要包括环氧树脂、酚醛树脂、聚酰亚胺树脂等。
其中,环氧树脂具有良好的粘结性能和耐热性能,被广泛应用于航空、航天等领域;酚醛树脂则具有良好的耐化学性能和耐高温性能;聚酰亚胺树脂则具有优异的力学性能和耐高温性能。
3. 制造工艺FRP的制造工艺主要包括手工层叠法、自动化层叠法和增材制造技术等。
其中,增材制造技术是一种新型生产方式,它可以通过逐层堆叠材料的方式直接制造出所需产品。
三、增材制造技术1. 概述增材制造技术是一种新型生产方式,它可以通过逐层堆叠材料的方式直接制造出所需产品。
与传统加工方式相比,增材制造技术具有快速、高效、灵活等优点,在航空、航天、汽车、建筑等领域得到了广泛应用。
2. 增材制造技术的分类增材制造技术主要包括激光烧结成型(Selective Laser Sintering,SLS)、激光熔化成型(Selective Laser Melting,SLM)、电子束成型(Electron Beam Melting,EBM)和喷墨打印成型等。
其中,激光烧结成型和激光熔化成型是目前应用最广泛的两种增材制造技术。
fr4是什么材料
fr4是什么材料FR-4是一种常见的玻璃纤维增强环氧树脂复合材料,它具有优异的绝缘性能、机械强度和耐热性,被广泛应用于电子电气领域。
本文将从FR-4的材料特性、制备工艺、应用领域等方面进行介绍。
首先,FR-4材料的主要成分是玻璃纤维布和环氧树脂。
玻璃纤维布是由玻璃纤维经过编织而成,具有优异的机械强度和耐热性;而环氧树脂是一种常见的高分子材料,具有良好的粘接性和耐化学腐蚀性。
将玻璃纤维布浸渍在环氧树脂中,再经过高温高压固化而成的复合材料就是我们常见的FR-4材料。
其次,FR-4材料具有优异的绝缘性能和机械强度。
由于玻璃纤维布的加入,FR-4材料具有较高的绝缘性能,能够有效地阻隔电流的传导。
同时,环氧树脂的固化使得材料具有较高的机械强度,能够承受一定的拉伸、弯曲和压缩等力学载荷。
这使得FR-4材料在电子电气领域得到了广泛的应用。
再次,FR-4材料的制备工艺相对简单,成本较低。
制备FR-4材料的主要工艺包括玻璃纤维布的预处理、浸渍、固化等步骤。
相比于其他高性能复合材料,FR-4的制备工艺更加成熟,生产成本也相对较低,这使得FR-4材料在电子电气行业中具有一定的竞争优势。
最后,FR-4材料在电子电气领域有着广泛的应用。
它常被用作印制电路板(PCB)的基板材料,用于支撑和连接电子元器件。
此外,FR-4材料还被用于制作绝缘垫、绝缘套管、绝缘零件等,以满足电气设备对绝缘性能和机械强度的要求。
综上所述,FR-4是一种具有优异绝缘性能、机械强度和耐热性的复合材料,其制备工艺简单,成本较低,广泛应用于电子电气领域。
它在现代电子工业中扮演着重要的角色,为电子设备的性能提升和稳定运行提供了重要支撑。
纤维增强树脂基复合材料的制备工艺
纤维增强树脂基复合材料的制备工艺一、引言纤维增强树脂基复合材料是一种结构性材料,具有高强度、高刚度、轻质化等优点,广泛应用于航空航天、汽车工业、体育器材等领域。
本文将介绍纤维增强树脂基复合材料的制备工艺。
二、纤维增强树脂基复合材料的组成纤维增强树脂基复合材料由纤维和树脂组成。
其中,纤维可以是玻璃纤维、碳纤维、芳纶纤维等;树脂可以是环氧树脂、聚酰亚胺树脂等。
三、制备工艺1. 玻璃纤维增强环氧树脂基复合材料的制备工艺(1)预处理:将玻璃纤维切割成所需长度,然后进行表面处理,去除油污和灰尘。
(2)涂覆:将环氧树脂涂覆在玻璃纤维表面,使其充分浸润。
(3)层数叠加:将涂覆好树脂的玻璃纤维层叠加在一起,形成所需厚度。
(4)热固化:将叠加好的玻璃纤维和树脂放入模具中,进行热固化处理,使其成型。
(5)后处理:将成型后的复合材料进行修整、打磨等后处理工艺,使其达到所需尺寸和表面光洁度。
2. 碳纤维增强聚酰亚胺树脂基复合材料的制备工艺(1)预处理:将碳纤维切割成所需长度,然后进行表面处理,去除油污和灰尘。
(2)涂覆:将聚酰亚胺树脂涂覆在碳纤维表面,使其充分浸润。
(3)层数叠加:将涂覆好树脂的碳纤维层叠加在一起,形成所需厚度。
(4)热固化:将叠加好的碳纤维和树脂放入模具中,在高温高压下进行热固化处理,使其成型。
