九年级数学 一元二次方程组的专项 培优 易错 难题练习题含答案

合集下载

九年级数学一元二次方程组的专项培优 易错 难题练习题(含答案)附答案

九年级数学一元二次方程组的专项培优 易错 难题练习题(含答案)附答案

九年级数学一元二次方程组的专项培优 易错 难题练习题(含答案)附答案一、一元二次方程1.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点.己知函数222(3)y x mx m =--+(m m 为常数). (1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x 和2x ,且121114xx +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式. 【答案】(1)当m =0时,该函数的零点为6和6-.(2)见解析,(3)AM 的解析式为112y x =--. 【解析】【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根. 即无论m 取何值,该函数总有两个零点.(3)依题意有,由解得.∴函数的解析式为. 令y=0,解得∴A(),B(4,0) 作点B 关于直线10y x =-的对称点B’,连结AB’,则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10).连结CB’,则∠BCD=45°∴BC=CB’=6,∠B’CD=∠BCD=45°∴∠BCB’=90°即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.2.如图,在△ABC 中,AB =6cm ,BC =7cm ,∠ABC =30°,点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动.如果P 、Q 两点同时出发,经过几秒后△PBQ 的面积等于4cm 2?【答案】经过2秒后△PBQ 的面积等于4cm 2.【解析】【分析】作出辅助线,过点Q 作QE ⊥PB 于E ,即可得出S △PQB =12×PB×QE ,有P 、Q 点的移动速度,设时间为t 秒时,可以得出PB 、QE 关于t 的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q 作QE ⊥PB 于E ,则∠QEB =90°.∵∠ABC =30°,∴2QE =QB .∴S △PQB =12•PB•QE . 设经过t 秒后△PBQ 的面积等于4cm 2,则PB =6﹣t ,QB =2t ,QE =t . 根据题意,12•(6﹣t )•t =4. t 2﹣6t+8=0.t 2=2,t 2=4. 当t =4时,2t =8,8>7,不合题意舍去,取t =2.答:经过2秒后△PBQ 的面积等于4cm 2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.3.已知关于x 的方程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0.【解析】【分析】在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数.【详解】若存在n 满足题意.设x1,x2是方程①的两个根,则x 1+x 2=2n ,x 1x 2=324n +-,所以(x 1-x 2)2=4n 2+3n+2, 由方程②得,(x+n-1)[x-2(n+1)]=0, ①若4n 2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍. ②若4n 2+3n+2=2(n+2),解得n=0或n=-14(舍), 综上所述,n=0.4.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg ,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg ,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x千克,则x{1﹣[60%+1.6%(90﹣x)]}=12,整理得:x2﹣65x﹣750=0,(x﹣75)(x+10)=0,解得:x1=75,x2=﹣10(舍去),60%+1.6%(90﹣x)=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用5.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.(1)求证:对任意实数m,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【答案】(1)证明见解析;(2)m的值为2,方程的另一个根是5.【解析】【分析】(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.【详解】(1)证明:∵(x﹣3)(x﹣4)﹣m2=0,∴x2﹣7x+12﹣m2=0,∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,∵m2≥0,∴△>0,∴对任意实数m,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m 2=0,解得m=±, ∴原方程为x 2﹣7x+10=0,解得x=2或x=5, 即m 的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b 2-4ac >0时,方程有两个不相等的实数根;当△=b 2-4ac=0时,方程有两个相等的实数根;当△=b 2-4ac <0时,方程没有实数根.6.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭. 【答案】x=15或x=1 【解析】【分析】 设321x y x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】 解:设321x y x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3, ∴3121x x =--或3321x x =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.7.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】由韦达定理,有,.于是,对正整数,有原式=8.解下列方程:(1)2x2-4x-1=0(配方法);(2)(x+1)2=6x+6.【答案】(1)x1=16x2=161=-1,x2=5.【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x2-2x=12,∴x2-2x+1=32.∴(x-1)2=32.∴x-1=32±6 2.∴x1=16x2=16(2)由题可得,(x+1)2-6(x+1)=0,∴(x+1)(x+1-6)=0.∴x+1=0或x+1-6=0.∴x1=-1,x2=5.9.解方程:(x+1)(x-1)=2x.【答案】x123,x223【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=22x x 2-22x-1=0∵a=1,b=-22,c=-1 ∴△=b 2-4ac=8+4=12>0∴x=242b b c aa -±-=2±3 ∴x 1=2+3,x 2=2-3.10.已知:如图,在Rt ABC ∆中,90C ∠=︒,8AC =cm ,6BC =cm.直线PE 从B 点出发,以2 cm/s 的速度向点A 方向运动,并始终与BC 平行,与线段AC 交于点E .同时,点F 从C 点出发,以1cm/s 的速度沿CB 向点B 运动,设运动时间为t (s) (05t <<) .(1)当t 为何值时,四边形PFCE 是矩形?(2)当ABC ∆面积是PEF ∆的面积的5倍时,求出t 的值;【答案】(1)3011t =;(2)552t ±=。

2020-2021九年级数学一元二次方程组的专项培优 易错 难题练习题含详细答案

2020-2021九年级数学一元二次方程组的专项培优 易错 难题练习题含详细答案

2020-2021九年级数学一元二次方程组的专项培优 易错 难题练习题含详细答案一、一元二次方程1.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10. 【解析】 【分析】分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论. 【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k = 当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4. ∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形. ∴△ABC 的周长为10. 【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.2.如图,在△ABC 中,AB =6cm ,BC =7cm ,∠ABC =30°,点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动.如果P 、Q 两点同时出发,经过几秒后△PBQ 的面积等于4cm 2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.3.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x千克,则x{1﹣[60%+1.6%(90﹣x)]}=12,整理得:x2﹣65x﹣750=0,(x﹣75)(x+10)=0,解得:x1=75,x2=﹣10(舍去),60%+1.6%(90﹣x)=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用4.解方程:(3x+1)2=9x+3.【答案】x1=﹣13,x2=23.【解析】试题分析:利用因式分解法解一元二次方程即可.试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,分解因式得:(3x+1)(3x+1﹣3)=0,可得3x+1=0或3x﹣2=0,解得:x1=﹣13,x2=23.点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.5.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m %,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m 元,购买数量在原计划基础上增加15m %,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m %,求出m 的值. 【答案】(1)120;(2)20. 【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为x 元,列不等式为0.8x •80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,表示在“大众点评”网上的购买实际消费总额:120a (1﹣25%)(1+52m %),在“美团”网上的购买实际消费总额:a [120(1﹣25%)﹣920m ](1+15m %);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m %”列方程解出即可. 试题解析:(1)解:解法一:设标价为x 元,列不等式为0.8x •80≤7680,x ≤120; 解法二:7680÷80÷0.8=96÷0.8=120(元). 答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,由题意得:120×0.8a (1﹣25%)(1+52m %)+a [120×0.8(1﹣25%)﹣920m ](1+15m %)=120×0.8a(1﹣25%)×2(1+ 152m %),即72a (1+ 52m %)+a (72﹣ 920m )(1+15m %)=144a (1+152m %),整理得:0.0675m 2﹣1.35m =0,m 2﹣20m =0,解得:m 1=0(舍),m 2=20.答:m 的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.6.解方程: 2212x x 6x 9-=-+()【答案】124x x 23==-,【解析】试题分析:先对方程的右边因式分解,直接开平方或移项之后再因式分解法求解即可.试题解析:因式分解,得2212x x 3-=-()()开平方,得12x x 3-=-,或12x x 3-=--() 解得124x x 23==-,7. y 与x 的函数关系式为:y=1.7x (x≤m );或( x≥m) ;8.关于x 的方程(k -1)x 2+2kx+2=0(1)求证:无论k 为何值,方程总有实数根.(2)设x 1,x 2是方程(k -1)x 2+2kx+2=0的两个根,记S=++ x 1+x 2,S 的值能为2吗?若能,求出此时k 的值.若不能,请说明理由.【答案】(1)详见解析;(2)S 的值能为2,此时k 的值为2. 【解析】试题分析:(1) 本题二次项系数为(k -1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k 的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可. 试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1, x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程, △=(2k )²-4×2(k-1)=4k²-8k +8="4(k-1)" ² +4>0 方程有两不等根综合①②得不论k 为何值,方程总有实根 (2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x 1+x 2=====2k-2=2, 解得k=2,∴当k=2时,S 的值为2 ∴S 的值能为2,此时k 的值为2.考点:一元二次方程根的判别式;根与系数的关系.9.已知关于x 的一元二次方程()2204mmx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根;(2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)1x =,2x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可. 【详解】(1)由题意得:24b ac ∆=- =()22404mm m +->g g,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得134x +=,234x =. 【点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.10.关于x 的一元二次方程()22210x k x k +-+=有两个不等实根1x ,2x .(1)求实数k 的取值范围;(2)若方程两实根1x ,2x 满足121210x x x x ++-=,求k 的值.【答案】(1) k<14;(2) k=0.【解析】【分析】(1)根据一元二次方程的根的判别式得出△>0,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=-(2k-1)=1-2k,x1•x2=k2,代入x1+x2+x1x2-1=0,即可求出k值.【详解】解:(1)∵关于x的一元二次方程x2+(2k-1)x+k2=0有两个不等实根x1,x2,∴△=(2k-1)2-4×1×k2=-4k+1>0,解得:k<14,即实数k的取值范围是k<14;(2)由根与系数的关系得:x1+x2=-(2k-1)=1-2k,x1•x2=k2,∵x1+x2+x1x2-1=0,∴1-2k+k2-1=0,∴k2-2k=0∴k=0或2,∵由(1)知当k=2方程没有实数根,∴k=2不合题意,舍去,∴k=0.【点睛】本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.11.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.(1)求y与x之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最大,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x元,则多销售的数量为60-x,(2)解一元二次方程即可求解,(3)表示出最大利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x 元(40≤x≤60),则y=180+10(60-x )=-10x+780,(40≤x≤60), (2)依题意得:(x-40)(-10x+780)=3570, 解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元. (3)设每星期的利润为w ,W=(x-40)(-10x+780)=-10(x-59)2+3610, ∵-10 0,二次函数向下,函数有最大值, 当x=59时, 利润最大,为3610元. 【点睛】本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.12.已知关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最小整数时,求此时方程的解. 【答案】(1)k >﹣12;(2)x 1=0,x 2=﹣1. 【解析】 【分析】(1)由题意得△=(k +1)2﹣4×14k 2>0,解不等式即可求得答案; (2)根据k 取最小整数,得到k =0,列方程即可得到结论. 【详解】(1)∵关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根, ∴△=(k +1)2﹣4×14k 2>0, ∴k >﹣12; (2)∵k 取最小整数, ∴k =0,∴原方程可化为x 2+x =0, ∴x 1=0,x 2=﹣1. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.13.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【答案】羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得 x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20考点:一元二次方程的应用.14.已知关于x的方程x2﹣(2k+1)x+4(k﹣12)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?【答案】(1)详见解析;(2)k=32或2.【解析】【分析】(1)计算判别式的值,利用完全平方公式得到△=(2k﹣3)2≥0,然后根据判别式的意义得到结论;(2)利用求根公式解方程得到x1=2k﹣1,x2=2,再根据等腰三角形的性质得到2k﹣1=2或2k﹣1=3,然后分别解关于k的方程即可.【详解】(1)∵△=(2k+1)2﹣4×4(k﹣12)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)() 2k12k3 x=2±+﹣∴x1=2k﹣1,x2=2,∵a、b、c为等腰三角形的三边,∴2k﹣1=2或2k﹣1=3,∴k =32或2. 【点睛】本题考查了根的判别式以及等腰三角形的性质,分a 是等腰三角形的底和腰两种情况是解题的关键.15.已知关于x 的方程()()212310k x k x k -+-++=有两个不相等的实数根1x ,2x .()1求k 的取值范围.()2是否存在实数k ,使方程的两实数根互为相反数?【答案】(1)1312k <且1k ≠;(2) k 不存在,理由见解析 【解析】 【分析】(1)因为方程(k ﹣1)x 2+(2k ﹣3)x +k +1=0有两个不相等的实数根x 1,x 2.得出其判别式△>0,可解得k 的取值范围;(2)假设存在两根的值互为相反数,根据根与系数的关系,列出对应的不等式即可求出k 的值. 【详解】(1)方程(k ﹣1)x 2+(2k ﹣3)x +k +1=0有两个不相等的实数根x 1,x 2,可得:k ﹣1≠0且△=﹣12k +13>0,解得:k <1312且k ≠1; (2)假设存在两根的值互为相反数,设为 x 1,x 2. ∵x 1+x 2=0,∴﹣231k k --=0,∴k =32. 又∵k <1312且k ≠1,∴k 不存在. 【点睛】本题主要考查了根与系数的关系,属于基础题,关键掌握x 1,x 2是方程x 2+px +q =0的两根时,x 1+x 2=﹣p ,x 1x 2=q .。

2020-2021九年级数学一元二次方程组的专项培优易错试卷练习题(含答案)及详细答案

2020-2021九年级数学一元二次方程组的专项培优易错试卷练习题(含答案)及详细答案

2020-2021九年级数学一元二次方程组的专项培优易错试卷练习题(含答案)及详细答案一、一元二次方程1.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值.【答案】0. 【解析】 【分析】由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解. 【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩V=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1,则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-.Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k≠1,则k =2,但使2216k k k -+-无意义.综上,代数式2216k k k -+-的值为0【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,2.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.3.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1 【解析】 【分析】设321xy x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】解:设321xy x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3,∴3121x x =--或3321xx =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解.∴原方程的解是x=1或x=1.5【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.4.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】由韦达定理,有,.于是,对正整数,有原式=5.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k 为何值,方程总有实根 (2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x 1+x 2=====2k-2=2, 解得k=2,∴当k=2时,S 的值为2 ∴S 的值能为2,此时k 的值为2.考点:一元二次方程根的判别式;根与系数的关系.6.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元 【解析】 【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题. 【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000. ∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元. 【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.7.关于x 的一元二次方程()22210x k x k +-+=有两个不等实根1x ,2x .(1)求实数k 的取值范围;(2)若方程两实根1x ,2x 满足121210x x x x ++-=,求k 的值. 【答案】(1) k <14;(2) k=0. 【解析】 【分析】(1)根据一元二次方程的根的判别式得出△>0,求出不等式的解集即可;(2)根据根与系数的关系得出x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,代入x 1+x 2+x 1x 2-1=0,即可求出k 值. 【详解】解:(1)∵关于x 的一元二次方程x 2+(2k-1)x+k 2=0有两个不等实根x 1,x 2, ∴△=(2k-1)2-4×1×k 2=-4k+1>0, 解得:k <14, 即实数k 的取值范围是k <14; (2)由根与系数的关系得:x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2, ∵x 1+x 2+x 1x 2-1=0, ∴1-2k+k 2-1=0, ∴k 2-2k=0 ∴k=0或2,∵由(1)知当k=2方程没有实数根, ∴k=2不合题意,舍去, ∴k=0. 【点睛】本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.8.已知1x 、2x 是关于x 的方程222(1)50x m x m -+++=的两个不相等的实数根. (1)求实数m 的取值范围;(2)已知等腰ABC ∆的一边长为7,若1x 、2x 恰好是ABC ∆另外两边长,求这个三角形的周长.【答案】(1)m>2; (2)17 【解析】试题分析:(1)由根的判别式即可得;(2)由题意得出方程的另一根为7,将x =7代入求出x 的值,再根据三角形三边之间的关系判断即可得.试题解析:解:(1)由题意得△=4(m +1)2﹣4(m 2+5)=8m -16>0,解得:m >2;(2)由题意,∵x 1≠x 2时,∴只能取x 1=7或x 2=7,即7是方程的一个根,将x =7代入得:49﹣14(m +1)+m 2+5=0,解得:m =4或m =10.当m =4时,方程的另一个根为3,此时三角形三边分别为7、7、3,周长为17; 当m =10时,方程的另一个根为15,此时不能构成三角形; 故三角形的周长为17.点睛:本题主要考查判别式、三角形三边之间的关系,熟练掌握韦达定理是解题的关键.9.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元. 【解析】 【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可 【详解】解:(1)设每次降价的百分率为 x . 40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y--⨯+= 解得:1y =1.5,2y =2.5, ∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元. 【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.10.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同. (1)求每个月生产成本的下降率; (2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元. 【解析】 【分析】(1)设每个月生产成本的下降率为x ,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论. 【详解】(1)设每个月生产成本的下降率为x , 根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去). 答:每个月生产成本的下降率为5%; (2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元. 【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.11.已知关于x 的方程(a ﹣1)x 2+2x +a ﹣1=0. (1)若该方程有一根为2,求a 的值及方程的另一根;(2)当a 为何值时,方程的根仅有唯一的值?求出此时a 的值及方程的根. 【答案】(1)a=15,方程的另一根为12;(2)答案见解析. 【解析】 【分析】(1)把x=2代入方程,求出a 的值,再把a 代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=1时,为一元一次方程;②当a≠1时,利用b 2-4ac =0求出a 的值,再代入解方程即可. 【详解】(1)将x =2代入方程2(a 1)x 2x a 10-++-=,得4(a 1)4a 10-++-=,解得:a =15.将a=15代入原方程得24x2054x5-+-=,解得:x1=12,x2=2.∴a=15,方程的另一根为12;(2)①当a=1时,方程为2x=0,解得:x=0.②当a≠1时,由b2-4ac=0得4-4(a-1)2=0,解得:a=2或0.当a=2时,原方程为:x2+2x+1=0,解得:x1=x2=-1;当a=0时,原方程为:-x2+2x-1=0,解得:x1=x2=1.综上所述,当a=1,0,2时,方程仅有一个根,分别为0,1,-1.考点:1.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.12.已知关于x的方程x2-(m+2)x+(2m-1)=0。