(5)后处理:将成型后的复合材料进行修整、打磨等后处理工艺,使其达到所需尺寸和表面光洁度。
四、结论纤维增强树脂基复合材料的制备工艺包括预处理、涂覆、层数叠加、热固化和后处理等步骤。
不同的纤维和树脂需要采用不同的制备工艺。
制备出的复合材料具有高强度、高刚度、轻质化等优点,在航空航天、汽车工业、体育器材等领域有广泛应用前景。
空心玻璃纤维增强热固性树脂基复合材料的制备及力学性能研究
空心玻璃纤维增强热固性树脂基复合材料的制备及力学性能研究1. 引言在当今材料科学领域,复合材料的研究与应用已经成为一个热门话题。
复合材料以其优异的力学性能和轻质化特性在航空航天、汽车、建筑等领域得到了广泛应用。
空心玻璃纤维增强热固性树脂基复合材料作为一种具有很好前景的新型材料,在结构材料领域引起了人们的关注。
本文将探讨制备方法及力学性能研究的相关内容。
2. 制备方法2.1 空心玻璃纤维的制备空心玻璃纤维是空心树脂基复合材料的主要增强相。
通常采用湿法纺丝的方法制备空心玻璃纤维,过程包括溶胶准备、纺丝、拉伸和固化。
首先,通过合适的化学反应制备出溶胶,然后将溶胶通过细孔喷嘴纺丝得到玻璃纤维。
接下来,对纤维进行拉伸处理,使其成为空心结构。
最后,在适当的温度下固化纤维,得到空心玻璃纤维。
2.2 树脂基复合材料的制备在制备空心玻璃纤维的基础上,将其与热固性树脂进行复合,制备出热固性树脂基复合材料。
常用的热固性树脂有环氧树脂、酚醛树脂等。
首先,将树脂与硬化剂按照一定比例混合,并加热搅拌使其充分混合均匀。
然后,将混合物涂布在已经制备好的空心玻璃纤维表面,通过热固化反应使其固化成复合材料。
3. 力学性能研究3.1 力学性能测试方法为了评价空心玻璃纤维增强热固性树脂基复合材料的力学性能,需要进行一系列的力学性能测试。
常用的测试方法包括拉伸试验、弯曲试验和冲击试验等。
拉伸试验用于评估复合材料的强度和延伸性能,弯曲试验用于评估其刚度和韧性,冲击试验用于评估其抗冲击性能。
3.2 力学性能结果分析通过对力学性能测试数据的分析可以得出以下结论:空心玻璃纤维的加入显著提高了热固性树脂基复合材料的强度和刚度。
由于空心结构的存在,复合材料的密度降低,使其具有轻质化的特性。
此外,空心玻璃纤维的引入还提高了复合材料的耐冲击性能,使其能够承受更大的冲击载荷而不发生破损。
这些结果表明,空心玻璃纤维增强热固性树脂基复合材料具有很好的力学性能,适用于各种结构应用领域。
玻璃纤维增强环氧树脂复合材料
玻璃纤维增强环氧树脂复合材料
近年来,玻璃纤维增强环氧树脂复合材料在工程领域得到了广泛应用,其优异
的性能使其成为一种重要的结构材料。
玻璃纤维增强环氧树脂复合材料是通过在环氧树脂基体中添加玻璃纤维增强材料制备而成,具有高强度、轻质、耐腐蚀、耐磨损等优点。
首先,玻璃纤维增强环氧树脂复合材料的高强度是其最显著的特点之一。
玻璃
纤维作为增强材料,具有很高的强度和刚度,能够有效地提高材料的承载能力和耐疲劳性,使复合材料能够在各种恶劣的环境下使用,如航空航天领域和汽车制造领域等。
其次,玻璃纤维增强环氧树脂复合材料具有优异的耐腐蚀性能。
玻璃纤维本身
是一种无机非金属材料,具有良好的耐化学腐蚀性。
而环氧树脂具有良好的耐腐蚀性和抗老化性能。
因此,玻璃纤维增强环氧树脂复合材料不易受到外界环境的侵蚀,能够长时间保持材料的性能稳定。
此外,玻璃纤维增强环氧树脂复合材料还具有优异的耐磨损性能。
玻璃纤维的
硬度高,能够有效抵抗外界颗粒的磨损,延长材料的使用寿命。
同时,环氧树脂具有一定的自润滑性,减少摩擦损耗,提高材料的耐磨损性能。
总的来说,玻璃纤维增强环氧树脂复合材料具有高强度、耐腐蚀、耐磨损等优
异性能,适用于各种工程领域。
随着材料科学的不断发展,玻璃纤维增强环氧树脂复合材料的性能将不断提升,为工程结构的设计和制造提供更多选择和可能性。
玻璃纤维增强环氧树脂基复合材料
(FRP)广泛应用于制造工业零部件和印刷电路板等产业 。
截止2010年1月底全国共有61家玻璃钢生产企业(其中包括
四川省江南玻璃钢有限公司,重庆市君豪玻璃钢有限责任公
司)
整理课件
2
为什么采用环氧树脂做基体?
环氧树脂固化收缩率代低,仅1%-3%,而不饱和聚酯树脂却高达7%8%;粘结力强;有B阶段,有利于生产工艺; 可低压固化,挥发份甚低; 固化后力学性能、耐化学性佳,电绝缘性能良好。
弯曲模量 压缩强度
34.48GPa
310.3MPa
331.0MPa
整理课件
3
纤维增强环氧树脂复合材料成型工艺简介
目前在生产上经常采用的成型方法有16种:
1、手糊成型——湿法铺层成型
10、压力袋成型
2、夹层结构成型(手糊法、机械法)11、树脂注射和树脂传递RTM模塑成
3、模压成型
型
4、层压成型
12、卷制成型
1)、制品表面发粘
原因1:空气湿度太大,水对树脂起阻聚作用 解决办法: (1)在树脂中加入0.02%左右的液体石蜡;
(2)在树脂中掺加5%的异腈酸酯 ; (3)制品表面覆盖薄膜隔绝空气;
整理课件
8
原因2: 引发剂、促进剂的比例弄错或失效,更换引 发剂、促进剂。
2)、制品内气泡太多
1、控制胶含量
原因1: 树脂用量过多 解决办法: 2、注意拌合方式
量过多时,部分纤维难以被树脂充分浸润,从而在材料中形成许多结合较弱
的界面,当材料受力时,这些界面容易脱附拔出,应力传递失效,使材料的性能下降
整理课件
21
当玻璃纤维体积含量为50%时,复合材料的性能较好
四、玻璃纤维增强环氧树脂复合材料的应用
玻璃纤维增强环氧树脂复合材料的研究进展
玻璃纤维增强环氧树脂复合材料的研究进展玻璃纤维增强环氧树脂复合材料是一种广泛应用于航空航天、交通运输、建筑和电子等领域的新型材料。
随着科技进步和工业发展,人们对该材料的研究不断深入,不断取得新的突破和进展。
本文将对玻璃纤维增强环氧树脂复合材料的研究进展进行详细介绍。
首先,我们将从材料的制备方法入手。
制备玻璃纤维增强环氧树脂复合材料通常采用手工层叠法、湿法成型法和自动积层法等方法。
手工层叠法是初期应用较多的方法,操作简单,但效率低下;湿法成型法是将搅拌后的环氧树脂浸渍在预先排列好的玻璃纤维上,然后经过固化处理形成复合材料;自动积层法是通过自动控制设备将环氧树脂涂覆在玻璃纤维上,然后经过热压、固化等工艺制成复合材料。
当前,自动积层法已经成为制备玻璃纤维增强环氧树脂复合材料的主流方法,具有高效、高精度、高重复性等优点。
其次,我们将介绍玻璃纤维增强环氧树脂复合材料在不同领域的应用。
在航空航天领域,玻璃纤维增强环氧树脂复合材料可以用于制造飞机的机身、机翼等部件,取代传统的金属材料,具有重量轻、强度高的优势;在交通运输领域,玻璃纤维增强环氧树脂复合材料可以用于汽车、火车等车辆的结构件,提高车辆的安全性和燃油效率;在建筑领域,玻璃纤维增强环氧树脂复合材料可以用于制造建筑外墙板、屋顶等部件,具有耐热、耐候、隔音、防火等特点;在电子领域,玻璃纤维增强环氧树脂复合材料可以用于制造电子器件的外壳、导热板等部件,具有导电性能、阻燃性能等优点。
然后,我们将介绍玻璃纤维增强环氧树脂复合材料的性能研究。
玻璃纤维增强环氧树脂复合材料具有良好的拉伸、弯曲、弯切、冲击等力学性能,同时还具有优异的耐热性、耐候性、电气绝缘性和耐化学腐蚀性。
近年来,研究人员对复合材料的各项性能进行了深入的研究和优化,提高了材料的力学性能和耐用性。
最后,我们将探讨玻璃纤维增强环氧树脂复合材料的发展趋势。
玻璃纤维增强环氧树脂复合材料在制备方法、应用领域和性能研究等方面还存在一些问题和挑战,例如制备过程中的纤维层间剪切、织物预成型技术、增强材料的多样化、界面改性等方面。
复合材料作业玻璃纤维增强环氧树脂
复合材料作业玻璃纤维增强环氧树脂复合材料是指由两个或以上的不同材料组合而成的材料,通过材料的组合,能够充分发挥各种材料的优点,以达到优化性能的目的。
在众多复合材料中,玻璃纤维增强环氧树脂是一种比较常见的材料组合。
本文将对玻璃纤维增强环氧树脂进行详细介绍,包括其组成、制备过程、性质及应用等方面。
玻璃纤维增强环氧树脂是一种以环氧树脂为基础,通过添加适量的玻璃纤维增强材料制备而成的复合材料。
环氧树脂是一种高分子化合物,具有优异的物理和化学性质,如强度高、刚度大、耐热性好等。
而玻璃纤维则是一种高强度、高刚度的纤维材料,具有优异的拉伸和弯曲性能。
将这两种材料组合在一起,可以充分发挥它们各自的优点,形成一种性能优良的复合材料。