中考数学一元二次方程组(大题培优易错难题)附答案解析

中考数学一元二次方程组(大题培优易错难题)附答案解析

中考数学一元二次方程组(大题培优易错难题)附答案解析中考数学一元二次方程组(大题培优易错难题)附答案解析一、一元二次方程1.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12PB?QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12(6﹣t)?t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.2.解方程:(x+1)(x﹣3)=﹣1.【答案】x13x2=13【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x ﹣1)2=3,解得:x1,x2=13.已知:关于x的方程x2-4mx+4m2-1=0.(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2【答案】(1) 有两个不相等的实数根(2)周长为13或17【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m=3时,原方程为x2﹣12x+35=0,解得:x1=5,x2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x=5求出m值.4.解方程:(2x+1)2=2x+1.【答案】x=0或x=1 2 .【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x(2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣12.5.解方程:x2-2x=2x+1.【答案】x1=2,x2=2【解析】试题分析:根据方程,求出系数a、b、c,然后求一元二次方程的根的判别式,最后根据求根公式x=求解即可.试题解析:方程化为x2-4x-1=0.∵b2-4ac=(-4)2-4×1×(-1)=20,∴x=,∴x1=2,x2=26.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x千克,则x{1﹣[60%+1.6%(90﹣x)]}=12,整理得:x2﹣65x﹣750=0,(x﹣75)(x+10)=0,解得:x1=75,x2=﹣10(舍去),。

中考数学一元二次方程组(大题培优 易错 难题)含详细答案

中考数学一元二次方程组(大题培优 易错 难题)含详细答案

中考数学一元二次方程组(大题培优 易错 难题)含详细答案一、一元二次方程1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,∴k 1=1,k 2=-3.∵k ≤12,∴k =-3.2.李明准备进行如下操作实验,把一根长40 cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm 2,你认为他的说法正确吗?请说明理由.【答案】 (1) 李明应该把铁丝剪成12 cm 和28 cm 的两段;(2) 李明的说法正确,理由见解析.【解析】试题分析:(1)设剪成的较短的这段为xcm ,较长的这段就为(40﹣x )cm .就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm 2建立方程求出其解即可; (2)设剪成的较短的这段为mcm ,较长的这段就为(40﹣m )cm .就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm 2建立方程,如果方程有解就说明李明的说法错误,否则正确.试题解析:设其中一段的长度为cm ,两个正方形面积之和为cm 2,则,(其中),当时,,解这个方程,得,,∴应将之剪成12cm 和28cm 的两段;(2)两正方形面积之和为48时,,,∵, ∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm 2,李明的说法正确.考点:1.一元二次方程的应用;2.几何图形问题.3.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上.①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c b a++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得x=21-(舍去)或x=21--,∴点P (21--,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形 =12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.4.阅读下列材料计算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t ,则:原式=(1﹣t )(t +)﹣(1﹣t ﹣)t =t +﹣t 2﹣+t 2= 在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:(1)计算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+) (2)因式分解:(a 2﹣5a +3)(a 2﹣5a +7)+4(3)解方程:(x 2+4x +1)(x 2+4x +3)=3【答案】(1);(2)(a 2﹣5a +5)2;(3)x 1=0,x 2=﹣4,x 3=x 4=﹣2【解析】【分析】(1)仿照材料内容,令+=t 代入原式计算.(2)观察式子找相同部分进行换元,令a 2﹣5a =t 代入原式进行因式分解,最后要记得把t 换为a .(3)观察式子找相同部分进行换元,令x 2+4x =t 代入原方程,即得到关于t 的一元二次方程,得到t 的两个解后要代回去求出4个x 的解.【详解】(1)令+=t ,则: 原式=(1﹣t )(t +)﹣(1﹣t ﹣)t =t +﹣t 2﹣﹣t +t 2+= (2)令a 2﹣5a =t ,则:原式=(t +3)(t +7)+4=t 2+7t +3t +21+4=t 2+10t +25=(t +5)2=(a 2﹣5a +5)2 (3)令x 2+4x =t ,则原方程转化为:(t +1)(t +3)=3t 2+4t +3=3t (t +4)=0∴t 1=0,t 2=﹣4当x 2+4x =0时,x (x +4)=0解得:x 1=0,x 2=﹣4当x 2+4x =﹣4时,x 2+4x +4=0(x +2)2=0解得:x 3=x 4=﹣2【点睛】本题考查用换元法进行整式的运算,因式分解,解一元二次方程.利用换元法一般可达到降次效果,从而简便运算.5.解下列方程:(1)x 2﹣3x=1.(2)12(y+2)2﹣6=0. 【答案】(1)12313313x x +-==12223,223y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可;(2)利用直接开方法解即可;试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,∵b 2﹣4ac=13>0 ∴. ∴12313313,22x x +-==. (2)(y+2)2=12, ∴或,∴12223,223y y =-+=--6.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.【解析】【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可; (2)分别求出两种方式的增长率,然后比较即可.【详解】(1)设平均每次下调x%,则7000(1﹣x )2=5670,解得:x 1=10%,x 2=190%(不合题意,舍去);答:平均每次下调的百分率为10%. (2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x )2=(1﹣10%)2=81%. ∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.7.解方程:x 2-2x =2x +1.【答案】x 1=25,x 2=25【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式24b b ac x -±-=求解即可. 试题解析:方程化为x 2-4x -1=0.∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x =4202±=5,∴x1=2-5,x2=2+5.8.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求a的取值范围;(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a-是是负整数,即可得66a-是正整数.根据a是整数,即可求得a的值2.【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1x2=,∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.∵(x1+1)(x2+1)是负整数,∴﹣是负整数,即是正整数.∵a是整数,∴a﹣6的值为1、2、3或6,∴a的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.9.若关于x的一元二次方程x2﹣3x+a﹣2=0有实数根.(1)求a的取值范围;(2)当a为符合条件的最大整数,求此时方程的解.【答案】(1)a≤174;(2)x=1或x=2【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于a的不等式,即可求出a的取值范围;(2)根据(1)确定出a的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x的一元二次方程x2﹣3x+a﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a﹣2)≥0,解得a≤174;(2)由(1)可知a≤174,∴a的最大整数值为4,此时方程为x2﹣3x+2=0,解得x=1或x=2.【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.11.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.12.已知关于x的一元二次方程x2﹣mx﹣2=0…①(1)若x=﹣1是方程①的一个根,求m的值和方程①的另一根;(2)对于任意实数m,判断方程①的根的情况,并说明理由.【答案】(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与0的关系进行判断.(1)把x=-1代入得1+m-2=0,解得m=1∴2--2=0.∴∴另一根是2;(2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根13.关于x的一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.【答案】(1)k <4且k ≠2.(2)m =0或m =83-.【解析】分析:(1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于k 的不等式组,解不等式组即可求得对应的k 的取值范围;(2)由(1)得到符合条件的k 的值,代入原方程,解方程求得x 的值,然后把所得x 的值分别代入方程x 2+mx -1=0即可求得对应的m 的值.详解:(1)∵一元二次方程(k-2)x 2-4x+2=0有两个不相等的实数根,∴△=16-8(k-2)=32-8k >0且k-2≠0.解得:k <4且k≠2.(2)由(1)可知,符合条件的:k=3,将k=3代入原方程得:方程x 2-4x+3=0,解此方程得:x 1=1,x 2=3.把x=1时,代入方程x 2+mx-1=0,有1+m-1=0,解得m=0.把x=3时,代入方程x 2+mx-1=0,有9+3m-1=0,解得m=83-.∴m=0或m=83-.点睛:(1)知道“在一元二次方程20?(0)ax bx c a ++=≠中,当△=240b ac ->时,方程有两个不相等的实数根;当△=240b ac -=时,方程有两个相等的实数根;△=240b ac -<时,方程没有实数根”是正确解答第1小题的关键;(2)解第2小题时,需注意相同的根存在两种情况,解题时不要忽略了其中任何一种情况.14.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【答案】(1)4元或6元;(2)九折.【解析】【详解】解:(1)设每千克核桃应降价x 元.根据题意,得(60﹣x ﹣40)(100+x 2×20)=2240, 化简,得 x 2﹣10x+24=0,解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),54100%=90% 60.答:该店应按原售价的九折出售.15.关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.【答案】(1)证明见解析;(2)x1=﹣,x2=﹣1或【解析】试题分析:(1)根据一元二次方程的判别式△=b2﹣4ac的结果判断即可,当△>0时,有两个不相等的实数根,当△=0时,有两个相等的实数根,当△<0时,方程没有实数根;(2)根据一元二次方程根与系数的关系x1+x2=-ba,x1•x2=ca,表示出两根的关系,得到x1,x2异号,然后根据绝对值的性质和两根的关系分类讨论即可求解.试题解析:(1)一元二次方程x2﹣(m﹣3)x﹣m2=0,∵a=1,b=﹣(m﹣3)=3﹣m,c=﹣m2,∴△=b2﹣4ac=(3﹣m)2﹣4×1×(﹣m2)=5m2﹣6m+9=5(m﹣35)2+365,∴△>0,则方程有两个不相等的实数根;(2)∵x1•x2=ca=﹣m2≤0,x1+x2=m﹣3,∴x1,x2异号,又|x1|=|x2|﹣2,即|x1|﹣|x2|=﹣2,若x1>0,x2<0,上式化简得:x1+x2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣x2=﹣1,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1,x2。

九年级数学一元二次方程组的专项培优 易错 难题练习题(含答案)附答案解析

九年级数学一元二次方程组的专项培优 易错 难题练习题(含答案)附答案解析
∴这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),
五月份用水量超过m吨(或水费是按 来计算的)
则有151=1.7×80+(80-m)×
即m2-80m+1500=0
解得m1=30,m2=50.
又∵四月份用水量为35吨,m1=30<35,∴m1=30舍去.
∴m=50
【解析】
5.解下列方程:
7.已知关于x的一元二次方程 (m为常数)
(1)求证:不论m为何值,方程总有两个不相等的实数根;
(2)若方程有一个根是2,求m的值及方程的另一个根.
【答案】(1)见解析;
(2)即m的值为0,方程的另一个根为0.
【解析】
【分析】
(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m2+4>0,则方程有两个不相等实数解,于是可判断不论m为何值,方程总有两个不相等的实数根;
9.关于x的一元二次方程 .
(1).求证:方程总有两个实数根;
(2).若方程的两个实数根都是正整数,求m的最小值.
【答案】(1)证明见解析;(2)-1.
【解析】
【分析】
(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程有两个实数根.
(2)根据题意利用十字相乘法解方程,求得 ,再根据题意两个根都是正整数,从而可以确定 的取值范围,即求出吗 的最小值.
九年级数学一元二次方程组的专项培优易错难题练习题(含答案)附答案解析
一、一元二次方程
1.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.
(1)求证:对任意实数m,方程总有2个不相等的 实数根;
(2)若方程的一个根是2,求m的值及方程的另一个根.

2020-2021九年级数学 一元二次方程组的专项 培优 易错 难题练习题及答案解析

2020-2021九年级数学 一元二次方程组的专项 培优 易错 难题练习题及答案解析

2020-2021九年级数学 一元二次方程组的专项 培优 易错 难题练习题及答案解析一、一元二次方程1.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值. 【答案】0.【解析】【分析】 由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解.【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1, 则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-. Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k≠1,则k =2,但使2216k k k -+-无意义. 综上,代数式2216k k k -+-的值为0 【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,2.解方程:(x+1)(x ﹣3)=﹣1.【答案】x 1x 2=1试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,解得:x1,x2=13.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x千克,则x{1﹣[60%+1.6%(90﹣x)]}=12,整理得:x2﹣65x﹣750=0,(x﹣75)(x+10)=0,解得:x1=75,x2=﹣10(舍去),60%+1.6%(90﹣x)=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用4.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.(1)求证:对任意实数m,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【答案】(1)证明见解析;(2)m的值为,方程的另一个根是5.【解析】(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.【详解】(1)证明:∵(x﹣3)(x﹣4)﹣m2=0,∴x2﹣7x+12﹣m2=0,∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,∵m2≥0,∴△>0,∴对任意实数m,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m2=0,解得m=±,∴原方程为x2﹣7x+10=0,解得x=2或x=5,即m的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b2-4ac>0时,方程有两个不相等的实数根;当△=b2-4ac=0时,方程有两个相等的实数根;当△=b2-4ac<0时,方程没有实数根.5.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m ﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.6.解方程: 2212x x 6x 9-=-+() 【答案】124x x 23==-, 【解析】试题分析:先对方程的右边因式分解,直接开平方或移项之后再因式分解法求解即可.试题解析:因式分解,得2212x x 3-=-()()开平方,得12x x 3-=-,或12x x 3-=--()解得124x x 23==-, 7.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭. 【答案】x=15或x=1 【解析】【分析】 设321x y x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】 解:设321x y x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3, ∴3121x x =--或3321x x =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.8.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.9.已知两条线段长分别是一元二次方程28120x x -+=的两根,(1)解方程求两条线段的长。