制备玻璃纤维增强环氧树脂的过程通常包括以下几个步骤:首先,将适量的环氧树脂和硬化剂混合,形成树脂基体。
然后,将玻璃纤维进行预处理,如分段、清洗等,以提高它们的界面粘接性能。
接下来,将预处理后的玻璃纤维与树脂基体进行层层叠放,形成多层复合材料结构。
最后,通过热压或热固化等工艺进行固化,使树脂基体与玻璃纤维紧密结合,形成最终的复合材料。
玻璃纤维增强环氧树脂具有多种优异的性质。
首先,它具有高强度和刚度,玻璃纤维增强材料的添加能够提高复合材料的强度和刚度,使其具有良好的抗拉、抗压、抗弯性能。
其次,它具有优异的耐热性和耐腐蚀性,环氧树脂的添加能够提高复合材料的耐热性和耐腐蚀性,使其适用于高温、腐蚀性环境下的使用。
此外,它还具有良好的绝缘性能和耐磨性能,适合用于电气绝缘和摩擦磨损等场合。
玻璃纤维增强环氧树脂具有广泛的应用领域。
首先,在航空航天领域,由于其高强度和轻质化的特点,可以用于制造飞机、卫星等结构件。
其次,在汽车制造领域,由于其良好的耐热性和耐冲击性能,可以用于制造汽车车身、引擎罩等部件。
此外,在建筑领域,可以用于制造屋顶、墙板等耐候性良好的建筑材料。
另外,在电子领域,可以用于制造电气绝缘材料、电子器件外壳等。
玻璃纤维环氧树脂复合材料制作工艺
玻璃纤维环氧树脂复合材料制作工艺引言玻璃纤维环氧树脂复合材料是一种重要的结构材料,具有优异的力学性能、耐热性能和耐腐蚀性能。
它广泛应用于航空航天、汽车制造、建筑工程等领域。
本文将详细介绍玻璃纤维环氧树脂复合材料的制作工艺。
材料准备制作玻璃纤维环氧树脂复合材料所需的主要材料有:1.玻璃纤维布:玻璃纤维布是制作复合材料的主要增强材料,具有高强度、高模量和耐腐蚀性能。
2.环氧树脂:环氧树脂是制作复合材料的基体材料,具有优异的粘接性能和耐化学腐蚀性能。
3.固化剂:固化剂与环氧树脂反应,使其固化成为硬质材料。
4.填料:填料可以改善复合材料的性能,例如提高导热性能、降低热膨胀系数等。
制作工艺步骤步骤一:表面处理1.将玻璃纤维布按照设计要求切割成所需形状和尺寸。
2.清洁工作台和玻璃纤维布表面,确保无尘和杂质。
3.在玻璃纤维布表面涂覆一层环氧树脂胶水,使其充分渗透玻璃纤维布。
步骤二:层压1.将涂有环氧树脂胶水的玻璃纤维布按照设计要求叠放在一起,并在每层之间涂覆一层环氧树脂胶水。
2.使用辊筒将叠放好的玻璃纤维布进行压实,确保各层之间紧密结合。
3.将压实后的玻璃纤维布放入层压机中,施加高温和高压,使其固化。
步骤三:后处理1.将固化后的玻璃纤维环氧树脂复合材料从层压机中取出,进行修整和修边。
2.对复合材料进行热处理,提高其力学性能和耐热性能。
3.进行质量检验,检查复合材料的外观质量和力学性能是否符合要求。
注意事项1.在制作过程中,要注意个人防护,避免直接接触环氧树脂和固化剂,以免对健康产生不良影响。
2.制作过程中要控制好环氧树脂的用量,避免浪费和过量使用。
3.制作过程中要注意温度和压力的控制,确保固化过程充分进行。
4.制作完成后,要储存在干燥、通风的环境中,避免受潮和受热。
结论玻璃纤维环氧树脂复合材料制作工艺是一个复杂的过程,需要严格控制各个环节的参数和操作。
只有在正确的工艺指导下,才能制作出具有优异性能的复合材料。
复合材料实验报告
复合材料实验报告1. 引言复合材料是由两种或两种以上的材料组合而成的材料,具有很高的强度和轻质化特性。
它们在航空航天、汽车制造、建筑等领域广泛应用。
本实验旨在研究复合材料的力学性能,通过实验测试和数据分析,探讨不同组合比例对复合材料力学性能的影响。
2. 实验材料和设备2.1 实验材料本实验选用的复合材料由树脂基体和纤维增强材料组成,其中树脂基体为环氧树脂,纤维增强材料为玻璃纤维。
2.2 实验设备 - 计算机 - 数字电子天平 - 万能材料试验机 - 试样模具3. 实验步骤3.1 制备复合材料试样根据设计比例,将环氧树脂和玻璃纤维按照一定比例混合,并倒入试样模具中。
使用振动器消除气泡,并在室温下静置待固化。
3.2 试样测量和准备将固化后的试样取出,使用数字电子天平称量其质量,并记录下来。
然后使用卡尺测量试样的尺寸(长度、宽度和厚度),并计算试样的截面面积。
3.3 材料力学性能测试将试样安装在万能材料试验机上,进行拉伸或弯曲等力学性能测试。
根据测试结果记录下试样的极限强度、屈服强度、弹性模量等力学性能参数。
3.4 数据分析根据实验数据,绘制应力-应变曲线,分析不同组合比例对复合材料力学性能的影响。
计算平均值和标准差,并进行数据统计学处理。
4. 实验结果与讨论经过多组实验数据的分析和计算,得出不同组合比例对复合材料力学性能的影响结论。
5. 结论通过本次实验,我们深入研究了复合材料的制备和力学性能测试方法,并探讨了不同组合比例对复合材料力学性能的影响。
实验结果表明,不同组合比例对复合材料的强度和刚度有着显著影响。
进一步研究和优化复合材料的组合比例可以提高其力学性能,使其在工程领域得到更广泛的应用。
6. 参考文献[1] 张三, 李四, 王五. 复合材料力学性能的研究进展[J]. 材料科学与工程, 20XX, XX(X): XX-XX.[2] 王小明, 张小红, 李小刚. 复合材料制备及力学性能测量方法研究[J]. 实验力学, 20XX, XX(X): XX-XX.致谢感谢实验室的李老师和实验组成员对本次实验的指导和支持。
玻璃纤维增强环氧树脂基复合材料的制备
玻璃纤维增强环氧树脂基复合材料的制备首先,预处理玻璃纤维是制备玻璃纤维增强环氧树脂基复合材料的重要步骤。
首先要对玻璃纤维进行表面处理,以提高其与环氧树脂之间的结合力。
常见的表面处理方法有硅烷偶联剂处理、电漿处理等。
经过表面处理后,玻璃纤维的表面活性增加,与环氧树脂的结合能力得到提高。
其次,制备环氧树脂基体是制备玻璃纤维增强环氧树脂基复合材料的关键步骤。
环氧树脂作为基体材料,起到支撑和传递载荷的作用。
制备环氧树脂基体可以通过两种方法进行,一种是将环氧树脂和固化剂按照一定比例混合,然后放置一段时间进行反应;另一种是在环氧树脂中添加助剂,如增韧剂、稀释剂等,以改善其性能。
然后,制备复合材料是制备玻璃纤维增强环氧树脂基复合材料的重要步骤。
将预处理好的玻璃纤维和制备好的环氧树脂基体按照一定的层序和比例进行堆叠,形成复合材料的预成型。
在堆叠过程中,可以在纤维表面涂覆一层薄膜以提高其表面粘合性。
最后,固化是制备玻璃纤维增强环氧树脂基复合材料的最后一步。
固化过程中,根据环氧树脂的特点选择适当的固化方式,通常有热固化和光固化两种方法。
热固化是在约定的温度下进行,通过热作用引发环氧树脂与固化剂之间的化学反应。
光固化是利用紫外线或可见光治具树脂的光固化剂进行光固化。
综上所述,玻璃纤维增强环氧树脂基复合材料的制备包括预处理玻璃纤维、制备环氧树脂基体、制备复合材料、固化等多个步骤。
每个步骤都有其独特的工艺要求,通过合理地控制每个步骤的参数和条件,可以获得具有良好性能的玻璃纤维增强环氧树脂基复合材料。
玻璃纤维环氧树脂复合材料制作工艺
玻璃纤维环氧树脂复合材料制作工艺玻璃纤维环氧树脂复合材料制作工艺简介•玻璃纤维环氧树脂复合材料是一种常见的结构材料,具有优良的力学性能和耐腐蚀性能。
•制作工艺是制造高品质玻璃纤维环氧树脂复合材料的关键。
工艺概述•玻璃纤维环氧树脂复合材料的制作工艺主要包括预处理、制备树脂体系、制备增强体系和固化制备等步骤。
预处理1.玻璃纤维预处理:–将玻璃纤维进行清洗和干燥,去除污垢和水分,确保纤维表面清洁。
–对玻璃纤维进行切割,根据需要的长度和形状进行定制。
2.树脂预处理:–将环氧树脂和固化剂按照一定比例混合,并充分搅拌,确保树脂体系均匀。
–去除树脂中的气泡,避免对制作品质产生不良影响。
制备树脂体系1.树脂涂布:–将预处理好的玻璃纤维放置于平整的工作台面上。
–使用刮刀将树脂体系均匀地涂布在玻璃纤维上,确保纤维完全浸润。
2.排气处理:–使用辊筒或者压铸等工具,从涂布的纤维上将空气排除,防止产生气泡。
–在整个涂布过程中,需要保持环境的清洁和静止,避免杂质和颗粒进入树脂体系。
制备增强体系1.纤维叠层:–将涂布好树脂的纤维进行叠层堆积,按照设计要求进行合理的排列和叠放。
–使用压力和工具对叠层纤维进行压实和定形,增加复合材料的力学性能。
2.嵌体装置:–在叠层纤维中嵌入金属或其他增强材料,增加复合材料的强度和刚度。
–嵌体的形状和位置需要根据实际需求进行设计和布置。
固化制备1.固化:–将制备好的增强体系放置在恒温箱或加热设备中,按照固化剂的要求进行固化处理。
–固化温度和时间需要根据树脂体系和工艺要求进行准确控制。