2020-2021初三培优 易错 难题一元二次方程组辅导专题训练附详细答案

2020-2021初三培优 易错 难题一元二次方程组辅导专题训练附详细答案

2020-2021初三培优 易错 难题一元二次方程组辅导专题训练附详细答案一、一元二次方程1.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10. 【解析】 【分析】分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论. 【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k = 当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4. ∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形. ∴△ABC 的周长为10. 【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.2.如图,在△ABC 中,AB =6cm ,BC =7cm ,∠ABC =30°,点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动.如果P 、Q 两点同时出发,经过几秒后△PBQ 的面积等于4cm 2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.3.已知:关于x的方程x2-4mx+4m2-1=0.(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2【答案】(1) 有两个不相等的实数根(2)周长为13或17【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m 值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m )2﹣4(4m 2﹣1)=4>0,∴无论m 为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC 为等腰三角形,另外两条边是方程的根,∴5是方程x 2﹣4mx +4m2﹣1=0的根.将x =5代入原方程,得:25﹣20m +4m 2﹣1=0,解得:m 1=2,m 2=3.当m =2时,原方程为x 2﹣8x +15=0,解得:x 1=3,x 2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m =3时,原方程为x 2﹣12x +35=0,解得:x 1=5,x 2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17. 综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x =5求出m 值.4.解方程:(2x+1)2=2x+1. 【答案】x=0或x=12-. 【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x (2x+1)=0, 则x=0或2x+1=0, 解得:x=0或x=﹣12.5.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=,224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.6. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的), 五月份用水量超过m 吨(或水费是按来计算的)则有151=1.7×80+(80-m )×即m 2-80m+1500=0 解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去. ∴m=50 【解析】7.由图看出,用水量在m 吨之内,水费按每吨1.7元收取,超过m 吨,需要加收.8.有一个人患了流感,经过两轮传染后共有36人患了流感. (1)求每轮传染中平均一个人传染了几个人? (2)如果不及时控制,第三轮将又有多少人被传染? 【答案】(1)5;(2)180 【解析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可. 【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得: x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人; (2)根据题意得:5×36=180(个), 答:第三轮将又有180人被传染. 【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.9.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n . 【解析】 【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解. 【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n. 【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.10.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值.【答案】(1)m 的最小整数值为4-;(2)3m = 【解析】 【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题. 【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯-⎪⎝⎭22218m m m =++-+29m =+方程有两个实数根0∴∆≥,即290m +≥92m ∴≥-∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m ∴=,25m =-92m ≥-3m ∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.11.已知关于x 的方程x 2﹣2x +m ﹣2=0有两个不相等的实数根. (1)求m 的取值范围;(2)如果m 为正整数,且该方程的根都是整数,求m 的值. 【答案】(1)m <3;(2)m =2. 【解析】 【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案. 【详解】(1)∵方程有两个不相等的实数根. ∴△=4﹣4(m ﹣2)>0. ∴m <3;(2)∵m <3 且 m 为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.12.淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A商品的成本为30元/件,网上标价为80元/件.(1)“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.【答案】(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为100元.【解析】【分析】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据总利润=每件的利润×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论.【详解】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据题意得:80(1﹣x)2=39.2,解得:x1=0.3=30%,x2=1.7(不合题意,舍去).答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.(2)根据题意得:[0.5×80(1+a%)﹣30]×1000(1+2a%)=30000,整理得:a2+75a﹣2500=0,解得:a1=25,a2=﹣100(不合题意,舍去),∴80(1+a%)=80×(1+25%)=100.答:乙网店在“双十一”购物活动这天的网上标价为100元.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.关于x 的一元二次方程(k -2)x 2-4x +2=0有两个不相等的实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值.【答案】(1)k <4且k ≠2.(2)m =0或m =83-. 【解析】 分析:(1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于k 的不等式组,解不等式组即可求得对应的k 的取值范围;(2)由(1)得到符合条件的k 的值,代入原方程,解方程求得x 的值,然后把所得x 的值分别代入方程x 2+mx -1=0即可求得对应的m 的值.详解:(1)∵一元二次方程(k-2)x 2-4x+2=0有两个不相等的实数根, ∴△=16-8(k-2)=32-8k >0且k-2≠0. 解得:k <4且k≠2.(2)由(1)可知,符合条件的:k=3,将k=3代入原方程得:方程x 2-4x+3=0,解此方程得:x 1=1,x 2=3.把x=1时,代入方程x 2+mx-1=0,有1+m-1=0,解得m=0. 把x=3时,代入方程x 2+mx-1=0,有9+3m-1=0,解得m=83-.∴m=0或m=83-.点睛:(1)知道“在一元二次方程20?(0)ax bx c a ++=≠中,当△=240b ac ->时,方程有两个不相等的实数根;当△=240b ac -=时,方程有两个相等的实数根;△=240b ac -<时,方程没有实数根”是正确解答第1小题的关键;(2)解第2小题时,需注意相同的根存在两种情况,解题时不要忽略了其中任何一种情况.14.如图,一艘轮船以30km/h 的速度沿既定航线由南向北航行,途中接到台风警报,某台风中心正以10km/h 的速度由东向西移动,距台风中心200km 的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km ,此时台风中心与轮船既定航线的最近距离AB=300km .(1)如果这艘船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航向不变,轮船航行速度不变,求受到台风影响的时间为多少小时?【答案】(1)如果这艘船不改变航向,那么它会进入台风影响区.(2)经过15就会进入台风影响区;(3)【解析】【分析】(1)作出肯定回答:这艘轮船不改变航向,那么它能进入台风影响区.(2)首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.(3)将轮船刚好进入台风影响区和刚好离开台风影响的两个时间节点相减,即能得出受影响的时间长.【详解】解:(1)如图易知AB′=300﹣10t,AC′=400﹣30t,当B′C′=200时,将受到台风影响,根据勾股定理可得:(300﹣10t)2+(400﹣30t)2=2002,整理得到:t2﹣30t+210=0,解得t由此可知,如果这艘船不改变航向,那么它会进入台风影响区.(2)由(1)可知经过(15h就会进入台风影响区;(3)由(1)可知受到台风影响的时间为15h.【点睛】此题主要考查了一元二次方程的应用以及勾股定理等知识,根据题意得出关于x的等式是解题关键.15.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式。

九年级数学一元二次方程组的专项培优 易错 难题练习题(含答案)及详细答案

九年级数学一元二次方程组的专项培优 易错 难题练习题(含答案)及详细答案

九年级数学一元二次方程组的专项培优易错难题练习题(含答案)及详细答案一、一元二次方程1.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q 两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C 同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?【答案】(1)PQ=62cm;(2)85s或245s;(3)经过4秒或6秒△PBQ的面积为12cm2.【解析】试题分析:(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴cm;∴经过2s时P、Q两点之间的距离是;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,∴16-5x=±8,∴x1=85,x2=245;∴经过85s或245sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤163时,则PB=16-3y,∴12PB•BC=12,即12×(16-3y)×6=12,解得y=4;②当163<x≤223时,BP=3y-AB=3y-16,QC=2y,则1 2BP•CQ=12(3y-16)×2y=12,解得y1=6,y2=-23(舍去);③223<x≤8时,QP=CQ-PQ=22-y,则1 2QP•CB=12(22-y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ的面积为 12cm2.考点:一元二次方程的应用.2.在等腰三角形△ABC中,三边分别为a、b、c,其中ɑ=4,若b、c是关于x的方程x2﹣(2k+1)x+4(k﹣12)=0的两个实数根,求△ABC的周长.【答案】△ABC的周长为10.【解析】【分析】分a为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k值,将k值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论. 【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k = 当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4. ∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形. ∴△ABC 的周长为10. 【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.3.解方程:x 2-2x =2x +1.【答案】x 1=2,x 2=2 【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式2b x a-=求解即可.试题解析:方程化为x 2-4x -1=0. ∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x=, ∴x1=2,x 2=24.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根. (1)求a 的取值范围;(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值.【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a-是是负整数,即可得66a-是正整数.根据a是整数,即可求得a的值2.【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1x2=,∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.∵(x1+1)(x2+1)是负整数,∴﹣是负整数,即是正整数.∵a是整数,∴a﹣6的值为1、2、3或6,∴a的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.5.已知:关于的方程有两个不相等实数根.(1)用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.∴由求根公式,得.∴或(II),∴.而,∴,.由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k (k-3)=9>0,再利用求根公式即可求出方程的两根即可; (2)有(1)可知方程的两根,再有条件x 1>x 2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系. 请你解答下列问题:6.已知关于x 的方程221(1)104x k x k -+++=有两个实数根. (1)求k 的取值范围;(2)若方程的两实数根分别为1x ,2x ,且221212615x x x x +=-,求k 的值.【答案】(1)32k ≥ (2)4 【解析】 试题分析:根据方程的系数结合根的判别式即可得出230k ∆=-≥ ,解之即可得出结论.根据韦达定理可得:212121114x x k x x k ,+=+⋅=+ ,结合221212615x x x x +=- 即可得出关于k 的一元二次方程,解之即可得出k 值,再由⑴的结论即可确定k 值. 试题解析:因为方程有两个实数根,所以()22114112304k k k ⎛⎫⎡⎤∆=-+-⨯⨯+=-≥ ⎪⎣⎦⎝⎭, 解得32k ≥. 根据韦达定理,()221212111141 1.114k k x x k x x k +-++=-=+⋅==+, 因为221212615x x x x +=-,所以()212128150x x x x +-+=,将上式代入可得()2211811504k k ⎛⎫+-++= ⎪⎝⎭,整理得2280k k --= ,解得 1242k k ,==- ,又因为32k ≥,所以4k =.7.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n . 【解析】 【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解. 【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n. 【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.8.已知关于x 的一元二次方程()2204mmx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根;(2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)134x +=,2x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可. 【详解】(1)由题意得:24b ac ∆=- =()22404mm m +->g g,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得134x +=,234x =. 【点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.9.淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A 商品的成本为30元/件,网上标价为80元/件.(1)“双十一”购物活动当天,甲网店连续两次降价销售A 商品吸引顾客,问该店平均每次降价率为多少时,才能使A 商品的售价为39.2元/件?(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A 商品的成本、网上标价与甲网店一致,一周可售出1000件A 商品.在“双十一”购物活动当天,乙网店先将A 商品的网上标价提高a %,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A 商品数量相比原来一周增加了2a %,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.【答案】(1)平均每次降价率为30%,才能使这件A 商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为100元. 【解析】 【分析】(1)设平均每次降价率为x ,才能使这件A 商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论; (2)根据总利润=每件的利润×销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出a 的值,再将其代入80(1+a %)中即可求出结论. 【详解】(1)设平均每次降价率为x ,才能使这件A 商品的售价为39.2元, 根据题意得:80(1﹣x )2=39.2,解得:x 1=0.3=30%,x 2=1.7(不合题意,舍去).答:平均每次降价率为30%,才能使这件A 商品的售价为39.2元. (2)根据题意得:[0.5×80(1+a %)﹣30]×1000(1+2a %)=30000, 整理得:a 2+75a ﹣2500=0,解得:a 1=25,a 2=﹣100(不合题意,舍去),∴80(1+a%)=80×(1+25%)=100.答:乙网店在“双十一”购物活动这天的网上标价为100元.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件:(1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m的值.【答案】(1)销售单价至少为35元;(2)m=16.【解析】试题分析:(1)根据利润的公式列出方程,再求解即可;(2)销售价为原销售价×(1﹣m%),销售量为(150+m),列出方程求解即可.试题解析:(1)设销售单价至少为x元,根据题意列方程得,150(x﹣20)=2250,解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m)=5670,150+m﹣150×m%﹣m%×m=162,m﹣m2=12,60m﹣3m2=192,m2﹣20m+64=0,m1=4,m2=16,∵要使销售量尽可能大,∴m=16.【考点】一元二次方程的应用;一元一次不等式的应用.11.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【答案】(1)4元或6元;(2)九折. 【解析】 【详解】解:(1)设每千克核桃应降价x 元.根据题意,得(60﹣x ﹣40)(100+x2×20)=2240, 化简,得 x 2﹣10x+24=0,解得x 1=4,x 2=6. 答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元. ∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),54100%=90%60⨯. 答:该店应按原售价的九折出售.12.已知:关于x 的一元二次方程221(1)204x m x m +++-=.(1)若此方程有两个实数根,求没m 的最小整数值; (2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m 的值. 【答案】(1)-4;(2)m=3 【解析】 【分析】(1)利用根的判别式的意义得到△≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到12(1)x x m +=-+,212124x x m =-,然后解关于m 的一元二次方程,即可确定m 的值. 【详解】解:(1)∵221(1)204x m x m +++-=有两个实数根,∴221(1)41(2)04m m ∆=+-⨯⨯-≥, ∴290m +≥, ∴92m ≥-; ∴m 的最小整数值为:4m =-;(2)由根与系数的关系得:12(1)x x m +=-+,212124x x m =-,由22212121184x x x x m ++=-得: ()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭∴22150m m +-=, 解得:3m =或5m =-; ∵92m ≥-, ∴3m =. 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则12bx x a +=-,12c x x a=.也考查了根的判别式.解题的关键是熟练掌握根与系数的关系和根的判别式.13.关于x 的一元二次方程x 2﹣(m ﹣3)x ﹣m 2=0. (1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x 1,x 2,且|x 1|=|x 2|﹣2,求m 的值及方程的根.【答案】(1)证明见解析;(2)x 1=﹣,x 2=﹣1或 【解析】试题分析:(1)根据一元二次方程的判别式△=b 2﹣4ac 的结果判断即可,当△>0时,有两个不相等的实数根,当△=0时,有两个相等的实数根,当△<0时,方程没有实数根;(2)根据一元二次方程根与系数的关系x 1+x 2=-b a ,x 1•x 2=ca,表示出两根的关系,得到x 1,x 2异号,然后根据绝对值的性质和两根的关系分类讨论即可求解. 试题解析:(1)一元二次方程x 2﹣(m ﹣3)x ﹣m 2=0, ∵a=1,b=﹣(m ﹣3)=3﹣m ,c=﹣m 2,∴△=b 2﹣4ac=(3﹣m )2﹣4×1×(﹣m 2)=5m 2﹣6m+9=5(m ﹣35)2+365, ∴△>0,则方程有两个不相等的实数根;(2)∵x 1•x 2=ca=﹣m 2≤0,x 1+x 2=m ﹣3, ∴x 1,x 2异号,又|x 1|=|x 2|﹣2,即|x 1|﹣|x 2|=﹣2,若x 1>0,x 2<0,上式化简得:x 1+x 2=﹣2, ∴m ﹣3=﹣2,即m=1, 方程化为x 2+2x ﹣1=0,解得:x 1=﹣x 2=﹣1,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1,x214.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【答案】(1)k=1;(2)证明见解析.【解析】【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3==-+=a b k c k24Qb ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.15.如图,一艘轮船以30km/h的速度沿既定航线由南向北航行,途中接到台风警报,某台风中心正以10km/h的速度由东向西移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离AB=300km.(1)如果这艘船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航向不变,轮船航行速度不变,求受到台风影响的时间为多少小时?【答案】(1)如果这艘船不改变航向,那么它会进入台风影响区.(2)经过15﹣15h 就会进入台风影响区;(3)215小时.【解析】【分析】(1)作出肯定回答:这艘轮船不改变航向,那么它能进入台风影响区.(2)首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.(3)将轮船刚好进入台风影响区和刚好离开台风影响的两个时间节点相减,即能得出受影响的时间长.【详解】解:(1)如图易知AB′=300﹣10t,AC′=400﹣30t,当B′C′=200时,将受到台风影响,根据勾股定理可得:(300﹣10t)2+(400﹣30t)2=2002,整理得到:t2﹣30t+210=0,解得t15由此可知,如果这艘船不改变航向,那么它会进入台风影响区.(2)由(1)可知经过(1515h就会进入台风影响区;(3)由(1)可知受到台风影响的时间为15151515h.【点睛】此题主要考查了一元二次方程的应用以及勾股定理等知识,根据题意得出关于x的等式是解题关键.。