2.切割和加工:–固化完成后,将制备好的玻璃纤维环氧树脂复合材料进行切割和加工,得到最终要求的尺寸和形状。
–使用相应的工具和设备进行切割、打磨和修整。
结论•玻璃纤维环氧树脂复合材料的制作工艺包括预处理、制备树脂体系、制备增强体系和固化制备等关键步骤。
•严格遵守制作工艺流程和要求,保证制作出的复合材料具有良好的力学性能和耐久性能。
玻璃纤维增强环氧树脂基复合材料的制备
玻璃纤维增强环氧树脂基复合材料的制备一、玻璃纤维增强环氧树脂基复合材料的制备工艺1.原材料准备:玻璃纤维布、环氧树脂、固化剂、溶剂等。
2.玻璃纤维布预处理:将玻璃纤维布浸泡在高温高压的浸泡槽中,去除杂质和表面处理剂,并提高纤维与树脂之间的附着性。
3.树脂制备:将环氧树脂和固化剂按照一定的比例混合,搅拌均匀,形成环氧树脂基体。
4.复合材料的制备过程:将经过预处理的玻璃纤维布铺在模具中,然后将树脂基体涂布在玻璃纤维布上,并排除其中的空气泡沫。
再将另一层玻璃纤维布铺在上面,并涂布树脂基体,重复以上步骤多次,直至达到要求的复合材料厚度。
5.固化:将复合材料置于适当的温度下进行固化,使树脂固化剂反应生成3D网络化合物,形成稳定的结构。
6.切割与修整:将固化后的复合材料从模具中取出,根据需要进行切割和修整,得到最终的复合材料制品。
二、玻璃纤维增强环氧树脂基复合材料的性能分析1.力学性能:玻璃纤维的加入提高了复合材料的强度和刚性,使其具有较高的拉伸强度、压缩强度和弯曲强度。
2.热性能:玻璃纤维增强环氧树脂基复合材料具有良好的耐高温性能,能够耐受较高的工作温度。
3.化学性能:环氧树脂具有较强的耐腐蚀性和耐化学介质性能,使得复合材料能够在恶劣的环境中使用。
4.电气性能:玻璃纤维增强环氧树脂基复合材料具有较好的绝缘性能和耐电弧性能,适于用于电气领域。
5.导热性能:玻璃纤维的导热性能相对较低,可以用于制备隔热材料。
综上所述,玻璃纤维增强环氧树脂基复合材料由玻璃纤维布和环氧树脂基体相结合而成,具有多种优异的性能,广泛应用于各个工程领域。
通过适当调整制备工艺和材料配比,可以进一步提高复合材料的性能,并满足不同领域的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合实验研究玻璃纤维增强环氧树脂基复合材料的制备院系:航空航天工程学部专业:高分子材料与工程专业指导教师:于祺学生姓名:王娜目录第1章概述1.1 玻璃纤维增强环氧树脂基复合材料的研究现状 1.2 本次试验的目的及方法第2章手糊法制备玻纤/环氧树脂复合材料2.1实验原料2.1.1环氧树脂2.1.2玻璃纤维2.1.3咪唑固化剂2.1.4活性稀释剂2.2手糊成型简介2.4实验部分2.4.1实验仪器2.4.2实验步骤第3章力学性能测试3.1剪切强度3.2弯曲强度3.3实验数据的分析3.3.1 浸胶的用量及均匀度3.3.2 固化时间与温度的影响3.3.3 活性稀释剂的用量第4章结论与展望4.1结论与展望参考文献第1章概述1.1 玻璃纤维增强环氧树脂复材的研究现状EP/玻璃纤维(GF)复合材料是目前研究比较成熟、应用最广的一种复合材料。
EP/GF复合材料具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛、工艺性好、加工成型简便、生产效率高等特点,并具有材料可设计性及特殊的功能性如屏蔽电磁波、消音等特点,现已成为国民经济、国防建设和科技发展中无法代替的重要材料。
且复合材料的研究水平已成为一个国家或地区科技经济水平的标准之一。
目前美,日,西欧的水平较高,北美,欧洲,日本的产量分别占33%,32%,30%。
毋庸置疑,EP/玻璃纤维(GF)复合材料的质量轻,高强度等优于金属的特性,会在某些领域更广泛的使用,目前复材的粘接性能与力学性能成为主要的研究方面。
目前主要的成型方法有手糊成型,缠绕成型,热压管成型,RTM成型,拉挤成型。
1.2 本次试验的目的及方法实验由学生自行设计采用一种固化体系,用手糊成型方法制备EP/玻璃纤维(GF)复合材料,再测量材料的力学性能如,弯曲,剪切。
目的在于1,了解材料科学实验所涉及到的设备的基本使用。
2,掌握环氧树脂固化体系的配置及设计。
3,对手糊成型操作了解,及查找文献完成论文的能力。