中考数学 一元二次方程 培优 易错 难题练习(含答案)及答案

中考数学 一元二次方程 培优 易错 难题练习(含答案)及答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,∴k 1=1,k 2=-3.∵k ≤12,∴k =-3.2.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10.【解析】【分析】 分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论.【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k =当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0,解得:k =32, ∴b +c =2k +1=4.∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形.∴△ABC 的周长为10.【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.3.已知关于x 的方程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0.【解析】【分析】在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数.【详解】若存在n 满足题意.设x1,x2是方程①的两个根,则x 1+x 2=2n ,x 1x 2=324n +-,所以(x 1-x 2)2=4n 2+3n+2, 由方程②得,(x+n-1)[x-2(n+1)]=0, ①若4n 2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍. ②若4n 2+3n+2=2(n+2),解得n=0或n=-14(舍), 综上所述,n=0.4.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根. ()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】【分析】 ()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.【详解】解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根, 0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥, 解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+,221223x x +=, 224723k k ∴-+=,解得4k =,或2k =-, 134k ≤, 4k ∴=舍去,2k ∴=-.【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.5.用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1+2x 2=-1-22)y 1=-14,y 2=32. 【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1∴△=b 2-4ac=16+8=24>0∴1=-∴x 1=-1,x 2=-1 (2)(y +2)2-(3y -1)2=0[(y+2)+(3y-1)][ (y+2)-(3y-1)]=0即4y+1=0或-2y+3=0解得y 1=-14,y 2=32.6.阅读下面的例题,范例:解方程x 2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1(不合题意,舍去). (2)当x <0时,原方程化为x 2+x ﹣2=0,解得:x 1=﹣2,x 2=1(不合题意,舍去). ∴原方程的根是x 1=2,x 2=﹣2请参照例题解方程x 2﹣|x ﹣10|﹣10=0.【答案】x 1=4,x 2=﹣5.【解析】【分析】分为两种情况:当x≥10时,原方程化为x 2﹣x=0,当x <10时,原方程化为x 2+x ﹣20=0,分别求出方程的解即可.【详解】当x≥10时,原方程化为x 2﹣x+10﹣10=0,解得x 1=0(不合题意,舍去),x 2=1(不合题意,舍去);当x <10时,原方程化为x 2+x ﹣20=0,解得x 3=4,x 4=﹣5,故原方程的根是x 1=4,x 2=﹣5.【点睛】本题考查了解一元二次方程——因式分解法,解此题的关键是能正确去掉绝对值符号.7.已知关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最小整数时,求此时方程的解.【答案】(1)k >﹣12;(2)x 1=0,x 2=﹣1. 【解析】【分析】 (1)由题意得△=(k +1)2﹣4×14k 2>0,解不等式即可求得答案; (2)根据k 取最小整数,得到k =0,列方程即可得到结论.【详解】 (1)∵关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根, ∴△=(k +1)2﹣4×14k 2>0,∴k>﹣12;(2)∵k取最小整数,∴k=0,∴原方程可化为x2+x=0,∴x1=0,x2=﹣1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向B点以1 cm/s的速度移动,点Q从B点沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为42cm ?(3)△PBQ的面积能否为10 cm2?若能,求出时间;若不能,请说明理由.【答案】(1) 2或4秒2 cm;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为2cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8 cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)× 2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8 cm2;(2)设x秒后,PQ=2 cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为42 cm;(3)设经过y秒,△PBQ的面积等于10 cm2,S△PBQ=12×(6-y)× 2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4× 10=-4< 0,∴△PBQ的面积不会等于10 cm2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.9.∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),五月份用水量超过m吨(或水费是按来计算的)则有151=1.7×80+(80-m)×即m2-80m+1500=0解得m1=30,m2=50.又∵四月份用水量为35吨,m1=30<35,∴m1=30舍去.∴m=50【解析】10.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a元/千克, b元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩ 答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x 的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.。

2020-2021九年级数学一元二次方程组的专项培优 易错 难题练习题(含答案)含答案

2020-2021九年级数学一元二次方程组的专项培优 易错 难题练习题(含答案)含答案

2020-2021九年级数学一元二次方程组的专项培优易错难题练习题(含答案)含答案一、一元二次方程1.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.2.解方程:(x+1)(x﹣3)=﹣1.【答案】x1x2=1【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,解得:x1,x2=13.已知:关于x的方程x2-4mx+4m2-1=0.(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2【答案】(1) 有两个不相等的实数根(2)周长为13或17【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m=3时,原方程为x2﹣12x+35=0,解得:x1=5,x2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x=5求出m值.4.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求a的取值范围;(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a - 是是负整数,即可得66a -是正整数.根据a 是整数,即可求得a 的值2. 【详解】(1)∵原方程有两实数根, ∴,∴a≥0且a≠6.(2)∵x 1、x 2是关于x 的一元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根,∴x 1+x 2=﹣,x 1x 2=,∴(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣+1=﹣. ∵(x 1+1)(x 2+1)是负整数,∴﹣是负整数,即是正整数.∵a 是整数,∴a ﹣6的值为1、2、3或6,∴a 的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a 的不等式是解此题的关键.5.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭. 【答案】x=15或x=1 【解析】【分析】 设321x y x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】 解:设321x y x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3, ∴3121x x =--或3321x x =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1.【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.6.从图象来看,该函数是一个分段函数,当0≤x≤m 时,是正比例函数,当x >m 时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.7.已知关于x 的方程221(1)104x k x k -+++=有两个实数根. (1)求k 的取值范围;(2)若方程的两实数根分别为1x ,2x ,且221212615x x x x +=-,求k 的值.【答案】(1)32k ≥(2)4 【解析】试题分析: 根据方程的系数结合根的判别式即可得出230k ∆=-≥ ,解之即可得出结论. 根据韦达定理可得:212121114x x k x x k ,+=+⋅=+ ,结合221212615x x x x +=- 即可得出关于k 的一元二次方程,解之即可得出k 值,再由⑴的结论即可确定k 值.试题解析:因为方程有两个实数根,所以()22114112304k k k ⎛⎫⎡⎤∆=-+-⨯⨯+=-≥ ⎪⎣⎦⎝⎭, 解得32k ≥. 根据韦达定理,()221212111141 1.114k k x x k x x k +-++=-=+⋅==+, 因为221212615x x x x +=-,所以()212128150x x x x +-+=,将上式代入可得 ()2211811504k k ⎛⎫+-++= ⎪⎝⎭,整理得2280k k --= ,解得 1242k k ,==- ,又因为32k ≥,所以4k =.8.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β.(1)求m 的取值范围;(2)若111αβ+=-,则m 的值为多少?【答案】(1)14m ≥;(2)m 的值为3. 【解析】【分析】(1)根据△≥0即可求解,(2)化简11αβ+,利用韦达定理求出α+β,αβ,代入解方程即可. 【详解】解:(1)由题意知,(2m+3)2﹣4×1×m 2≥0,解得:m≥-34; (2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m 2,∵111αβ+=-,即αβαβ+=-1, ∴2m 3m2+﹣()=-1,整理得m 2﹣2m ﹣3=0 解得:m 1=﹣1,m 1=3,由(1)知m≥-34, ∴m 1=﹣1应舍去,∴m 的值为3.【点睛】 本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.9.已知:如图,在Rt ABC ∆中,90C ∠=︒,8AC =cm ,6BC =cm.直线PE 从B 点出发,以2 cm/s 的速度向点A 方向运动,并始终与BC 平行,与线段AC 交于点E .同时,点F 从C 点出发,以1cm/s 的速度沿CB 向点B 运动,设运动时间为t (s) (05t <<) .(1)当t 为何值时,四边形PFCE 是矩形?(2)当ABC ∆面积是PEF ∆的面积的5倍时,求出t 的值;【答案】(1)3011t =;(2)52t ±=。

2020-2021九年级数学一元二次方程组的专项培优 易错 难题练习题及答案解析

2020-2021九年级数学一元二次方程组的专项培优 易错 难题练习题及答案解析

2020-2021九年级数学一元二次方程组的专项培优 易错 难题练习题及答案解析一、一元二次方程1.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上. ①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c ba++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得1(舍去)或x=1,∴点P(1,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P(32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.2.阅读下列材料 计算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t ,则:原式=(1﹣t )(t +)﹣(1﹣t ﹣)t =t +﹣t 2﹣+t 2=在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题: (1)计算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+)(2)因式分解:(a 2﹣5a +3)(a 2﹣5a +7)+4 (3)解方程:(x 2+4x +1)(x 2+4x +3)=3【答案】(1);(2)(a 2﹣5a +5)2;(3)x 1=0,x 2=﹣4,x 3=x 4=﹣2【解析】 【分析】(1)仿照材料内容,令+=t 代入原式计算.(2)观察式子找相同部分进行换元,令a 2﹣5a =t 代入原式进行因式分解,最后要记得把t 换为a .(3)观察式子找相同部分进行换元,令x 2+4x =t 代入原方程,即得到关于t 的一元二次方程,得到t 的两个解后要代回去求出4个x 的解. 【详解】 (1)令+=t ,则: 原式=(1﹣t )(t +)﹣(1﹣t ﹣)t =t +﹣t 2﹣﹣t +t 2+=(2)令a 2﹣5a =t ,则:原式=(t +3)(t +7)+4=t 2+7t +3t +21+4=t 2+10t +25=(t +5)2=(a 2﹣5a +5)2(3)令x 2+4x =t ,则原方程转化为:(t +1)(t +3)=3 t 2+4t +3=3 t (t +4)=0 ∴t 1=0,t 2=﹣4当x 2+4x =0时,x (x +4)=0 解得:x 1=0,x 2=﹣4当x 2+4x =﹣4时,x 2+4x +4=0(x +2)2=0解得:x 3=x 4=﹣2 【点睛】本题考查用换元法进行整式的运算,因式分解,解一元二次方程.利用换元法一般可达到降次效果,从而简便运算.3.解下列方程:(1)x 2﹣3x=1.(2)12(y+2)2﹣6=0.【答案】(1)12x x ==1222y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可; (2)利用直接开方法解即可;试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,∵b 2﹣4ac=13>0∴.∴12x x ==.(2)(y+2)2=12,∴或,∴1222y y =-+=--4.已知关于x 的方程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0. 【解析】 【分析】在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数. 【详解】 若存在n 满足题意.设x1,x2是方程①的两个根,则x 1+x 2=2n ,x 1x 2=324n +-,所以(x 1-x 2)2=4n 2+3n+2, 由方程②得,(x+n-1)[x-2(n+1)]=0,①若4n 2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍.②若4n 2+3n+2=2(n+2),解得n=0或n=-14(舍),综上所述,n=0.5.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根. (1)求a 的取值范围;(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值. 【答案】(1)a≥0且a≠6;(2)a 的值为7、8、9或12. 【解析】 【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x 1+x 2=﹣26a a + ,x 1x 2=6aa + ,由(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣66a - 是是负整数,即可得66a -是正整数.根据a 是整数,即可求得a 的值2. 【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x 1、x 2是关于x 的一元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根,∴x 1+x 2=﹣,x 1x 2=,∴(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣+1=﹣.∵(x 1+1)(x 2+1)是负整数, ∴﹣是负整数,即是正整数.∵a 是整数,∴a ﹣6的值为1、2、3或6, ∴a 的值为7、8、9或12. 【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a 的不等式是解此题的关键.6.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】 解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=,224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.7.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】 由韦达定理,有,.于是,对正整数,有原式=8.关于x 的方程(k -1)x 2+2kx+2=0(1)求证:无论k 为何值,方程总有实数根.(2)设x 1,x 2是方程(k -1)x 2+2kx+2=0的两个根,记S=++ x 1+x 2,S 的值能为2吗?若能,求出此时k 的值.若不能,请说明理由.【答案】(1)详见解析;(2)S 的值能为2,此时k 的值为2. 【解析】试题分析:(1) 本题二次项系数为(k -1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k 的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可. 试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1, x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程, △=(2k )²-4×2(k-1)=4k²-8k +8="4(k-1)" ² +4>0 方程有两不等根综合①②得不论k 为何值,方程总有实根 (2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x 1+x 2=====2k-2=2, 解得k=2,∴当k=2时,S 的值为2 ∴S 的值能为2,此时k 的值为2.考点:一元二次方程根的判别式;根与系数的关系.9.解下列方程: (1)2x 2-4x -1=0(配方法); (2)(x +1)2=6x +6.【答案】(1)x 1=1+2x 2=1-21=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32.∴(x -1)2=32.∴x -1=.∴x 1=1x 2=1 (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0. ∴x +1=0或x +1-6=0. ∴x 1=-1,x 2=5.10.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元. (1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7. 【解析】 【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解. 【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩ 解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克 (2)由题意得:()()()()410010214010960x x x x +-++-= 解之得:12x =,27x =经检验,12x =,27x =均符合题意 答:x 的值为2或7. 【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.11.关于x 的方程()2204kkx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根. 【解析】 【分析】()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围.()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404kk k =+-⋅>, 1k ∴>-, 又0k ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204kkx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x kx x +⎧+=-⎪⎪⎨⎪=⎪⎩,又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-,由()1知,1k >-,且0k ≠,43k ∴=-不符合题意,因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根. 【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。

初三培优易错难题一元二次方程组辅导专题训练及答案

初三培优易错难题一元二次方程组辅导专题训练及答案

初三培优 易错 难题一元二次方程组指导专题训练及答案一、一元二次方程1.解方程: (x+1)(x ﹣ 3)=﹣ 1.【答案】 x 1=1+3 , x 2=1﹣ 3【分析】试题剖析:依据方程的特色,先化为一般式,而后利用配方法求解即可.试题分析:整理得: x 2﹣ 2x=2,配方得: x 2﹣ 2x+1=3,即( x ﹣ 1) 2=3,解得: x 1=1+ 2.3 , x =1﹣ 32.已知对于 x 的方程 x 2﹣( 2k+1) x+k 2+1= 0. (1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰巧是一个矩形两邻边的长,且 k = 2,求该矩形的对角线L 的长.【答案】( 1) k > 3;( 2) 15 .4【分析】【剖析】(1)依据对于 x 的方程 x 2- (2k + 1)x + k 2 +1= 0 有两个不相等的实数根,得出 △ >0,再解不等式即可;(2)当 k=2 时,原方程 x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是 m 、 n ,利用根与系数的关系得出 m+n=5, mn=5,则矩形的对角线长为 m2n 2,利用完整平方公式进行变形即可求得答案 .【详解】(1) ∵ 方程 x 2- (2k + 1)x + k 2+ 1= 0 有两个不相等的实数根,2 2 4k3 0∴Δ= [ - (2k +1)] - 4×1×(k 1),+ = - >3∴k >;4(2)当 k = 2 时,原方程为 x 2- 5x + 5=0, 设方程的两个根为m , n ,∴m + n = 5, mn = 5,∴矩形的对角线长为:m 2n 22m n2mn15 .【点睛】此题考察了根的鉴别式、根与系数的关系、矩形的性质等,一元二次方程根的状况与鉴别式△ 的关系:( 1) △> 0 时,方程有两个不相等的实数根;( 2) △ =0 时,方程有两个相等的实数根;( 3) △< 0 时,方程没有实数根.3.“父亲母亲恩深重,恩怜无歇时 ”,每年 5 月的第二个礼拜日即为母亲节,节日前夜巴蜀中学学生会计划采买一批鲜花礼盒赠予给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购置80个礼盒最多花销7680 元,恳求出每个礼盒在花店的最高标价;(用不等式解答)(2)以后学生会认识到经过“大众评论”或“美团”同城配送会在( 1)中花店最高售价的基础上降价 25%,学生会计划在这两个网站上分别购置同样数目的礼盒,但实质购置过程“”5“美团”网中,大众评论网上的购置价钱比原有价钱上升m%,购置数目和原计划同样:2上的购置价钱比原有价钱降落了915m%,最后,在m 元,购置数目在原计划基础上增添20两个网站的实质花费总数比原计划的估算总数增添了15m%,求出 m 的值.2【答案】( 1) 120;( 2) 20.【分析】试题剖析:( 1)此题介绍两种解法:解法一:设标价为x 元,列不等式为0.8x?80≤7680,解出即可;解法二:依据单价 =总价÷数目先求出 1 个礼盒最多花销,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假定学生会计划在这两个网站上分别购置的礼盒数为 a 个礼盒,表示在“大众评论”网上的购置实质花费总数:5120a( 1﹣25%)( 1+m%),在“美团”网上的购置实质花费2总数: a[120 ( 1﹣ 25%)﹣9m] ( 1+15m%);依据“在两个网站的实质花费总数比原计划20的估算总数增添了15m%”列方程解出即可.2试题分析:( 1)解:解法一:设标价为x 元,列不等式为0.8x?80≤7680,x≤120;解法二: 7680÷80÷0.8=96 ÷0.8=120(元).答:每个礼盒在花店的最高标价是120 元;(2)解:假定学生会计划在这两个网站上分别购置的礼盒数为 a 个礼盒,由题意得:120 × 0.a8 1 25%5+a[120 × 0.8 125%91+15m% =120 × 0.a8 1+m%m]((﹣)(2)(﹣)﹣20)(1﹣ 25%)×2(15m%),即72a( 1+591+m%) +a( 72﹣m)( 1+15m%) =144a 2220(1+ 15m%),整理得: 0.0675m2﹣ 1.35m=0, m2﹣ 20m=0,解得: m1=0(舍),2m2=20.答: m 的值是 20.点睛:此题是一元二次方程的应用,第二问有难度,正确表示出“大众评论”或“美团”实质花费总数是解题重点.4.有一个人患了流感,经过两轮传染后共有36 人患了流感.(1)求每轮传染中均匀一个人传染了几个人?(2)假如不实时控制,第三轮将又有多少人被传染?【答案】( 1) 5;( 2)180【分析】【剖析】(1)设均匀一人传染了x 人,依占有一人患了流感,经过两轮传染后共有36 人患了流感,列方程求解即可;(2)依据每轮传染中均匀一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中均匀一个人传染了x 个人,依据题意得:x+1+( x+1) x= 36,解得: x=5 或 x=﹣ 7(舍去).答:每轮传染中均匀一个人传染了 5 个人;(2)依据题意得: 5×36= 180(个),答:第三轮将又有 180 人被传染.【点睛】此题考察一元二次方程的应用,解题的重点是能依据题意找到等量关系并列方程.5.如图,在RtVABC中,∠B90o, AC 10cm , BC 6cm,现有两点P、 Q 的分别从点A和点 B 同时出发,沿边AB ,BC向终点C挪动.已知点P,Q的速度分别为2cm / s , 1cm / s ,且当此中一点抵达终点时,另一点也随之停止挪动,设P ,Q两点移动时间为 xs .问能否存在这样的x ,使得四边形 APQC 的面积等于16cm2?若存在,请求出此时 x 的值;若不存在,请说明原因.【答案】假定不建立,四边形APQC 面积的面积不可以等于16cm2,原因看法析【分析】【剖析】依据题意,列出BQ、 PB 的表达式,再列出方程,判断根的状况.【详解】解:∵∴AB ∴BQ 假定存在B 90o, AC10, BC 6 ,8.x ,PB8 2x;x 的值,使得四边形APQC 的面积等于16cm2,则16 81x 8 2x 16 ,22整理得:x24x 8 0 ,∵V 163216 0,∴假定不建立,四边形APQC面积的面积不可以等于16cm2.【点睛】此题考察了一元二次方程的应用,娴熟掌握方程根的鉴别方法、理解方程的意义是此题的解题重点 .6.已知对于x 的一元二次方程x2﹣6x+( 2m+1) =0 有实数根.(1)求 m 的取值范围;(2)假如方程的两个实数根为 x1,x2,且 2x1x2+x1+x2≥ 20,求 m 的取值范围.【答案】( 1) m≤4;( 2) 3≤m≤4.【分析】试题剖析:( 1)依据鉴别式的意义获得△ =(-6)2-4(2m+1)≥0,而后解不等式即可;(2)依据根与系数的关系获得x1+x2=6, x1x2=2m+1 ,再利用 2x1x2+x1+x2≥ 20获得 2(2m+1 ) +6≥20,而后解不等式和利用(1)中的结论可确立知足条件的m 的取值范围.试题分析:(1)依据题意得△=(- 6)2- 4(2m + 1)≥0,解得 m≤4;(2)依据题意得 x1+ x2= 6, x1 x2=2m+ 1,而 2x1x2+x1+ x2≥ 20,所以 2( 2m +1)+ 6≥ 20,解得m≥3,而 m≤4,所以 m 的范围为 3≤m≤4.7.校园空地上有一面墙,长度为 20m ,用长为 32m 的篱笆和这面墙围成一个矩形花园,以下图.(1)能围成面积是 126m2的矩形花园吗?若能,请举例说明;若不可以,请说明原因.(2)若篱笆再增添 4m,围成的矩形花园面积能达到170m2吗?请说明原因.【答案】( 1)长为 18 米、宽为7 米或长为 14 米、宽为9 米;( 2)若篱笆再增添4m,围成的矩形花园面积不可以达到170m2.【分析】【剖析】(1)假定能,设 AB 的长度为 x 米,则 BC 的长度为( 32﹣2x)米,再依据矩形面积公式列方程求解即可获得答案 .(2)假定能,设 AB 的长度为 y 米,则 BC 的长度为( 36﹣ 2y)米,再依据矩形面积公式列方程,求得方程无解,即假定不建立.【详解】(1)假定能,设 AB 的长度为 x 米,则 BC 的长度为( 32﹣2x)米,依据题意得: x(32﹣2x)=126,解得: x1=7, x2 =9,∴32﹣ 2x=18 或 32﹣2x=14,∴假定建立,即长为18 米、宽为7 米或长为14 米、宽为9 米.(2)假定能,设 AB 的长度为 y 米,则 BC 的长度为( 36﹣ 2y)米,依据题意得: y(36﹣ 2y)=170,整理得: y2﹣ 18y+85=0.∵△ =(﹣18)2﹣4×1×85=﹣ 16<0,∴该方程无解,∴假定不建立,即若篱笆再增添4m,围成的矩形花园面积不可以达到170m2.8.对于 x 的一元二次方程ax2+bx+1=0.(1)当 b=a+2 时,利用根的鉴别式判断方程根的状况;(2)若方程有两个相等的实数根,写出一组知足条件的a, b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2) b=-2, a=1 时, x1=x2=﹣1.【分析】【详解】剖析:( 1)求出根的鉴别式b24ac ,判断其范围,即可判断方程根的状况.(2)方程有两个相等的实数根,则b24ac 0,写出一组知足条件的 a ,b的值即可.详解:( 1)解:由题意:a0.∵b24ac a24a a240 2,∴原方程有两个不相等的实数根.(2)答案不独一,知足b24ac0 (a0 )即可,比如:解:令 a1, b 2 ,则原方程为x22x 1 0 ,解得: x1x21.点睛:考察一元二次方程ax2bx c0a0 根的鉴别式b24ac ,当b2 4ac 0 时,方程有两个不相等的实数根.当b24ac 0 时,方程有两个相等的实数根.当b2 4ac 0 时,方程没有实数根.9.如图,要利用一面墙 (墙长为 25 米 )建羊圈,用 100 米的围栏围成总面积为400 平方米的三个大小同样的矩形羊圈,求羊圈的边长AB,BC各为多少米?【答案】羊圈的边长 AB, BC 分别是 20 米、 20 米 .【分析】试题剖析:设AB 的长度为 x 米,则 BC 的长度为(100﹣ 4x)米;而后依据矩形的面积公式列出方程.试题分析:设AB 的长度为 x 米,则 BC 的长度为(100﹣ 4x)米.依据题意得( 100﹣ 4x)x=400,解得 x1=20, x2 =5.则 100﹣ 4x=20 或 100﹣ 4x=80.∵ 80>25,∴ x2=5 舍去.即 AB=20,BC=20考点:一元二次方程的应用.10.工人师傅用一块长为10dm ,宽为 6dm 的矩形铁皮制作一个无盖的长方体容器,需要12dm2时,裁掉的正方形边将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为长多大?【答案】裁掉的正方形的边长为2dm ,底面积为12dm2.【分析】试题剖析:设裁掉的正方形的边长为 xdm,则制作无盖的长方体容器的长为( 10-2x)dm,宽为( 6-2x) dm,依据长方体底面面积为 12dm 2列出方程,解方程即可求得裁掉的正方形边长 .试题分析:设裁掉的正方形的边长为xdm,由题意可得 (10-2x)(6-2x)=12 ,即 x2-8x+12=0,解得 x=2 或 x=6(舍去 ),答:裁掉的正方形的边长为2dm ,底面积为 12dm 2.11.已知对于 x 的方程 x2-( m+2) x+( 2m- 1) =0。

初三数学一元二次方程组的专项培优易错试卷练习题(含答案)含答案

初三数学一元二次方程组的专项培优易错试卷练习题(含答案)含答案

初三数学一元二次方程组的专项培优易错试卷练习题(含答案)含答案一、一元二次方程1.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1%2a ,B 种品牌的建材的销售量减少了2%3a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23a ,求a 的值.【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30. 【解析】 【分析】(1)设销售A 品牌的建材x 件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;(2)根据题意列出方程求解即可. 【详解】(1)设销售A 品牌的建材x 件.根据题意,得()60009000126966000x x +-≥, 解这个不等式,得56x ≤, 答:至多销售A 品牌的建材56件.(2)在(1)中销售额最低时,B 品牌的建材70件, 根据题意,得()()()12260001%561%90001%701%6000569000701%2323a a a a a ⎛⎫⎛⎫⎛⎫-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令%a y =,整理这个方程,得21030y y -=,解这个方程,得1230,10y y ==, ∴10a =(舍去),230a =, 即a 的值是30. 【点睛】本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.2.解下列方程:(1)x 2﹣3x=1.(2)12(y+2)2﹣6=0.【答案】(1)12x x ==1222y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可; (2)利用直接开方法解即可;试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,∵b 2﹣4ac=13>0∴.∴12x x ==.(2)(y+2)2=12,∴或,∴1222y y =-+=--3.如图,在△ABC 中,AB =6cm ,BC =7cm ,∠ABC =30°,点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动.如果P 、Q 两点同时出发,经过几秒后△PBQ 的面积等于4cm 2?【答案】经过2秒后△PBQ 的面积等于4cm 2. 【解析】 【分析】作出辅助线,过点Q 作QE ⊥PB 于E ,即可得出S △PQB =12×PB×QE ,有P 、Q 点的移动速度,设时间为t 秒时,可以得出PB 、QE 关于t 的表达式,代入面积公式,即可得出答案. 【详解】解:如图,过点Q 作QE ⊥PB 于E ,则∠QEB =90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.4.已知:关于x的方程x2-4mx+4m2-1=0.(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2【答案】(1) 有两个不相等的实数根(2)周长为13或17【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m=3时,原方程为x2﹣12x+35=0,解得:x1=5,x2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x=5求出m值.5.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.【解析】【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可;(2)分别求出两种方式的增长率,然后比较即可.【详解】(1)设平均每次下调x%,则7000(1﹣x)2=5670,解得:x1=10%,x2=190%(不合题意,舍去);答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x)2=(1﹣10%)2=81%.∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.6.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD 的面积s 的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.7. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的), 五月份用水量超过m 吨(或水费是按来计算的)则有151=1.7×80+(80-m )×即m 2-80m+1500=0 解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去. ∴m=50 【解析】8.关于x 的一元二次方程()22210x k x k +-+=有两个不等实根1x ,2x .(1)求实数k 的取值范围;(2)若方程两实根1x ,2x 满足121210x x x x ++-=,求k 的值. 【答案】(1) k <14;(2) k=0. 【解析】 【分析】(1)根据一元二次方程的根的判别式得出△>0,求出不等式的解集即可;(2)根据根与系数的关系得出x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,代入x 1+x 2+x 1x 2-1=0,即可求出k 值. 【详解】解:(1)∵关于x 的一元二次方程x 2+(2k-1)x+k 2=0有两个不等实根x 1,x 2,∴△=(2k-1)2-4×1×k 2=-4k+1>0, 解得:k <14, 即实数k 的取值范围是k <14; (2)由根与系数的关系得:x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,∵x 1+x 2+x 1x 2-1=0, ∴1-2k+k 2-1=0, ∴k 2-2k=0 ∴k=0或2,∵由(1)知当k=2方程没有实数根,∴k=2不合题意,舍去, ∴k=0. 【点睛】本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.9.已知1x 、2x 是关于x 的方程222(1)50x m x m -+++=的两个不相等的实数根. (1)求实数m 的取值范围;(2)已知等腰ABC ∆的一边长为7,若1x 、2x 恰好是ABC ∆另外两边长,求这个三角形的周长.【答案】(1)m>2; (2)17 【解析】试题分析:(1)由根的判别式即可得;(2)由题意得出方程的另一根为7,将x =7代入求出x 的值,再根据三角形三边之间的关系判断即可得.试题解析:解:(1)由题意得△=4(m +1)2﹣4(m 2+5)=8m -16>0,解得:m >2;(2)由题意,∵x 1≠x 2时,∴只能取x 1=7或x 2=7,即7是方程的一个根,将x =7代入得:49﹣14(m +1)+m 2+5=0,解得:m =4或m =10.当m =4时,方程的另一个根为3,此时三角形三边分别为7、7、3,周长为17; 当m =10时,方程的另一个根为15,此时不能构成三角形; 故三角形的周长为17.点睛:本题主要考查判别式、三角形三边之间的关系,熟练掌握韦达定理是解题的关键.10.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根. (1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解. 【答案】(1)a ≤174;(2)x =1或x =2 【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b 2﹣4ac≥0,建立关于a 的不等式,即可求出a 的取值范围;(2)根据(1)确定出a 的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a ﹣2)≥0,解得a ≤174; (2)由(1)可知a ≤174, ∴a 的最大整数值为4,此时方程为x 2﹣3x +2=0, 解得x =1或x =2.【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根. 【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1. 【解析】 【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况. (2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如: 解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根. 当240b ac ∆=-=时,方程有两个相等的实数根. 当240b ac ∆=-<时,方程没有实数根.12.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?【答案】羊圈的边长AB ,BC 分别是20米、20米. 【解析】试题分析:设AB 的长度为x 米,则BC 的长度为(100﹣4x )米;然后根据矩形的面积公式列出方程.试题解析:设AB 的长度为x 米,则BC 的长度为(100﹣4x )米. 根据题意得 (100﹣4x )x=400,解得 x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20考点:一元二次方程的应用.13.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.14.已知关于x的方程x2-(m+2)x+(2m-1)=0。