就此要求我们第2组采用环氧树脂E-44,20cm×20cm的玻璃纤维布15张,用咪唑固化剂并加入稀释剂防止体系过粘。
通过查阅相关文献,确定咪唑固化环氧树脂的最佳固化条件:60℃/2h+80℃/2h,制备了玻璃纤维增强环氧树脂复合材料,之后将制备的样品进行力学性能测试,其层间剪切强度为5.750Mpa,弯曲强度为127.64Mpa。
第2章手糊法制备玻纤/环氧树脂复合材料2.1 实验原料2.1.1环氧树脂环氧树脂是含有两个或两个以上的环氧基,并在适当的试剂的作用下能够交联成网络结构的一类聚合物。
它是一类具有良好粘接、耐腐蚀、电气绝缘、高强度等性能的热固性高分子合成材料。
其中,双酚A缩水甘油醚型环氧树脂的原材料来源方便、成本低,所以在环氧树脂中它的应用最广,产量最大,约占环氧树脂总量的85%以上[9]。
其化学结构如下:H2CHCH2COO CCH3OCH2CHCH3OHO CCH3OCH2CH CH2On从环氧树脂本身的结构分析,其主要特点如下:(1)良好的加工性未固化的环氧树脂本身分子间的内聚力小,分子有扩展的倾向,故树脂的流动性好,且易于和固化剂及其他材料如填充剂等混合,因此有良好的加工性。
(2)粘着性强由于树脂中的脂肪族羟基、醚键和环氧基的存在,这些极性基能与含有金属、硅酸盐、活泼氢的材料表面产生较强的分子间作用力或发生反应产生化学键,因此环氧树脂的粘着性很强,有万能胶之称。
(3)可低压成型且收缩率小环氧树脂通常在固化时没有低分子副产物产生,所以不会产生气泡,可以低压成型,而且收缩率小,它的热膨胀系数也很小(一般为6.0×10-5•℃-1),环氧树脂是热固性树脂中收缩率最小的一种,在100℃固化时收缩率为0.5%,在200℃固化时为2.3%。
(4)化学稳定性好环氧树脂分子结构中无酚性羟基,又无酯键,所以其耐碱性比酚醛树脂和聚酯树脂要好,此外,在固化后的体形结构中有稳定的苯环和醚键,故耐酸性、耐溶剂性以及耐水性也很好,在室温下吸水率在0.5%以下。
(5)有较好的力学性能环氧树脂固化以后,在交联点间有一定的距离,中间链除含苯环外还有两个醚键,具有一定的活动性,因而脆性较小,基本属于硬而强韧性的材料,所以具有较高的机械强度。
另外与酚醛树脂、聚酯树脂比较,环氧树脂也具有较好的介电性能。
2.1.2 玻璃纤维布玻璃纤维(英文原名为:glass fiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。
玻璃纤维布是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的 1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。
我国生产的玻璃布,分为无碱和中碱两类,国外大多数是E-GLASS无碱玻璃布。
玻璃布主要用于生产各种电绝缘层压板、印刷线路板、各种车辆车体、贮罐、船艇、模具等。
中碱玻璃布主要用于生产涂塑包装布,以及用于耐腐蚀场合。
织物的特性由纤维性能、经纬密度、纱线结构和织纹所决定。
经纬密度又由纱结构和织纹决定。
经纬密加上纱结构,就决定了织物的物理性质,如重量、厚度和断裂强度等。
有五种基本的织纹:平纹plan(类似方格布)、斜纹twill(一般+-45度)、缎纹statin(类似单向布)、罗纹leno(玻璃纤维网格布主要织法)和席纹matts(类似牛津布)。
其分类:1、按成分:主要是中碱、无碱、高碱(是对玻璃纤维中碱金属氧化物的成分进行分类),当然也还有由其它成分进行的分类,但品种太多,不一一列举2、按制造工艺:坩埚拉丝和池窑拉丝。
3、按品种:有合股纱、直接纱、喷射纱等。
另外,就是按单纤维直径、TEX数、捻度、浸润剂类型进行区分。
玻璃纤维布的分类与纤维纱的分类是相通的,除了上述以外,还包括:织法、克重、幅度等。
2.1.3 咪唑固化剂常用的咪唑类环氧树脂固化剂包括咪唑, 2-甲基咪唑, 2-乙基-4-甲基咪唑, 2-苯基咪唑等,与一般的环氧树脂固化剂相比,它具有以下几个方面的优点:(1) 用量少(一般为树脂用量的0. 5%~10% ),挥发性低,毒性小。
(2) 固化活性较高,中温条件下短时间即可固化。
(3) 固化物热变形温度高,有优异的耐化学介质性能、电绝缘性能力学性能。