2020-2021九年级数学一元二次方程组的专项培优 易错 难题练习题(含答案)附详细答案

2020-2021九年级数学一元二次方程组的专项培优 易错 难题练习题(含答案)附详细答案

2020-2021九年级数学一元二次方程组的专项培优 易错 难题练习题(含答案)附详细答案一、一元二次方程1.解下列方程:(1)x 2﹣3x=1.(2)12(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-== ;(2)12223,223y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可;(2)利用直接开方法解即可;试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,∵b 2﹣4ac=13>0∴. ∴12313313,22x x +-==. (2)(y+2)2=12, ∴或,∴12223,223y y =-+=--2.解方程:(x+1)(x ﹣3)=﹣1.【答案】x 13x 2=13【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x 2﹣2x=2,配方得:x 2﹣2x+1=3,即(x ﹣1)2=3,解得:x 13,x 2=133.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.【答案】(1)k >34;(215 【解析】【分析】(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x2-5x+5=0,设方程的两根是m、n,则矩形两邻边的长是m、n,利用根与系数的关系得出m+n=5,mn=5,利用完全平方公式进行变形即可求得答案.【详解】(1)∵方程x2-(2k+1)x+k2+1=0有两个不相等的实数根,∴Δ=[-(2k+1)]2-4×1×(k2+1)=4k-3>0,∴k>34;(2)当k=2时,原方程为x2-5x+5=0,设方程的两个根为m,n,∴m+n=5,mn=5,∴==.【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.4.已知:关于x的方程x2-4mx+4m2-1=0.(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2【答案】(1) 有两个不相等的实数根(2)周长为13或17【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m=3时,原方程为x2﹣12x+35=0,解得:x1=5,x2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x=5求出m值.5.发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.涵涵的作业解:x2﹣7x+10=0a=1 b=﹣7 c=10∵b2﹣4ac=9>0∴732±∴x1=5,x2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.当腰为2,底为5时,等腰三角形的三条边为2,2,5.探究应用:请解答以下问题:已知等腰三角形ABC的两边是关于x的方程x2﹣mx+m2﹣14=0的两个实数根.(1)当m=2时,求△ABC的周长;(2)当△ABC为等边三角形时,求m的值.【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC的周长为72;(2)当△ABC为等边三角形时,m的值为1.【解析】【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1,可求得m.【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x2﹣2x+34=0,∴x1=12,x2=32.当12为腰时,12+12<32,∴12、12、32不能构成三角形;当32为腰时,等腰三角形的三边为32、32、12, 此时周长为32+32+12=72. 答:当m=2时,△ABC 的周长为72. (2)若△ABC 为等边三角形,则方程有两个相等的实数根,∴△=(﹣m )2﹣4(m 2﹣14)=m 2﹣2m+1=0, ∴m 1=m 2=1.答:当△ABC 为等边三角形时,m 的值为1.【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.6.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩ 解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x 的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.7.已知x=﹣1是关于x 的方程x 2+2ax+a 2=0的一个根,求a 的值.【答案】1【解析】试题分析:根据一元二次方程解的定义,把x=﹣1代入x 2+2ax+a 2=0得到关于a 的一元二次方程1﹣2a+a 2=0,然后解此一元二次方程即可.试题解析:把x=﹣1代入x 2+2ax+a 2=0得1﹣2a+a 2=0,解得a 1=a 2=1,所以a 的值为1.8.已知关于x 的方程(a ﹣1)x 2+2x +a ﹣1=0.(1)若该方程有一根为2,求a 的值及方程的另一根;(2)当a 为何值时,方程的根仅有唯一的值?求出此时a 的值及方程的根.【答案】(1)a=15,方程的另一根为12;(2)答案见解析. 【解析】【分析】(1)把x=2代入方程,求出a 的值,再把a 代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=1时,为一元一次方程;②当a≠1时,利用b 2-4ac =0求出a 的值,再代入解方程即可.【详解】(1)将x =2代入方程2(a 1)x 2x a 10-++-=,得4(a 1)4a 10-++-=,解得:a =15. 将a =15代入原方程得24x 2054x 5-+-=,解得:x 1=12,x 2=2. ∴a =15,方程的另一根为12; (2)①当a =1时,方程为2x =0,解得:x =0.②当a≠1时,由b 2-4ac =0得4-4(a -1)2=0,解得:a =2或0.当a =2时, 原方程为:x 2+2x +1=0,解得:x 1=x 2=-1;当a =0时, 原方程为:-x 2+2x -1=0,解得:x 1=x 2=1.综上所述,当a =1,0,2时,方程仅有一个根,分别为0,1,-1.考点:1.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.9.关于x 的一元二次方程(k -2)x 2-4x +2=0有两个不相等的实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值.【答案】(1)k <4且k ≠2.(2)m =0或m =83-.【解析】分析: (1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于k 的不等式组,解不等式组即可求得对应的k 的取值范围;(2)由(1)得到符合条件的k 的值,代入原方程,解方程求得x 的值,然后把所得x 的值分别代入方程x 2+mx -1=0即可求得对应的m 的值.详解:(1)∵一元二次方程(k-2)x 2-4x+2=0有两个不相等的实数根,∴△=16-8(k-2)=32-8k >0且k-2≠0.解得:k <4且k≠2.(2)由(1)可知,符合条件的:k=3,将k=3代入原方程得:方程x 2-4x+3=0,解此方程得:x 1=1,x 2=3.把x=1时,代入方程x 2+mx-1=0,有1+m-1=0,解得m=0.把x=3时,代入方程x 2+mx-1=0,有9+3m-1=0,解得m=83-.∴m=0或m=83-.点睛:(1)知道“在一元二次方程20?(0)ax bx c a ++=≠中,当△=240b ac ->时,方程有两个不相等的实数根;当△=240b ac -=时,方程有两个相等的实数根;△=240b ac -<时,方程没有实数根”是正确解答第1小题的关键;(2)解第2小题时,需注意相同的根存在两种情况,解题时不要忽略了其中任何一种情况.10.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件: (1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m 件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m 的值.【答案】(1)销售单价至少为35元;(2)m=16.【解析】试题分析:(1)根据利润的公式列出方程,再求解即可;(2)销售价为原销售价×(1﹣m%),销售量为(150+m ),列出方程求解即可.试题解析:(1)设销售单价至少为x 元,根据题意列方程得,150(x ﹣20)=2250,解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m )=5670, 150+m ﹣150×m%﹣m%×m=162, m ﹣m 2=12, 60m ﹣3m 2=192,m 2﹣20m+64=0,m 1=4,m 2=16,∵要使销售量尽可能大,∴m=16.【考点】一元二次方程的应用;一元一次不等式的应用.11.已知:关于x 的一元二次方程221(1)204x m x m +++-=. (1)若此方程有两个实数根,求没m 的最小整数值;(2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m 的值. 【答案】(1)-4;(2)m=3【解析】【分析】(1)利用根的判别式的意义得到△≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到12(1)x x m +=-+,212124x x m =-,然后解关于m 的一元二次方程,即可确定m 的值.【详解】解:(1)∵221(1)204x m x m +++-=有两个实数根, ∴221(1)41(2)04m m ∆=+-⨯⨯-≥,∴290m +≥, ∴92m ≥-; ∴m 的最小整数值为:4m =-;(2)由根与系数的关系得:12(1)x x m +=-+,212124x x m =-, 由22212121184x x x x m ++=-得: ()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭∴22150m m +-=,解得:3m =或5m =-; ∵92m ≥-, ∴3m =.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则12b x x a +=-,12c x x a=.也考查了根的判别式.解题的关键是熟练掌握根与系数的关系和根的判别式.12.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.【解析】【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.【详解】(1)设每千克茶叶应降价x 元.根据题意,得:(400﹣x ﹣240)(200+10x ×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.13.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解: 22228160m mn n n -+-+=Q ,222(2)(816)0m mn n n n ∴-++-+=22()(4)0m n n ∴-+-=,0,40m n n ∴-=-=,4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值.【答案】(1)2(2)6(3)7【解析】【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a 与b 的值,根据边长为正整数且三角形三边关系即可求出c 的长;(3)由a ﹣b =4,得到a =b +4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a ﹣b +c 的值.【详解】(1)∵x 2+2xy +2y 2+2y +1=0∴(x 2+2xy +y 2)+(y 2+2y +1)=0∴(x +y )2+(y +1)2=0∴x +y =0 y +1=0解得:x =1,y =﹣1∴x ﹣y =2;(2)∵a 2+b 2﹣6a ﹣8b +25=0∴(a 2﹣6a +9)+(b 2﹣8b +16)=0∴(a ﹣3)2+(b ﹣4)2=0∴a ﹣3=0,b ﹣4=0解得:a =3,b =4∵三角形两边之和>第三边∴c <a +b ,c <3+4,∴c <7.又∵c 是正整数,∴△ABC 的最大边c 的值为4,5,6,∴c 的最大值为6;(3)∵a ﹣b =4,即a =b +4,代入得:(b +4)b +c 2﹣6c +13=0,整理得:(b 2+4b +4)+(c 2﹣6c +9)=(b +2)2+(c ﹣3)2=0,∴b +2=0,且c ﹣3=0,即b =﹣2,c =3,a =2,则a ﹣b +c =2﹣(﹣2)+3=7.故答案为7.【点睛】本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.14.已知关于x 的方程()()212310k x k x k -+-++=有两个不相等的实数根1x ,2x . ()1求k 的取值范围.()2是否存在实数k ,使方程的两实数根互为相反数?【答案】(1)1312k <且1k ≠;(2) k 不存在,理由见解析 【解析】【分析】(1)因为方程(k ﹣1)x 2+(2k ﹣3)x +k +1=0有两个不相等的实数根x 1,x 2.得出其判别式△>0,可解得k 的取值范围;(2)假设存在两根的值互为相反数,根据根与系数的关系,列出对应的不等式即可求出k 的值.【详解】(1)方程(k ﹣1)x 2+(2k ﹣3)x +k +1=0有两个不相等的实数根x 1,x 2,可得:k ﹣1≠0且△=﹣12k +13>0,解得:k <1312且k ≠1; (2)假设存在两根的值互为相反数,设为 x 1,x 2.∵x 1+x 2=0,∴﹣231k k --=0,∴k =32. 又∵k <1312且k ≠1,∴k 不存在. 【点睛】本题主要考查了根与系数的关系,属于基础题,关键掌握x 1,x 2是方程x 2+px +q =0的两根时,x 1+x 2=﹣p ,x 1x 2=q .15.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.。

2020-2021九年级数学 一元二次方程组的专项 培优 易错 难题练习题及详细答案

2020-2021九年级数学 一元二次方程组的专项 培优 易错 难题练习题及详细答案

2020-2021九年级数学 一元二次方程组的专项 培优 易错 难题练习题及详细答案一、一元二次方程1.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1%2a ,B 种品牌的建材的销售量减少了2%3a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23a ,求a 的值.【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30. 【解析】 【分析】(1)设销售A 品牌的建材x 件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;(2)根据题意列出方程求解即可. 【详解】(1)设销售A 品牌的建材x 件.根据题意,得()60009000126966000x x +-≥, 解这个不等式,得56x ≤, 答:至多销售A 品牌的建材56件.(2)在(1)中销售额最低时,B 品牌的建材70件, 根据题意,得()()()12260001%561%90001%701%6000569000701%2323a a a a a ⎛⎫⎛⎫⎛⎫-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令%a y =,整理这个方程,得21030y y -=,解这个方程,得1230,10y y ==, ∴10a =(舍去),230a =, 即a 的值是30. 【点睛】本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.2.解方程:x 2-2x =2x +1. 【答案】x 1=2-5 ,x 2=2+5. 【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式24b b acx -±-=求解即可.试题解析:方程化为x 2-4x -1=0. ∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x =420±=2±5 , ∴x 1=2-5 ,x 2=2+5.3.已知:关于的方程有两个不相等实数根.(1) 用含的式子表示方程的两实数根; (2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I )kx 2+(2k -3)x+k -3 = 0是关于x 的一元二次方程.∴由求根公式,得. ∴或(II ),∴.而,∴,. 由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k (k-3)=9>0,再利用求根公式即可求出方程的两根即可; (2)有(1)可知方程的两根,再有条件x 1>x 2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系. 请你解答下列问题:4.解下列方程: (1)2x 2-4x -1=0(配方法); (2)(x +1)2=6x +6. 【答案】(1)x 1=1+62x 2=1-621=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可. 试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32.∴(x -1)2=32. ∴x -1=326. ∴x 1=16x 2=16(2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0. ∴x +1=0或x +1-6=0. ∴x 1=-1,x 2=5.5.已知关于x 的一元二次方程()220x m x m -++=(m 为常数)(1)求证:不论m 为何值,方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值及方程的另一个根. 【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0. 【解析】 【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根; (2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t和m的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m2+4,∵无论m为何值时m2≥0,∴m2+4≥4>0,即△>0,所以无论m为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t,()220x m x m-++=根据题意得2+t=21m+,2t=m,解得t=0,所以m=0,即m的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t,用根于系数关系列出方程组,在求解.6.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.(1)求m的取值范围;(2)若111αβ+=-,则m的值为多少?【答案】(1)14m≥;(2)m的值为3.【解析】【分析】(1)根据△≥0即可求解,(2)化简11αβ+,利用韦达定理求出α+β,αβ,代入解方程即可.【详解】解:(1)由题意知,(2m+3)2﹣4×1×m2≥0,解得:m≥-34;(2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m2,∵111αβ+=-,即αβαβ+=-1,∴2m 3m2+﹣()=-1,整理得m 2﹣2m ﹣3=0解得:m 1=﹣1,m 1=3,由(1)知m≥-34, ∴m 1=﹣1应舍去, ∴m 的值为3. 【点睛】本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.7.关于x 的方程()2204kkx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根. 【解析】 【分析】()1由于方程有两个不相等的实数根,所以它的判别式0V >,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围.()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404kk k =+-⋅>V , 1k ∴>-, 又0k Q ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204kkx k x +++=的两根分别为1x ,2x ,由根与系数的关系有:1212214k x x kx x +⎧+=-⎪⎪⎨⎪=⎪⎩,又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-,由()1知,1k >-,且0k ≠,43k ∴=-不符合题意,因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根. 【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。

初三数学一元二次方程组的专项培优 易错 难题练习题(含答案)

初三数学一元二次方程组的专项培优 易错 难题练习题(含答案)

初三数学一元二次方程组的专项培优易错难题练习题(含答案)一、一元二次方程1.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.【答案】(1)k>34;(2)15.【解析】【分析】(1)根据关于x的方程x2-(2k+1)x+k2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x2-5x+5=0,设方程的两根是m、n,则矩形两邻边的长是m、n,利用根与系数的关系得出m+n=5,mn=5,则矩形的对角线长为22m n+,利用完全平方公式进行变形即可求得答案.【详解】(1)∵方程x2-(2k+1)x+k2+1=0有两个不相等的实数根,∴Δ=[-(2k+1)]2-4×1×(k2+1)=4k-3>0,∴k>34;(2)当k=2时,原方程为x2-5x+5=0,设方程的两个根为m,n,∴m+n=5,mn=5,∴矩形的对角线长为:()222215m n m n mn+=+-=.【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.2.∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),五月份用水量超过m吨(或水费是按来计算的)则有151=1.7×80+(80-m)×即m2-80m+1500=0解得m1=30,m2=50.又∵四月份用水量为35吨,m1=30<35,∴m1=30舍去.∴m=50【解析】3.解下列方程:(1)2x2-4x-1=0(配方法);(2)(x+1)2=6x+6.【答案】(1)x1=1x2=11=-1,x2=5.【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x2-2x=12,∴x2-2x+1=32.∴(x-1)2=32.∴x-1=±2.∴x1=1x2=1(2)由题可得,(x+1)2-6(x+1)=0,∴(x+1)(x+1-6)=0.∴x+1=0或x+1-6=0.∴x1=-1,x2=5.4.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x个人,根据题意得:x+1+(x+1)x=36,解得:x=5或x=﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.5.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β.(1)求m 的取值范围;(2)若111αβ+=-,则m 的值为多少?【答案】(1)14m ≥;(2)m 的值为3. 【解析】【分析】(1)根据△≥0即可求解,(2)化简11αβ+,利用韦达定理求出α+β,αβ,代入解方程即可. 【详解】解:(1)由题意知,(2m+3)2﹣4×1×m 2≥0,解得:m≥-34; (2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m 2, ∵111αβ+=-,即αβαβ+=-1, ∴2m 3m2+﹣()=-1,整理得m 2﹣2m ﹣3=0 解得:m 1=﹣1,m 1=3,由(1)知m≥-34, ∴m 1=﹣1应舍去,∴m 的值为3.【点睛】 本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.6.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.7.如图,在Rt ABC V 中,90B =o ∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析【解析】【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况.【详解】解:∵90B ∠=o ,10AC =,6BC =,∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=,∵1632160=-=-<V ,∴假设不成立,四边形APQC 面积的面积不能等于216cm .【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.8.解方程:(x +1)(x -1)=x.【答案】x 1,x 2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴∴x1x 2.9.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值. 【答案】(1)m 的最小整数值为4-;(2)3m =【解析】【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题.【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯- ⎪⎝⎭22218m m m =++-+29m =+Q 方程有两个实数根0∴∆≥,即290m +≥92m ∴≥- ∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m ∴=,25m =-92m Q ≥- 3m ∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.10.已知关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最小整数时,求此时方程的解.【答案】(1)k >﹣12;(2)x 1=0,x 2=﹣1. 【解析】【分析】 (1)由题意得△=(k +1)2﹣4×14k 2>0,解不等式即可求得答案; (2)根据k 取最小整数,得到k =0,列方程即可得到结论.【详解】 (1)∵关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根, ∴△=(k +1)2﹣4×14k 2>0, ∴k >﹣12; (2)∵k 取最小整数,∴k =0,∴原方程可化为x 2+x =0,∴x 1=0,x 2=﹣1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.5,2y =2.5,∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.12.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.13.已知关于x的方程(a﹣1)x2+2x+a﹣1=0.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.【答案】(1)a=15,方程的另一根为12;(2)答案见解析.【解析】【分析】(1)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=1时,为一元一次方程;②当a≠1时,利用b2-4ac=0求出a的值,再代入解方程即可.【详解】(1)将x =2代入方程2(a 1)x 2x a 10-++-=,得4(a 1)4a 10-++-=,解得:a =15. 将a =15代入原方程得24x 2054x 5-+-=,解得:x 1=12,x 2=2. ∴a =15,方程的另一根为12; (2)①当a =1时,方程为2x =0,解得:x =0.②当a≠1时,由b 2-4ac =0得4-4(a -1)2=0,解得:a =2或0.当a =2时, 原方程为:x 2+2x +1=0,解得:x 1=x 2=-1;当a =0时, 原方程为:-x 2+2x -1=0,解得:x 1=x 2=1.综上所述,当a =1,0,2时,方程仅有一个根,分别为0,1,-1.考点:1.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.14.阅读下面的材料,回答问题:解方程x 4﹣5x 2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设x 2=y ,那么x 4=y 2,于是原方程可变为y 2﹣5y +4=0 ①,解得y 1=1,y 2=4. 当y =1时,x 2=1,∴x =±1;当y =4时,x 2=4,∴x =±2;∴原方程有四个根:x 1=1,x 2=﹣1,x 3=2,x 4=﹣2.(1)在由原方程得到方程①的过程中,利用 法达到 的目的,体现了数学的转化思想.(2)解方程(x 2+x )2﹣4(x 2+x )﹣12=0.【答案】(1)换元,降次;(2)x 1=﹣3,x 2=2.【解析】【详解】解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x 2+x =y ,原方程可化为y 2﹣4y ﹣12=0,解得y 1=6,y 2=﹣2.由x 2+x =6,得x 1=﹣3,x 2=2.由x 2+x =﹣2,得方程x 2+x +2=0,b 2﹣4ac =1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x 1=﹣3,x 2=2.15.已知:关于x 的一元二次方程221(1)204x m x m +++-=. (1)若此方程有两个实数根,求没m 的最小整数值;(2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m 的值. 【答案】(1)-4;(2)m=3【解析】【分析】(1)利用根的判别式的意义得到△≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到12(1)x x m +=-+,212124x x m =-,然后解关于m 的一元二次方程,即可确定m 的值.【详解】解:(1)∵221(1)204x m x m +++-=有两个实数根, ∴221(1)41(2)04m m ∆=+-⨯⨯-≥,∴290m +≥, ∴92m ≥-; ∴m 的最小整数值为:4m =-; (2)由根与系数的关系得:12(1)x x m +=-+,212124x x m =-, 由22212121184x x x x m ++=-得: ()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭∴22150m m +-=,解得:3m =或5m =-; ∵92m ≥-, ∴3m =.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则12b x x a +=-,12c x x a=.也考查了根的判别式.解题的关键是熟练掌握根与系数的关系和根的判别式.。

2020-2021九年级数学 一元二次方程组的专项 培优 易错 难题练习题附答案

2020-2021九年级数学 一元二次方程组的专项 培优 易错 难题练习题附答案

2020-2021九年级数学一元二次方程组的专项培优易错难题练习题附答案一、一元二次方程1.阅读下列材料计算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t,则:原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣+t2=在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:(1)计算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+)(2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4(3)解方程:(x2+4x+1)(x2+4x+3)=3【答案】(1);(2)(a2﹣5a+5)2;(3)x1=0,x2=﹣4,x3=x4=﹣2【解析】【分析】(1)仿照材料内容,令+=t代入原式计算.(2)观察式子找相同部分进行换元,令a2﹣5a=t代入原式进行因式分解,最后要记得把t换为a.(3)观察式子找相同部分进行换元,令x2+4x=t代入原方程,即得到关于t的一元二次方程,得到t的两个解后要代回去求出4个x的解.【详解】(1)令+=t,则:原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣﹣t+t2+=(2)令a2﹣5a=t,则:原式=(t+3)(t+7)+4=t2+7t+3t+21+4=t2+10t+25=(t+5)2=(a2﹣5a+5)2(3)令x2+4x=t,则原方程转化为:(t+1)(t+3)=3t2+4t+3=3t(t+4)=0∴t1=0,t2=﹣4当x2+4x=0时,x(x+4)=0解得:x 1=0,x 2=﹣4当x 2+4x =﹣4时,x 2+4x +4=0(x +2)2=0解得:x 3=x 4=﹣2【点睛】本题考查用换元法进行整式的运算,因式分解,解一元二次方程.利用换元法一般可达到降次效果,从而简便运算.2.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1%2a ,B 种品牌的建材的销售量减少了2%3a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23a ,求a 的值.【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30.【解析】【分析】(1)设销售A 品牌的建材x 件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;(2)根据题意列出方程求解即可.【详解】(1)设销售A 品牌的建材x 件.根据题意,得()60009000126966000x x +-≥,解这个不等式,得56x ≤,答:至多销售A 品牌的建材56件.(2)在(1)中销售额最低时,B 品牌的建材70件,根据题意,得 ()()()12260001%561%90001%701%6000569000701%2323a a a a a ⎛⎫⎛⎫⎛⎫-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令%a y =,整理这个方程,得21030y y -=, 解这个方程,得1230,10y y ==,∴10a=(舍去),230a=,即a的值是30.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.3.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x千克,则x{1﹣[60%+1.6%(90﹣x)]}=12,整理得:x2﹣65x﹣750=0,(x﹣75)(x+10)=0,解得:x1=75,x2=﹣10(舍去),60%+1.6%(90﹣x)=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用4.已知:关于的方程有两个不相等实数根.(1)用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.∴由求根公式,得.∴或(II),∴.而,∴,.由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k(k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x1>x2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.请你解答下列问题:5.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.月份用水量(吨)水费(元)四月3559.5五月80151【答案】6.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w元,根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x ﹣50)2+4000.∵a=﹣10<0,∴当x=50时,w取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.7.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.(1)求y与x之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最大,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x元,则多销售的数量为60-x,(2)解一元二次方程即可求解,(3)表示出最大利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x 元(40≤x≤60),则y=180+10(60-x )=-10x+780,(40≤x≤60),(2)依题意得:(x-40)(-10x+780)=3570,解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元.(3)设每星期的利润为w ,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-10<0,二次函数向下,函数有最大值,当x=59时, 利润最大,为3610元.【点睛】本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.8.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.9.淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A 商品的成本为30元/件,网上标价为80元/件.(1)“双十一”购物活动当天,甲网店连续两次降价销售A 商品吸引顾客,问该店平均每次降价率为多少时,才能使A 商品的售价为39.2元/件?(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A 商品的成本、网上标价与甲网店一致,一周可售出1000件A 商品.在“双十一”购物活动当天,乙网店先将A 商品的网上标价提高a %,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A 商品数量相比原来一周增加了2a %,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.【答案】(1)平均每次降价率为30%,才能使这件A 商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为100元.【解析】【分析】(1)设平均每次降价率为x ,才能使这件A 商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论; (2)根据总利润=每件的利润×销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出a 的值,再将其代入80(1+a %)中即可求出结论.【详解】(1)设平均每次降价率为x ,才能使这件A 商品的售价为39.2元,根据题意得:80(1﹣x )2=39.2,解得:x 1=0.3=30%,x 2=1.7(不合题意,舍去).答:平均每次降价率为30%,才能使这件A 商品的售价为39.2元.(2)根据题意得:[0.5×80(1+a %)﹣30]×1000(1+2a %)=30000,整理得:a 2+75a ﹣2500=0,解得:a 1=25,a 2=﹣100(不合题意,舍去),∴80(1+a %)=80×(1+25%)=100.答:乙网店在“双十一”购物活动这天的网上标价为100元.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.已知关于x 的一元二次方程x 2+(2k +1)x +k 2=0①有两个不相等的实数根. (1)求k 的取值范围;(2)设方程①的两个实数根分别为x 1,x 2,当k =1时,求x 12+x 22的值.【答案】(1)k >–14;(2)7 【解析】【分析】(1)由方程根的判别式可得到关于k 的不等式,则可求得k 的取值范围;(2)由根与系数的关系,可求x 1+x 2=-3,x 1x 2=1,代入求值即可.【详解】(1)∵方程有两个不相等的实数根,∴>0∆,即()22214410k k k +-=+>,解得14k >-;(2)当2k =时,方程为2x 5x 40++=,∵125x x +=-,121=x x ,∴()222121212225817x x x x x x +=+-=-=. 【点睛】本题主要考查根的判别式及根与系数的关系,熟练掌握根的判别式与根的个数之间的关系是解题的关键.11.已知关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0. (1)求证:无论k 取何值,此方程总有实数根; (2)若等腰△ABC 的一边长a =3,另两边b 、c 恰好是这个方程的两个根,求k 值多少?【答案】(1)详见解析;(2)k =32或2. 【解析】【分析】(1)计算判别式的值,利用完全平方公式得到△=(2k ﹣3)2≥0,然后根据判别式的意义得到结论;(2)利用求根公式解方程得到x 1=2k ﹣1,x 2=2,再根据等腰三角形的性质得到2k ﹣1=2或2k ﹣1=3,然后分别解关于k 的方程即可.【详解】(1)∵△=(2k +1)2﹣4×4(k ﹣12)=4k 2﹣12k +9=(2k ﹣3)2≥0, ∴该方程总有实数根; (2)()2k 12k 3x=2±+﹣ ∴x 1=2k ﹣1,x 2=2, ∵a 、b 、c 为等腰三角形的三边,∴2k ﹣1=2或2k ﹣1=3,∴k =32或2. 【点睛】 本题考查了根的判别式以及等腰三角形的性质,分a 是等腰三角形的底和腰两种情况是解题的关键.12.解方程:(x 2+x )2+(x 2+x )=6.【答案】x 1=﹣2,x 2=1【解析】【分析】设x 2+x =y ,将原方程变形整理为y 2+y ﹣6=0,求得y 的值,然后再解一元二次方程即可.【详解】解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,解得y 1=﹣3,y 2=2.①当y =2时,x 2+x =2,即x 2+x ﹣2=0,解得x 1=﹣2,x 2=1;②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x 1=﹣2,x 2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.13.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解: 22228160m mn n n -+-+=Q ,222(2)(816)0m mn n n n ∴-++-+=22()(4)0m n n ∴-+-=,0,40m n n ∴-=-=,4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值.【答案】(1)2(2)6(3)7【解析】【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a 与b 的值,根据边长为正整数且三角形三边关系即可求出c 的长;(3)由a ﹣b =4,得到a =b +4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a ﹣b +c 的值.【详解】(1)∵x 2+2xy +2y 2+2y +1=0∴(x 2+2xy +y 2)+(y 2+2y +1)=0∴(x+y)2+(y+1)2=0∴x+y=0 y+1=0解得:x=1,y=﹣1∴x﹣y=2;(2)∵a2+b2﹣6a﹣8b+25=0∴(a2﹣6a+9)+(b2﹣8b+16)=0∴(a﹣3)2+(b﹣4)2=0∴a﹣3=0,b﹣4=0解得:a=3,b=4∵三角形两边之和>第三边∴c<a+b,c<3+4,∴c<7.又∵c是正整数,∴△ABC的最大边c的值为4,5,6,∴c 的最大值为6;(3)∵a﹣b=4,即a=b+4,代入得:(b+4)b+c2﹣6c+13=0,整理得:(b2+4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣3)2=0,∴b+2=0,且c﹣3=0,即b=﹣2,c=3,a=2,则a﹣b+c=2﹣(﹣2)+3=7.故答案为7.【点睛】本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.14.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a>0,b>0时:∵(a b-)2=a﹣2ab+b≥0∴a+b≥2ab,当且仅当a=b时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x>0时,x+1x的最小值为.当x<0时,x+1x的最大值为;(2)若y=27101x xx+++,(x>﹣1),求y的最小值;(3)如图,四边形ABCD的对角线AC、BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.【答案】(1)2;﹣2.(2)y的最小值为9;(3)四边形ABCD面积的最小值为25.【解析】【分析】(1)当x >0时,按照公式a +b a =b 时取等号)来计算即可;当x <0时,﹣x >0,1x->0,则也可以按公式a +b a =b 时取等号)来计算; (2)将y 27101x x x ++=+的分子变形,分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.【详解】(1)当x >0时,x 1x +≥=2; 当x <0时,﹣x >0,1x ->0.∵﹣x 1x -≥=2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +的最大值为﹣2. 故答案为:2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =,∴四边形ABCD 面积=4+9+x 36x +≥=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.15.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.。

2020-2021初三数学一元二次方程组的专项培优 易错 难题练习题(含答案)及详细答案

2020-2021初三数学一元二次方程组的专项培优 易错 难题练习题(含答案)及详细答案

2020-2021初三数学一元二次方程组的专项培优 易错 难题练习题(含答案)及详细答案一、一元二次方程1.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上.①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c b a++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得21(舍去)或x=21-,∴点P (21-,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.2.如图,在△ABC 中,AB =6cm ,BC =7cm ,∠ABC =30°,点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动.如果P 、Q 两点同时出发,经过几秒后△PBQ 的面积等于4cm 2?【答案】经过2秒后△PBQ 的面积等于4cm 2.【解析】【分析】作出辅助线,过点Q 作QE ⊥PB 于E ,即可得出S △PQB =12×PB×QE ,有P 、Q 点的移动速度,设时间为t 秒时,可以得出PB 、QE 关于t 的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.3.已知:关于x的方程x2-4mx+4m2-1=0.(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2【答案】(1) 有两个不相等的实数根(2)周长为13或17【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m=3时,原方程为x2﹣12x+35=0,解得:x1=5,x2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x=5求出m值.4.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣15.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值. 月份用水量(吨) 水费(元)四月35 59.5五月80 151【答案】6.解下列方程:(1)2x 2-4x -1=0(配方法);(2)(x +1)2=6x +6.【答案】(1)x 1=1+62x 2=1-621=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可. 试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32. ∴(x -1)2=32. ∴x -1=32±62. ∴x 1=1+62,x 2=1-62. (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0.∴x +1=0或x +1-6=0.∴x 1=-1,x 2=5.7.已知关于x 的一元二次方程()220x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值及方程的另一个根.【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m 2+4,∵无论m 为何值时m 2≥0,∴m 2+4≥4>0,即△>0,所以无论m 为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t , ()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0,所以m=0,即m 的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.8.设m 是不小于﹣1的实数,关于x 的方程x 2+2(m ﹣2)x+m 2﹣3m+3=0有两个不相等的实数根x 1、x 2,(1)若x 12+x 22=6,求m 值;(2)令T=121211mx mx x x +--,求T 的取值范围.【答案】(1)2)0<T≤4且T≠2. 【解析】【分析】由方程方程由两个不相等的实数根求得﹣1≤m <1,根据根与系数的关系可得x 1+x 2=4﹣2m ,x 1•x 2=m 2﹣3m+3;(1)把x 12+x 22=6化为(x 1+x 2)2﹣2x 1x 2=6,代入解方程求得m 的值,根据﹣1≤m <1对方程的解进行取舍;(2)把T 化简为2﹣2m ,结合﹣1≤m <1且m≠0即可求T 得取值范围.【详解】∵方程由两个不相等的实数根,所以△=[2(m ﹣2)]2﹣4(m 2﹣3m+3)=﹣4m+4>0,所以m<1,又∵m是不小于﹣1的实数,∴﹣1≤m<1∴x1+x2=﹣2(m﹣2)=4﹣2m,x1•x2=m2﹣3m+3;(1)∵x12+x22=6,∴(x1+x2)2﹣2x1x2=6,即(4﹣2m)2﹣2(m2﹣3m+3)=6整理,得m2﹣5m+2=0解得m=;∵﹣1≤m<1所以m=.(2)T=+=====2﹣2m.∵﹣1≤m<1且m≠0所以0<2﹣2m≤4且m≠0即0<T≤4且T≠2.【点睛】本题考查了根与系数的关系、根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.9.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.10.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.11.已知关于x的一元二次方程x2﹣mx﹣2=0…①(1)若x=﹣1是方程①的一个根,求m的值和方程①的另一根;(2)对于任意实数m,判断方程①的根的情况,并说明理由.【答案】(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与0的关系进行判断.(1)把x=-1代入得1+m-2=0,解得m=1∴2--2=0.∴∴另一根是2;(2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根12.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.【解析】【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.【详解】(1)设每千克茶叶应降价x 元.根据题意,得:(400﹣x ﹣240)(200+10x ×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.13.解方程:(x 2+x )2+(x 2+x )=6.【答案】x1=﹣2,x2=1【解析】【分析】设x2+x=y,将原方程变形整理为y2+y﹣6=0,求得y的值,然后再解一元二次方程即可.【详解】解:设x2+x=y,则原方程变形为y2+y﹣6=0,解得y1=﹣3,y2=2.①当y=2时,x2+x=2,即x2+x﹣2=0,解得x1=﹣2,x2=1;②当y=﹣3时,x2+x=﹣3,即x2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x1=﹣2,x2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.14.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向B点以1 cm/s的速度移动,点Q从B点沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为42cm ?(3)△PBQ的面积能否为10 cm2?若能,求出时间;若不能,请说明理由.【答案】(1) 2或4秒2 cm;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为2cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8 cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)× 2t =8, 解得t 1=2,t 2=4, ∴当P ,Q 经过2或4秒时,△PBQ 的面积为8 cm 2;(2)设x 秒后,PQ = cm ,由题意,得(6-x)2+4x 2=32,解得x 1=25,x 2=2,故经过25秒或2秒后,线段PQ 的长为 cm ; (3)设经过y 秒,△PBQ 的面积等于10 cm 2,S △PBQ =12×(6-y)× 2y =10, 即y 2-6y +10=0, ∵Δ=b 2-4ac =36-4× 10=-4< 0,∴△PBQ 的面积不会等于10 cm 2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.15.已知关于x 的方程()()212310k x k x k -+-++=有两个不相等的实数根1x ,2x . ()1求k 的取值范围.()2是否存在实数k ,使方程的两实数根互为相反数?【答案】(1)1312k <且1k ≠;(2) k 不存在,理由见解析 【解析】【分析】(1)因为方程(k ﹣1)x 2+(2k ﹣3)x +k +1=0有两个不相等的实数根x 1,x 2.得出其判别式△>0,可解得k 的取值范围;(2)假设存在两根的值互为相反数,根据根与系数的关系,列出对应的不等式即可求出k 的值.【详解】(1)方程(k ﹣1)x 2+(2k ﹣3)x +k +1=0有两个不相等的实数根x 1,x 2,可得:k ﹣1≠0且△=﹣12k +13>0,解得:k <1312且k ≠1; (2)假设存在两根的值互为相反数,设为 x 1,x 2.∵x 1+x 2=0,∴﹣231k k --=0,∴k =32.又∵k<1312且k≠1,∴k不存在.【点睛】本题主要考查了根与系数的关系,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.。