(4) 除用作主固化剂外,还可作为助固化剂和固化促进剂,能够明显改善环氧树脂固化体系的性能。
咪唑类环氧树脂固化剂除上述优点外,还存在一些缺点和问题,具体表现在: (1) 咪唑类化合物多为高熔点的结晶固体粉末,与液态的环氧树脂混合困难,工艺性能较差。
(2) 咪唑类固化剂在高温下有一定的挥发性和吸湿性。
(3) 品种较少,不能满足特殊的施工工艺以及对固化物的某些特定要求。
(4) 常用咪唑类固化剂由于固化活性较高,因此与环氧树脂混合后适用期较短,不能作为单组分体系较长时间贮存。
咪唑类的固化机理:咪唑类固化剂分子中存在1位仲胺氮原子和3位叔胺氮原子它对环氧树脂进行固化反应时一般认为咪唑环上的3位氮原子首先使环氧树脂上的环氧基开环,当1位氮原子上存在氢原子时,发生氢原子转移,然后1位氮原子在与环氧树脂反应,形成1:2加成产物;当1位氮原子上存在取代基时1位氮原子不与环氧树脂发生开环反应仅3位氮原子使环氧树脂中的环氧基开环形成1:1产物。
最后环氧基开环产生的氧负离子继续催化环氧树脂开环聚合。
2.1.4 活性稀释剂活性稀释剂按其每个分子所含反应性基团的多少,可以分为单官能团活性稀释剂和多官能团活性稀释剂。
单官能团活性稀释剂每个分子中仅含一个可参与固化反应的基团,如甲基丙烯酸-β-羟乙酯(HEMA)。
多官能团活性稀释剂是指每个分子中含有两个或两个以上可参与固化反应基团的活性稀释剂,如1,6-己二醇二丙烯酸酯(HDDA)。
采用含较多官能团的单体,除了增加反应活性外,还能赋予固化膜交联结构。
这是因为,单官能团单体聚合后只能得到线形聚合物,而多官能团的单体可得到高交联度网络。
2.2手糊成型简介手糊成型是指用手工或在机械辅助下将增强材料和热固性树脂铺覆在模具上,使树脂固化后形成复合材料的一种成型方法。
手糊成型工艺包括[7]:(一)原材料的准备:(1)玻璃纤维织物的准备注意事项:1)玻璃布的经纬向强度不同,对要求正交各项同性的制品,则应将玻璃布经纬向交替铺覆。
2)裁剪玻璃布的大小,应根据制品尺寸、性能要求和操作难易来确定。
玻璃布越大制品强度越高,因此裁剪玻璃布时应尽可能裁剪得大些。
(2)树脂胶液的配制是将树脂、固化剂或引发剂、促进剂、填料和助剂等混合均匀,常温固化的树脂具有很短的适用期,必须在凝胶以前用完。
树脂胶液配制的关键是凝胶时间和固化程度的控制。
凝胶时间是指在一定温度下树脂、引发剂、促进剂混合以后到凝胶所需要的时间。
手糊成型工艺要求树脂在成型操作完成以后的一段时间内凝胶,使树脂能充分浸透增强材料。
(二)模具的准备及脱模剂的涂刷(1)模具的准备玻璃钢模具的准备方法如下:2)新模具要对照图样组装,核对模具的形状、尺寸及脱模斜度。
3)如果是使用过的模具,则要检查模具的破损情况,如有破损要进行修补,如果发现模具表面粗糙,则应按下列顺序仔细地加以修整:①用从粗到细的水砂纸加水打磨;②用抛光膏或抛光水抛光;③上抛光蜡。
3)保管模具时要盖好聚乙烯薄膜,防止粉尘、油污、水汽等粘附模具。
(2)涂刷脱模剂石蜡类脱模剂的涂刷方法如下:①清除模具表面的水分、灰尘、污垢,充分干燥模具;②将石蜡脱模剂在模具表面按一定方向、一定顺序轻轻地擦拭,模具的凸部、棱角要特别注意涂均匀;③待干燥后用软布擦亮;④大部分石蜡类脱模剂都含有挥发性物质,所以重复涂刷时,中间应有一定的时间间隔,待上次所涂刷涂膜剂中的挥发物完全挥发掉再涂下一次。
(三)胶衣层的准备为了改善树脂固化中收缩带来的表面质量问题,并延长其使用寿命,在制品表面往往做一层树脂含量较高、性能较好的层面,它可以是纯树脂层,也可用表面毡增强,通常称为胶衣层。
其厚度一般约为0.25-0.5㎜,根据不同的性能要求,选用不同的胶衣树脂。
(四)复合材料制品的糊制及固化(五)脱模、修整及装配2.4实验部分2.4.1实验仪器设备表2-2 实验用主要仪器设备2.4.2实验原料及步骤原料:根据上述原料的性质及实验要求我们取环氧树脂E-44 100g,活性稀释剂30g,咪唑类固化剂用量0.3%取3.9g。
20cm×20cm的玻璃纤维布15张。
固化条件:60℃/2h+80℃/2h。
实验步骤:(1)实验前的准备将实验中所需的材料放在实验台上,将模具与树脂的接触面用脱模剂涂上薄薄的一层,用剪子按照模具的尺寸剪出15块20cm×20cm玻璃纤维布,待用。