九年级数学 一元二次方程组的专项 培优易错试卷练习题含答案解析

九年级数学 一元二次方程组的专项 培优易错试卷练习题含答案解析

九年级数学一元二次方程组的专项培优易错试卷练习题含答案解析一、一元二次方程1.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q 两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C 同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?【答案】(1)PQ=62cm;(2)85s或245s;(3)经过4秒或6秒△PBQ的面积为12cm2.【解析】试题分析:(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴cm ;∴经过2s 时P 、Q 两点之间的距离是;(2)设x 秒后,点P 和点Q 的距离是10cm .(16-2x-3x )2+62=102,即(16-5x )2=64,∴16-5x=±8,∴x 1=85,x 2=245; ∴经过85s 或245sP 、Q 两点之间的距离是10cm ; (3)连接BQ .设经过ys 后△PBQ 的面积为12cm 2.①当0≤y≤163时,则PB=16-3y , ∴12PB•BC=12,即12×(16-3y )×6=12, 解得y=4;②当163<x≤223时, BP=3y-AB=3y-16,QC=2y ,则12BP•CQ=12(3y-16)×2y=12, 解得y 1=6,y 2=-23(舍去); ③223<x≤8时, QP=CQ-PQ=22-y ,则12QP•CB=12(22-y )×6=12, 解得y=18(舍去).综上所述,经过4秒或6秒△PBQ 的面积为 12cm 2.考点:一元二次方程的应用.2.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点.己知函数222(3)y x mx m =--+(m m 为常数). (1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0时,该函数的零点为6和6-.(2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】 (1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点; (2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根. 即无论m 取何值,该函数总有两个零点.(3)依题意有, 由解得.∴函数的解析式为. 令y=0,解得∴A(),B(4,0) 作点B 关于直线10y x =-的对称点B’,连结AB’,则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10).连结CB’,则∠BCD=45°∴BC=CB’=6,∠B’CD=∠BCD=45°∴∠BCB’=90°即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.3.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.【答案】(1)k >34;(2 【解析】【分析】(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,利用根与系数的关系得出m+n=5,mn=5,利用完全平方公式进行变形即可求得答案.【详解】(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0,∴k >34; (2)当k =2时,原方程为x 2-5x +5=0,设方程的两个根为m ,n ,∴m +n =5,mn =5,∴==.【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.4.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根. ()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】【分析】 ()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥V ,解之可得. ()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.【详解】解:()1Q 关于x 的一元二次方程()222130x k x k --+-=有两个实数根, 0∴≥V ,即()()22[21]4134130k k k ---⨯⨯-=-+≥, 解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+,221223x x +=Q , 224723k k ∴-+=,解得4k =,或2k =-,134k ≤Q , 4k ∴=舍去,2k ∴=-.【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0V >,方程有两个不相等的实数根;当0=V ,方程有两个相等的实数根;当0<V ,方程没有实数根.以及根与系数的关系.5.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x2-(2k-1)x+k2+1的图象与x轴有两交点,∴当y=0时,x2-(2k-1)x+k2+1=0有两个不相等的实数根.∴△=b2-4ac=[-(2k-1)]2-4×1×(k2+1)>0.解得k<-34;(2)当y=0时,x2-(2k-1)x+k2+1=0.则x1+x2=2k-1,x1•x2=k2+1,∵=== 32-,解得:k=-1或k=13-(舍去),∴k=﹣16. y与x的函数关系式为:y=1.7x(x≤m);或( x≥m) ;7.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S的值能为2,此时k的值为2.考点:一元二次方程根的判别式;根与系数的关系.8.解下列方程:(1)2x2-4x-1=0(配方法);(2)(x+1)2=6x+6.【答案】(1)x1=16x2=161=-1,x2=5.【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x2-2x=12,∴x2-2x+1=32.∴(x-1)2=32.∴x-1=326 .∴x1=16x2=16(2)由题可得,(x+1)2-6(x+1)=0,∴(x+1)(x+1-6)=0.∴x+1=0或x+1-6=0.∴x1=-1,x2=5.9.关于x 的方程()2204k kx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】()1由于方程有两个不相等的实数根,所以它的判别式0V >,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围.()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404k k k =+-⋅>V , 1k ∴>-,又0k Q ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204k kx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x k x x +⎧+=-⎪⎪⎨⎪=⎪⎩, 又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-, 由()1知,1k >-,且0k ≠,43k ∴=-不符合题意,因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学一元二次方程组的专项培优易错难题练习题含答案一、一元二次方程1.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.2.解方程:(2x+1)2=2x+1.【答案】x=0或x=12-. 【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0, ∴(2x+1)(2x+1﹣1)=0,即2x (2x+1)=0, 则x=0或2x+1=0, 解得:x=0或x=﹣12.3.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥V ,解之可得. ()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】解:()1Q 关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥V ,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=Q ,224723k k ∴-+=,解得4k =,或2k =-,134k ≤Q , 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0V >,方程有两个不相等的实数根;当0=V ,方程有两个相等的实数根;当0<V ,方程没有实数根.以及根与系数的关系.4.已知关于x 的方程221(1)104x k x k -+++=有两个实数根. (1)求k 的取值范围;(2)若方程的两实数根分别为1x ,2x ,且221212615x x x x +=-,求k 的值.【答案】(1)32k ≥ (2)4 【解析】 试题分析:根据方程的系数结合根的判别式即可得出230k ∆=-≥ ,解之即可得出结论.根据韦达定理可得:212121114x x k x x k ,+=+⋅=+ ,结合221212615x x x x +=- 即可得出关于k 的一元二次方程,解之即可得出k 值,再由⑴的结论即可确定k 值. 试题解析:因为方程有两个实数根,所以()22114112304k k k ⎛⎫⎡⎤∆=-+-⨯⨯+=-≥ ⎪⎣⎦⎝⎭, 解得32k ≥. 根据韦达定理,()221212111141 1.114k k x x k x x k +-++=-=+⋅==+,因为221212615x x x x +=-,所以()212128150x x x x +-+=,将上式代入可得()2211811504k k ⎛⎫+-++= ⎪⎝⎭,整理得2280k k --= ,解得 1242k k ,==- ,又因为32k ≥,所以4k =.5.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元 【解析】 【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题. 【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000. ∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元. 【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.6.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m 【解析】 【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答. 【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--= 解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m 【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.7.用适当的方法解下列一元二次方程: (1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0. 【答案】(1)x 1=-1+62x 2=-1-622)y 1=-14,y 2=32.【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1 ∴△=b 2-4ac=16+8=24>0∴x=24b b c a -±-=42461222-±=-±⨯ ∴x 1=-1+6,x 2=-1-6(2)(y +2)2-(3y -1)2=0 [(y+2)+(3y-1)][ (y+2)-(3y-1)]=0 即4y+1=0或-2y+3=0 解得y 1=-14,y 2=32.8.(问题)如图①,在a×b×c (长×宽×高,其中a ,b ,c 为正整数)个小立方块组成的长方体中,长方体的个数是多少? (探究)探究一:(1)如图②,在2×1×1个小立方块组成的长方体中,棱AB 上共有1+2=232⨯=3条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为3×1×1=3. (2)如图③,在3×1×1个小立方块组成的长方体中,棱AB 上共有1+2+3=342⨯=6条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为6×1×1=6. (3)依此类推,如图④,在a×1×1个小立方块组成的长方体中,棱AB 上共有1+2+…+a=()a a 12+线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为______. 探究二:(4)如图⑤,在a×2×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2=232⨯=3条线段,棱AD 上只有1条线段,则图中长方体的个数为()a a 12+×3×1=()3a a 12+.(5)如图⑥,在a×3×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2+3=342⨯=6条线段,棱AD 上只有1条线段,则图中长方体的个数为______. (6)依此类推,如图⑦,在a×b×1个小立方块组成的长方体中,长方体的个数为______.探究三:(7)如图⑧,在以a×b×2个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC 上有()b b 12+条线段,棱AD 上有1+2=232⨯=3条线段,则图中长方体的个数为()3a a 12+×()b b 12+×3=()()3ab a 1b 14++.(8)如图⑨,在a×b×3个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有()b b 12+条线段,棱AD 上有1+2+3=342⨯=6条线段,则图中长方体的个数为______.(结论)如图①,在a×b×c 个小立方块组成的长方体中,长方体的个数为______.(应用)在2×3×4个小立方块组成的长方体中,长方体的个数为______.(拓展)如果在若干个小立方块组成的正方体中共有1000个长方体,那么组成这个正方体的小立方块的个数是多少?请通过计算说明你的结论.【答案】探究一:(3)()a a12+;探究二:(5)3a(a+1);(6)()()ab a1b14++;探究三:(8)()()3ab a1b12++;【结论】:①()()()abc a1b1c18+++;【应用】:180;【拓展】:组成这个正方体的小立方块的个数是64,见解析.【解析】【分析】(3)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(5)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(6)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(8)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(结论)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(应用)a=2,b=3,c=4代入(结论)中得出的结果,即可得出结论;(拓展)根据(结论)中得出的结果,建立方程求解,即可得出结论.【详解】解:探究一、(3)棱AB上共有()a a12+线段,棱AC,AD上分别只有1条线段,则图中长方体的个数为()a a12+×1×1=()a a12+,故答案为() a a12+;探究二:(5)棱AB上有()a a12+条线段,棱AC上有6条线段,棱AD上只有1条线段,则图中长方体的个数为()a a12+×6×1=3a(a+1),故答案为3a(a+1);(6)棱AB上有()a a12+条线段,棱AC上有()b b12+条线段,棱AD上只有1条线段,则图中长方体的个数为()a a12+×()b b12+×1=()()ab a1b14++,故答案为()() ab a1b14++;探究三:(8)棱AB 上有()a a 12+ 条线段,棱AC 上有()b b 12+条线段,棱AD 上有6条线段,则图中长方体的个数为()a a 12+ ×()b b 12+×6=()()3ab a 1b 12++,故答案为()()3ab a 1b 12++;(结论)棱AB 上有()a a 12+ 条线段,棱AC 上有()b b 12+条线段,棱AD 上有()c c 12+条线段,则图中长方体的个数为()a a 12+×()b b 12+×()c c 12+=()()()abc a 1b 1c 18+++,故答案为()()()abc a 1b 1c 18+++;(应用)由(结论)知,()()()abc a 1b 1c 18+++,∴在2×3×4个小立方块组成的长方体中,长方体的个数为()()()2342131418⨯⨯⨯+⨯+⨯+=180,故答案为为180;拓展:设正方体的每条棱上都有x 个小立方体,即a=b=c=x ,由题意得33(1)8x x +=1000, ∴[x (x+1)]3=203, ∴x (x+1)=20,∴x 1=4,x 2=-5(不合题意,舍去) ∴4×4×4=64所以组成这个正方体的小立方块的个数是64. 【点睛】解此题的关键在于根据已知得出规律,题目较好,但有一定的难度,是一道比较容易出错的题目.9.设m 是不小于﹣1的实数,关于x 的方程x 2+2(m ﹣2)x+m 2﹣3m+3=0有两个不相等的实数根x 1、x 2,(1)若x 12+x 22=6,求m 值;(2)令T=121211mx mx x x +--,求T 的取值范围.【答案】(1)m=5172;(2)0<T≤4且T≠2.【解析】【分析】由方程方程由两个不相等的实数根求得﹣1≤m<1,根据根与系数的关系可得x1+x2=4﹣2m,x1•x2=m2﹣3m+3;(1)把x12+x22=6化为(x1+x2)2﹣2x1x2=6,代入解方程求得m的值,根据﹣1≤m<1对方程的解进行取舍;(2)把T化简为2﹣2m,结合﹣1≤m<1且m≠0即可求T得取值范围.【详解】∵方程由两个不相等的实数根,所以△=[2(m﹣2)]2﹣4(m2﹣3m+3)=﹣4m+4>0,所以m<1,又∵m是不小于﹣1的实数,∴﹣1≤m<1∴x1+x2=﹣2(m﹣2)=4﹣2m,x1•x2=m2﹣3m+3;(1)∵x12+x22=6,∴(x1+x2)2﹣2x1x2=6,即(4﹣2m)2﹣2(m2﹣3m+3)=6整理,得m2﹣5m+2=0解得m=;∵﹣1≤m<1所以m=.(2)T=+=====2﹣2m.∵﹣1≤m<1且m≠0所以0<2﹣2m≤4且m≠0即0<T≤4且T≠2.【点睛】本题考查了根与系数的关系、根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.10.已知关于x的方程x2﹣2x+m﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为正整数,且该方程的根都是整数,求m的值.【答案】(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.11.关于x的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m的最小值.【答案】(1)证明见解析;(2)-1.【解析】【分析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根. (2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗的最小值.【详解】(1)证明:依题意,得., ∴. ∴方程总有两个实数根. 由. 可化为:得, ∵ 方程的两个实数根都是正整数, ∴. ∴. ∴ 的最小值为. 【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.12.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.13.工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.14.关于x的一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.【答案】(1)k<4且k≠2.(2)m=0或m=8 3 .【解析】分析:(1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于k的不等式组,解不等式组即可求得对应的k的取值范围;(2)由(1)得到符合条件的k的值,代入原方程,解方程求得x的值,然后把所得x的值分别代入方程x2+mx-1=0即可求得对应的m的值.详解:(1)∵一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根,∴△=16-8(k-2)=32-8k>0且k-2≠0.解得:k<4且k≠2.(2)由(1)可知,符合条件的:k=3,将k=3代入原方程得:方程x2-4x+3=0,解此方程得:x1=1,x2=3.把x=1时,代入方程x2+mx-1=0,有1+m-1=0,解得m=0.把x=3时,代入方程x 2+mx-1=0,有9+3m-1=0,解得m=83-.∴m=0或m=83-.点睛:(1)知道“在一元二次方程20?(0)ax bx c a ++=≠中,当△=240b ac ->时,方程有两个不相等的实数根;当△=240b ac -=时,方程有两个相等的实数根;△=240b ac -<时,方程没有实数根”是正确解答第1小题的关键;(2)解第2小题时,需注意相同的根存在两种情况,解题时不要忽略了其中任何一种情况.15.已知关于x 的方程x 2﹣(k +3)x +3k =0.(1)若该方程的一个根为1,求k 的值;(2)求证:不论k 取何实数,该方程总有两个实数根.【答案】(1)k =1;(2)证明见解析.【解析】【分析】(1)把x =1代入方程,即可求得k 的值;(2)求出根的判别式是非负数即可.【详解】(1)把x =1代入方程x 2﹣(k +3)x +3k =0得1﹣(k ﹣3)+3k =0,1﹣k ﹣3+3k =0解得k =1;(2)证明:1,(3),3a b k c k ==-+=24b ac ∆=-Q∴ △=(k +3)2﹣4•3k =(k ﹣3)2≥0,所以不论k 取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.。

相关文档
最新文档